8种求定义域的方法
- 格式:docx
- 大小:36.91 KB
- 文档页数:2
8种求定义域的方法方法一:直接根据函数的定义进行求解。
这是最基本的一种方法,即根据函数的定义来求解定义域。
例如,对于一个多项式函数f(x),定义为f(x) = 2x^2 + 3x - 1,我们可以直接根据定义域的限制条件来求解。
由于多项式函数的定义域是全体实数,因此该函数的定义域为(-\infty, +\infty)。
方法二:挑选一些特殊的数进行验证。
这是一种常用的方法,即通过挑选一些特殊的数进行验证,看它们是否在函数的定义域内。
例如,对于一个有理函数g(x),定义为g(x) = \frac{1}{x},我们可以挑选x的一些特殊值进行验证。
首先,x不能为0,否则分母为零,函数无定义。
另外,由于有理函数对应的分母不能为零,因此定义域为(-\infty, 0) \cup (0, +\infty)。
方法三:求解不等式得到定义域的范围。
对于一些复杂的函数,可以通过求解不等式来得到定义域的范围。
例如,对于一个开方函数h(x),定义为h(x) = \sqrt{x^2 - 4x},我们可以通过求解不等式x^2 - 4x \geq 0来确定定义域的范围。
首先,将不等式化简为(x-2)(x-2) \geq 0,得到x \leq 2或x \geq 2,因此定义域为(-\infty, 2] \cup [2, +\infty)。
方法四:分段定义域的求解。
对于一些函数是在不同区间有不同定义域的情况,可以采用分段定义域的求解方法。
例如,对于一个分段函数j(x),定义为j(x) = \begin{cases}2, & \text{if } x\leq 0\\\sqrt{x}, & \text{if } x > 0\end{cases}这个函数在x\leq 0时有定义,且在x > 0时也有定义。
因此定义域为(-\infty, 0] \cup (0, +\infty)。
方法五:利用基本函数的定义域性质进行推导。
函数定义域、值域求法总结1、函数的定义域是指自变量“x ”的取值集合。
2、在同一对应法则作用下,括号整体的取值围相同。
一般地,若已知 f(x)的定义域为[a,b],求函数f[g(x)]的定义域时,由于分别在两个函数中的x 和g(x)受同一个对应法则的作用,从而围相同。
因此f[g(x)]的定义域即为满足条件a ≤g(x)≤b 的x 的取值围。
一般地,若已知 f[g(x)]的定义域为[a,b],求函数 f(x)的定义域时,由于x和g(x) 受同一个对应法则的作用, 所以f(x)的定义域即为当a ≤x ≤b 时,g(x)的取值围。
定义域是X 的取值围,g(x)和h(x)受同一个对应法则的影响,所以它们的围相同。
():f (x),f[g(x)]题型一已知的定义域求的定义域()():f g x ,f (x)⎡⎤⎣⎦题型二已知的定义域求的定义域()[]():f g x ,f h(x)⎡⎤⎣⎦题型三已知的定义域求的定义域()[]()[])x (h f x f x g f →→()的定义域求的定义域已知练习)2(],9,3[log :313-x f x f一、定义域是函数y=f(x)中的自变量x 的围。
求函数的定义域需要从这几个方面入手: (1)分母不为零(2)偶次根式的被开方数非负。
(3)对数中的真数部分大于0。
(4)指数、对数的底数大于0,且不等于1(5)y=tanx 中x ≠k π+π/2;y=cotx 中x ≠k π等等。
( 6 )0x 中x 0≠二、值域是函数y=f(x)中y 的取值围。
常用的求值域的方法: (1)直接法 (2)图象法(数形结合) (3)函数单调性法(4)配方法 (5)换元法 (包括三角换元) (6)反函数法(逆求法) (7)分离常数法 (8)判别式法 (9)复合函数法 (10)不等式法 (11)平方法等等 这些解题思想与方法贯穿了高中数学的始终。
