八年级数学上册《探索三角形全等的条件》教案 新人教版
- 格式:doc
- 大小:34.00 KB
- 文档页数:2
人教版数学八年级上册《112 三角形全等的判定》课堂教学设计一. 教材分析人教版数学八年级上册《112 三角形全等的判定》是学生在学习了三角形的基本概念、性质以及三角形的边角关系等知识后,进一步研究三角形全等的性质。
本节课主要通过引导学生探索和证明三角形全等的条件,让学生掌握三角形全等的判定方法,为后续学习解三角形和不等式等知识打下基础。
二. 学情分析学生在学习本节课之前,已经掌握了三角形的基本概念、性质以及三角形的边角关系等知识。
但部分学生对于证明两个三角形全等的方法和技巧还不够熟练,需要老师在教学过程中给予引导和启发。
三. 教学目标1.让学生掌握三角形全等的判定方法。
2.培养学生的逻辑思维能力和证明能力。
3.提高学生运用数学知识解决实际问题的能力。
四. 教学重难点1.教学重点:三角形全等的判定方法。
2.教学难点:证明两个三角形全等的方法和技巧。
五. 教学方法1.引导法:老师通过提问、启发引导学生探索和证明三角形全等的条件。
2.讨论法:学生分组讨论,共同探讨三角形全等的判定方法。
3.案例分析法:老师通过举例分析,让学生掌握三角形全等的判定方法。
六. 教学准备1.教学课件:制作三角形全等的判定方法的教学课件。
2.教学素材:准备一些三角形全等的案例,用于课堂分析和讨论。
3.粉笔、黑板:用于板书教学内容和解答学生问题。
七. 教学过程1.导入(5分钟)老师通过提问:“什么是三角形全等?”引导学生回顾三角形的基本概念,为新课的学习做好铺垫。
2.呈现(10分钟)老师通过课件展示三角形全等的判定方法,引导学生了解三角形全等的判定条件。
3.操练(15分钟)学生分组讨论,每组选取一个案例,运用三角形全等的判定方法进行分析和证明。
老师巡回指导,解答学生遇到的问题。
4.巩固(10分钟)老师通过提问和举例,检查学生对三角形全等判定方法的掌握程度。
同时,让学生完成一些相关的练习题,巩固所学知识。
5.拓展(10分钟)老师引导学生思考:如何应用三角形全等的判定方法解决实际问题?让学生举例说明,并展开讨论。
13.2 三角形全等的条件(第1课时)
【教学任务分析】
【教学过程设计】
活动4
问题
三角形的三边长度固定,这个三角形的形状大小就完全确定,你能解释其中的道理吗?你能说出生活中看到的例子吗?
教师先提出问题,引导
学生正确的回答问题.
教师指出:三角形的三
边长度固定,这个三角形的
形状大小就完全确定,这个
性质叫三角形的稳定性.
让学生举出生活中的
实例.
本次活动中教师应重
点关注:
(1)学生对“SSS”的理
解;
(2)学生能否发现生活
中三角形稳定性的实例;
(3)学生是否积极的思
考问题.
通过生活中的实例,让
学生充分体验当三角形的
三边确定后,三角形就唯一
确定,加深对“SSS”的理
解,使学生找到生活与数学
之间的联系.
