电机的选型计算实例
- 格式:docx
- 大小:10.92 KB
- 文档页数:2
直线电机选型计算实例直线电机是一种直线运动的电动机,它的工作原理与旋转电机类似,但是它的转子是直线型的,而且它的运动方向也是直线的。
直线电机具有结构简单、精度高、响应快等优点,因此在自动化生产线、半导体设备、医疗器械等领域得到广泛应用。
下面我们将通过一个选型计算实例来介绍直线电机的选型方法。
1. 确定负载参数在选型之前,首先需要确定直线电机所要驱动的负载参数,包括负载的质量、惯性、运动方式等。
例如,假设我们需要驱动一个质量为100kg的物体在水平方向上做往返直线运动,运动速度为1m/s,加速度为2m/s^2,运动距离为500mm。
2. 计算所需力矩根据负载参数,我们可以计算出所需的力矩。
在这个例子中,所需的力矩可以通过以下公式计算:T = m * a * L / 2其中,m为负载质量,a为加速度,L为运动距离。
代入参数可得:T = 100 * 2 * 0.5 = 100N·m3. 选择合适的直线电机型号在确定所需力矩后,我们需要选择合适的直线电机型号。
在选择时,需要考虑直线电机的最大力矩、最大速度、最大加速度等参数。
一般来说,直线电机的最大力矩应该大于所需的力矩,最大速度应该大于所需的运动速度,最大加速度应该大于所需的加速度。
假设我们选择了一款最大力矩为200N·m,最大速度为2m/s,最大加速度为4m/s^2的直线电机。
4. 计算所需电流和功率在确定直线电机型号后,我们需要计算所需的电流和功率。
电流可以通过以下公式计算:I = T / k其中,T为所需力矩,k为直线电机的力矩常数。
功率可以通过以下公式计算:P = F * v其中,F为所需的力,v为运动速度。
代入参数可得:I = 100 / 0.1 = 1000AP = 100 * 1 = 100W5. 确定驱动器和控制器在确定所需电流和功率后,我们需要选择合适的驱动器和控制器。
驱动器需要能够提供足够的电流和电压,控制器需要能够控制直线电机的运动速度和加速度。
直线电机选型方法实例
假设我们需要选用一台直线电机,用于驱动一台重量为100kg 的运动平台,需要满足以下要求:
-最大速度:2m/s
-最大加速度:5m/s²
-持续工作时间:8小时
-工作环境温度:20℃
根据以上要求,我们需要进行选型计算:
1.计算载荷
载荷=运动平台质量×重力加速度
载荷=100kg×9.8m/s²
载荷=980N
2.计算最大力
最大力=载荷×最大加速度
最大力=980N×5m/s²
最大力=4900N
3.计算最大功率
最大功率=最大力×最大速度
最大功率=4900N×2m/s
最大功率=9800W
4.计算额定功率
额定功率=最大功率×1.5
额定功率=9800W×1.5
额定功率=14700W
5.选择适合的直线电机
根据以上计算,我们需要选择额定功率为14700W的直线电机。
同时,我们还需要考虑工作环境温度,应该选择能够在20℃下正常工作的直线电机。
还需要考虑其他因素,如包括电机的体积、重量、噪音、维护成本等因素。
最终选型应该综合考虑以上因素,选择最为适合的直线电机。
伺服电机选型计算实例伺服电机是一种控制器控制的电机,具有高精度和高速度的特点,广泛应用于机械设备中。
在选型伺服电机时,需要考虑多个参数来满足具体的应用要求。
下面以一个选型计算实例来详细介绍伺服电机的选型过程。
假设我们需要选型一台伺服电机用于驱动一个线传动机构,具体要求如下:1.最大负载力为2000N,工作速度范围为0-10m/s。
2. 线传动机构的负载惯量为500kg·m²。
3. 需要保证驱动精度在±0.2mm范围内。
4.工作环境温度范围为0-40℃。
首先,我们需要计算所需的转矩。
根据公式:转矩=负载力×工作半径,其中工作半径等于线传动机构的负载惯量÷2、由于我们没有具体的线传动机构参数,假设负载惯量为500kg·m²,即工作半径为0.25m。
则最大转矩=2000N×0.25m=500N·m。
考虑到一般情况下,峰值转矩为最大转矩的2倍,即1000N·m。
接下来,我们需要计算伺服电机的速度要求。
根据给定的工作速度范围0-10m/s,我们可以选择合适的额定转速。
假设我们选择的额定转速为2000rpm,则转速范围为0-2000rpm。
考虑到加速度和减速度的要求,一般额定转速的选择会略高于平均线速度,假设为2200rpm。
接下来,我们需要选择合适的伺服电机型号。
在选型之前,我们还需要考虑工作环境的温度范围。
根据给定的工作环境温度范围为0-40℃,我们需要选择具备合适温度范围的伺服电机。
一般伺服电机的温度范围为0-50℃,因此我们可以选择标准型号的伺服电机。
在选择伺服电机型号时,我们需要参考厂家提供的电机性能参数。
主要包括额定转矩、额定转速、额定电压、额定电流、额定功率等。
根据我们的要求,我们可以对比不同型号的伺服电机并选择合适的型号。
最后,我们需要根据具体应用需求考虑伺服电机的控制方式、接口类型以及其他附件等。
电机选型案例本篇文章介绍了两个电机选型案例,第一个是皮带输送线电机选型,第二个是直线导轨电机选型。
第一个案例中,设计要求是传送20Kg物料X 2,传送速度1m/s,加速时间0.15s,已知条件为摩擦系数=0.2,机械效率=90%,滚子直径=200mm。
首先计算负载,然后计算皮带拉力和辊筒转矩,最后计算功率和电机转矩,得出选用1.9N·m的电机,并进行校验。