三、典例解析 1、定义域问题例1 求下列函数的定义域:① 21)(-=x x f ;② 23)(+=x x f ;③ xx x f -++=211)( 解:①∵x-2=0,即x=2时,分式21-x 无意义,而2≠x 时,分式21-x 有意义,∴这个函数的定义域是{}2|≠x x .②∵3x+2<0,即x<-32时,根式23+x 无意义,而023≥+x ,即32-≥x 时,根式23+x 才有意义,∴这个函数的定义域是{x |32-≥x }.③∵当0201≠-≥+x x 且,即1-≥x 且2≠x 时,根式1+x 和分式x-21同时有意义, ∴这个函数的定义域是{x |1-≥x 且2≠x } 另解:要使函数有意义,必须: ⎩⎨⎧≠-≥+0201x x ⇒ ⎩⎨⎧≠-≥21x x例2 求下列函数的定义域:①14)(2--=x x f ②2143)(2-+--=x x x x f③=)(x f x11111++④xx x x f -+=0)1()(⑤373132+++-=x x y解:①要使函数有意义,必须:142≥-x 即: 33≤≤-x∴函数14)(2--=x x f 的定义域为: [3,3-]②要使函数有意义,必须:⎩⎨⎧≠-≠-≤≥⇒⎩⎨⎧≠-+≥--13140210432x x x x x x x 且或 4133≥-≤<--<⇒x x x 或或∴定义域为:{ x|4133≥-≤<--<x x x 或或}③要使函数有意义,必须: 011110110≠++≠+≠⎪⎪⎪⎩⎪⎪⎪⎨⎧xx x ⇒ 2110-≠-≠≠⎪⎩⎪⎨⎧x x x∴函数的定义域为:}21,1,0|{--≠∈x R x x 且④要使函数有意义,必须: ⎩⎨⎧≠-≠+001x x x ⎩⎨⎧<-≠⇒01x x∴定义域为:{}011|<<--<x x x 或⑤要使函数有意义,必须: ⎩⎨⎧≠+≥+-073032x x ⎪⎩⎪⎨⎧-≠∈⇒37x R x 即 x<37-或 x>37- ∴定义域为:}37|{-≠x x 例3 若函数aax ax y 12+-=的定义域是R ,数a 的取值围 解:∵定义域是R,∴恒成立,012≥+-aax ax ∴⎪⎩⎪⎨⎧≤<⇒≤⋅-=∆>2001402a a a a a 等价于 例4 若函数)(x f y =的定义域为[-1,1],求函数)41(+=x f y )41(-⋅x f 的定义域解:要使函数有意义,必须:43434543434514111411≤≤-⇒⎪⎩⎪⎨⎧≤≤-≤≤-⇒⎪⎩⎪⎨⎧≤-≤-≤+≤-x x x x x ∴函数)41(+=x f y )41(-⋅x f 的定义域为:⎭⎬⎫⎩⎨⎧≤≤-4343|x x 例5 已知f(x)的定义域为[-1,1],求f(2x -1)的定义域。
求定义域的方法
一、代数法求定义域。
对于一些简单的函数,可以通过代数方法来求其定义域。
例如
对于多项式函数,有理函数,指数函数和对数函数等,可以通过对
函数进行分析,找出函数中自变量的取值范围,从而求出定义域。
二、图像法求定义域。
对于一些复杂的函数,可以通过绘制函数的图像来求其定义域。
通过观察函数的图像,可以直观地看出函数的定义域是什么样的。
这种方法对于一些无法通过代数方法求解的函数来说是非常有效的。
三、条件法求定义域。
对于一些复杂的函数,可以通过条件法来求其定义域。
例如对
于含有根号的函数,需要满足根号中的值大于等于0,才能使得函
数有意义。
因此可以通过这种条件来求解函数的定义域。
四、综合法求定义域。
对于一些特殊的函数,可能需要综合运用代数法、图像法和条件法来求解其定义域。
通过综合运用多种方法,可以更准确地求解函数的定义域。
综上所述,求定义域的方法有代数法、图像法、条件法和综合法。
不同的函数可能需要采用不同的方法来求解其定义域,需要根据具体情况来选择合适的方法。
在实际应用中,求定义域是解决函数定义范围的重要问题之一,对于深入理解函数的性质和特点具有重要意义。
希望以上方法能够帮助到大家,更好地理解和掌握函数的定义域求解问题。
8种求定义域的方法定义域是指一个函数中所有可能输入的集合。