问题与情景师生行为设计意图。
《三角形全等的判定》教案
课题课型复习课
教学
目标
知识目标:通过三角形全等的判定方法的复习,让学生体会辨别、探寻、运用全等三角形的一般方法,能力目标:培养学生观察和理解能力,几何语言的叙述能力及运用全等知识解决实际问题的能力。
情感目标:在学生操作过程中,激发学生学习的兴趣,培养学生主动探索,敢于实践的精神,培养学生重点运用三角形全等的判定方法来探寻三角形以及运用全等三角形的知识解决问题。
难点运用三角形全等知识来解决变化问题。
教学过程差异
请你增加一个条件是,并利用所填加条件。
《三角形全等的判定》教案【教学目标】1.让学生掌握三角形全等的判定方法,包括SSS、SAS、ASA、AAS等判定方法。
2.让学生能够应用三角形全等的判定方法解决实际问题。
3.培养学生的逻辑推理能力和证明能力。
【教学内容】1.三角形全等的定义和性质。
2.三角形全等的判定方法:SSS、SAS、ASA、AAS等。
3.应用三角形全等的判定方法解决实际问题。
【教学重点与难点】1.重点:三角形全等的判定方法及其应用。
2.难点:如何应用三角形全等的判定方法进行证明和解决实际问题。
【教具准备】1.黑板、粉笔。
2.教科书、学习辅导资料。
3.多媒体教学设备。
【教学过程】一、导入新课:通过复习上节课内容,引出三角形全等的概念,介绍三角形全等的性质。
二、新课学习:介绍三角形全等的判定方法,包括SSS、SAS、ASA、AAS等判定方法。
通过举例和讲解,让学生理解并掌握这些判定方法。
同时,引导学生思考这些判定方法的应用场景和实际意义。
三、巩固练习:通过一系列的练习题,让学生加深对三角形全等判定方法的理解和应用。
可以包括证明题和应用题等类型,让学生在练习中掌握如何应用三角形全等的判定方法进行证明和解决实际问题。
四、归纳小结:通过总结本节课学到的知识,让学生明确三角形全等的重要性和应用价值,同时引导学生思考如何运用三角形全等解决实际问题。
强调证明过程中的逻辑性和严谨性,培养学生的逻辑推理能力和证明能力。
五、布置作业:根据学生的学习情况,布置适量的作业,包括概念题、证明题和应用题等类型,让学生巩固本节课学到的知识。
同时,鼓励学生自主寻找和解决实际问题,培养他们的数学应用能力。
六、教学反思:通过本节课的教学,反思自己在教学内容的组织和安排、教学方法的选择和实践以及教学效果的反馈和反思等方面是否存在问题和不足之处,以便在今后的教学中加以改进和提高。
同时,也要关注学生的学习情况和反馈意见,及时调整教学策略和方法,以提高教学质量和效果。
合吗?(2)重新利用这张长方形剪一个直角三角形,要使得全班同学剪下的都能够重合,你有什么办法?(3)剪下直角三角形,验证是否能够重合,并能得出什么结论?5.如图,△ABC 与△DEF 、△MNP 能完全重合吗?(1)直觉猜想哪两个三角形能完全重合? (2)再用工具测量,验证猜想是否正确.6.按下列作法,用直尺和圆规作△ABC ,使∠A =∠α,AB =a ,AC =b .作法:1.作∠MAN =∠α.2.在射线AM 、AN 上分别作线段AB =a ,AC =b . 3.连接BC .△ABC 就是所求作的三角形.图形:你作的三角形与其他同学作的三角形能完全重合吗? 三.交流展示通过上面几个活动你对三角形全等所需要的条件有什么看45︒31.5CB A60︒3DEF1.5P45︒31.5MN课时NO: 主备人:审核人用案时间:年月日星期教学课题 1.3 探索三角形全等的条件(3)教学目标1.掌握三角形全等的条件“ASA”;会利用“ASA”进行有条理的简单的推理;2.通过多种手段的活动过程,让学生动手操作,激发学生学习的兴趣,并能通过合作交流解决问题,体会数学在现实生活中的应用,增强学生的自信心.教学重点掌握三角形全等的条件“ASA”,并能利用它们判定三角形是否全等.教学难点探索三角形全等的条件“ASA”的过程及应用教学方法教具准备教学课件教学过程个案补充一.自主先学:(1)要证明两个三角形全等,需要几个条件?(2)上节课我们学习了哪些条件可以构成全等(3)请你们猜想,构成全等还有哪些条件组合?二.探究交流1.