第二个案例中,设计要求是传送50Kg的负载,运行速度1m/s,加速时间0.25s,已知条件为直线导轨摩擦系数0.1,带轮直径100mm。
首先计算负载,然后计算同步轮转矩和电机功率,得出两种方案,一种是选择18NM的步进电机,另一种是加减速器,取i=2.5.在改写方面,可以将一些公式和计算过程进行简化,让文章更易读懂。
同时,可以将每个案例的设计要求和已知条件进行分段,以便读者更好地理解。
根据题目要求,我们需要设计一个托盘加速到一定速度的系统,以下是设计过程:1.确定托盘的惯量托盘的惯量可以通过托盘质量和直径来计算,即 $J_{托盘}=\frac{1}{2}M(\frac{D}{2})^2$。
代入数据得到 $J_{托盘}=kg·mm^2$。
2.确定加速度根据题目要求,托盘需要在 0.5 秒内加速到 0.5 m/s 的速度,因此加速度为 $a=\frac{V}{t}=1m/s^2$。
3.确定所需扭矩根据丝杠的导程和直径,可以计算出每秒钟丝杠转动的圈数为 $n=\frac{v}{P}=\frac{0.5}{0.01}=50$,因此所需扭矩为$T_{总}=J_{托盘}·\frac{a}{n}=·\frac{1}{50}=1764N·mm$。
4.确定电机输出扭矩和功率根据传动比和所需扭矩,可以计算出电机输出扭矩为$T_{电机}=T_{总}/i=1764/5=352.8N·mm$。
根据机械效率为0.9,可以计算出电机输出功率为 $P_{电机}=T_{电机}·\omega_{电机}/0.9=352.8·2π·40/60/0.9=148.7W$。
电机选型惯量计算公式实例电机的选型是设计和使用电机系统中的一个重要环节,其中惯量的计算是选型过程中的关键步骤之一。
本文将以一个具体的电机选型案例为例,介绍电机惯量的计算公式和相关注意事项。
在进行电机选型时,首先需要确定所需的输出功率和转速范围。
然后,根据这些要求选择适当的电机类型,比如直流电机、交流电机或步进电机。
本文以直流电机为例,介绍电机惯量的计算方法。
电机的惯量是指电机对转动运动的惯性阻力,通常用转动惯量(J)表示,单位是kg·m²。
电机的惯量大小与电机的转子质量和转子的几何形状有关。
下面是计算直流电机惯量的公式:J = m * r²其中,J为惯量,m为转子质量,r为转子半径。
需要注意的是,这个公式只适用于转子为圆柱体的情况。
如果转子的几何形状不是圆柱体,那么需要根据具体情况进行修正。
在实际的电机选型中,有时会遇到需要估算电机惯量的情况。
例如,如果已知一个电机的转子质量和尺寸,但没有精确的惯量数值,那么可以通过估算来获取一个大致的惯量值。
下面是一个估算直流电机惯量的方法:1. 首先,测量转子的质量m和转子的半径r。
2. 根据转子的几何形状,选择适当的修正系数K。
3. 根据公式J = m * r² * K 计算惯量J的估算值。
需要注意的是,估算值仅供参考,可能与实际值存在一定的偏差。
如果需要更精确的惯量数值,建议通过实验或使用专业的测量设备进行测量。
在电机选型过程中,除了惯量的计算,还需要考虑其他因素,如最大扭矩、额定电流、效率等。
这些因素与电机的设计和使用要求有关,需要根据具体情况进行综合考虑。
电机惯量的计算是电机选型过程中的重要一环。
通过合理计算和估算电机的惯量,可以为电机系统的设计和使用提供重要参考。
在实际应用中,建议根据具体情况选择合适的计算方法,并结合其他因素进行综合考虑,以确保选型的准确性和可靠性。
三相电机选型及计算案例1.选型计算通用公式P功率(W)T转矩(N.M)N转速(R/min)P=T.N/9550T=P.9550/NP=F.V(直线运动)P=T.ω(圆周运动)速度V线速度m/sN转速n/minω角速度rad/s(360度=2πrad)N=V*1000*60/(2πR)物体速度和滚轮转速的关系ω=2πN/60圆周运动常用转速转化为角速度来计算N=V*60*1000/Pb丝杆线速度与转速关系N转速三相异步电机(1500/3000/1000)步进电机(600R以下)伺服电机(3000R左右)减速机的核心减速增矩电机转速除以算出来的转速,等于整个系统的传动比i负载的受力情况水平直线运动:F=μmgF力(N)m质量(kg)g重力加速度g=10n/kg竖直运动:F=mg圆周运动:T=j*βT扭矩(n.m)j惯量(kg.m^2)β角加速度(rad/s^2)同步带、齿条、各类带传动情况下:扭矩T=F.RR(与力相连的轮子的半径)丝杆传动:扭矩T=F*Pb/(2π*η)惯量直线运动F=maa=v/ta加速度(m/s^2)圆周运动T=j*βj=mr^2β=ω/tω=2πNT扭矩(n.m)j惯量(kg.m^2)ω角速度rad/s(360度=2πrad)β角加速度(rad/s^2)t加速时间(s)2.常见产品案例例题1:皮带输送机负载重量400KG速度30M/min滚子直径200MM总效率η=百分之75摩擦系数0.2安全系数k=1.8求:电机功率转速扭矩减速比(12345678910)求大小链轮齿数解法1:F=μmg=0.2*400*10=800NP=F.V*k/η=800*0.5*1.8/0.75=960W=0.96kw(取1kw)N=V*1000*60/(2πR)=30*1000/3.14/2/100=48r/min设电机转速为1500则电机转矩T=P*9.55/1500=6.1n.m则减速比为1500/48=31.25(取31)选择10设小链轮齿数为17则大链轮齿为17*3.1=53解法2:F=μmg=0.2*400*10=800NT=F.D/2=800*0.2/2=80n.m(滚子转矩)N=V*1000*60/(2πR)=30*1000/3.14/2/100=48r/min设电机转速为1500减速比为1500/48=31.25(取31)选择10设小链轮齿数为17则大链轮齿为17*3.1=53电机的扭矩等于T(负载)/i=t(电机)=80/31=2.58nm电机需要的理论功率为P=TN/9550=2.58*1500/9550=0.4KW电机实际功率等于p*k/η=0.4*1.8/0.75=0.96kw(取1kw)。