具体来说,定义域是指函数中的自变量可以取得的所有值。
在数学中,求定义域是解决一个函数的自变量的取值范围的问题。
下面是八种常见的方法来求定义域。
方法1:显式定义对于一些函数,定义域可以通过其显式定义来确定。
例如,对于函数f(x)=1/x,定义域可以通过注意到除数不能为零来确定,即x不能为0。
因此,定义域就是除去0之后的实数集合:R\{0}。
方法2:关系定义有些函数的定义域可以通过直接观察定义函数的关系来确定。
例如,对于函数f(x)=√(2x-1),注意到根号内的表达式必须大于等于零,即2x-1≥0。
解这个不等式可以得到定义域为x≥1/2方法3:对数函数对于对数函数,定义域必须满足底数必须大于零且不等于1,并且实数必须大于零。
例如,对于函数f(x) = log₂(x + 3),定义域为x + 3 > 0,即x > -3方法4:分式函数对于分式函数,定义域必须使分母不等于零。
例如,对于函数f(x)=1/(x-2),定义域为x≠2方法5:根式函数对于根式函数,定义域必须使根号内的表达式大于等于零。
例如,对于函数f(x)=∛(x-4),根号内的表达式必须大于等于零,即x-4≥0,解不等式可得x≥4、因此,定义域为x≥4方法6:三角函数对于三角函数,定义域是实数的所有值,因为三角函数在整个数轴上都有定义。
例如,对于函数f(x) = sin(x),定义域为所有实数:(-∞, ∞)。
方法7:反三角函数对于反三角函数,定义域必须使其定义范围内的表达式满足相应的条件。
例如,对于函数f(x) = arcsin(x),由于反正弦函数的定义域是[-1, 1],因此定义域必须满足-1 ≤ x ≤ 1方法8:参数化定义对于一些函数,可以通过将函数参数化来求取定义域。
例如,对于函数f(x)=√(x²-1),我们可以通过取x²-1≥0来求取定义域。
高一数学求函数的定义域与值域的常用法一:求函数解析式1、换元法:题目给出了与所求函数有关的复合函数表达式,可将函数用一个变量代换。
例1. 已知2211()x x x f x x +++=,试求()f x 。
解:设1x t x +=,则11x t =-,代入条件式可得:2()1f t t t =-+,t ≠1。
故得:2()1,1f x x x x =-+≠。
说明:要注意转换后变量围的变化,必须确保等价变形。
2、构造程组法:对同时给出所求函数及与之有关的复合函数的条件式,可以据此构造出另一个程,联立求解。
例2. (1)已知21()2()345f x f x x x +=++,试求()f x ;(2)已知2()2()345f x f x x x +-=++,试求()f x ; 解:(1)由条件式,以1x 代x ,则得2111()2()345f f x x x x +=++,与条件式联立,消去1f x ⎛⎫ ⎪⎝⎭,则得:()222845333x f x x x x =+--+。
(2)由条件式,以-x 代x 则得:2()2()345f x f x x x -+=-+,与条件式联立,消去()f x -,则得:()2543f x x x =-+。
说明:本题虽然没有给出定义域,但由于变形过程一直保持等价关系,故所求函数的定义域由解析式确定,不需要另外给出。
例4. 求下列函数的解析式:(1)已知)(x f 是二次函数,且1)()1(,2)0(-=-+=x x f x f f ,求)(x f ;(2)已知x x x f 2)1(+=+,求)(x f ,)1(+x f ,)(2x f ;(3)已知x xx x x f 11)1(22++=+,求)(x f ; (4)已知3)(2)(3+=-+x x f x f ,求)(x f 。
【题意分析】(1)由已知)(x f 是二次函数,所以可设)0()(2≠++=a c bx ax x f ,设法求出c b a ,,即可。
求定义域的方法总结
8种求定义域的方法
可根据不同函数的八种类型,分为以下八种方法来求函数的定义域:
①整式的定义域为R。
整式可以分为单项式还有多项式,单项式比如y=4x,多项式比如y=4x+1。
这时候无论是单项式还是多项式,定义域均为{x|x∈R},就是x可以等于所有实数。
②分式的定义域是分母不等于0。
例如y=1/(x-1),这时候的定义域只需要求让分母不等于即可,即x-1≠0,定义域为{x|x≠1}。
③偶数次方根定义域是被开方数≥0。
例如根号下x-3,这时候定义域就是让x-3≥0,求出来定义域为{x|x≥3}。
④奇数次方根定义域是R。
例如三次根号下x-3,定义域就是{x|x∈R}。
⑤指数函数定义域为R。
比如y=3^x,定义域为{x|x∈R}。
⑥对数函数定义域为真数>0。
比如log以3为底(x-1)的对数,让x-1>0,即定义域为{x|x>1}。
⑦幂函数定义域是底数≠0。
比如y=(x-1)^2,让x-1≠0,即定义域为{x|x≠1}。
⑧三角函数中正弦余弦定义域为R,正切函数定义域为x≠π/2+kπ。
这时候求定义域画个图就可以看出来了,只要记住三角函数图像,即可求出定义域。
这八种类型是常见函数类型,求定义域时首先要分辨清楚它们属于哪个类型的函数,然后根据基本的定义域来求复杂函数定义域。
函数的定义域常见求法一、函数的定义域的定义函数的定义域是指使函数有意义的自变量的取值范围. 二、求函数的定义域的主要依据1、分式的分母不能为零.2、偶次方根的被开方数的被开方数必须大于等于零,(2,)n k k N *=∈其中中0,x ≥奇次方根(21,)n k k N *=+∈其中中,x R ∈.3、指数函数xy a =的底数a 必须满足01,a a x R >≠∈且.4、对数函数log a y x =的真数x 必须大于零,底数a 必须满足01a a >≠且.5、零次幂的底数不能为零,即0x 中0x ≠.6、正切函数tan y x =的定义域是{|,}2x x k k z ππ≠+∈.7、复合函数的定义域的求法(1)已知原函数()f x 的定义域为(,)a b ,求复合函数[()]f g x 的定义域:只需解不等式()a g x b <<,不等式的解集即为所求函数的定义域.(2)已知复合函数[()]f g x 的定义域为(,)a b ,求原函数()f x 的定义域:只需根据a x b <<求出函数()g x 的值域,即得原函数()f x 的定义域.8、求函数()()y f x g x =+的定义域一般先分别求函数()y f x =和函数()y g x =的定义域A 和B ,再求A B ,则A B 就是所求函数的定义域.9、求实际问题中函数的定义域不仅要考虑解析式有意义,还要保证满足实际意义. 三、函数的定义域的表示函数的定义域必须用集合表示,不能用不等式表示.函数的定义域也可以用区间表示,因为区间实际上是集合的一种特殊表示形式.四、求函数的定义域常用的方法有直接法、求交法、抽象复合法和实际法.五、函数的问题,必须遵循“定义域优先”的原则.研究函数的问题,不管是具体的函数,还是抽象的函数,不管是简单的函数,还是复杂的函数,必须优先考虑函数的定义域.之所以要做到这一点,不仅是为了防止出现错误,有时还会为解题带来方便. 【方法讲评】方法一 直接法使用情景 函数的结构比较简单.解题步骤直接列出不等式解答,不等式的解集就是函数的定义域.【例1】求函数2253y x x =+-的定义域.【点评】对于类似例题的结构单一的函数,可以直接列出不等式再解答即得到函数的定义域. 【反馈检测1】求函数21x y x +=+. 方法二 求交法使用情景函数是由一些函数四则运算得到的,即函数的形式为()()()f x g x h x =+型.解题步骤一般先分别求函数()g x 和()h x 的定义域A 和B ,再求AB ,A B 就是函数()f x 的定义域.【例2】求函数225y x =-3log cos x 的定义域.