山东省乳山市2014届九年级数学第二次模拟考试试题
- 格式:doc
- 大小:2.43 MB
- 文档页数:9
主视方向2014年九年级第二次质量预测数学试题卷注意事项:本试卷分试题卷和答题卡两部分.考试时间100分钟,满分120分.考生应首先阅读答题卡上的文字信息,然后再答题卡上作答,在试题卷上作答无效,交卷时只交答题卡.参考公式:二次函数y =ax 2+bx +c (a ≠0)图象的顶点坐标为(24,24b ac b a a--).一、选择题(每小题3分,共24分)在每小题给出的四个选项中,只有一项是符合题目要求的.1. 9的绝对值是( )A .9B .-9C .19D .19-2. 如图是由5个大小相同的正方体组成的几何体,它的主视图是( )A .B .C .D .3. 近年来人们越来越关注健康,我国质检总局规定:针织内衣、被套、床上用品等直接接触皮肤的衣物,每千克衣物上甲醛含量应在0.000 075千克以下,将0.000 075用科学记数法表示为( ) A .0.75×10-4B .7.5×10-4C .75×10-6D .7.5×10-54. 下面的图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .5. 如图,OA 是⊙O 的半径,弦BC ⊥OA ,D 是⊙O上一点,若∠ADC =26°,则∠AOB 的度数为( ) A .13° B .26°C .52°D .78°6. 在一次体育达标测试中,九年级(3)班15名男同学的引体向上成绩如下表所示:A .12,13B .12,12C .11,12D .3,47. 小明用一张半径为24cm 的扇形纸板做一个如图所示的圆锥形小丑帽子的侧面(接缝忽略不计),如果做成的圆锥形小丑帽子的底面半径为10cm ,那么这张扇形纸板的面积是( ) A .120πcm 2B .240πcm 2C .260πcm 2D .480πcm 2C'PEDCBA第7题图 第8题图8. 如图,矩形ABCD 中,AB =3,BC =5,点P 是BC 边上的一个动点(点P 不与点B ,C 重合),现将△PCD 沿直线PD 折叠,使点C 落在点C ′处,作 ∠BPC ′的角平分线交AB 于点E ,设BP =x ,BE =y ,则下列图象中,能表示y 与x 函数关系的图象大致是( )A . 二、填空题(每小题3分,共21分) 9. 计算:2(1) =___________.10. 如图,一把矩形直尺沿直线断开并错位,点E ,D ,B ,F 在同一条直线上,若∠ADE =128°,则∠DBC 的度数为___________.FED C BA11. 一位园艺设计师计划在一块形状为直角三角形且有一个内角为60°的绿化区域上种植四种不同的花卉,要求种植的四种花卉分别组成面积相等、形状完全相同的几何图形图案.某同学为此提供了如图所示的4种设计方案,其中可以满足园艺设计师要求的有___________种.12. 农历5月5日是中华民族的传统节日端午节,有吃粽子的习俗.端午节早上,妈妈给小华准备了4个粽子:1个肉馅,1个豆沙馅,2个红枣馅.4个粽子除内部馅料不同外其他一切均相同,小华喜欢吃红枣馅的粽子,小华吃了一个粽子刚好是红枣馅的概率是___________.13. 若一次函数(2)(2)y a x a =-++不经过第三象限,则a 的取值范围为_______. 14. 如图,在平面直角坐标系中,正方形的中心在原点O ,且正方形的一组对边与x 轴平行,点(2)P a a ,是反比例函数2y x=的图象与正方形的一个交点,则图中阴影部分的面积是___________.864第15题图15. 在一张直角三角形纸片的两直角边上各取一点,分别沿斜边中点与这两点的连线剪去两个三角形,剩下的部分是如图所示的直角梯形,其中三边长分别为4,6,8,则原直角三角形纸片的斜边长是___________. 三、解答题(本大题共8个小题,共75分)16. (本题8分)有三个代数式:①a 2-2ab +b 2,②2a -2b ,③a 2-b 2,其中a ≠b ;(1)请你从①②③三个代数式中任意选取两个代数式,分别作为分子和分母构造成一个分式;(2)请把你所构造的分式进行化简;(3)若a ,b 为满足不等式0<x <3的整数解,且a >b ,请求出化简后的分式的值.17. (本题9分)郑州地铁1号线在2013年12月28日通车之前,为了解市民对地铁票的定价意向,市物价局向社会公开征集定价意见.某学校课外小组也开展了“你认为郑州地铁起步价定为多少合适?”的问卷调查,征求市民的意见,并将某社区市民的问卷调查结果整理后制成了如下统计图:票价10%15%5元4元3元2元根据统计图解答:(1)同学们一共随机调查了________人; (2)请你把条形统计图补充完整;(3)假定该社区有1万人,请估计该社区支持“起步价为3元”的市民大约有多少人?18. (本题9分)已知命题:“如图,点A ,D ,B ,E 在同一条直线上,且AD =BE ,AC ∥DF ,则△ABC ≌△DEF .”这个命题是真命题还是假命题?如果是真命题,请给出证明;如果是假命题,请添加一个适当的条件,使它成为真命题,并加以证明.FEC19. (本题9分)“城市发展,交通先行”,我市启动了缓堵保畅的高架桥快速通道建设工程,建成后将大大提升道路的通行能力.研究表明,某种情况下,高架桥上的车流速度V (单位:千米/时)是车流密度x (单位:辆/千米)的函数,且当028≤x <时,V =80;当28188≤x <时,V 是x 的一次函数.函数关系如图所示.(1)求当28188≤x <时,V 关于x 的函数表达式;(2)请你直接写出车流量P 和车流密度x 之间的函数表达式;当x 为多少时,车流量P (单位:辆/时)达到最大,最大值是多少?(注:车流量是单位时间内通过观测点的车辆数,计算公式为:车流量=车流速度×车流密度)(辆/千米)20. (本题9分)在某飞机场东西方向的地面l 上有一长为1km 的飞机跑道MN(如图),在跑道MN 的正西端14.5千米处有一观察站A .某时刻测得一架匀速直线降落的飞机位于点A 的北偏西30°,且与点A 相距15千米的B 处;经过1分钟,又测得该飞机位于点A 的北偏东60°,且与点A 相距千米的C 处.(1)该飞机航行的速度是多少千米/小时?(结果保留根号)(2)如果该飞机不改变航向继续航行,那么飞机能否降落在跑道MN 之间?请说明理由.北东21. (本题10分)某学校开展“我的中国梦”演讲比赛,学校准备购买10支某种品牌的水笔,每支水笔配x (x ≥2)支笔芯,作为比赛获得一等奖学生的奖品.A ,B 两家文具店都有这种品牌的水笔和笔芯出售,且每支水笔的标价均为30元,每支笔芯的标价为3元.目前两家文具店同时在做促销活动:A 文具店:所有商品均打九折(按标价的90%)销售;B 文具店:买一支水笔送2支笔芯.设在A 文具店购买水笔和笔芯的费用为y A (元),在B 文具店购买水笔和笔芯的费用为y B (元).请解答下列问题: (1)分别写出与y A ,y B 与x 之间的函数表达式;(2)若该校只在一家文具店购买奖品,你认为在哪家文具店购买更优惠? (3)若每支水笔配15支笔芯,请你帮助学校设计出最省钱的购买方案.22. (本题10分)如图1,点P ,Q 分别是边长为4cm 的等边△ABC 边AB ,BC上的动点,点P 从顶点A ,点Q 从顶点B 同时出发,且它们的速度都为1cm/s. (1)连接AQ ,CP 交于点M ,在点P ,Q 运动的过程中,∠CMQ 的大小变化吗?若变化,则说明理由,若不变,请直接写出它的度数;(2)点P ,Q 在运动过程中,设运动时间为t ,当t 为何值时,△PBQ 为直角三角形?(3)如图2,若点P ,Q 在运动到终点后继续在射线AB ,BC 上运动,直线AQ ,CP 交点为M ,则∠CMQ 的大小变化吗?若变化,则说明理由;若不变,请求出它的度数。
第6题(第 14 题)89 1 2 3 4 5 6 7 8 9102014初中数学二模试题(本试卷共150分 考试时间150分钟)第I 卷 选择题(共18分)请注意:考生须将本卷所有答案填涂到答题卡上,答在试卷上无效! 一、选择题(每题3分,共18分) 1. 下列计算中正确的是A .2352a a a += B .236a a a ⋅= C .235a a a ⋅= D .329()a a =2. 某5A 级风景区去年全年旅游总收入达10.04亿元.将10.04亿元,用科学记数法可表示为 A .10.04×108元B .10.04×109元C .1.004×1010元D .1.004×109元3. 下列事件中最适合使用普查方式收集数据的是A .了解全国每天丢弃的废旧电池数B .了解某班同学的身高情况C .了解一批炮弹的杀伤半径D .了解我国农民的人均年收入情况 4.5. 如图,在矩形ABCD 中,AD =10,AB =6,E 为BC 上一点,DE 平分∠AEC ,则CE 的长为 A .1B.2C .3D .4.6. 如图,△ABC 的顶点坐标分别为A(4,4)、B(2,1)、C(5,2),沿某一直线作△ABC 的对称图形,得到△''A B C ,若点A的对应点'A 的坐标是(3,5),那么点B 的对应点'B 的坐标是 A .(0,3) B .(1,2) C .(0,2) D .(4,1)二、填空题(每题3分,共30分) 7. 函数5xy x =+中,自变量x 的取值范围是 . 8. 在一个不透明的口袋中,装有若干个除颜色不同其余都相同的球,若口袋中有4个红球且摸到红球的概率为21,则袋中球的总数为________ 9. 正n 边形的一个内角比一个外角大100°,则n 为__________.10. 如图是甲、乙两射击运动员的10次射击训练成绩(环数)的折线统计图,观察图形,甲、乙这10次射击成绩的方差甲2S,乙2S 之间的大小关系是 .第10题 第15题11. 二次函数y =2(x +1)(x -3)图象的顶点坐标为_________________.12. 一个底面半径为3cm ,高为4cm 的圆锥模型,则此圆锥的侧面积是 cm 2. 13. 已知点A (-1,y 1)、B (2,y 2)都在双曲线y =3+2mx上,且y 1>y 2,则m 的取值范围是 ___________.14. 已知2x =-是一元二次方程20x ax b ++=的一个根,则代数式2244a b ab +-的值是 .15. 如图,在矩形ABCD 中,AD =D 为圆心,DC 为半径的圆弧交AB 于点E ,交DA的延长线于点F ,∠ECD =60°,则图中阴影部分的面积为_____,(结果保留π)。