电机减速机的选型计算1参数要求配重300kg ,副屏重量为500kg ,初选链轮的分度圆直径为164.09mm ,链轮齿数为27,(详见misimi 手册P1145。
副屏移动的最大速度为0.5m/s,加速时间为1s 。
根据移动屏实际的受力状况,将模型简化为:物体在竖直方向上受到的合力为:惯惯2121F F G G F h ++-=其中:115009.84900G m g N ==⨯=223009.82940G m g N ==⨯=110.55002501F m a N ==⨯=惯 120.53001501F m a N ==⨯=惯 所以:490029402501502360h F =-++=合力产生的力矩:0.1640923602193.6262h M F rNm =⨯=⨯= 其中:r 为链轮的半径链轮的转速为:0.5 6.1/0.082v w rad s r === 6.1(1/60)58.3/min 22w n r ππ=== 2减速机的选型速比的确定:初选电机的额定转速为3000r/min300051.558.3d n i n === 初选减速器的速比为50,减速器的输出扭矩由上面计算可知:193.6262Nm3电机的选型传动方式为电机—减速机—齿轮-链轮-链条传动,将每一级的效率初定位为0.9,则电机的扭矩为:44193.62 5.9500.9d M T Nm i η===⨯ 初选电机为松下,3000r/min ,额定扭矩为:9.55Nm ,功率3kw 转子转动惯量为7.85X10-4kgm 2带制动器编码器,减速器为台湾行星减速器,速比为50,额定扭矩为650NM4惯量匹配负载的转动惯量为:222(500300)0.082 5.4J mr kgm ==+⨯=转换到电机轴的转动惯量为:31225.4 2.161050J J i -===⨯ 惯量比为: 3142.1610 2.757.8510d J J λ--⨯===⨯ 电机选型手册要求惯量比小于15,故所选电机减速器满足要求减速机扭矩计算方法:如下公式:减速机扭矩=9550×电机功率÷电机功率输入转数×速比×使用系数知道扭矩和减速机输出转数及使用系数,求减速机所需配电机功率如下公式:电机功率=扭矩÷9550×电机功率输入转数÷速比÷使用系数。
输送机电机选型计算案例
以下是一个输送机电机选型计算案例:
假设需要为一个输送带选择电机,输送带的长度为100米,输送带的速度为1米/秒,输送带的负载为2吨,电机需要提供足够的扭矩以驱动整个输送带。
首先,计算输送带的功率需求。
根据功率公式P = m * v * f / η,其中P为功率,m为负载重量,v为输送带速度,f为摩擦系数,η为效率系数,可以得到输送带的功率需求为:
P = 2000kg * 1m/s * 100m / 1.2 = 16700W
然后,根据电机的额定功率和效率,计算电机的输出功率。
假设电机的额定功率为4千瓦,效率为90%,则电机的输出功率为:
Pout = P / (η * 100%) = 16700W / 0.9 = 18556W
接下来,根据电机的额定功率和输出功率,计算电机的转速。
假设电机的额定电压为380伏,额定频率为50赫兹,则电机的转速为:
n = 1000 / Pout = 1000 / 18556 = 0.05555rpm
最后,根据电机的输出扭矩和转速,计算电机的输出功率。
假设电机的输出扭矩为200牛·米,则电机的输出功率为:
Pout = T * n / (50 * π) = 200Nm * 0.05555rpm / (50 * π) ≈ 220W
综合以上计算结果,可以得出结论:需要选择一台额定功率为4千瓦,效率为90%,额定电压为380伏,额定频率为50赫兹,输出扭矩为200牛·米,输出功率为220W的电机,以满足输送带的功率需求。
步进电机选型的计算示例一、必要脉冲数和驱动脉冲数速度计算的示例下面给出的是一个3相步进电机必要脉冲数和驱动脉冲速度的计算示例。
这是一个实际应用例子,可以更好的理解电机选型的计算方法。
1.1 驱动滚轴丝杆如下图,3相步进电机(1.2°/步)驱动物体运动1秒钟,则必要脉冲数和驱动脉冲速度的计算方法如下:必要脉冲数=10010×360°1.2°=3000[脉冲]如果采用自启动方式驱动1秒钟,则驱动脉冲速度应该这样计算:3000[Pulse]/1[sec]=3[kHz]但是,自启动速度不可能是5kHz,应该采用加/减速运行方式来驱动。
如果加/减速时间设置为定位时间的25%,启动脉冲速度为500[Hz],则计算方法如下:驱动脉冲速度[Hz]=3000[脉冲]-500[Hz]×0.25[秒]1[秒]-0.25[秒]=3.8 [kHz]如图所示:1.2驱动传动带如下图,3相步进电机(1.2°/步)驱动物体运动1秒钟。