【解析】由题得⎪⎩⎪⎨⎧∈+<<-≤≤-∴⎩⎨⎧>≥-zk k x k x x x 2222550cos 0252ππππ∴}52322235|{≤<<<--<≤-x x x x ππππ或或所以函数的定义域为}52322235|{≤<<<--<≤-x x x x ππππ或或【点评】(1)求函数()()y f x g x =+的定义域,一般先求()y f x =和函数()y g x =的定义域A 和B ,再求AB ,则A B 就是所求函数的定义域.(2)该题中要考虑偶次方根的被开方数是非负数,对数函数的真数大于零,列不等式求函数的定义域时,必须考虑全面,不能漏掉限制条件.(3)解不等式cos 0x >时,主要是利用余弦函数的图像解答.(4)求552222x k x k k zππππ-≤≤⎧⎪⎨-<<+∈⎪⎩的解集时,只需给参数k 赋几个整数值,再通过数轴求交集.(5)注意等号的问题,其中只要有一个错误,整个解集就是错误的,所以要仔细认真. 学科#网【例3】求函数 02)23(3|3|)lg(-+-+-=x x x x y 的定义域.【点评】(1)该题中要考虑真数大于零,分式的分母不能为零,零次幂的底数不能为零,考虑要全面,不要遗漏.(2)求不等式的交集一般通过数轴完成.【例4】求函数log (1)(01)xa y a a a =->≠且的定义域.【解析】由题得 0101=xxa a a ->∴>1a >当时,x>0;当0<a<1时,x<0.1{a ∴>当时,函数的定义域为x|x>0}, 1{a <当0<时,函数的定义域为x|x<0}.【点评】(1)求含有参数的函数的定义域时,注意在适当的地方分类讨论.(2)对于指数函数和对数函数,如果已知条件中,没有给定底数a 的取值范围,一般要分类讨论.【反馈检测2】求函数2ln1)23xy a x x =---+(的定义域.方法三 抽象复合法 使用情景涉及到抽象复合函数.解题步骤利用抽象复合函数的性质解答:(1)已知原函数()f x 的定义域为(,)a b ,求复合函数[()]f g x 的定义域:只需解不等式()a g x b <<,不等式的解集即为所求函数的定义域.(2)已知复合函数[()]f g x 的定义域为(,)a b ,求原函数()f x 的定义域:只需根据a x b <<求出函数()g x 的值域,即得原函数()f x 的定义域.【例5】求下列函数的定义域:(1)已知函数f (x)的定义域为[2,2]-,求函数2(1)y f x =-的定义域; (2)已知函数(24)y f x =+的定义域为[0,1],求函数f (x)的定义域; (3)已知函数f (x)的定义域为[1,2]-,求函数2(1)(1)y f x f x =+--的定义域.【点评】(1)已知原函数()f x 的定义域为(,)a b ,求复合函数[()]f g x 的定义域:只需解不等式()a g x b <<,不等式的解集即为所求函数的定义域.第1小题就是典型的例子.(2)已知复合函数[()]f g x 的定义域为(,)a b ,求原函数()f x 的定义域:只需根据a x b <<求出函数()g x 的值域,即得原函数()f x 的定义域.第2小题就是典型的例子.(3)求函数()()y f x g x =+的定义域,一般先分别求函数()y f x =和函数()y g x =的定义域A 和B ,再求AB ,则A B 就是所求函数的定义域.【反馈检测3】已知函数(tan 2)y f x =的定义域为[0,]8π,求函数()f x 的定义域.【反馈检测4】 若函数)(x f y =的定义域为⎥⎦⎤⎢⎣⎡2,21,求函数)(log 2x f 的定义域.方法四 实际法使用情景 数学问题是实际问题.解题步骤先求函数的自变量的取值范围,再考虑自变量的实际限制条件,最后把前面两者的范围求交集,即得函数的定义域.【例6】用长为L 的铁丝编成下部为矩形,上部为半圆形的框架(如图所示).若矩形底边长为2x ,求此框架围成的面积y 与关于x 的函数解析式,并求出它的定义域. 【解析】如图,【点评】(1)求实际问题中函数的定义域,不仅要考虑解析式本身有意义,还要保证满足实际意义.