调皮的小明用纸板挡住了两个三角形的一部分,你能画出这两个三角形吗?每个人画出的三角形都一样吗?2.粗心的小明不小心将一块三角形模具打碎了,他是否可以只带其中的一块碎片到商店去,就能配一块与原来一样的三角形模具呢?如果可以,带哪块去合适?3.请你和小明一起画:用圆规和直尺画△ABC,使AB=a,∠A=∠α,∠B=∠β.(1)作AB=a.(2)在AB的同一侧分别作∠MAB=∠α,∠NBA=∠β,AM、BN相交于点C.(3)△ABC就是所求作的三角形.以上三个问题回答完毕了,你有什么发现?基本事实两角及其夹边分别相等的两个三角形全等(ASA)三.交流展示1.说一说图中有几对全等三角形?你能找出它们并说出理由吗?2.如图,O是AB的中点,∠A=∠B,△AOC与△BOD全等吗?为什么(以填空方式回答)?四.拓展提高:已知:如图,在△ABC中,D是BC的中点,点E、F分别在AB、AC上,且DE//AC,DF//AB.求证:BE=DF,DE=CF.五.小结与反思:这节课你学到了什么?哪些三个条件的组合是你还想去探索求证的?课外作业:布置作业板书设计教后札记课时NO: 主备人:审核人用案时间:年月日星期教学课题 1.3 探索三角形全等的条件(4)1.掌握三角形全等的条件“AAS”,会用“AAS”进行有条理的简单的推理;教学目标2.学会根据题目的条件选择适当的定理进行全等的证明.教学重点掌握三角形全等的条件“AAS”,并能利用它们判定三角形是否全等.教学难点在解题时选择适当定理应用.教学方法教具准备教学课件教学过程个案补充一. 自主先学:1.回忆上节课内容,用自己的语言表达出来!2.解决下面的问题,你有什么发现吗?已知:如图,∠A=∠D,∠ACB=∠DBC,求证:AB=DC.二.探究交流探索新知一已知:△ABC与△DEF中,∠A=∠D,∠B=∠E,BC=EF.求证:△ABC≌△DEF.基本推论:两角及其中一角的对边分别相等的两个三角形全等.简称“角角边”或“AAS”.在△ABC与△A'B'C'中,∠B=∠B'(已知),∠C=∠C'(已知),AB=A'B'(已知),∴△ABC≌△A'B'C'(AAS).三.交流展示1.如图∠ACB=∠DFE,BC=EF,根据“ASA”,应补充一个直接条件__________根据“AAS”,那么补充的条件为______,才能使△ABC≌△DEF.2.如图,BE=CD,∠1=∠2,则AB=AC吗?为什么?3.如图∠ACB=∠DFE,BC=EF,根据“ASA”,应补充一个直接条件__________根据“AAS”,那么补充的条件为______,才能使△ABC≌△DEF.2.如图,BE=CD,∠1=∠2,则AB=AC吗?为什么?3.已知:如图,△ABC≌△A'B'C',AD和A'D'分别是△ABC和△A'B'C'中BC和B'C'边上的高.求证:AD=A'D'.四.拓展提高:4.已知:如图,△ABC ≌△A 'B 'C ',AD 和A 'D '分别是△ABC 和△A 'B 'C '中∠A 和∠A’的角平分线.求证:AD =A 'D '.五.小结与反思:布置作业课外作业:板书设计教后札记课时NO: 主备人: 审核人 用案时间: 年 月 日 星期A 'B ' D 'C 'AB DC AB DC A 'B'D 'C '教学课题 1.3 探索三角形全等的条件(5)教学目标1.会用“角边角”“角角边”证明两个三角形全等,进而证明线段或角相等;2.渗透综合、分析等思想方法,从而提高学生演绎推理的条理性和逻辑性.教学重点用“角边角”“角角边”定理证明两个三角形全等,进而证明线段或角相等教学难点角边角”“角角边”定理的灵活应用教学方法教具准备教学课件教学过程个案补充一.自主先学:如图,已知AD平分∠BAC,要使△ABD≌△ACD,(1)根据“SAS”需添加条件________;(2)根据“ASA”需添加条件________;(3)根据“AAS”需添加条件________.二.探究交流1.如图,∠A=∠B,∠1=∠2,EA=EB,你能证明AC=BD吗?2.如图,点C、F在AD上,且AF=DC,∠B=∠E,∠A=∠D,你能证明AB=DE吗?三.