驱动轮的周长即旋转一圈移动的距离大约为50[mm]。
因此,所需要的必要脉冲数为:必要脉冲数=110050×360°1.2°=6600 [脉冲]所需参数同上例驱动滚轴丝杆,采用加/减速运行模式,则驱动脉冲速度为:驱动脉冲速度[Hz]=6600[脉冲]-500[Hz]×0.25[秒]1[秒]-0.25[秒]=8.7 [kHz]如图所示:二、负载力矩的计算示例(T L)下面给出的是一个3相步进电机负载力矩的计算示例。
这是一个实际应用例子,其中的数字公式有助于更好的理解电机选型的应用。
2.1滚轴丝杆驱动水平负载如下图,滚轴丝杆驱动水平负载,效率为90%,负载重量为40千克,则负载力矩的计算方法如下:T L=m·P B2πη×1i[kgf·cm]T L=40[kg]×1[cm]2π×0.9×11=7.07 [kgf·cm]2.2传送带驱动水平负载传送带驱动水平负载,效率为90%,驱动轮直径16毫米,负载重量是9千克,则负载力矩的计算方法如下:T L=D2×m ×1η×1i[kgf·cm]T L=1.6 [cm]2×9 [kg] ×10.9×11=8 [kgf·cm]2.3滚轴丝杆和减速器驱动水平负载如下图,滚轴丝杆螺距为5毫米,效率为90%,负载重量为250千克,则负载力矩的计算方法如下:T L=m·P B2πη×1i[kgf·cm]T L=250[kg]×0.5[cm]2π×0.9×110=2.21 [kgf·cm]这是水平方向负载的计算结果,如果是垂直方向的负载,则力矩应该是此结果的2倍,而且此结果仅包括负载力矩,电机的总负载还应该包括加/减速力矩,但是,计算中很难得到准确的负载惯性惯量,因此,为了解决这个问题,在实际计算负载力矩的时候,特别是自启动或需要迅速加/减速的情况,我们应该在此基础上再乘以一个安全系数。
设计要求:20Kg物料X 5传送速度1m/s加速时间0.15s已知条件:摩擦系数=0.2机械效率=75%滚子直径=200mm1.计算功率P=F*VF=f+m*a=20Kg*0.2*10N/m^2*5+20*(1/0.15m/s^2)=200+133 T= F*R=333N*0.1m=33.3N*MP=F*V=333N*1m/s=333WPo/0,75=444P=T*WW=1000mm/π*D=1000mm/628mm/r=1.6r/s1.6r/s*60=96r/minP=29.3N*M*1.6r/s*2π=294W设计要求;M=50Kg运行速度2m/s加速时间0.25s直线导轨摩擦系数0.1带轮直径100mmF=u*m*g+m*a=0.1*50*10+ 50*8m/s^2=450NT=F*R=450N*0.05m=22.5N*mP=F*V=450N*2m/s=900WP=T*WW=2000/πD=6.4r/s=40rad/sP=22.5*40=900WP=T*n/9550=J=mR^2=50*0.05^2=0.125KG*m^2 J电机=0.0022J/J电机*A^2<20solidworks 大师之路已知条件:丝杠质量 m=2Kg负载+滑台质量 M=20Kg进给速度 V=0.2m/s丝杠导程 5mm丝杠公称 16mm加速时间 0.2s直线导轨摩擦系数 0.1传动机械效率 0.9步骤: 1.确定丝杠惯量222g 64m 2181mm K R D m J ∙=∙=∙=丝杠 2. 负载直线运动质量等价转动惯量22)π(导程负载P M J ∙=上式二级公式推导过程ππ2221212222P w v RP R w v w v m J w J v m =∙=∙∙=∙=∙ 2213)25(20mm kg kg J ∙=∙∙=π负载 22000077.076m kg mm kg J J J ∙=∙=+=负载丝杠总3.确定惯性矩)π(加速时间导程总惯性矩t P v J T ∙∙∙=2 公式推导:加速时间角加速度角速度加速时间角速度角加速度角加速度总惯性矩ππt P v P v w t w J T ∙∙=∙==∙=22βββm N sm s m m kg T ∙=∙∙∙∙=096.0)2.0005.02/2.0(000076.02π惯性矩单位换算; [][]m N m N ms m Kg s m Kg s m m m Kg T ∙=∙=∙∙=⎥⎦⎤⎢⎣⎡∙=⎥⎦⎤⎢⎣⎡∙∙∙∙∙∙=096.0096.0/096.0096.02.0005.022.0000077.022222π惯性矩4. 直线摩擦里等价旋转扭矩π导程摩擦力2P mg T ∙∙=μ公式推倒;πππ导程摩擦力导程摩擦力导程摩擦力222P mg T RP mg R T RP mg R T ∙==∙=μμμ[][][]m N mmN mm N mm N mm Kg s m s mm m Kg mm s m Kg P mg T ∙=∙=∙=∙***=∙∙***=⎥⎦⎤⎢⎣⎡∙∙***=***=∙=016.09.159.152510201.0/2510201.02510201.025/10201.02222πππππ导程摩擦力μ5.计算功率、、W s rad m N P srad s rad s r s r rmm P v w mN m N m N T T T wT P 9.309.0/251111.0/2.251/240/402/40/5200mm/s 112.0016.0096.0=*∙==∙=*===∙=∙+∙=+=∙=ππ导程惯性矩摩擦力总总η6.