2014年中考数学模拟试卷(一)数 学(全卷满分120分,考试时间120分钟)注意事项:1. 本试卷分选择题和非选择题两部分. 在本试题卷上作答无效..........;2. 答题前,请认真阅读答题.......卷.上的注意事项......;3. 考试结束后,将本试卷和答题.......卷一并交回..... 一、选择题(本大题满分36分,每小题3分. 在下列各题的四个备选答案中,只有一个是正确的,请在答题卷上把你认为正确的答案的字母代号按要求用2B 铅笔涂黑) 1. 2 sin 60°的值等于 A. 1B.23C. 2D. 32. 下列的几何图形中,一定是轴对称图形的有A. 5个B. 4个C. 3个D. 2个3. 据2013年1月24日《桂林日报》报道,临桂县2012年财政收入突破18亿元,在广西各县中排名第二. 将18亿用科学记数法表示为A. 1.8×10B. 1.8×108C. 1.8×109D. 1.8×10104. 估计8-1的值在A. 0到1之间B. 1到2之间C. 2到3之间D. 3至4之间 5. 将下列图形绕其对角线的交点顺时针旋转90°,所得图形一定与原图形重合的是 A. 平行四边形 B. 矩形 C. 正方形 D. 菱形 6. 如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是7. 为调查某校1500名学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,随机抽取部分学生进行调查,并结 合调查数据作出如图所示的扇形统计图. 根据统计图提供的 信息,可估算出该校喜爱体育节目的学生共有 A. 1200名 B. 450名C. 400名D. 300名8. 用配方法解一元二次方程x 2+ 4x – 5 = 0,此方程可变形为 A. (x + 2)2= 9B. (x - 2)2 = 9C. (x + 2)2 = 1D. (x - 2)2=1圆弧 角 扇形菱形 等腰梯形A. B. C. D.(第7题图)9. 如图,在△ABC 中,AD ,BE 是两条中线,则S △EDC ∶S △ABC = A. 1∶2B. 1∶4C. 1∶3D. 2∶310. 下列各因式分解正确的是A. x 2 + 2x-1=(x - 1)2B. - x 2+(-2)2=(x - 2)(x + 2) C. x 3- 4x = x (x + 2)(x - 2)D. (x + 1)2= x 2 + 2x + 111. 如图,AB 是⊙O 的直径,点E 为BC 的中点,AB = 4, ∠BED = 120°,则图中阴影部分的面积之和为 A. 3 B. 23 C.23 D. 112. 如图,△ABC 中,∠C = 90°,M 是AB 的中点,动点P 从点A出发,沿AC 方向匀速运动到终点C ,动点Q 从点C 出发,沿 CB 方向匀速运动到终点B. 已知P ,Q 两点同时出发,并同时 到达终点,连接MP ,MQ ,PQ . 在整个运动过程中,△MPQ 的面积大小变化情况是 A. 一直增大B. 一直减小C. 先减小后增大D. 先增大后减小二、填空题(本大题满分18分,每小题3分,请将答案填在答题卷上,在试卷上答题无效) 13. 计算:│-31│= . 14. 已知一次函数y = kx + 3的图象经过第一、二、四象限,则k 的取值范围是 . 15. 在10个外观相同的产品中,有2个不合格产品,现从中任意抽取1个进行检测,抽到合格产品的概率是 .16. 在临桂新区建设中,需要修一段全长2400m 的道路,为了尽量减少施工对县城交通所造成的影响,实际工作效率比原计划提高了20%,结果提前8天完成任务,求原计划每天修路的长度. 若设原计划每天修路x m ,则根据题意可得方程 . 17. 在平面直角坐标系中,规定把一个三角形先沿着x 轴翻折,再向右平移2个单位称为1次变换. 如图,已知等边三角形 ABC 的顶点B ,C 的坐标分别是(-1,-1),(-3,-1),把 △ABC 经过连续9次这样的变换得到△A ′B ′C ′,则点A 的对 应点A ′ 的坐标是 .18. 如图,已知等腰Rt △ABC 的直角边长为1,以Rt △ABC 的斜边AC 为直角边,画第二个等腰Rt △ACD ,再以Rt △ACD 的 斜边AD 为直角边,画第三个等腰Rt △ADE ……依此类推直 到第五个等腰Rt △AFG ,则由这五个等腰直角三角形所构成 的图形的面积为 . 三、解答题(本大题8题,共66分,解答需写出必要的步骤和过程. 请将答案写在答题卷上,在试卷上答题无效)(第11题图)(第12题图)(第17题图)(第18题图)19. (本小题满分8分,每题4分)(1)计算:4 cos45°-8+(π-3) +(-1)3;(2)化简:(1 - n m n+)÷22n m m -.20. (本小题满分6分)21. (本小题满分6分)如图,在△ABC 中,AB = AC ,∠ABC = 72°. (1)用直尺和圆规作∠ABC 的平分线BD 交AC 于点D (保留作图痕迹,不要求写作法);(2)在(1)中作出∠ABC 的平分线BD 后,求∠BDC 的度数.22. (本小题满分8分)在开展“学雷锋社会实践”活动中,某校为了解全校1200名学生参加活动的情况,随机调查了50名学生每人参加活动的次数,并根据数据绘成条形统计图如下:(1)求这50个样本数据的平均数、众数和中位数;(2)根据样本数据,估算该校1200名学生共参加了多少次活动. 23. (本小题满分8分)如图,山坡上有一棵树AB ,树底部B 点到山脚C 点的距离BC 为63米,山坡的坡角 为30°. 小宁在山脚的平地F 处测量这棵树的高,点 C 到测角仪EF 的水平距离CF = 1米,从E 处测得树 顶部A 的仰角为45°,树底部B 的仰角为20°,求树 AB 的高度.(参考数值:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)24. (本小题满分8分)如图,PA ,PB 分别与⊙O 相切于点A ,B ,点M 在PB 上,且OM ∥AP ,MN ⊥AP ,垂足为N. (1)求证:OM = AN ;(2)若⊙O 的半径R = 3,PA = 9,求OM 的长.3121--+x x ≤1, ……① 解不等式组:3(x - 1)<2 x + 1.……②(第21题图)(第23题图)°25. (本小题满分10分)某中学计划购买A 型和B 型课桌凳共200套. 经招标,购买一套A 型课桌凳比购买一套B 型课桌凳少用40元,且购买4套A 型和5套B 型课桌凳共需1820元. (1)求购买一套A 型课桌凳和一套B 型课桌凳各需多少元?(2)学校根据实际情况,要求购买这两种课桌凳总费用不能超过40880元,并且购买A 型课桌凳的数量不能超过B 型课桌凳数量的32,求该校本次购买A 型和B 型课桌凳共有几种方案?哪种方案的总费用最低?26. (本小题满分12分)在平面直角坐标系中,现将一块等腰直角三角板ABC 放在第二象限,斜靠在两坐标轴上,点C 为(-1,0). 如图所示,B 点在抛物线y =21x 2 -21x – 2图象上,过点B 作BD ⊥x 轴,垂足为D ,且B 点横坐标为-3. (1)求证:△BDC ≌ △COA ;(2)求BC 所在直线的函数关系式;(3)抛物线的对称轴上是否存在点P ,使△ACP 是以AC 为直角边的直角三角形?若存在,求出 所有点P 的坐标;若不存在,请说明理由.2013年初三适应性检测参考答案与评分意见一、选择题题号 1 2 3 4 5 6 7 8 9 10 11 12 答案DACBCBDABCAC说明:第12题是一道几何开放题,学生可从几个特殊的点着手,计算几个特殊三角形面积从而降低难度,得出答案. 当点P ,Q 分别位于A 、C 两点时,S △MPQ =21S △ABC ;当点P 、Q 分别运动到AC ,BC的中点时,此时,S △MPQ =21×21AC. 21BC =41S △ABC ;当点P 、Q 继续运动到点C ,B 时,S △MPQ =21S△ABC,故在整个运动变化中,△MPQ 的面积是先减小后增大,应选C.二、填空题 13.31; 14. k <0; 15. 54(若为108扣1分); 16. x 2400-x%)201(2400= 8; 17. (16,1+3); 18. 15.5(或231). 三、解答题19. (1)解:原式 = 4×22-22+1-1……2分(每错1个扣1分,错2个以上不给分) = 0 …………………………………4分(第26题图)(2)解:原式 =(n m n m ++-n m n +)·m n m 22- …………2分= nm m +·m n m n m ))((-+ …………3分= m – n …………4分 20. 解:由①得3(1 + x )- 2(x -1)≤6, …………1分 化简得x ≤1. …………3分 由②得3x – 3 < 2x + 1, …………4分 化简得x <4. …………5分 ∴原不等式组的解是x ≤1. …………6分21. 解(1)如图所示(作图正确得3分)(2)∵BD 平分∠ABC ,∠ABC = 72°, ∴∠ABD =21∠ABC = 36°, …………4分 ∵AB = AC ,∴∠C =∠ABC = 72°, …………5分 ∴∠A= 36°,∴∠BDC =∠A+∠ABD = 36° + 36° = 72°. …………6分 22. 解:(1)观察条形统计图,可知这组样本数据的平均数是 _x =50551841737231⨯+⨯+⨯+⨯+⨯ =3.3, …………1分∴这组样本数据的平均数是3.3. …………2分∵在这组样本数据中,4出现了18次,出现的次数最多, ∴这组数据的众数是4. …………4分∵将这组样本数据按从小到大的顺序排列,其中处在中间的两个数都是3,有233+ = 3. ∴这组数据的中位数是3. ………………6分(2)∵这组数据的平均数是3.3,∴估计全校1200人参加活动次数的总体平均数是3.3,有3.3×1200 = 3900. ∴该校学生共参加活动约3960次. ………………8分 23. 解:在Rt △BDC 中,∠BDC = 90°,BC = 63米,∠BCD = 30°, ∴DC = BC ·cos30° ……………………1分 = 63×23= 9, ……………………2分 ∴DF = DC + CF = 9 + 1 = 10,…………………3分 ∴GE = DF = 10. …………………4分 在Rt △BGE 中,∠BEG = 20°, ∴BG = CG ·tan20° …………………5分 =10×0.36=3.6, …………………6分 在Rt △AGE 中,∠AEG = 45°,∴AG = GE = 10, ……………………7分 ∴AB = AG – BG = 10 - 3.6 = 6.4.答:树AB 的高度约为6.4米. ……………8分24. 解(1)如图,连接OA ,则OA ⊥AP. ………………1分∵MN ⊥AP ,∴MN ∥OA. ………………2分 ∵OM ∥AP ,∴四边形ANMO 是矩形.∴OM = AN. ………………3分(2)连接OB ,则OB ⊥AP ,∵OA = MN ,OA = OB ,OM ∥BP , ∴OB = MN ,∠OMB =∠NPM.∴Rt △OBM ≌Rt △MNP. ………………5分 ∴OM = MP.设OM = x ,则NP = 9- x . ………………6分在Rt △MNP 中,有x 2 = 32+(9- x )2.∴x = 5. 即OM = 5 …………… 8分25. 解:(1)设A 型每套x 元,则B 型每套(x + 40)元. …………… 1分 ∴4x + 5(x + 40)=1820. ……………………………………… 2分∴x = 180,x + 40 = 220.即购买一套A 型课桌凳和一套B 型课桌凳各需180元、220元. ……………3分(2)设购买A 型课桌凳a 套,则购买B 型课桌凳(200 - a )套.a ≤32(200 - a ), ∴ …………… 4分 180 a + 220(200- a )≤40880.