交流展示例1: 已知:如图,点A、B、C、D在一条直线上,EA∥FB,EC∥FD,EA=FB.求证:AB=CD.例2;已知:如图,AB=AC,点D、E分别在AB、AC上,∠B =∠C.求证:DB=EC变式一已知:∠1=∠2,∠B=∠C,AB=AC.求证:AD=AE,∠D=∠E.变式二已知:∠1=∠2,∠B=∠C,AB=AC,D、A、E在一条直线上.求证:AD=AE,∠D=∠E.四.拓展提高:1.如图,AC⊥AB,BD⊥AB,CE⊥DE,CE=DE.求证:AC+BD=AB.2.如图,∠ABC=90°,AB=BC,D为AC上一点,分别过A、C作BD的垂线,垂足分别为E、F.求证:EF+AE=CF.五.小结与反思:课外作业:布置作业板书设计教后札记课时NO: 主备人:审核人用案时间:年月日星期教学课题 1.3 探索三角形全等的条件(6)教学目标1.掌握“边边边”定理.理解三角形的稳定性和它在生产、生活中的应用;教会学生如何利用尺规来完成“已知三边画三角形”,如何添加辅助线构造全等三角形;2.培养学生观察、操作、分析、综合、抽象、概括和发散思维的能力;感悟转化的数学思想方法.教学重点探究三角形全等的方法及运用“边边边”条件证明两个三角形全等.教学难点边边边”定理的应用和转化意识的形成及辅助线的添加.教学方法教具准备教学课件教学过程个案补充一.自主先学:小明家的衣橱上镶有两块全等的三角形玻璃装饰物,其中一块被打碎了,妈妈让小明到玻璃店配一块回来,小明该怎么办呢?二.探究交流实践探索一:已知三条线段a、b、c,以这三条线段为边画一个三角形,并把你画好的三角形剪下,和其他同学进行比较,看剪下的三角形是否能完全重合.通过以上的操作你发现了什么?实践探索二:教师出示三角形、四边形木架,让学生动手拉动木架的两边.教师提出问题:(1)演示实验说明了什么?教师总结:三角形的这个性质叫做三角形的稳定性.(2)你能举出生活中利用三角形稳定性的例子吗?三.交流展示1.下列图形中,哪两个三角形全等?2.如图,C 点是线段BF 的中点,AB =DF ,AC =DC .△ABC 和△DFC 全等吗?变式1若将上题中的△DFC 向左移动(如图),若AB =DF ,AC =DE ,BE =CF ,问:△ABC ≌△DFE 吗 ?变式2若继续将上题中的△DFC 向左移动(如图),若AB =DC ,AC =DB ,问:△ABC ≌ △DCB 吗 ?3.已知:如图, 在△ABC 中,AB =AC ,求证:∠B =∠C .四.拓展提高:1.已知:如图,AB =CD ,AD =CB ,求证:∠B =∠D .117667119942.如图,AC 、BD 相交于点O ,且AB =DC ,AC =DB .求证:∠A =∠D .五.小结与反思:布置作业课外作业:板书设计教后札记课时NO: 主备人: 审核人 用案时间: 年 月 日 星期CDOAB教学课题 1.3 探索三角形全等的条件(7)教学目标1.会作一个角的角平分线,能证明作法的正确性,并在经历“观察——操作——证明”的活动过程中养成善于分析、乐于探究和理性思考的良好习惯;2.会过一点作已知直线的垂线,能证明作法的正确性,体会与“作一个角的角平分线”作法的联系,在比较中探究作法;3.能在不同的作图题中感悟相同的知识背景,在同一问题中探求不同的作法,从而进一步把握知识本质,逐步形成抽象概括能力和发散思维.教学重点能在不同的作图题中感悟相同的知识背景,在同一问题中探求不同的作法,从而进一步把握知识本质,逐步形成抽象概括能力和发散思维.”.教学难点几何图形信息转化为尺规操作教学方法教具准备教学课件教学过程个案补充一. 自主先学:工人师傅常常利用角尺平分一个角.如图(1),在∠AOB的两边OA、OB上分别任取OC=OD,移动角尺,使角尺两边相同的刻度分别与点C、D重合,这时过角尺顶点M的射线OM就是∠AOB的平分线.请同学们说明这样画角平分线的道理.二.探究交流1.说请按序..说出木工师傅的“操作”过程.2.作与写用直尺和圆规在图(2)中按序..将木工师傅的“操作”过程作出来,并写出作法.3.证请证明你的作法是正确的.4.用用直尺和圆规完成以下作图:(1)在图(3)中把∠MON四等分.