结论总结22000076.0403m kg mm kg J J J ∙=∙=+=负载丝杠总mN m N m N T T T ∙=∙+∙=+=28.1319.096.0惯性矩摩擦力总W s rad m N w T P 3579.0/31461.79.0=*∙=∙=总 m in/2400m in /60/40r s s r n =*=转速Solidworks 大师之路转盘质量M=100Kg转盘直径D=840mm要求转速0.2r/s机械效率0.9电机启动时间0.5s1. 确定转盘惯量221R M J ∙=转盘 角加速度转盘惯性矩β∙=J T 22882000042010021mm Kg mm Kg J ∙=**=)(惯性矩 2/8.05.02*/2.0s rad ss r t w ππ启动角加速度===β[][]mN m N m N m s m Kg s m Kg s m Kg s rad m Kg J T ∙=∙=∙=⎥⎦⎤⎢⎣⎡∙∙=⎥⎦⎤⎢⎣⎡∙=⎥⎦⎤⎢⎣⎡∙*=*∙=∙=2.222.2215584.22155840.22155840.228.0820000.8/8.0820000.82222222ππ角加速度转盘惯量惯性矩β2. 确定功率[][]WW s m N s m N s rad m N s r m N w T P 9.348.022.02.22/8.022.02.228.022.02.228.0/22.02.228.02/2.02.22=**=∙**=⎥⎦⎤⎢⎣⎡∙**=**∙=**∙=∙=πππππ惯性矩功率η3. 确定传动比 2501min /3000min /12min /300060/2.0==*=r r r s s r n n 电机转盘4. 传动比分配:锥齿轮5,减速器505. 确定电机输出扭矩 m N T i T T ∙====088.0250/2.222501电机负载电机6.确定电机输出功率 负载功率电机P K P ∙> 5.1=K W W P 3.529.345.1=*>Solidworks 大师之路-小丸子 心易老师设计要求托盘+发动机质量:M=200Kg 加速时间:t=0.5S 升速:V=0.5m/s 丝杠导程:P=10mm 丝杠直径:D=45mm质心距离导轨:L=300mm 直线导轨间距:b=150mm 直线导轨摩擦系数=0.1 丝杠质量:m=8.5Kg1. 确定丝杠的顶升力μ∙++=N a F a g M F 2)(2/1/sm t v a ==确定FNNF Nm m N F L F mm N F F F LF L F b ma N N N NN N N N 800240015.060300200222121==∙=∙=∙==∙+∙=∙NF f N 80=∙=μNN N f a g M F a 2280802200=+=++∙=)(2.轴向力等价扭矩πππ导程轴向力导程轴向力导程轴向力222P F T RP F R T R P F R T a a a ∙==∙=[][]mN m N mm N mmN T ∙=∙**=∙*=*=78.42100010300021030002103000πππ轴向力3.确定丝杠转速sr r mm s mm r mm s m r mm s m P v n /50//1010005.0//105.0/10/5.0=⎥⎦⎤⎢⎣⎡*=⎥⎦⎤⎢⎣⎡===导程s rad s rad s r /100/250/50ππ*=*=5. 确定功率 1)确定外载功率Ws m N s rad m N wT P 150131478.4/10078.4=⎥⎦⎤⎢⎣⎡∙*=*∙=∙=π外载功率2)确定丝杠加速扭矩222215245g 5.88181mm Kg mm K D m J ∙=∙*=∙=丝杠[][][]mN m s m Kg s m Kg s mm Kg ss rad mm Kg t w J J T ∙=∙∙=∙=∙*=**∙=∙=∙=35.1/35.1/10000001351456/5.010021525.0/1002152222222ππ丝杠丝杠丝杠惯性βWs m N s rad m N w T P 424424/10035.1=⎥⎦⎤⎢⎣⎡∙=*∙=∙=π丝杠惯性矩丝杠惯量mN m N m N T T T W W W P P P ∙=∙+∙=+==+=+=13.635.178.419244241500丝杠惯性矩等价轴向力总丝杠惯性矩等价轴向力总Solidworks大师之路-小丸子心易老师工装板数量:6个工装板质量:15Kg/个倍速链型号:BS30停留工装板数量:4传送工装板数量:2工装板长度:480mm/个倍速链质量:0.4Kg/m线体长:10m线体速度:6m/min摩擦系数如下倍速链重量如下选型步骤:1. 确定倍速链受摩擦产生的拉力gf L L C f L C A f L A f L C H F c W r W W a W c W W ∙∙++∙∙++∙∙+∙∙+=1000)(1.1)(21221)(2.008.01.0/4.0/5.74215/g 1064156421=====∙==∙===r c a WW W f f f mKg C mKg mKg H mK m Kg A m L m LNs m m m Kg m m Kg m Kg m m Kg m m Kg m Kg F 501/1008.010/4.01.12.06)/4.0/10(1.06/104/4.0/5.72=∙⎥⎦⎤⎢⎣⎡∙∙∙+∙∙++∙∙+∙+=)(确定扭矩m N mm N D F T p ∙=*=∙=4.14285012链条确定转速及传动比srad s r w r s r s mm mm D v n p /2/5.0min /30/5.06056min /6000ππππ=∙===∙∙=∙=50min/30min /1500==r r i确定功率Ws rad N wT P 48/4.14=∙=∙=π链条。