解得78≤a ≤80. …………… 5分∵a 为整数,∴a = 78,79,80∴共有3种方案. ………………6分 设购买课桌凳总费用为y 元,则y = 180a + 220(200 - a )=-40a + 44000. …………… 7分 ∵-40<0,y 随a 的增大而减小,∴当a = 80时,总费用最低,此时200- a =120. …………9分 即总费用最低的方案是:购买A 型80套,购买B 型120套. ………………10分2014年中考数学模拟试题(二)一、选择题1、 数1,5,0,2-中最大的数是()A 、1-B 、5C 、0D 、2 2、9的立方根是()A 、3±B 、3C 、39±D 、393、已知一元二次方程2430x x -+=的两根1x 、2x ,则12x x +=()A 、4B 、3C 、-4D 、-3 4、如图是某几何题的三视图,下列判断正确的是() A 、几何体是圆柱体,高为2 B 、几何体是圆锥体,高为2 C 、几何体是圆柱体,半径为2 D 、几何体是圆柱体,半径为2 5、若a b >,则下列式子一定成立的是()A 、0a b +>B 、0a b ->C 、0ab >D 、0ab> 6、如图AB ∥DE ,∠ABC=20°,∠BCD=80°,则∠CDE=() A 、20° B 、80° C 、60° D 、100°7、已知AB 、CD 是⊙O 的直径,则四边形ACBD 是() A 、正方形 B 、矩形 C 、菱形 D 、等腰梯形 8、不等式组302x x +>⎧⎨-≥-⎩的整数解有()A 、0个B 、5个C 、6个D 、无数个 9、已知点1122(,),(,)A x y B x y 是反比例函数2y x=图像上的点,若120x x >>, 则一定成立的是()A 、120y y >>B 、120y y >>C 、120y y >>D 、210y y >>10、如图,⊙O 和⊙O ′相交于A 、B 两点,且OO ’=5,OA=3, O ’B =4,则AB=( ) A 、5 B 、2.4 C 、2.5 D 、4.8 二、填空题11、正五边形的外角和为 12、计算:3m m -÷= 13、分解因式:2233x y -=14、如图,某飞机于空中A 处探测到目标C ,此时飞行高度AC=1200米,从飞机上看地面控制点B的俯角20α=︒,则飞机A 到控制点B 的距离约为 。
2014年初中毕业、升学统一考试模拟考试数学试题(考试形式:闭卷 满分:150分 考试时间:120分钟)友情提醒:本卷中的所有题目均在答题卡上作答,在本卷中作答无效。
一、选择题(本大题共8小题,每小题3分,共24分.每题的四个选项中,只有一个选项是符合要求的,请将正确选项前的字母代号填写在答题卡...相应位置....上) 1.下列各数中,最小的实数是A.B .12- C .2- D .132.下列函数中,自变量x 的取值范围是3x ≥的是A .13y x =- B.y = C .3y x =- D.y =3.下列成语或词语所反映的事件中,可能性大小最小的是A .瓜熟蒂落B .守株待兔C .旭日东升D .夕阳西下 4.下列水平放置的四个几何体中,主视图与其它三个不相同的是A B C D5.如图,在平面直角坐标系中,菱形OACB 的顶点O 在原点,点C 的坐标为(4,0),点B 的纵坐标是−1,则顶点A 坐标是A .(2,1)B .(1,−2)C .(1,2)D .(2,-1)6.下列四个选项中,数轴上的数a ,一定满足2a >-的是 A . B .C .D .7.已知P 是⊙O 内一点,⊙O 的半径为10,P 点到圆心O 的距离为6,则过P 点且长度是整数的弦的条数是 A .3B .4C .5D .68.在平面直角坐标系中,已知直线334y x =-+与x 轴、y 轴分别交于A 、B 两点,点C 在y 轴上.把坐标平面沿直线AC 折叠,使点B 刚好落在x 轴上,则点C 的坐标是 A .(0,34) B .(0,43) C .(0,3) D .(0,4)(第5题)二、填空题(本大题共10题,每题3分,共30分.不需写出解答过程,请把答案直接填写在答题卡相应位置.......上) 9. 计算:23a a a + ▲ .10.已知某种纸一张的厚度约为0.0089厘米,0.0089用科学计数法表示为 ▲ . 11.某天我国6个城市的平均气温分别是 -3℃、5℃、 -12℃、 16℃、 22℃、 28℃.则这6个城市平均气温的极差是 ▲ ℃.12.若32-=+b a ,21422=-b a ,则12+-b a = ▲ .13. 已知等腰三角形的一条腰长是5,底边长是6,则它底边上的高为 ▲ . 14.如图,是4×4的正方形网格,把其中一个标有数字的白色小正方形涂黑,就可以使图中的黑色部分构成一个中心对称图形,则这个白色小正方形内的数字是 ▲ . 15.已知圆锥的底面半径为9cm ,母线长为30cm ,则此圆锥的侧面展开扇形的圆心角度数为▲ .16. 将量角器按如图所示的方式放置在三角形纸板上,使点C 在半圆上.点A 、B 的读数分别为86°、30°,则∠ACB = ▲ °.17.如图所示,过y 轴正半轴上的任意一点P ,作x 轴的平行线,分别与反比例函数xy x y 24=-=和 的图象交于点A 和点B ,若点C 是x 轴上任意一点,连接AC 、BC ,则△ABC 的面积为 ▲ .18.在△ABC 中,∠ABC =30°,AB 边长为10,AC 边的长度可以在3、5、7、9、11中取值,满足这些条件的互不全等的三角形的个数是 ▲ 个.三、解答题 (本大题共10题,共96分.请在答题卡指定区域.......内作答,解答时应写出必要的文字说明、证明过程或演算步骤) 19.(本题满分8分)(1)212cos30()12--+--(2) 解不等式: 122123x x -+-≥20.(本题满分8分)(第16题)(第14题)(第17题)先化简再求值:232(1)121x x x x x ---÷--+,其中x 是方程022=-x x 的根.21.(本题满分8分)今年“3.15”期间某商场为了吸引顾客,设计了一种促销活动:在一个不透明的箱子里放有4个相同的小球,球上分别标有“0元”、“10元”、“20元”和“30元”的字样.规定:同一日内,顾客在本商场每消费满200元,就可以在箱子里一次摸出两个球,商场根据两小球所标金额之和返还相应数额的购物券.某顾客刚好消费200元. (1)该顾客至少可得到 ▲ 元购物券,至多可得到 ▲ 元购物券;(2)请你用画树状图或列表的方法,求出该顾客所获得的购物券金额不低于30元的概率.22.(本题满分8分)如图,在平行四边形ABCD 中,E F ,为BC 上两点,且BE CF =,AF DE =. (1)找出图中一对全等的三角形,并证明; (2)求证:四边形ABCD 是矩形.23.(本题满分10分)某市需调查该市九年级男生的体能状况,为此抽取了50名九年级男生进行引体向上个数测试,测试情况绘制成表格如下:(1)求这次抽样测试数据的平均数、众数和中位数;(2)在平均数、众数和中位数中,你认为用哪一个统计量作为该市九年级男生引体向上项目测试的合格标准个数较为合适?简要说明理由;A BCDEF(3)如果该市今年有3万名九年级男生,根据(2)中你认为合格的标准,试估计该市九年级男生引体向上项目测试的合格人数是多少?24.(本题满分10分)小明到某品牌服装专卖店做社会调查.了解到该专卖店为了激励营业员的工作积极性,实行“月总收入=基本工资+计件奖金”的方法,而“计件奖金=销售每件的奖金×月销售件数”,并获得如下信息:(1)求营业员的月基本工资和销售每件的奖金;(2)营业员丙哥希望本月总收入不低于1800元,则丙哥本月至少要卖服装多少件?25.(本题满分10分)超速行驶是引发交通事故的主要原因.上周末,小明和三位同学尝试用自己所学的知识检测车速,如图,观测点设在到文昌路的距离为100米的点P处.这时,一辆小轿车由西向东匀速行驶,测得此车从A处行驶到B处所用的时间为4秒且∠APO=60°,∠BPO=45°.(1)求A、B1.41≈,1.73≈)(2)请判断此车是否超过了文昌路每小时70千米的限制速度?26.(本题满分10分)如图,在△ABC,AB=AC,以AB为直径的⊙O分别交AC、BC于点D、E,点F 在AC的延长线上,且CBFCAB∠=∠2.(1)试判断直线BF与⊙O的位置关系,并说明理由;(2)若AB=6,BF=8,求CBF∠tan.OPBA万丰文昌路。
山 东 中 考 全 真 模 拟 测 试数 学 试 卷一.选择题 1.23的倒数是( ) A. 32 B. 32- C. 23- D. 23 2.已知代数式163m a b --和216n ab 是同类项,则m -n 的值是( ) A. -1 B. -2 C. -3 D. 03.近几年我国国产汽车行业蓬勃发展,下列汽车标识中,是中心对称图形的是( ) A. B.C. D.4.医学研究发现某病毒直径约为0.000043毫米,这个数用科学记数法表示为( )A. 40.4310⨯B. 54.310-⨯C. 40.4310-⨯D. 50.4310⨯ 5.如图所示,正三棱柱的左视图( )A. B.C. D.6.2x -x 的取值范围是( )A. 2x ≥B. 2x ≥-C. 2x >D. 2x >-7.下列计算正确的是( )A. (a 2)3=a 5B. (﹣2a )2=﹣4a 2C. m 3m 2=m 6D. 5﹣2=125 8.三名初三学生坐在仅有的三个座位上,起身后重新就坐,恰好有两名同学没有坐回原座位的概率为( ) A. 19 B. 16 C. 14 D.12 9.如图,在△ABC 中,∠BAC =90°,AB =AC =4,以点C 为中心,把△ABC 逆时针旋转45°,得到△A ′B ′C ,则图中阴影部分的面积为( )A. 2B. 2πC. 4D. 4π10.如图1,点F 从菱形ABCD 的顶点A 出发,沿A→D→B 以1cm/s 的速度匀速运动到点B ,图2是点F 运动时,△FBC 的面积y (cm 2)随时间x (s )变化的关系图象,则a 的值为( )A. 5B. 2C. 52 5二.填空题11.若2a b =+,则代数式222a ab b -+的值为__.12.写出一个函数的表达式,使它满足:①图象经过点(1,1);②在第一象限内函数y 随自变量x 的增大而减少,则这个函数的表达式为__________.13.《孙子算经》中有一道题:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”译文大致是:“用一根绳子去量一根木条,绳子剩余4.5尺;将绳子对折再量木条,木条剩余1尺,问木条长多少尺?”如果设木条长x 尺,绳子长y 尺,可列方程组为_____.14.如图,在Rt ABC ∆中,090C ∠=,以顶点B 为圆心,适当长度为半径画弧,分别交,AB BC 于点,M N ,再分别以点,M N 为圆心,大于12MN 的长为半径画弧,两弧交于点P ,作射线BP 交AC 于点D .若30A ∠=,则BCD ABDS S ∆∆=_____.15. 设△ABC 的面积为1.如图1,分别将AC ,BC 边2等分,D 1,E 1是其分点,连接AE 1,BD 1交于点F 1,得到四边形CD 1F 1E 1,其面积S 1=.