图(1)(2)在图(4)中作出平角∠AOB 的平分线.说明:过直线上一点作这条直线的垂线就是作以这点为顶点的平角的角平分线.1.观察思考.在图(2)作图的基础上,作过C 、D 的直线l (如图(5)),观察图中射线OM 与直线l 的位置关系,并说明理由.2.问题变式.你能用圆规和直尺过已知直线外一点作这条直线的垂线吗?(如图(6),经过直线AB 外一点P 作AB 的垂线PQ ). 3.比较分析.引导学生比较新旧两个问题之间的联系,寻求解决新问题的策略. 4.作图与证明.1 以点P 为圆心,适当的长为半径作弧,使它与AB 交于C 、D .2 分别以点C 、D 为圆心,大于12CD 的长为半径作弧,两弧交于点Q .3 作直线PQ .∴直线PQ 就是经过直线AB 外一点P 的AB 的垂线(如图(7)). (2)证明略.5.归纳总结.图(2)O BA 图(4)NOM图(3)(图7)QDC BAPMDCBOA图(5)l图(6)BAP课时NO: 主备人:审核人用案时间:年月日星期教学课题 1.3 探索三角形全等的条件(8)教学目标 1.利用尺规作图,掌握已知斜边、直角边画直角三角形的画图方法; 2.经历操作、实验、观察、归纳,证明斜边、直角边(HL )定理;3.用HL 及其他三角形全等的判定方法进行证明和计算,发展演绎推理的能力. 教学重点 斜边、直角边”定理的证明和应用. 教学难点 斜边、直角边”定理的证明和应用.教学方法教具准备教学课件教 学 过 程个案补充一.自主先学:1.判定两个三角形全等的方法: 、 、 、___ .2.如图,在Rt △ABC 中,直角边是 、 , 斜边是___ 3.如何将一个等腰三角形变成两个全等的直角三角形? 4.如图,在Rt △ABC 、Rt △DEF 中,∠B =∠E =90°, (1)若∠A =∠D ,AB =DE 则△ABC ≌△DE ( ) (2)若∠A =∠D ,BC =EF ,则△ABC ≌△DEF ( ) (3)若AB =DE ,BC =EF ,则△ABC ≌△DEF ( ).上面的每一小题,都只添加了两个条件,就使两个直角三角形全等,你还能添加哪两个不同的条件使这两个直角三角形全等?二.探究交流探索活动一. (1)交流、操作.用直尺和圆规作Rt △ABC ,使∠C =90°,CB =a ,AB =c .(2)思考、交流.①△ABC 就是所求作的三角形吗?BADE C F。
全等三角形的判定(SSS)教学设计三维目标:1.掌握“边边边”条件的内容,能初步应用“边边边”条件判定两个三角形全等。
2.经历探索三角形全等的条件的过程,体验用操作、归纳得出数学结论的过程。
3.通过探究三角形全等的条件的活动,培养学生合作交流的意识和大胆猜想、乐于探究的良好品质以及发现问题的能力。
教学重点:探究三角形全等的条件教学难点:“边边边”判定方法和应用教学过程一、复习巩固引新知1、什么是全等三角形?2、全等三角形有什么性质?__________________________________________________________________________3.已知△ABC ≌△DEF,找出其中相等的边与角。
二、研讨探究得新知如果只满足这些条件中的一部分,那么能保证△ABC≌△DEF吗?1、探究1:给一个条件:给两个条件:归纳1:在两个三角形中,如果只有一个或两个元素对应相等,这两个三角形_____.给三个条件:2、探究2:先任意画出一个△ABC ,再画出一个△A ′B ′C ′ ,使A ′B ′= AB ,B ′C ′ =BC, A ′ C ′ =AC.把画好的△A ′B ′C ′剪下,放到△ABC 上,他们全等吗?作法:(1)画B ′C ′=BC ;(2)分别以B',C'为圆心,线段AB,AC 长为半径画圆,两弧相交于点A';(3)连接线段A'B',A 'C '。
发现: 。
归纳2:在两个三角形中,如果 ,那么 .(可简写成“边边边”或 “SSS”)几何语言:三、典例精析 例1 如图,有一个三角形钢架,AB =AC ,AD 是连接点A 与BC 中点D 的支架.求证:△ABD ≌△ACD .四、针对训练如图, C 是BF 的中点,AB =DC,AC=DF 。