(2)该题中在考虑实际意义时,必须保证解答过程中的每一个变量都有意义,即2x 02x 02x π⎧⎪⎨⎪⎩>L -->,不能遗漏.【反馈检测5】 一个圆柱形容器的底部直径是dcm ,高是hcm .现在以3/vcm s 的速度向容器内注入某种溶液.求容器内溶液的高度xcm 关于注入溶液的时间ts 的函数解析式,并写出函数的定义域和值域.参考答案【反馈检测1答案】{|12}x x x >-≤-或【反馈检测1详细解析】由题得(2)(1)012201011x x x x x x x x ++≥≥-≤-⎧⎧+≥∴∴⎨⎨+≠+≠-⎩⎩或所以12{|12}x x x x x >-≤-∴>-≤-或函数的定义域为或.【反馈检测2答案】当1a >时,函数的定义域为{|01}x x <<;当01a <<时,函数的定义域为{|30}x x -<<.【反馈检测3答案】[0,1]【反馈检测3详细解析】由题得0020tan 2184x x x ππ≤≤∴≤≤∴≤≤,所以函数的定义域为[0,1].【反馈检测4答案】{}42|≤≤x x【反馈检测4详细解析】依题意知:2log 212≤≤x 解之得 42≤≤x ∴ )(log 2x f 的定义域为{}42|≤≤x x【反馈检测5答案】函数解析式为24vtx dπ=,函数的定义域为{t |0≤t ≤2hd 4v π},值域为{x |0≤x ≤h }. 【反馈检测5详细解析】向容器内注入溶液经历时间为t 秒后,容器中溶液的高度为xcm .故t 秒后溶液的体积为=底面积×高=π⎪⎭⎫⎝⎛2d 2x =vt 解之得:x =24vt d π又因为0≤x ≤h 即0≤24vt d π≤h ⇒ 0≤t ≤2hd 4v π,故函数的定义域为{t |0≤t ≤2hd 4vπ},值域为{x |0≤x ≤h }.。
【答题技巧】8种求定义域的方法1.根据解析式要求如偶次根式的被开方大于零,分母不能为零等;2.根据实际问题的要求确定自变量的范围;3.根据相关解析式的定义域来确定所求函数自变量的范围;4.复合函数的定义域:如果y是u的函数,而u是x的函数,即y=f(u),u=g(x),那么y=f[g(x)]叫做函数f与g的复合函数,u叫做中间变量,设f(x)的定义域是x∈M,g(x)的定义域是x∈N,求y=f[g(x)]的定义域时,则只需求满足g(x)∈M和x∈N的x的集合。
设y=f[g(x)]的定义域为P,则P属于等于N。
定义一:设x、y是两个变量,变量x的变化范围为D,如果对于每一个数x∈D,变量y遵照一定的法则总有确定的数值与之对应,则称y是x的函数,记作y=f(x),x∈D,x称为自变量,y称为因变量,数集D称为这个函数的定义域。
定义二:A,B是两个非空数集,从集合A到集合B的一个映射,叫做从集合A到集合B的一个函数。
记作y=f(x),x∈A.或y=g(t),t∈A.其中A就叫做定义域。
通常,用字母D表示。
通常定义域是F(X)中x的取值范围。
1、表达式中出现分式时:分母一定满足不为0;2、表达式中出现根号时:开奇次方时,根号下可以为任意实数;开偶次方时,根号下满足大于或等于0(非负数);3、表达式中出现指数时:当指数为0时,底数一定不能为0;4、根号与分式结合,根号开偶次方在分母上时:根号下大于0;5、表达式中出现指数函数形式时:底数和指数都含有x,必须满足指数底数大于0且不等于1.(0<底数<1;底数>1);6、表达式中出现对数函数形式时:自变量只出现在真数上时,只需满足真数上所有式子大于0,且式子本身有意义即可;自变量同时出现在底数和真数上时,要同时满足真数大于0,底数要大0且不等于1。
[f(x)=logx(x²-1)]。
感谢您的阅读,祝您生活愉快。
(完整)函数定义域值域求法(全十一种)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)函数定义域值域求法(全十一种))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)函数定义域值域求法(全十一种)的全部内容。