如图2,分别将AC ,BC 边3等分,D 1,D 2,E 1,E 2是其分点,连接AE 2,BD 2交于点F 2,得到四边形CD 2F 2E 2,其面积S 2=;如图3,分别将AC ,BC 边4等分,D 1,D 2,D 3,E 1,E 2,E 3是其分点,连接AE 3,BD 3交于点F 3,得到四边形CD 3F 3E 3,其面积S 3=; … 按照这个规律进行下去,若分别将AC ,BC 边(n+1)等分,…,得到四边形CD n E n F n ,其面积S= .三.解答题16.解方程21 =122x x x--- 17.某学校八年级共400名学生,为了解该年级学生的视力情况,从中随机抽取40名学生的视力数据作为样本,数据统计如下:4.2 4.1 4.7 4.1 4.3 4.3 4.4 4.6 4.15.25.2 4.5 5.0 4.5 4.3 4.4 4.8 5.3 4.5 5.24.4 4.2 4.35.3 4.9 5.2 4.9 4.8 4.6 5.14.2 4.4 4.5 4.1 4.55.1 4.4 5.0 5.2 5.3根据数据绘制了如下的表格和统计图: 等级 视力(x )频数 频率A4.2x < 4 0.1 B 4.2 4.4x ≤≤ 12 0.3C4.5 4.7x ≤≤ a D 4.85.0x ≤≤b E 5.1 5.3x ≤≤ 100.25 合计40 1根据上面提供信息,回答下列问题:(1)统计表中的a = ,b = ;(2)请补全条形统计图;(3)根据抽样调查结果,请估计该校八年级学生视力为“E 级”的有多少人?(4)该年级学生会宣传部有2名男生和2名女生,现从中随机挑选2名同学参加“防控近视,爱眼护眼”宣传活动,请用树状图法或列表法求出恰好选中“1男1女”的概率.18.某商店销售一种商品,童威经市场调查发现:该商品的周销售量y (件)是售价x (元/件)的一次函数,其售价、周销售量、周销售利润w (元)的三组对应值如下表:售价x (元/件)50 60 80 周销售量y (件)100 80 40 周销售利润w (元)1000 16001600注:周销售利润=周销售量×(售价-进价)(1)①求y 关于x 的函数解析式(不要求写出自变量的取值范围)②该商品进价是_________元/件;当售价是________元/件时,周销售利润最大,最大利润是__________元 (2)由于某种原因,该商品进价提高了m 元/件(0)m ,物价部门规定该商品售价不得超过65元/件,该商店在今后的销售中,周销售量与售价仍然满足(1)中的函数关系.若周销售最大利润是1400元,求m 的值19.如图,已知AB 是⊙O 的直径,点P 是⊙O 上一点,连接OP ,点A 关于OP 的对称点C 恰好落在⊙O 上. (1)求证:OP ∥BC ;(2)过点C 作⊙O 的切线CD ,交AP 的延长线于点D .如果∠D =90°,DP =1,求⊙O 的直径.20.问题情境:在综合实践课上,老师让同学们以“菱形纸片的剪拼”为主题开展数学活动,如图(1),将一张菱形纸片ABCD (∠BAD =60°)沿对角线AC 剪开,得到△ABC 和△ACD操作发现:(1)将图(1)中的△ABC 以A 为旋转中心,顺时针方向旋转角α(0°<α<60°)得到如图(2)所示△ABC ′,分别延长BC ′和DC 交于点E ,发现CE =C ′E .请你证明这个结论. (2)在问题(1)的基础上,当旋转角α等于多少度时,四边形ACEC ′是菱形?请你利用图(3)说明理由. 拓展探究:(3)在满足问题(2)的基础上,过点C ′作C ′F ⊥AC ,与DC 交于点F .试判断AD 、DF 与AC的数量关系,并说明理由.21.如图,在平面直角坐标系中,抛物线y =ax 2+bx +2(a ≠0)与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C ,抛物线经过点D (﹣2,﹣3)和点E (3,2),点P 是第一象限抛物线上的一个动点.(1)求直线DE 和抛物线的表达式;(2)在y 轴上取点F (0,1),连接PF ,PB ,当四边形OBPF 的面积是7时,求点P 的坐标;(3)在(2)的条件下,当点P 在抛物线对称轴的右侧时,直线DE 上存在两点M ,N (点M 在点N 的上方),且MN =2,动点Q 从点P 出发,沿P →M →N →A 的路线运动到终点A ,当点Q 的运动路程最短时,请直接写出此时点N 的坐标.22.定义:点P (a ,b )关于原点的对称点为P ',以PP '为边作等边△PP 'C ,则称点C 为P 的“等边对称点”; (1)若P (13),求点P 的“等边对称点”的坐标.(2)若P 点是双曲线y =2x(x >0)上一动点,当点P 的“等边对称点”点C 在第四象限时, ①如图(1),请问点C 是否也会在某一函数图象上运动?如果是,请求出此函数的解析式;如果不是,请说明理由.②如图(2),已知点A (1,2),B (2,1),点G 是线段AB 上动点,点F 在y 轴上,若以A 、G 、F 、C 这四个点为顶点的四边形是平行四边形时,求点C 的纵坐标y c 的取值范围.答案与解析一.选择题 1.23的倒数是( ) A. 32 B. 32- C. 23- D. 23 【答案】A【解析】【分析】直接利用倒数的定义得出答案.【详解】解:23的倒数是:32. 故选A .【点睛】此题主要考查了倒数,正确把握定义是解题关键.2.已知代数式163m a b --和216n ab 是同类项,则m -n 的值是( ) A. -1B. -2C. -3D. 0 【答案】A【解析】【分析】由同类项的定义可先求得m 和n 的值,从而求出代数式的值.【详解】∵代数式163m a b --和216ab 是同类项, ∴m−1=1,2n=6,∴m=2,n=3,∴m−n=2−3=−1,故选A.【点睛】此题考查同类项,解题关键在于求得m 和n 的值.3.近几年我国国产汽车行业蓬勃发展,下列汽车标识中,是中心对称图形的是( ) A. B.C. D.【答案】D【解析】【分析】把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.根据中心对称图形的概念求解.【详解】解:A 、是轴对称图形,不是中心对称图形,故此选项错误;B 、是轴对称图形,不是中心对称图形,故此选项错误;C 、不是轴对称图形,不是中心对称图形,故此选项错误;D 、不是轴对称图形,是中心对称图形,故此选项符合题意.故选D .【点睛】此题主要考查中心对称图形与轴对称图形的识别,解题的关键是熟知其定义.4.医学研究发现某病毒直径约为0.000043毫米,这个数用科学记数法表示为( )A. 40.4310⨯B. 54.310-⨯C. 40.4310-⨯D. 50.4310⨯【答案】B【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】50.000043 4.310-=⨯,故选B .【点睛】本题考查用科学记数法表示较小数,一般形式为a×10-n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.5.如图所示,正三棱柱的左视图( )A. B. C.D.【答案】A【解析】【分析】 根据简单几何体的三视图,可得答案.【详解】主视图是一个矩形,俯视图是两个矩形,左视图是三角形,故选A .【点睛】本题考查了简单几何体的三视图,利用三视图的定义是解题关键.6.2x -x 的取值范围是( )A. 2x ≥B. 2x ≥-C. 2x >D. 2x >- 【答案】A【解析】【分析】根据二次根式的定义中关于被开方数非负的要求,求x 的取值范围.【详解】二次根式必须满足:被开方数是非负数,所以20x -≥,解得2x ≥,故选A .【点睛】本题考查二次根式的定义.7.下列计算正确的是( )A. (a 2)3=a 5B. (﹣2a )2=﹣4a 2C. m 3m 2=m 6D. 5﹣2=125【答案】D【解析】【分析】先根据幂的乘方、积的乘方、同底数幂的乘法、负整数指数幂分别求出每个式子的值,再判断即可.【详解】解:A 、结果是a 6,故本选项不符合题意;B 、结果是4a 2,故本选项不符合题意;C 、结果是m 5,故本选项不符合题意;D、结果是125,故本选项符合题意;故选:D.【点睛】本题主要考查幂的乘方、积的乘方、同底数幂的乘法、负整数指数幂,正确计算是解题的关键.8.三名初三学生坐在仅有的三个座位上,起身后重新就坐,恰好有两名同学没有坐回原座位的概率为( )A. 19B.16C.14D.12【答案】D【解析】【分析】画树状图为(用A、B、C表示三位同学,用a、b、c表示他们原来的座位)展示所有6种等可能的结果数,再找出恰好有两名同学没有坐回原座位的结果数,然后根据概率公式求解.【详解】画树状图为:(用A、B、C表示三位同学,用a、b、c表示他们原来的座位)共有6种等可能的结果数,其中恰好有两名同学没有坐回原座位的结果数为3,所以恰好有两名同学没有坐回原座位的概率=36=12.故选D.9.如图,在△ABC中,∠BAC=90°,AB=AC=4,以点C为中心,把△ABC逆时针旋转45°,得到△A′B′C,则图中阴影部分的面积为()A. 2B. 2πC. 4D. 4π【答案】B【解析】【分析】根据阴影部分的面积是(扇形CBB'的面积﹣△CA'B'的面积)+(△ABC的面积﹣扇形CAA'的面积),代入数值解答即可.【详解】∵在△ABC中,∠BAC=90°,AB=AC=4,∴BC=2242AB AC+=,∠ACB=∠A'CB'=45°,∴阴影部分的面积=2245?(42)1145?4444436022360ππ-⨯⨯+⨯⨯-=2π,故选B.【点睛】本题考查了扇形面积公式的应用,观察图形得到阴影部分的面积是(扇形CBB'的面积﹣△CA'B'的面积)+(△ABC的面积﹣扇形CAA'的面积)是解决问题的关键.10.如图1,点F从菱形ABCD的顶点A出发,沿A→D→B以1cm/s的速度匀速运动到点B,图2是点F运动时,△FBC的面积y(cm2)随时间x(s)变化的关系图象,则a的值为()A. 5B. 2C. 52D. 25【答案】C【解析】【分析】通过分析图象,点F从点A到D用as,此时,△FBC的面积为a,依此可求菱形的高DE,再由图象可知,BD=5,应用两次勾股定理分别求BE和a.【详解】过点D作DE⊥BC于点E.由图象可知,点F由点A到点D用时为as,△FBC的面积为acm2..∴AD=a.∴12DE•AD=a.∴DE=2.当点F 从D 到B∴Rt △DBE 中,1=,∵四边形ABCD 是菱形, ∴EC=a-1,DC=a , Rt △DEC 中, a 2=22+(a-1)2. 解得a=52. 故选C .【点睛】本题综合考查了菱形性质和一次函数图象性质,解答过程中要注意函数图象变化与动点位置之间的关系.二.填空题11.若2a b =+,则代数式222a ab b -+的值为__. 【答案】4. 【解析】 【分析】由2a b =+,可得2a b -=,所求代数式变形后,整体代入即可. 【详解】2a b =+,2a b ∴-=,22222()24a ab b a b ∴-+=-==,故答案为4【点睛】本题考查了代数式求值,利用完全平方公式因式分解,熟记完全平方公式结构特征是解答本题的关键.12.