电机选型计算书PZY 电机(按特大型车设计即重量为2500吨)一、提升电机 根据设计统计提升框架重量为:2200kg,则总提升重量为G=2500+2200=4700kg.设计提升速度为5-5.5米/分钟,减速机效率为0.95。
则提升电机所需要的最小理论功率: P=386.444495.0605.58.94700=⨯⨯⨯ 瓦. 设计钢丝绳绕法示意图:如图所示F=1/2*G ,V2=2*V1 即力减半,速度增加一倍,所以F=2350 kg 。
根据设计要求选择电机功率应P >4444.386瓦,因为所有车库专用电机厂家现有功率P >4444。
386瓦电机最小型号5。
5KW ,所以就暂定电机功率P=5。
5KW ,i=60.钢丝绳卷筒直径已确定为260mm ,若使设备提升速度到5。
5m/min 即0。
09167m/s ;由公式:D πων=可求知卷筒转速:r D 474.1326.014.311=⨯==πνω 查电机厂家资料知:电机功率:P=5.5KW 速比: i=60电机输出轴转速为ω=25r ,扭矩为M=199。
21/kg ·m ,输出轴径d=φ60mm 。
则选择主动链轮为16A 双排 z=17,机械传动比为:25474.13i 1'==z z 54.31474.131725z 1=⨯= 取从动轮16A 双排z=33;1).速度校核:所选电机出力轴转速为ω=25r ,机械减速比为33/17,得提升卷筒转速:r 88.123317251=⨯=ω 综上可知:提升钢索自由端线速度:min)/(52.1026.088.1214.3m D =⨯⨯==πων则提升设备速度为:v=10。
52/2=5。
26m/min.2).转矩校核:设备作用到钢索卷筒上的力为:G/2=2350kg 。
则,卷筒所需最小转矩:T=2350*0。
13=305。
5 kg ·m链条传动效率取η=0.96,动载系数取K=1.2,电机出力轴最小转矩为;m kg T ·72.19696.0332.1175.3051=⨯⨯⨯= 可见:1T 〈199。
电机减速机的选型计算1参数要求配重300kg ,副屏重量为500kg ,初选链轮的分度圆直径为164.09mm ,链轮齿数为27,(详见misimi 手册P1145。
副屏移动的最大速度为0.5m/s,加速时间为1s 。
根据移动屏实际的受力状况,将模型简化为:物体在竖直方向上受到的合力为:惯惯2121F F G G F h其中:115009.84900G m g N 223009.82940G m gN110.55002501F m a N 惯120.53001501F m aN惯所以:490029402501502360hF合力产生的力矩:0.1640923602193.6262h MF r Nm其中:r 为链轮的半径链轮的转速为:0.5 6.1/0.082v wrad sr6.1(1/60)58.3/min 22w nr 2减速机的选型速比的确定:初选电机的额定转速为3000r/min300051.558.3d n in初选减速器的速比为50,减速器的输出扭矩由上面计算可知:193.6262Nm 3电机的选型传动方式为电机—减速机—齿轮-链轮-链条传动,将每一级的效率初定位为0.9,则电机的扭矩为:44193.62 5.9500.9dM T Nmi初选电机为松下,3000r/min ,额定扭矩为:9.55Nm ,功率3kw 转子转动惯量为7.85X10-4kgm 2带制动器编码器,减速器为台湾行星减速器,速比为50,额定扭矩为650NM 4惯量匹配负载的转动惯量为:222(500300)0.0825.4J mrkgm转换到电机轴的转动惯量为:31225.4 2.161050J J i惯量比为:3142.1610 2.757.8510dJ J 电机选型手册要求惯量比小于15,故所选电机减速器满足要求。
三相电机选型及计算案例一、三相电机的选型三相电机主要包括感应电机、同步电机和直流电机。
选型时需要考虑功率、转速、电源电压、负载特性等因素。
1.功率:根据负载要求确定所需的功率大小,一般选择稍大于负载需求的功率。
2.转速:根据负载所需转速和机械传动关系,选择合适的转速。
3.电源电压:根据所需供电电压确定电机额定电压。
4.负载特性:根据负载对电机的启动、加速、制动等特性要求,选择适合的电机类型。
二、三相电机计算案例假设工厂需要驱动一个功率为10kW的负载设备,该设备需要运行在1500转/分的转速下。
根据负载要求和电源条件,我们可以通过以下步骤进行选型和计算。
步骤1:计算负载的功率因数(PF)根据负载设备的特性,假设功率因数为0.8步骤2:计算所需额定电流(I)根据功率和功率因数的关系,可得额定电流公式:I=P/(√3×V×PF)其中,P为负载功率,V为电源电压,PF为功率因数。