高中函数定义域和值域的求法总结一、常规型即给出函数的解析式的定义域求法,其解法是由解析式有意义列出关于自变量的不等式或不等式组,解此不等式(或组)即得原函数的定义域.例1 求函数8|3x |15x 2x y 2-+--=的定义域。
解:要使函数有意义,则必须满足⎩⎨⎧≠-+≥--②①08|3x |015x 2x 2 由①解得 3x -≤或5x ≥. ③由②解得 5x ≠或11x -≠ ④③和④求交集得3x -≤且11x -≠或x 〉5.故所求函数的定义域为}5x |x {}11x 3x |x {>-≠-≤ 且。
例2 求函数2x161x sin y -+=的定义域。
解:要使函数有意义,则必须满足⎩⎨⎧>-≥②①0x 160x sin 2 由①解得Z k k 2x k 2∈π+π≤≤π, ③由②解得4x 4<<- ④由③和④求公共部分,得π≤<π-≤<-x 0x 4或故函数的定义域为]0(]4(ππ--,,评注:③和④怎样求公共部分?你会吗?二、抽象函数型抽象函数是指没有给出解析式的函数,不能常规方法求解,一般表示为已知一个抽象函数的定义域求另一个抽象函数的解析式,一般有两种情况。
(1)已知)x (f 的定义域,求)]x (g [f 的定义域。
(2)其解法是:已知)x (f 的定义域是[a ,b]求)]x (g [f 的定义域是解b )x (g a ≤≤,即为所求的定义域.例3 已知)x (f 的定义域为[-2,2],求)1x (f 2-的定义域.解:令21x 22≤-≤-,得3x 12≤≤-,即3x 02≤≤,因此3|x |0≤≤,从而3x 3≤≤-,故函数的定义域是}3x 3|x {≤≤-。
8种求定义域的方法
在数学领域中,关于定义域的求解方法有许多种。
下面将介绍其中的
八种方法。
方法一:根据函数公式求取定义域。
对于一些简单的函数,可以通过函数的公式直接求取定义域。
例如对
于一个分式函数,如f(x)=1/(x-2),由于分母不能为0,所以定义域为{x,x≠2}。
方法二:分析函数的基本性质。
有些函数拥有特定的性质,根据这些性质可以求得函数的定义域。
例
如对于多项式函数,常数函数和指数函数,它们都定义在实数域上,因此
定义域为实数集。
方法三:考虑函数中的根。
对于包含根的函数,定义域不能使这些根使得函数的值出现未定义的
情况。
例如对于开方函数f(x)=√(x-3),由于根号下的值不能为负,所
以定义域为{x,x≥3}。
方法四:考虑函数的分段定义。
对于分段定义的函数,需要分别考虑每个分段的定义域。
例如对于函
数f(x)=,x,分段定义为{x当x>=0时;-x当x<0时},因此定义域为实
数集。
方法五:考虑函数的限制条件。
有时函数在定义域上有一些限制条件。
例如对于对数函数f(x) =
ln(x),由于对数函数只对正数有定义,所以定义域为{x , x > 0}。
方法六:考虑函数的参数限制。
对于含有参数的函数,需要考虑参数的限制条件。
例如对于双曲正弦
函数f(x) = sinh(x),由于双曲正弦函数对所有实数都有定义,所以定
义域为实数集。
方法七:考虑函数的复合性质。
对于复合函数,需要分析组成函数的定义域。
例如对于函数f(g(x)),需要保证g(x)的定义域是f(x)的定义域。
例如对于函数f(g(x)) = 1/x,如果g(x) = sin(x) + 2,由于sin(x)的定义域为实数集,所以g(x)的
定义域与f(x)的定义域保持一致。
方法八:考虑函数的图像。
对于一些函数,通过画出函数的图像可以直观地确定定义域。
例如对
于一个二次函数f(x)=x^2+1,通过函数的图像我们可以看到函数的定义
域为实数集。
综上所述,我们介绍了八种常见的求取函数定义域的方法。
根据函数
的公式、基本性质、根、分段定义、限制条件、参数限制、复合性质和图
像可以得到函数的定义域。