写出一个函数的表达式,使它满足:①图象经过点(1,1);②在第一象限内函数y 随自变量x 的增大而减少,则这个函数的表达式为__________. 【答案】1y x= 【解析】【分析】根据反比例函数、一次函数以及二次函数的性质作答. 【详解】解:该题答案不唯一,可以为1y x=等. 故答案为:1y x=. 【点睛】本题考查的是反比例函数、一次函数以及二次函数的性质,熟知函数的增减性是解答此题的关键. 13.《孙子算经》中有一道题:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”译文大致是:“用一根绳子去量一根木条,绳子剩余4.5尺;将绳子对折再量木条,木条剩余1尺,问木条长多少尺?”如果设木条长x 尺,绳子长y 尺,可列方程组为_____.【答案】 4.5112x yx y +=⎧⎪⎨-=⎪⎩【解析】 【分析】设木条长x 尺,绳子长y 尺,根据绳子和木条长度间的关系,可得出关于,x y 的二元一次方程组,此题得解.【详解】设木条长x 尺,绳子长y 尺,依题意,得: 4.5112x yx y +=⎧⎪⎨-=⎪⎩故答案为 4.5112x y x y +=⎧⎪⎨-=⎪⎩.【点睛】本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.14.如图,在Rt ABC ∆中,090C ∠=,以顶点B 为圆心,适当长度为半径画弧,分别交,AB BC 于点,M N ,再分别以点,M N 为圆心,大于12MN 的长为半径画弧,两弧交于点P ,作射线BP 交AC 于点D .若30A ∠=,则BCDABDS S ∆∆=_____.【答案】12. 【解析】 【分析】利用基本作图得BD 平分ABC ∠,再计算出30ABD CBD ∠=∠=,所以DA DB =,利用2BD CD =得到2AD CD =,然后根据三角形面积公式可得到BCD ABDS S的值.【详解】解:由作法得BD 平分ABC ∠, ∵90C =∠,30A ∠=, ∴60ABC ︒∠=,∴30ABD CBD ︒∠=∠=, ∴DA DB =,在Rt BCD ∆中,2BD CD =, ∴2AD CD =, ∴12BCD ABD S S ∆∆=. 故答案为12. 【点睛】本题考查了作图-基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线). 15. 设△ABC 的面积为1.如图1,分别将AC ,BC 边2等分,D 1,E 1是其分点,连接AE 1,BD 1交于点F 1,得到四边形CD 1F 1E 1,其面积S 1=.如图2,分别将AC ,BC 边3等分,D 1,D 2,E 1,E 2是其分点,连接AE 2,BD 2交于点F 2,得到四边形CD 2F 2E 2,其面积S2=;如图3,分别将AC,BC边4等分,D1,D2,D3,E1,E2,E3是其分点,连接AE3,BD3交于点F3,得到四边形CD3F3E3,其面积S3=;…按照这个规律进行下去,若分别将AC,BC边(n+1)等分,…,得到四边形CD n E n F n,其面积S= .【答案】.【解析】试题分析:如图所示,连接D1E1,D2E2,D3E3,∵图1中,D1,E1是△ABC两边的中点,∴D1E1∥AB,D1E1=AB,∴△CD1E1∽△CBA,且=,∴S△CD1E1=S△ABC=,∵E1是BC的中点,∴S△BD1E1=S△CD1E1=,∴S△D1E1F1=S△BD1E1=×=,∴S1=S△CD1E1+S△D1E1F1=+=,同理可得:图2中,S2=S△CD2E2+S△D2E2F2==,图3中,S3=S△CD3E3+S△D3E3F3==,以此类推,将AC,BC边(n+1)等分,得到四边形CD n E n F n,其面积S n==,故答案为.考点:规律型:图形的变化类;三角形的面积;规律型;综合题.三.解答题16.解方程21=122xx x---【答案】x=-1.【解析】【详解】解:方程两边同乘x-2,得2x=x-2+1解这个方程,得x= -1检验:x= -1时,x-2≠0∴原方程的解是x= -1首先去掉分母,观察可得最简公分母是(x﹣2),方程两边乘最简公分母,可以把分式方程转化为整式方程求解,然后解一元一次方程,最后检验即可求解17.某学校八年级共400名学生,为了解该年级学生的视力情况,从中随机抽取40名学生的视力数据作为样本,数据统计如下:4.2 4.1 4.7 4.1 4.3 4.3 4.4 4.6 4.15.25.2 4.5 5.0 4.5 4.3 4.4 4.8 5.3 4.5 5.24.4 4.2 4.35.3 4.9 5.2 4.9 4.8 4.6 5.14.2 4.4 4.5 4.1 4.55.1 4.4 5.0 5.2 5.3根据数据绘制了如下的表格和统计图:根据上面提供的信息,回答下列问题:(1)统计表中的a=,b=;(2)请补全条形统计图;(3)根据抽样调查结果,请估计该校八年级学生视力为“E级”的有多少人?(4)该年级学生会宣传部有2名男生和2名女生,现从中随机挑选2名同学参加“防控近视,爱眼护眼”宣传活动,请用树状图法或列表法求出恰好选中“1男1女”的概率.【答案】(1)8、0.15;(2)补全图形见解析;(3)估计该校八年级学生视力为“E级”的有100人;(4)恰好选到1名男生和1名女生的概率23.【解析】【分析】(1)由所列数据得出a的值,继而求出C组对应的频率,再根据频率之和等于1求出b的值;(2)总人数乘以b的值求出D组对应的频数,从而补全图形;(3)利用样本估计总体思想求解可得;(4)列表得出所有等可能的情况数,找出刚好抽到一男一女的情况数,即可求出所求的概率.【详解】(1)由题意知C等级的频数8a=,则C组对应的频率为8400.2÷=,∴1(0.10.30.20.25)0.15b=-+++=,故答案为8、0.15;(2)D组对应的频数为400.156⨯=,补全图形如下:(3)估计该校八年级学生视力为“E级”的有4000.25100⨯=(人);(4)列表如下:男男女女男(男,男)(女,男)(女,男)男(男,男)(女,男)(女,男)女(男,女)(男,女)(女,女)女(男,女)(男,女)(女,女)得到所有等可能的情况有12种,其中恰好抽中一男一女的情况有8种,所以恰好选到1名男生和1名女生的概率82 123=.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.也考查了统计图.18.某商店销售一种商品,童威经市场调查发现:该商品的周销售量y(件)是售价x(元/件)的一次函数,其售价、周销售量、周销售利润w(元)的三组对应值如下表:售价x(元/件)50 60 80周销售量y(件)100 80 40周销售利润w(元)1000 1600 1600注:周销售利润=周销售量×(售价-进价)(1)①求y 关于x 的函数解析式(不要求写出自变量的取值范围)②该商品进价是_________元/件;当售价是________元/件时,周销售利润最大,最大利润是__________元 (2)由于某种原因,该商品进价提高了m 元/件(0)m >,物价部门规定该商品售价不得超过65元/件,该商店在今后的销售中,周销售量与售价仍然满足(1)中的函数关系.若周销售最大利润是1400元,求m 的值【答案】(1)①y 与x 的函数关系式是2200y x =-+;②40,70,1800;(2)5. 【解析】 【分析】(1)①设y 与x 的函数关系式为y kx b =+,根据表格中的数据利用待定系数法进行求解即可;②设进价为a 元,根据利润=售价-进价,列方程可求得a 的值,根据“周销售利润=周销售量×(售价-进价)”可得w 关于x 的二次函数,利用二次函数的性质进行求解即可得;(2)根据“周销售利润=周销售量×(售价-进价)”可得(2200)(40)w x x m =-+--,进而利用二次函数的性质进行求解即可.【详解】(1)①设y 与x 的函数关系式为y kx b =+,将(50,100),(60,80)分别代入得,501006080k b k b +=⎧⎨+=⎩,解得,2k =-,200b =, ∴y 与x 的函数关系式是2200y x =-+;②设进价为a 元,由售价50元时,周销售是为100件,周销售利润为1000元,得 100(50-a)=1000, 解得:a=40,依题意有,(2200)(40)w x x =-+- =222808000x x -+- =()22701800x --+ ∵20-<,∴当x=70时,w 有最大值为1800,即售价为70元/件时,周销售利润最大,最大为1800元, 故答案为40,70,1800;(2)依题意有,(2200)(40)w x x m =-+--22(2280)8000200x m x m =-++--221401260180022m x m m +⎛⎫=--+-+ ⎪⎝⎭ ∵0m >,∴对称轴140702m x +=>, ∵20-<,∴抛物线开口向下,∵65x ,∴w 随x 的增大而增大,∴当65x =时,∴w 有最大值(265200)(6540)m -⨯+--,∴(265200)(6540)1400m -⨯+--=,∴5m =.【点睛】本题考查了一次函数的应用,二次函数的应用,弄清题意,找准各量间的关系正确列出函数解析式是解题的关键.19.如图,已知AB 是⊙O 的直径,点P 是⊙O 上一点,连接OP ,点A 关于OP 的对称点C 恰好落在⊙O 上. (1)求证:OP ∥BC ;(2)过点C 作⊙O 的切线CD ,交AP 的延长线于点D .如果∠D =90°,DP =1,求⊙O 的直径.【答案】(1)见解析;(2)⊙O 的直径AB =4.【解析】【分析】(1)由题意可知AP PC =,根据同弧所对的圆心角相等得到∠AOP =12∠AOC ,再根据同弧所对的圆心角和圆周角的关系得出∠ABC =12∠AOC ,利用同位角相等两直线平行,可得出PO 与BC 平行; (2)由CD 为圆O 的切线,利用切线的性质得到OC 垂直于CD ,又AD 垂直于CD ,利用平面内垂直于同一条直线的两直线平行得到OC 与AD 平行,根据两直线平行内错角相等得到∠APO=∠COP ,由∠AOP=∠COP ,等量代换可得出∠APO=∠AOP ,再由OA=OP ,利用等边对等角可得出一对角相等,等量代换可得出三角形AOP 三内角相等,确定出三角形AOP 为等边三角形,根据等边三角形的内角为60°得到∠AOP为60°,由OP平行于BC,利用两直线平行同位角相等可得出∠OBC=∠AOP=60°,再由OB=OC,得到三角形OBC为等边三角形,可得出∠COB为60°,利用平角的定义得到∠POC也为60°,再加上OP=OC,可得出三角形POC为等边三角形,得到内角∠OCP为60°,可求出∠PCD为30°,在直角三角形PCD中,利用30°所对的直角边等于斜边的一半可得出PD为PC的一半,而PC等于圆的半径OP等于直径AB的一半,可得出PD为AB的四分之一,即AB=4PD=4.【详解】(1)证明:∵A关于OP的对称点C恰好落在⊙O上.