代入数值:P=10kW,V=380V,PF=0.8,计算得:I=10,000/(1.732×380×0.8)≈17.9A步骤3:选择合适的电机类型和框架大小根据所需功率和转速,结合电源电压和负载特性,选择适合的电机类型和框架大小。
以常用的感应电机为例,根据经验,选择一个稍大的规格,如15kW。
步骤4:根据电机性能曲线进行进一步确认通过查找选定电机的性能曲线,确认额定功率、转速等是否满足需求。
综上所述,我们可以选择一个额定功率为15kW的三相感应电机来驱动该负载设备。
在实际应用中,还需要考虑电机的启动、制动、过载和效率等特性,以及其他特殊环境要求,如防爆、防护等。
选型时需要综合考虑,并结合实际情况进行确定。
以上是三相电机选型及计算案例的简要介绍,希望能对您有所帮助。
如果还有其他问题,请随时提问。
电机减速机的选型计算1参数要求配重300kg,副屏重量为500kg,初选链轮的分度圆直径为164.09mm链轮齿数为27,(详见misimi手册P1145副屏移动的最大速度为0.5m/s,加速时间为1s。
根据移动屏实际的受力状况,将模型简化为:配重物体在竖直方向上受到的合力为:F h = G1 - G2 ' F1^ F2惯其中:G^i =500 9.8 = 4900NG2 = m2g = 300 9.8 二2940NR惯二口旧=500 =250N1F2惯=m^ =300 -150N1所以:F h =4900 -2940 250 150-2360其中:r 为链轮的半径链轮的转速为:w =v 056.1rad /sr 0.082 6.1 竺二匝U58.3r/min 2减速机的选型速比的确定:初选电机的额定转速为3000r/min=3O 00=5i.5n 58.3 初选减速器的速比为 50,减速器的输出扭矩由上面计算可知: 193.6262Nm3电机的选型传动方式为电机一减速机一齿轮-链轮-链条传动,将每一级的效率初定位为0.9,则电机的扭矩为:初选电机为松下,3000r/min ,额定扭矩为:9.55Nm ,功率3kw 转子转动惯量为7.85X104kgm 2带制动器编码器,减速器为台湾行星 减速器,速比为50,额定扭矩为650NM4惯量匹配负载的转动惯量为:合力产生的力矩:M = F h r0.16409 = 2360 - 2=193.6262 Nm193.624 50 0.9 =5.9Nm2 2 2 J = mr = (500 300) 0.082 = 5.4kgm转换到电机轴的转动惯量为:J 5.4 ;J i2 2 - 2.16 10 i 50 惯量比为: 电机选型手册要求惯量比小于 15,故所选电机减速器满足要求 减速机扭矩计算方法:速比二电机输出转数 我速机输出转数("速比"也称"传动比")知道电机功率和速比及 使用系数,求减速机扭矩 如下公式:减速机扭矩=9550X 电机功率甘电机功率输入转数为速比X 使用系数知道扭矩和减速机输出转数及使用系数, 求减速机所需配电机功率如下 公式: 电机功率二扭矩却550X 电机功率输入转数 淞比我用系数 J iJ d 2.16 10’ 7.85 10*= 2.75。
步进电机选型的计算示例步进电机是一种将电脉冲转化为机械角度的装置,广泛应用于工业自动化领域。
选型步进电机时,需要考虑以下几个方面的因素:1.载荷特性:首先需要确定所需驱动的载荷特性,包括转动惯量、负载扭矩和转速等。
这些参数会决定步进电机的尺寸大小、型号和驱动电流等。
2.加速度和减速度:根据需要的加速度和减速度来选择步进电机。
通常情况下,较大的转动惯量需要更大的电机和更高的驱动电流,以实现较快的加速和减速。
3.驱动方式:根据具体应用的要求来选择驱动方式,主要有全步进驱动和微步进驱动两种。
全步进驱动具有较大的转动角度,而微步进驱动可以实现更精细的位置调整。
4.电磁噪声:步进电机在工作时会产生电磁噪声,需要考虑噪声水平是否符合所需应用的要求。
下面以一个实际应用的计算示例来说明步进电机的选型过程。
假设需要选型的应用为驱动一个转动惯量为0.5 kg·m²的载荷,要求达到最大转速为300 RPM,加速度为5000 RPM/s,减速度为8000RPM/s。
根据这些参数,我们可以按照以下步骤进行步进电机的选型计算:1. 确定负载扭矩:载荷的转动惯量可以根据实际情况或者相关设计手册得到。
假设转动惯量为0.5 kg·m²,可根据公式T=Jα 计算所需的平均扭矩。
其中,T为负载扭矩,J为转动惯量,α为加速度。
根据给定的加速度为5000 RPM/s,可得到平均扭矩T=Jα=0.5kg·m²×5000RPM/s=2500 N·m。
2.确定最大扭矩:最大扭矩一般是平均扭矩的2-3倍,以确保电机在加速和减速时能够提供足够的动力。
假设最大扭矩为平均扭矩的2倍,即最大扭矩为5000N·m。
3.确定转速范围:根据要求的最大转速为300RPM,可以根据实际情况选择合适的步进电机型号。
一般来说,步进电机的最大转速会在数据手册中给出。
4.确定驱动电流:驱动电流的大小与所需的扭矩和转速有关。
齿轮传动电机选型计算例子
假设需要选用一个齿轮传动电机来驱动一个工作负载,工作负载有如下要求:
1. 需要在每分钟内达到100次转动;
2. 负载的工作力矩为30 Nm;
3. 所有工作均在常温下进行。
以下是齿轮传动电机选型计算的过程:
1. 计算所需的输出功率:P = 2πx F x N = 2πx 30 x 100 / 60 = 31.4 W (其中F为力矩,N为转速)。