求证:△ABC ≌ △DCF 。
F五、用尺规作一个角等于已知角 作法:(1)以点O 为圆心,任意长为半径画弧,分别交OA , OB 于点C 、D ;(2)画一条射线O ′A ′,以点O ′为圆心,OC 长为半径画弧,交O ′A ′于点C ′;(3)以点C ′为圆心,CD 长为半径画弧,与第2 步中所画的弧交于点D ′;(4)过点D ′画射线O ′B ′,则∠A ′O ′B ′=∠AOB 。
《探索三角形全等的条件(二)》教案教学目标:1.经历探索三角形全等条件的过程,体会利用操作、归纳获得数学结论的过程;2.掌握三角形全等的“ASA”和“AAS”条件;3.学生积极参与三角形全等条件的探究过程,从中体会合作与成功的快乐,建立学习好数学的自信心,体会三角形全等条件在现实生活中的应用价值.教法及学法指导:本节应用“启迪诱导-自主探究”教学模式,引导学生对设计的问题进行仔细观察、主动思考、小组讨论、主动探究,最后自己得出结论,学会解决问题的方法.通过学生对已学知识的反思过程进一步探索三角形全等的其他条件,并在大量解决实际问题当中进一步发展学生严谨的思维能力和逻辑推理能力,充分感受人人学到了有价值的数学.课前准备:制作课件,准备教具.学生课前进行相关调查及预习工作.教学过程:一、创设情境,导入新课1.活动内容:讲述小明的故事.小明不慎将一块三角形模具打碎了,他要到商店去配一块与原来一样的三角形模具,该怎么办?带哪块去呢?(用吹塑纸做的三角形贴在黑板上)(学生的热情高涨)生1:带④去,它比较小,易携带.生2:带①去,比较大,应该行.生3: 带①去,把它的两边延长应该可以复原.生4:还是都带去吧?师:不发表见解,引导学生去说.给学生展示自我的机会.告知学生:通过本节课的学习,相信你一定会把这个问题解决.激发学习热情.活动目的:设置有趣的生活情节,让学生通过观察思考,激发学生求知与探索的欲望,对三角形全等条件的探索有一个感性认识.2. 师:我们已学过识别两个三角形全等的简便方法是什么?识别三角形全等是不是还有其它方法呢?生:思考回顾.设计目的:既复习了全等三角形的“SSS”的识别方法,又唤起学生对新知识探索学习的渴望,引发学生兴趣,从而提高学生学习的热情.实际教学效果:设置开放的课堂情境.学生亲身实践,汇报出不同的实践结果,促使学生学习主动化.从而引出本课的研究内容:探索三角形全等的条件,在实践中产生感性认识.学生在一个开放的环境下想出很多的方法,从中获取了大量的信息,亲身经历了感受全等的过程,而且气氛热烈,充分调动了学生的学习积极性,达到事半功倍的教学效果.二、动手操作,探索新知1.“两角及其夹边”活动内容:让学生拿出提前准备好的60°角80°角和2厘米的线段,以小组为单位,进行操作拼接成三角形,再进行对比,看一看组成的三角形是否全等.生1: 探索总结,并得出结论.如果两个三角形有两个角及其夹边分别对应相等,那么这两个三角形全等.简写成“角边角”或简记为“ASA”.师:①归纳结论:如果两个三角形有两个角及其夹边分别对应相等,那么这两个三角形全等.简写成“角边角”或简记为“ASA”.②用符号语言表达为:在△ABC和△DEF中∵∠B=∠E,BC=EF ∠C=∠F∴△ABC≌△DEF(ASA)活动目的:通过实践操作,使学生对三角形全等条件有了一个更清楚的理解——两角和它们的夹边对应相等的两个三角形全等,让他们尝到成功的喜悦.实际教学效果:让学生动手操作,以分组讨论的形式得出三角形全等的条件.这样我们便巩固了知识,并培养学生的动手能力,在讨论活动中让学生得到友情的陶冶培养学生的动手操作能力,收到了良好的效果.2.“两角及一角对边”活动内容:让学生拿出提前准备好的60°角45°角和3厘米的线段,以小组为单位,进行操作拼接成三角形.如果60°角所对的边是3厘米。
《探索三角形全等的条件》教案
教学目标
①经历探索三角形全等条件的过程,体会利用操作、归纳获得数学结论的过程.
②掌握三角形全等的“边边边”条件,了解三角形的稳定性.
③通过对问题的共同探讨,培养学生的协作精神.
教学重点与难点
重点:指导学生分析问题,寻找判定三角形全等的条件.
难点:三角形全等条件的探索过程.