∴AP PC∴∠AOP=∠COP,∴∠AOP=12∠AOC,又∵∠ABC=12∠AOC,∴∠AOP=∠ABC,∴PO∥BC;(2)解:连接PC,∵CD为圆O的切线,∴OC⊥CD,又AD⊥CD,∴OC∥AD,∴∠APO=∠COP,∵∠AOP=∠COP,∴∠APO=∠AOP,∴OA=AP,∵OA=OP,∴△APO为等边三角形,∴∠AOP=60°,又∵OP∥BC,∴∠OBC=∠AOP=60°,又OC=OB,∴△BCO为等边三角形,∴∠COB=60°,∴∠POC=180°﹣(∠AOP+∠COB)=60°,又OP=OC,∴△POC也为等边三角形,∴∠PCO=60°,PC=OP=OC,又∵∠OCD=90°,∴∠PCD=30°,在Rt△PCD中,PD=12 PC,又∵PC=OP=12 AB,∴PD=14 AB,∴AB=4PD=4.【点睛】此题考查了切线的性质,等边三角形的判定与性质,含30°直角三角形的性质,轴对称的性质,圆周角定理,以及平行线的判定与性质,熟练掌握性质及判定是解本题的关键.20.问题情境:在综合实践课上,老师让同学们以“菱形纸片的剪拼”为主题开展数学活动,如图(1),将一张菱形纸片ABCD(∠BAD=60°)沿对角线AC剪开,得到△ABC和△ACD操作发现:(1)将图(1)中的△ABC以A为旋转中心,顺时针方向旋转角α(0°<α<60°)得到如图(2)所示△ABC′,分别延长BC′和DC交于点E,发现CE=C′E.请你证明这个结论.(2)在问题(1)的基础上,当旋转角α等于多少度时,四边形ACEC′是菱形?请你利用图(3)说明理由.拓展探究:(3)在满足问题(2)的基础上,过点C′作C′F⊥AC,与DC交于点F.试判断AD、DF与AC 的数量关系,并说明理由.【答案】(1)见解析;(2)当α=30°时,四边形AC ′EC 是菱形,理由见解析;(3)AD +DF =AC ,理由见解析【解析】【分析】(1)先判断出∠ACC ′=∠AC ′C ,进而判断出∠ECC ′=∠EC ′C ,即可得出结论;(2)判断出四边形AC ′EC 是平行四边形,即可得出结论;(3)先判断出HAC ′是等边三角形,得出AH=AC ′,∠H=60°,再判断出△HDF 是等边三角形,即可得出结论.【详解】(1)证明:如图2,连接CC′,∵四边形ABCD 是菱形,∴∠ACD =∠AC′B =30°,AC =AC′,∴∠ACC′=∠AC′C ,∴∠ECC′=∠EC′C ,∴CE =C′E ;(2)当α=30°时,四边形AC′EC 是菱形,理由:∵∠DCA =∠CAC′=∠AC′B =30°,∴CE ∥AC′,AC ∥C′E ,∴四边形AC′EC 是平行四边形,又∵CE =C′E ,∴四边形AC′EC 是菱形;(3)AD+DF=AC.理由:如图4,分别延长CF与AD交于点H,∵∠DAC=∠C′AC=30°,C′F⊥AC,∴∠AC′H=∠DAC′=60°,∴△HAC′是等边三角形,∴AH=AC′,∠H=60°,又∵AD=DC,∴∠DAC=∠DCA=30°,∴∠HDC=∠DAC+∠DCA=60°,∴△HDF是等边三角形,∴DH=DF,∴AD+DF=AD+DH=AH.∵AC′=AC,∴AC=AD+DF.【点睛】此题是四边形综合题,主要考查了旋转的旋转,等边三角形的判定和旋转,菱形的判定和性质,判断出△HAC′是等边三角形是解本题的关键.21.如图,在平面直角坐标系中,抛物线y=ax2+bx+2(a≠0)与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,抛物线经过点D(﹣2,﹣3)和点E(3,2),点P是第一象限抛物线上的一个动点.(1)求直线DE 和抛物线的表达式;(2)在y 轴上取点F (0,1),连接PF ,PB ,当四边形OBPF 的面积是7时,求点P 的坐标;(3)在(2)的条件下,当点P 在抛物线对称轴的右侧时,直线DE 上存在两点M ,N (点M 在点N 的上方),且MN =22,动点Q 从点P 出发,沿P →M →N→A 的路线运动到终点A ,当点Q 的运动路程最短时,请直接写出此时点N 的坐标.【答案】(1)y =x ﹣1,y =12-x 2+32x +2;(2)P (2,3)或(32,258);(3)N (12,12-). 【解析】【分析】(1)将点D 、E 的坐标代入函数表达式,即可求解;(2)S 四边形OBPF =S △OBF +S △PFB =12×4×1+12×PH ×BO ,即可求解; (3)过点M 作A ′M ∥AN ,过作点A ′直线DE 的对称点A ″,连接PA ″交直线DE 于点M ,此时,点Q 运动的路径最短,即可求解.【详解】(1)将点D 、E 的坐标代入函数表达式得:34229322a b a b -=-+⎧⎨++=⎩,解得: 1232a b ⎧=-⎪⎪⎨⎪=⎪⎩,故抛物线的表达式为:y =12-x 2+32x +2, 同理可得直线DE 的表达式为:y =x ﹣1…①;(2)如图1,连接BF ,过点P 作PH ∥y 轴交BF 于点H ,将点FB 代入一次函数表达式,同理可得直线BF 的表达式为:y =14x -+1,设点P (x ,213222x x -++),则点H (x ,14x -+1), S 四边形OBPF =S △OBF +S △PFB =12×4×1+12×PH ×BO =2+2(213121224x x x -+++-)=7, 解得:x =2或32, 故点P (2,3)或(32,258); (3)当点P 在抛物线对称轴的右侧时,点P (2,3),过点M 作A ′M ∥AN ,过作点A ′直线DE 的对称点A ″,连接PA ″交直线DE 于点M ,此时,点Q 运动的路径最短,∵MN =2,相当于向上、向右分别平移2个单位,故点A ′(1,2),A ′A ″⊥DE ,则直线A ′A ″过点A ′,则其表达式为:y =﹣x +3…②,联立①②得x =2,则A ′A ″中点坐标为(2,1),由中点坐标公式得:点A ″(3,0),同理可得:直线AP ″的表达式为:y =﹣3x +9…③,联立①③并解得:x =52,即点M (52,32), 点M 沿BD 向下平移2个单位得:N (12,12-). 【点睛】本题考查是二次函数综合运用,涉及到一次函数、图形的平移、面积的计算等,其中(3),通过平移和点的对称性,确定点Q 运动的最短路径,是本题解题的关键.22.定义:点P (a ,b )关于原点的对称点为P ',以PP '为边作等边△PP 'C ,则称点C 为P 的“等边对称点”; (1)若P (13),求点P 的“等边对称点”的坐标.(2)若P 点是双曲线y =2x(x >0)上一动点,当点P 的“等边对称点”点C 在第四象限时, ①如图(1),请问点C 是否也会在某一函数图象上运动?如果是,请求出此函数的解析式;如果不是,请说明理由.②如图(2),已知点A (1,2),B (2,1),点G 是线段AB 上的动点,点F 在y 轴上,若以A 、G 、F 、C这四个点为顶点的四边形是平行四边形时,求点C 的纵坐标y c 的取值范围.【答案】(1)(33);(2)①是,y =﹣6x(x >0);②y c ≤﹣6或﹣3<y c ≤﹣2 【解析】【分析】 (1)P (13P '(﹣13,可求PP '=4;设C (m ,n ),有PC =P 'C =4,通过解方程可得m 3,再进行运算即可;(2)①设P (c ,2c )则P '(﹣c ,﹣2c ),可求PP '=224c c +;设C (s ,t ),有PC =P 'C =224c c+通过解方程可得s =﹣22t c ,t =3±,令33x c y c ⎧=⎪⎨⎪=-⎩,消元c 即可得xy =﹣6; ②当AG 为平行四边形的边时,G 与B 重合时,为一临界点通过平移可求得C (1,﹣6),y c ≤﹣6;当AG 为平行四边形的对角线时,G 与B 重合时,求得C (3,﹣2),G 与A 重合时,C (2,﹣3),此时﹣3<y c ≤﹣2.【详解】解:(1)∵P (13,∴P '(﹣13),∴PP '=4,设C (m ,n ),∴等边△PP ′C ,∴PC =P 'C =4, 2222(1)(3)(1)(3)4m n m n -+-=+++= ,∴m 3, 3﹣1)2+(n 32=16.解得n∴m =﹣3或m =3.如图1,观察点C 位于第四象限,则C (﹣3.即点P 的“等边对称点”的坐标是(3). (2)①设P (c ,2c ),∴P '(﹣c ,﹣2c ),∴PP '=设C (s ,t ),PC =P 'C ===∴s =﹣22tc ,∴t 2=3c 2,∴t=,∴C)或C),∴点C 在第四象限,c >0,∴C(c),令x y ⎧=⎪⎨⎪=⎩,∴xy =﹣6,即y =﹣6x (x >0);②当AG 为平行四边形的边时,G 与B 重合时,为一临界点通过平移可求得C (1,﹣6),∴y c ≤﹣6;当AG 为平行四边形的对角线时,G 与B 重合时,求得C (3,﹣2),G 与A 重合时,C (2,﹣3),此时﹣3<y c ≤﹣2,综上所述:y c≤﹣6或﹣3<y c≤﹣2.【点睛】本题主要考查反比例函数综合题,平行四边形的判定与性质,对新定义的理解是解题的关键.。
2014年九年级中考模拟考试数学试题参考答案及评分建议说明:本评分标准每题给出了一种或几种解法供参考,如果考生的解法与本解答不同,参照本评分标准的精神酌情给分.一、选择题(本大题共有8小题,每小题3分,共24分)二、填空题(本大题共有10小题,每小题3分,共30分)9.1x ≠- 10.66.34410⨯ 11.2 12.20<<y 13.乙14.2m a - 15 16.245 17.3218.注:12题写y<2扣1分三、解答题(本大题共有10小题,共96分.解答时应写出文字说明、证明过程或演算步骤)19.(1)(1)原式= 23 —4 …………………………………………4分(2)移项配方得:2(2)5x -= ………………………………………2分解之得:1222x x ==………………………………4分20.原式=122122+--÷--x x x x x ……………………………………………………2分 =1+-x ……………………………………………………4分解不等式组得 12x -<≤, …………………………………………6分 符合不等式解集的整数是0,1,2. ……………………7分 当0x =时,原式2= ……………………………………………………8分21.解:(1)列表或画树状图正确(略) …………………………………………4分 ∴P (两次都是红色)=1/9 . …………………………………………………6分(2)两次都是白色或两次一红一白。