2. 确定传动比:由于齿轮传动可以改变转速和力矩之间的比率,因此需要确定传动比以满足工作负载的要求。
假设我们选择传动比为10:1,则齿轮输入端的转速为1000 RPM。
3. 确定旋转方向:根据工作负载的要求,确定齿轮传动的旋转方向。
4. 选择适当的齿轮传动电机:根据所需的输出功率和输入端的转速,选择合适的齿轮传动电机。
在实际中,应该选择比所需的输出功率略大的电机,以确保工作的可靠性和寿命。
5. 验证齿轮传动电机的性能:在确定齿轮传动电机后,应用合适的数学公式验证其性能,确保它能够在工作负载下达到所需的效果。
电机减速机的选型计算
1参数要求
配重300kg,副屏重量为500kg,初选链轮的分度圆直径为164.09mm,链轮齿数为27,(详见misimi手册P1145。
副屏移动的最大速度为0.5m/s,加速时间为1s。
根据移动屏实际的受力状况,将模型简化为:
物体在竖直方向上受到的合力为:
其中:
所以:
合力产生的力矩:
其中:r为链轮的半径
链轮的转速为:
2减速机的选型
速比的确定:
初选电机的额定转速为3000r/min
初选减速器的速比为50,减速器的输出扭矩由上面计算可知:193.6262Nm 3电机的选型
传动方式为电机—减速机—齿轮-链轮-链条传动,将每一级的效率初定位为0.9,则电机的扭矩为:
初选电机为松下,3000r/min,额定扭矩为:9.55Nm,功率3kw转子转动惯量为7.85X10-4kgm2带制动器编码器,减速器为台湾行星减速器,速比为50,额定扭矩为650NM
4惯量匹配
负载的转动惯量为:
转换到电机轴的转动惯量为:
惯量比为:
电机选型手册要求惯量比小于15,故所选电机减速器满足要求
减速机扭矩计算方法:
式:
减速机扭矩=9550×电机功率÷电机功率输入转数×速比×使用系数
知道扭矩和减速机输出转数及使用系数,求减速机所需配电机功率如下公式:电机功率=扭矩÷9550×电机功率输入转数÷速比÷使用系数。
垂直使用的滚珠丝杠伺服电机选型计算实例
垂直使用的滚珠丝杠伺服电机选型计算实例如下:
一、伺服电机选型步骤
1. 确定电机的机械负载:机械负载主要包括工作台、工作物和丝杠的重量,以及可能的外部负载。
在本例中,工作台重量为50kgf,工作物重量最大为25kgf,丝杠重量可以根据具体型号确定。
2. 确定电机的运动参数:运动参数包括电机的最大行程、最大速度、加速度等。
在本例中,最大行程为1000mm,最大速度为50m/min,加速度可以根据具体应用确定。
3. 确定电机的控制参数:控制参数包括定位精度和重复定位精度。
在本例中,定位精度为±/最大行程,重复定位精度为±。
4. 确定电机的驱动参数:驱动参数包括电机的最大扭矩和最大电流等。
在本例中,电机的最大扭矩和最大电流可以根据具体应用确定。
二、伺服电机选型计算
1. 计算电机的轴向力:根据机械负载的重量和重力加速度,可以计算出电机的轴向力。
在本例中,等速度时轴向力F2=μ(W1+W2)xg=(50+25)=(N),
其中μ为滑动摩擦系数,W1为工作台重量,W2为工作物重量,g为重力加速度。
2. 计算电机的转矩:根据电机的轴向力和转速,可以计算出电机的转矩。
在本例中,电机的转速可以根据具体应用确定,然后根据轴向力和转速计算出电机的转矩。
3. 确定电机型号:根据电机的运动参数、控制参数和驱动参数,以及计算出的转矩和可能的外部负载,选择适合的电机型号。
以上是垂直使用的滚珠丝杠伺服电机选型计算实例,具体计算过程可能需要根据具体情况进行调整和优化。
电机的选型计算实例
1. 首先,我们需要明确电机的应用场景以及所需的工作参数。
例如,如果我们要选择用于驱动一个机械装置的电机,我们需要知道所需的输出功率、转速范围和额定电压等。
2. 接下来,我们需要了解电机的工作原理和基本参数。
电机通常由定子和转子组成,定子上有绕组,转子上则有磁铁。
当电流通过定子绕组时,会产生一个旋转磁场,与转子上的磁铁相互作用,从而使转子旋转。
3. 在选择电机时,我们需要考虑所需的输出功率。
输出功率可以通过以下公式计算:输出功率= 转矩×角速度。
转矩可以通过所需的工作负载以及机械装置的传动比来确定。
角速度通常以转每分钟(RPM)或弧度每秒(rad/s)来表示。
4. 额定电压是选择电机时另一个重要的参数。
额定电压是电机设计时所考虑的电压范围,电机应在此范围内正常工作。
我们应选择与我们所使用的电源电压相匹配的电机。
5. 转速范围是另一个需要考虑的因素。
不同类型的电机具有不同的转速范围。
如果我们需要一个具有较大转速范围的电机,我们可以选
择步进电机或直流无刷电机。
如果我们需要一个转速较低但具有较大转矩的电机,我们可以选择直流有刷电机或交流异步电机。
6. 在选型时,还需要考虑电机的效率。
电机的效率是指其将输入电能转换为有用输出功率的能力。
高效率的电机可以提供更少的能源损耗,从而减少能源消耗和运行成本。
7. 此外,我们还需要考虑电机的尺寸和重量。
不同的电机类型和规格具有不同的尺寸和重量。
根据应用需求和安装空间的限制,我们应选择适合的尺寸和重量的电机。
8. 最后,我们还需要考虑电机的可靠性和寿命。
电机的可靠性是指其在长期运行过程中的稳定性和可靠性。
寿命是指电机预计的使用寿命。
我们应选择质量可靠、寿命长且易于维护的电机。
通过以上步骤,我们可以选择到适合特定应用的电机。
在选择之前,我们应该充分了解电机的工作原理、基本参数以及应用需求,以确保选择合适的电机。