教学设计
复习过程,引入新知
多媒体显示,带领学生复习全等三角形的定义及其性质,从而得出结论:全等三角形三条边对应相等,三个角分别对应相等.反之,这六个元素分别相等,这样的两个三角形一定全等.
注:在教师引导下回忆前面知识,为探究新知识作好准备.
创设情境,提出问题
根据上面的结论,提出问题:两个三角形全等,是否一定需要六个条件呢?如果只满足上述六个条件中的一部分,是否也能保证两个三角形全等呢?
注:问题的提出使学生产生浓厚的兴趣,激发他们的探究欲望.
组织学生进行讨论交流,经过学生逐步分析,各种情况逐渐明朗,进行交流予以汇总归纳.
注:对学生提出的解决问题的不同策略,要给予肯定和鼓励,以满足多样化的学生需要,发展学生的个性思维.
建立模型,探索发现
出示探究1,先任意画一个△ABC,再画一个△A'B'C',使△ABC与△A'B'C'满足上述条件中的一个或两个.你画出的△A'B'C'与△ABC一定全等吗?
注:学生动手操作,通过实践、自主探索、交流,获得新知,同时也渗透了分类的思想.
让学生按照下面给出的条件作出三角形.
(1)三角形的两个角分别是30°、50°.
(2)三角形的两条边分别是4 cm,6 cm.
(3)三角形的一个角为30°,一条边为3 cm.
再通过画一画,剪一剪,比一比的方式,得出结论:只给出一个或两个条件时,都不能保证所画出的三角形一定全等.
出示探究2,先任意画出一个△A'B'C',使A'B'=AB,B'C'=BC,C'A'=CA,把画好的△A'B'C'剪下,放到△ABC
上,它们全等吗?
让学生充分交流后,在教师的引导下作出△A'B'C',并通过比较得出结论:三边对应相等的两个三角形全等.学生模仿上面的研究方法,在教师的引导下完成操作过程,
通过交流,归纳得出结论,同时也明确判定三角形全等需要三个条件.
应用新知,体验成功
实物演示:由三根木条钉成的一个三角形的框架,它的大小和形状是固定不变的.
让学生通过实物来理解三角形的稳定性.鼓励学生举出生活中的实例.
注:让学生体验数学在生活中应用的广泛性.
给出例1,如图△ABC是一个钢架,AB=AC,AD是连接点A与
BC中点D的支架,求证△ABD≌△ACD.
让学生独立思考后口头表达理由,由教师板演推理过程.
注:检测学生对知识的掌握情况及应用能力,让学生初步体验成功的喜悦,同时也明确一下书写过程.
巩固练习
教科书第14页的思考及练习.
注:让学生巩固对三角形全等的判定条件的认识,同时也让学生尝试书写推理过程.
反思小结
回顾反思本节课对知识的研究探索过程、小结方法及结论,提炼数学思想,掌握数学规律.
再次渗透分类的数学思想,体会分析问题的方法,积累数学活动的经验.
作业
1.必做题:教科书第15页习题13.2中的第1、2题.
2.选做题:教科书第16页第9题.
3.备选题:
(1)如图是用圆规和直尺画已知角的平分线的示意图,作法如下:
①以A为圆心画弧,分别交角的两边于点B和点C;
②分别以点B、C为圆心,相同长度为半径画两条弧,两弧交于点D;
③画射线AD.
AD就是∠BAC的平分线.你能说明该画法正确的理由吗?
(2)如图四边形ABCD中,AB=CD,AD=BC,你能把四边
形ABCD分成两个相互全等的三角形吗?你有几种方法?你能
证明你的方法吗?试一试.
注:培养学生良好的学习习惯,巩固所学的知识,
作业2是让学生对所学知识进行延伸和应用,满足不同
层次学生的不同要求.
教学反思:
在第一节课中,我发现学生运用直尺、量角器等“根据给定条件画三角形”的能力比较欠缺,虽然在讲三角形概念的时候,已经教给学生画三角形的方法,但遇到灵活运用时,却无从下手,所以部分学生一个完整的图都没画出来,更没有验证判定方法。
我只得一边教他们画三角形,一边让他们去验证,效果不太好。
同时,全等三角形判定的“SSS”条件,仅仅运用直尺很难做出,而运用尺规作图则比较容易。
实际教学中,学生对这节课是比较。