…………………………8分22.(1)5 8 图略 …………………………………………………3分(2)95(1分) 95 (2分) …………………………………………………6分(3)54 …………………8分23.证明:(1)∵ BC = CD ,∴ ∠CDB =∠CBD .∵ AD // BC ,∴ ∠ADB =∠CBD .∴ ∠ADB =∠CDB .……………1分又∵ AB ⊥AD ,BE ⊥CD ,∴ ∠BAD =∠BED = 90°. ………2分在△ABD 和△EBD 中,∵ ∠ADB =∠CDB ,∠BAD =∠BED ,BD = BD ,∴ △ABD ≌△EBD . ………………………………………………4分∴ AD = ED . ………………………………………………………5分(2)∵AF // CD ,∴ ∠AFD =∠EDF . ∴∠AFD =∠ADF ,即得 AF = AD .又∵ AD = ED ,∴ AF = DE . …………………………………7分于是,由 AF // DE ,AF = DE ,得四边形ADEF 是平行四边形. ……9分又∵ AD = ED ,∴ 四边形ADEF 是菱形. ………………………10分24.(1)在Rt △BOP 中 ,∠BOP =90°,∠BPO =45°,OP =100,∴OB=OP =100.…………………………………………………………………2分在Rt △AOP 中, ∠AOP =90°,∠APO =60°,tan AO OP APO ∴=⋅∠. AO ∴=. …………………………………4分∴1031)AB =(米). ………………………………………………6分(2)v 此车速度1)=250.7318.25≈⨯=(米/秒) . ………8分 18.25米/秒 =65.7千米/小时. ……………………………………9分65.770<, ∴此车没有超过限制速度. ………………………………………………10分25.(1)设乙队在2≤x ≤6的时段内y 与x 之间的函数关系式为y =kx +b , ……1分由图可知,函数图象过点(2,30)、(6,50),∴⎩⎨⎧=+=+506302b k b k 解得⎩⎨⎧==205b k ……………………………………………4分 ∴y =5x +20. ……………………………………………………………………5分(2)由图可知,甲队速度是:60÷6=10(米/时). ……………………………6分设甲队从开始到完工所铺设彩色道砖的长度为z 米,依题意,得6050.1012z z --= ……………………………………………………8分解得 z =110. ………………………………………………………9分答:甲队从开始到完工所铺设彩色道砖的长度为110米. …………10分26.(1)证明:连接AE ………………………………………………………1分∵AB 为⊙O 的直径,∴∠AEB =90°∴∠BAE +∠ABE =90° …………………2分∵AB =AC ,AE ⊥BC ∴AE 平分∠BAC ∴CBF BAC BAE ∠=∠=∠21 ………3分 ∴︒=∠+∠90ABE CBF ∴AB ⊥BF∴BF 为⊙O 的切线 ………………………………………………………5分(2)过点C 作CG ⊥BF , ………………………………………………………6分在Rt △ABF 中1022=+=BF AB AF∵AC =6 ∴CF =4 ………………7分∵CG ⊥BF ,AB ⊥BF ∴CG ∥AB∴△CFG ∽△AFB ………………8分 ∴ABCG BF GF AF CF == G∴512516==CG CF , ∴5245168=-=-=GF BF BG ………………………………9分 在Rt △BCG 中21tan ==∠BG CG CBF ………………………………………………10分27.(1)等腰三角形 …………………………………3分(2)因为抛物线y=-x2+bx (b >0)过原点,设抛物线顶点为B 点,抛物线与X 轴的另一交点为A 点,若“抛物线三角形”是等腰直角三角形,△OAB 中,∠OBA=90°,抛物线的对称轴是x=b/2,B 点坐标为(b/2,b/2)代入函数表达式,算出b=2 …………3分(3)存在,(略) …………4分(4)m=2 …………………………………2分28.解:(1)由题意可知 44m =,1m =.(1分)∴ 二次函数的解析式为24y x =-+.∴ 点A 的坐标为(- 2, 0). …………………………………3分(2)①∵ 点E (0,1),由题意可知, 241x -+=.解得 x = AA …………………………………5分②如图,连接EE ′.由题设知AA ′=n (0<n <2),则A ′O = 2 - n .在Rt △A ′BO 中,由A ′B 2 = A ′O 2 + BO 2,得A ′B 2 =(2–n )2 + 42 = n 2 - 4n + 20. …6分∵△A ′E ′O ′是△AEO 沿x 轴向右平移得到的,∴EE ′∥AA ′,且EE ′=AA ′.∴∠BEE ′=90°,EE ′=n .又BE =OB - OE =3.∴在Rt △BE ′E 中,BE ′2 = E ′E 2 + BE 2 = n 2 + 9, ……………………7分∴A ′B 2 + BE ′2 = 2n 2 - 4n + 29 = 2(n –1)2 + 27. ……………………8分当n = 1时,A ′B 2 + BE ′2可以取得最小值,此时点E ′的坐标是(1,1). ………9分③如图,过点A 作AB ′⊥x 轴,并使AB ′ = BE = 3.易证△AB ′A ′≌△EBE ′,∴B ′A ′ = BE ′,∴A ′B + BE ′ = A ′B + B ′A ′.………………10分当点B ,A ′,B ′在同一条直线上时,A ′B + B ′A ′最小,即此时A ′B +BE ′取得最小值.易证△AB ′A ′∽△OBA ′, ∴34AA AB A O OB ''==',∴AA ′=36277⨯=,∴EE ′=AA ′=67, …………………11分 ∴点E ′的坐标是(67,1). ……………………………………12分。
2014中考二模考试数学试题注意事项:1.本试题分第Ⅰ卷和第Ⅱ卷两部分.第Ⅰ卷为选择题,共24分;第Ⅱ卷为非选择题,96分;全卷共10页,满分120分,考试时间为120分钟.2.答第Ⅰ卷前,考生务必将自己的姓名、考号、考试科目涂写在答题卡上,考试结束,试题和答题卡一并收回.3.第Ⅰ卷每题选出答案后,必须用2B铅笔把答题卡上对应题目的答案标号【ABCD】涂黑.如需改动,先用橡皮擦干净,再改涂其它答案.第Ⅰ卷(选择题共24分)一、选择题:本大题共8小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分.1.无理数: ()15D. 52.下列各命题正确的是 : ()A.若两弧相等,则两弧所对圆周角相等B. 有一组对边平行的四边形是梯形.C.垂直于弦的直线必过圆心.D. 有一边上的中线等于这边一半的三角形是直角三角形.3.某鞋店试销一种新款女鞋,销售情况如下表所示:鞋店经理最关心的是哪种型号的鞋销量最大.对他来说,下列统计量中最重要的是() A.平均数 B.众数 C.中位数 D.方差4.已知反比例函数2kyx-=的图象如图所示,则一元二次方程22(21)10x k x k--+-=根的情况是()A.有两个不等实根 B.有两个相等实根C.没有实根 D.无法确定5.已知四边形ABCD是平行四边形,下列结论中不正确的有()①当AB=BC时,它是菱形②当AC⊥BD时,它是菱形③当∠ABC=90时,它是矩形④当AC=BDA.1个 B.2个 C.3个 D.4个6.二次函数cbxaxy++=2的图象如图所示,则一次函数abxy+=的图象不经过()A.第一象限 B.第二象限 C.第三象限 D.第四象限第7题图7.如图所示,在折纸活动中,小明制作了一张ABC ∆纸片,点D E 、 分别在边AB AC 、上,将ABC ∆沿着DE 折叠压平,A 与A '重合, 若70A ∠=︒,则1+2∠∠=( ) A .70︒ B .110︒ C . 130︒ D .140︒8. 在6张完全相同的卡片上分别画有线段、等边三角形、直角梯形、正方形、正五边形和圆各一个图形。
山东省2014年初三学业水平考试数学模拟试题2注意事项:1、本试题分第Ⅰ卷和第Ⅱ卷两部分。
第Ⅰ卷为选择题,36分;第Ⅱ卷为非选择题,84分;共120分,考试时间为120分钟。
2、答卷前务必将密封线内的项目填写清楚。
3、请将第Ⅰ卷每小题所选出答案的字母代号填写在后面答案栏相应的空格中。
第Ⅰ卷(选择题共36分)一、选择题(本题共12小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每小题选对得3分,多选、不选、错选均记零分)1.嫦娥一号是我国发射的首颗探月卫星,从2007年10月24日成功发射以来,经历调相轨道、地月转移轨道、月球捕获轨道三个阶段,总飞行距离约1800000公里,最终成功进入环月工作轨道。
则这个数用科学记数法表示为A. 7108.1⨯ B. 6108.1⨯ C. 51018⨯ D. 71018.0⨯2.1-3.把不等式组1010xx+>⎧⎨-⎩,≤的解集表示在数轴上,正确的是4.点P(a,b)是直线y=-x+5与双曲线y=6x的一个交点,则以a、b•两数为根的一元二次方程是A.x2-5x+6=0 B.x2+5x+6=0C .x 2-5x-6=0D .x 2+5x-6=0 5.若干名工人某天生产同一种零件,生产的零件数整理成条形图(如图所示).设他们生产零件的平均数为a ,中位数为b ,众数为c ,则有 A.b a c >> B.c a b >> C.a b c >> D.b c a >>6.如图,一根5m 长的绳子,一端拴在围墙墙角的柱子上,另一端拴着一只小羊A (羊只能在草地上活动),那么小羊A 在草地上的最大活动区域面积是A.1217πm 2 B.617πm 2C.425πm 2D.1277πm 2 7. 已知二次函数(如图)y=3(x-1)2+k 的图象上有三个点,y 1),B(2,y 23),则y 1、y 2、y 3的大小关系为A.y 1>y 2>y 3;B.y 2>y 3>y 1;C.y 3>y 1>y 2;D.y 3>y 2>y 1 8. 用M ,N ,P ,Q 各代表四种简单几何图形(线段、正三角形、正方形、圆)中的一种.图1—图4是由M ,N ,P ,Q 中的两种图形组合而成的(组合用“&”表示).那么,下列组合图形中,表示P&Q 的是x=1xyOM&PN&PN&QM&Q图-1图-2图-3图-4A .B .C .D .9. 如图,在Rt ABC △中,90BAC ∠=,3AB =,4AC =,将ABC △沿直线BC 向右平移2.5个单位得到DEF △,连结AD AE ,,则下列结论:①AD BE∥,②ABE DEF ∠=∠,③ED AC ⊥,④ADE △为等腰三角形,正确..的有 A .1个 B .2个 C .3个 D .4个10.如图,BD 、CE 是⊙O 的直径,AE ∥BD ,AD 交CE 于点F ,∠A =20°,则∠AFC 的度数为A.20°B.40°C.60°D.70°11.甲、乙两个工程队完成某项工程,首先是甲单独做了10天,然后乙队加入合做,完成剩下的全部工程(工程进度满足如图所示的函数关系).•如果整项工程由甲、乙合做完成,共需要A.24天B.40天C.60天D.18天12. 已知二次函数y=x 2-bx+1(-1≤b ≤1),当b 从-1逐渐变化到1的过程中,它所对应的抛物线位置也随之变动。
23.已知:如图,在□ABCD 中,AE 是BC 边上的高,将△ABE 沿BC 方向平移,使点E 与点C 重合,得△GFC .(1)求证:BE=DG ;(2)若∠BCD =120°,当AB 与BC 满足什么数量关系时,四边形ABFG 是菱形?证明你的结论.24.已知:如图,在平面直角坐标系xOy 中,直线243y mx m =-与x 轴、y 轴分别交于点A 、B ,点C 在线段AB 上,且2AOB AOC S S = .(1)求点C 的坐标(用含有m 的代数式表示);(2)将△AOC 沿x 轴翻折,当点C 的对应点C ′恰好落在抛物线223y x mx m =++上时,求该抛物线的表达式;(3)设点M 为(2)中所求抛物线上一点,当以A 、O 、C 、M 为顶点的四边形为平行四边形时,请直接写出所有满足条件的点M 的坐标.A DG B FE 第23题图25.如图,扇形OAB 的半径为4,圆心角∠AOB =90°,点C 是AB 上异于点A 、B 的一动点,过点C 作CD ⊥OB 于点D ,作CE ⊥OA 于点E ,联结DE ,过O 点作OF ⊥DE 于点F ,点M 为线段OD 上一动点,联结MF ,过点F 作NF ⊥MF ,交OA 于点N .(1)当tan 13MOF ∠=时,求OMNE的值;(2)设OM=x ,ON=y ,当12OM OD =时,求y 关于x 的函数解析式,并写出它的定义域;(3)在(2)的条件下,联结CF ,当△ECF 与△OFN 相似时,求OD 的长.FED C B A 23.如图8,Rt △ABC 中,∠ACB=90°,D 是边BC 上一点,点E 、F 分别是线段AB 、AD 中点,联结CE 、CF 、EF .(1)求证:△CEF ≌△AEF ;(2)联结DE ,当BD=2CD 时,求证:DE=AF .24. 在平面直角坐标系xOy 中,已知顶点为P (0, 2)的二次函数图像与x 轴交于A 、B 两点, A 点坐标为(2, 0).(1)求该二次函数的解析式,并写出点B 坐标;(2)点C 在该二次函数的图像上,且在第四象限,当△ABC 的面积为12时,求点C 坐标; (3)在(2)的条件下,点D 在y 轴上,且△APD 与△ABC 相似,求点D 坐标.图825. 如图9,在平行四边形ABCD中,AB=4,BC=2,∠A=60°.(1)求证:BD⊥BC;(2)延长CB至G,使BG=BC,E是边AB上一点,F是线段CG上一点,且∠EDF=60°,设AE=x,CF=y.①当点F在线段BC上时(点F不与点B、C重合),求y关于x的函数解析式,并写出定义域;②当以AE为半径的⊙E与以CF为半径的⊙F相切时,求x的值.图9 BDC A23.如图9,在直角梯形ABCD 中,AD ∥BC ,︒=∠=∠90ABC DAB ,E 为CD 的中点,联结AE 并延长交BC 的延长线于F ; (1)联结BE ,求证EF BE =.(2)联结BD 交AE 于M ,当1=AD ,2=AB , EM AM =时,求CD 的长.24,0(A y =(1(2 (3A B CD F EM图925.在△ABC 中,AB =AC =10,cos B =(如图11),D 、E 为线段BC 上的两个动点,且DE =3(E在D 右边),运动初始时D 和B 重合,运动至E 和C 重合时运动终止.过E 作EF ∥AC 交AB 于F ,联结DF .(1)若设BD =x ,EF =y ,求y 关于x 的函数,并求其定义域; (2)如果△BDF 为直角三角形,求△BDF 的面积;(3)如果MN 过△DEF 的重心,且MN ∥BC 分别交FD 、FE 于M 、N (如图12). 求整个运动过程中线段MN 扫过的区域的形状和面积(直接写出答案).ABDEFMN 图12AB DE F图11AB 备用图5423.已知:如图,在△ABC 中,AB =AC ,点D 、E 分别是边AC 、AB 的中点,DF ⊥AC ,DF 与CE 相交于点F ,AF 的延长线与BD 相交于点G .(1)求证:BD DG AD ⋅=2;(2)联结CG ,求证:∠ECB =∠DCG .24.已知⊙O 的半径为3,⊙P 与⊙O 相切于点A ,经过点A 的直线与⊙O 、⊙P 分别交于点B 、C ,31cos =∠BAO ,设⊙P 的半径为x ,线段OC 的长为y .(1)求AB 的长;(2)如图,当⊙P 与⊙O 外切时,求y 与x 之间的函数解析式,并写出函数的定义域; (3)当∠OCA =∠OPC 时,求⊙P(第24题图)(第23题图)ABC DE GF25.如图,反比例函数的图像经过点A(–2,5)和点B(–5,p),□ABCD的顶点C、D分别在y 轴的负半轴、x轴的正半轴上,二次函数的图像经过点A、C、D.(1)求直线AB的表达式;(3)如果点E且∠DCE=∠BDO,求点E的坐标.(第25题图)23.已知:如图,四边形ABCD 是平行四边形,分别以AB 、AD 为腰作等腰三角形△ABF 和等腰三角形△ADE ,且顶角∠BAF =∠DAE ,联结BD 、EF 相交于点G ,BD 与AF 相交于点H . (1)求证:BD =EF ;(2)当线段FG 、GH 和GB 满足怎样的数量关系时,四边形ABCD 是菱形,并加以证明.24.已知:如图,把两个全等的Rt △AOB 和Rt △COD 分别置于平面直角坐标系中,使直角边OB 、OD 在x 轴上.已知点A (1,2),过A 、C 两点的直线分别交x 轴、y 轴于点E 、F .抛物线2y ax bx c =++经过O 、A 、C 三点.(1)求该抛物线的表达式,并写出该抛物线的对称轴和顶点坐标;(2)点P 为线段OC 上一个动点,过点P 作y 轴的平行线交抛物线于点M ,交x 轴于点N ,问是否存在这样的点P ,使得四边形ABPM 为等腰梯形?若存在,求出此时点P 的坐标;若不存在,请说明理由.(第24题图)ABDEF(第23题图)GH25.已知:如图①,△ABC 中,AI 、BI 分别平分∠BAC 、∠ABC .CE 是△ABC 的外角∠ACD 的平分线,交BI 延长线于E ,联结CI .(1)设∠BAC =2α.如果用α表示∠BIC 和∠E ,那么∠BIC =,∠E =;(2)如果AB =1,且△ABC 与△ICE 相似时,求线段AC 的长;(3)如图②,延长AI 交EC 延长线于F ,如果∠α=30°,sin ∠F=35,设BC =m ,试用m 的代数式表示BE .(第25题图②)FABCDEI(第25题图①)ABCDEI23.已知:如图,在正方形ABCD 中,点E 是边AD 的中点,联结BE ,过点A 作BE AF ⊥,分别交BE 、CD 于点H 、F ,联结BF .(1)求证:BE =BF ;(2)联结BD ,交AF 于点O ,联结OE .求证:AEB DEO ∠=∠.24.如图,已知在平面直角坐标系xOy 中,抛物线c bx x y ++=241与x 轴交于点A 、B (点A 在点B 右侧),与y 轴交于点C (0,-3),且OA =2OC . (1)求这条抛物线的表达式及顶点M 的坐标; (2)求M AC ∠tan 的值;(3)如果点D 在这条抛物线的对称轴上,且∠CAD =45º,求点D 的坐标.(第24题图)(第23题图)25.如图,已知在△ABC 中,AB =AC ,BC 比AB 大3,54sinB ,点G 是△ABC 的重心,AG 的延长线交边BC 于点D .过点G 的直线分别交边AB 于点P 、交射线AC 于点Q . (1)求AG 的长;(2)当∠APQ=90º时,直线PG 与边BC 相交于点M .求MQAQ的值; (3)当点Q 在边AC 上时,设BP =x ,AQ =y ,求y 关于x 的函数解析式,并写出它的定义域.(第25题图)23. 抛物线2y ax bx =+经过点A (4,0)、B (2,2),联结OB 、AB . (1) 求此抛物线的解析式;(5分) (2) 求证:△ABO 是等腰直角三角形;(4分)(3) 将△ABO 绕点O 按顺时针方向旋转135°得到△O 11A B ,写出边11A B 中点P 的坐标,并判断点P 是否在此抛物线上,说明理由. (3分)24.如图,港口B 位于港口D 正西方向120海里处,小岛C 位于港口D 北偏西60°的方向上,一艘科学考察船从港口D 出发,沿北偏西30°的DA 方向以每小时20海里的速度驶离港口D ,同时一艘快艇从港口B 出发沿北偏东30°的方向以每小时60海里的速度驶向小岛C .在小岛C 处用 1小时装补给物资后,立即选择航向按原来的速度给考察船送去. (1) 快艇从港口B 到小岛C 需要多少时间?(3分)(2) 快艇从小岛C 出发后最少需要多少时间才能和考察船相遇?(9分)25.如图,已知在等腰△ABC 中,AB=AC=5,BC=6,点D 为BC 边上一动点(不与点B 重合),过点D 作射线DE 交AB 于点E ,∠BDE=∠A ,以点D 为圆心,DC 的长为半径作⊙D . (1) 设BD=x ,AE=y ,求y 关于x 的函数关系式,并写出定义域;(3分) (2) 当⊙D 与边AB 相切时,求BD 的长;(2分)(3) 如果⊙E 是以E 为圆心,AE 的长为半径的圆,那么当BD 为多少长时,⊙D 与⊙E 相切?(9分)B 第25题E A CD(第24题图)23. 如图,在正方形ABCD 中,E 是边CD 上一点,AF AE ⊥交CB 的延长线于点F ,联结DF ,分别交AE 、AB 于点G 、P . (1)求证:AE=AF ;(2)若∠BAF =∠BFD ,求证:四边形APED 是矩形.24.如图,在直角坐标平面内,直线5+-=x y 与x 轴和y 轴分别交于A 、B 两点,二次函数c bx x y ++=2的图象经过点A 、B ,且顶点为C .(1)求这个二次函数的解析式; (2)求OCA ∠sin 的值;(3)若P 是这个二次函数图象上位于x 轴下方的一点,且∆ABP 的面积为10,求点P 的坐标.(第23题图)(第25题图1)D ABFCEAB(第25题备用图)25.在ABC ∆中,AC =25,35AB =,4tan 3A =,点D 为边AC 上一点,且AD =5,点E 、F 分别为边AB 上的动点(点F 在点E 的左边),且EDF A ∠=∠.设y AF x AE ==,.(1)如图1,当DF AB ⊥时,求AE 的长;(2)如图2,当点E 、F 在边AB 上时,求函数的定义域;的函数关系式,并写出关于x y (3)联结CE ,当相似时,和ADF DEC ∆∆求x 的值.23.已知:如图,在梯形ABCD 中,AD ∥BC ,∠ABC =90°,BC=2AD ,点 E 是BC 的中点、F 是CD 上的点,联结AE 、EF 、AC .(1) 求证:AO OF OC OE ⋅=⋅;(2) 若点F 是DC 的中点,联结BD 交AE 于点G , 求证:四边形EFDG 是菱形.24. 如图,直线44y x =+与x 轴、y 轴相交于B 、C 两点,抛物线22(0)y ax ax c a =-+≠过点B 、C ,且与x 轴另一个交点为A ,以OC 、OA 为边作矩形OADC ,CD 交抛物线于点G .(1)求抛物线的解析式以及点A 的坐标;(2)已知直线x m =交OA 于点E ,交CD 于点F ,交AC 于点M ,交抛物线(CD 上方部分)于点P ,请用含m 的代数式表示PM 的长;(3)在(2)的条件下,联结PC ,若△PCF 和△AEM 相似,求m 的值.25.如图,已知∠MON两边分别为OM、ON,sin∠O=35且OA=5,点D为线段OA上的动点(不与O重合),以A为圆心、AD为半径作⊙A,设OD=x.(1)若⊙A交∠O 的边OM于B、C两点,BC y,求y关于x的函数解析式,并写出函数的定义域;(2)将⊙A沿直线OM翻折后得到⊙A′.①若⊙A′与直线OA相切,求x的值;②若⊙A′与以D为圆心、DO为半径的⊙D相切,求x的值.23.梯形ABCD 中,AD //BC ,DC ⊥BC ,CE ⊥AB 于点E ,点F 在边CD 上,且BE CE BC CF ⋅=⋅。