八年级数学上册5.1认识二元一次方程组教学案(新版)北师大版
- 格式:doc
- 大小:96.50 KB
- 文档页数:3
5.1 认识二元一次方程组(教案)教学目标:知识与技能:知道二元一次方程、二元一次方程组及其解的含义。
过程与方法:用检验的方法,判断某一组数是不是某个二元一次方程组的解。
情感态度与价值观体会方程是刻画现实世界的有效的数学模型,掌握用方程解决实际问题的方法,树立学以致用的意识。
教学重点理解方程组解的含义,并会判断二元一次方程和二元一次方程的解。
教学难点判断一组数是不是二元一次方程组的解。
一、导入1、阅读教材P103—P105,试解决下列问题:(1)老牛与小马:分析: 设老牛驮了x 个包裹,小马驮了y 个包裹。
相等关系: 老牛-小马=2 老牛+1=2(小马-1) 你能列出方程吗?(2)近年来,未成年人犯罪成为社会关注的热点。
据调查,他们之中大部分都是从迷恋网络游戏开始,一步步走向犯罪的深渊,且多数是男孩子。
某少管所2016上半年共收容50名违法的未成年人,其中男生人数比女生人数多10人。
问:这50名未成年人中男女生各有多少人? a.这些方程与之前我们学过的一元一次方程有什么相同之处和不同之处?(强调“元”、“次”) b.这些方程各含有几个未知数?含未知数的项的次数是多少?(3)得出二元一次方程的定义二、探索新知识探究一: 二元一次方程的有关概念及判断1.判断下列方程是不是二元一次方程讨论:上面的两个问题中,我们分别得到了4个方程:①x-y=2 ②x+1=2(y-1) ③x+y=50 ④x-y=1052=+y x ①032=-+z y x ②342=-xy ③643=-x y ④10065432=--++n m z y x ⑥132=-y x ⑤探究二:二元一次方程组的慨念及判断1.在上面关于青少年违法犯罪的问题中,我们得到了两个二元一次方程,其中x 所代表 _________,y 代表 ________。
因此,x ,y 同时满足方程x+y=50和x-y=10 把它们联立起来,得到:像这样,共含有两个未知数的两个一次方程所组成的一组方程,叫做二元一次方程组。
第五章二元一次方程组
5.1 二元一次方程组
一、教学目标
1.了解二元一次方程,二元一次方程组解等概念,并会判断一组数是不是某个二元一次方程(组)的解.
2.通过对实际问题的分析,进一步体会方程是刻画现实世界数量关系的有效数学模型.
3.通过大量的情境问题,对二元一次方程(组)加深理解,增强学生的数学应用意识.
4.实际生活与数学息息相关,存在紧密的联系,增强学生学习数学的兴趣.
二、教学重难点
重点:理解二元一次方程(组)及其解的有关概念.
难点:判断一组数是不是某个二元一次方程组的解,培养学生良好的数学应用意识.三、教学用具
多媒体课件
四、教学过程设计
【创设情境】
教师活动:通过情景设置,让学生对学习
内容更加感兴趣
情境一:出示情境图:
思考:
提出问题:它们各自驮了多少个?
情境二:出示情境图:
思考:
提出问题:他们到底去了几个成人,几个儿童呢?
【合作探究】
思维导图的形式呈现本节课的主要内容:教科书第106 页练习5.1 第1~4题.。
5.1 认识二元一次方程组●教学目标(一)教学知识点1.体会方程是刻画现实世界的有效数学模型.2.二元一次方程、二元一次方程组及其解的概念.(二)能力训练要求1.通过分析实际问题,使学生进一步体会方程是刻画现实世界的数学模型.2.了解二元一次方程、二元一次方程组及其解的概念,并会判断一组数是不是某个二元一次方程组的解.(三)情感与价值观要求1.体会方程的模型思想,培养学生良好的数学应用意识.2.通过对学生熟悉的传统内容(如鸡兔同笼)的讨论,激发学生学习数学的兴趣.●教学重点1.通过对实际问题的分析,使学生进一步体会方程是刻画现实世界的有效模型.2.了解二元一次方程、二元一次方程组及其解等概念,并会判断一组数是不是某个二元一次方程组的解.●教学难点1.探索实际问题中的等量关系,列出二元一次方程组.2.判断一组数是不是二元一次方程组的解.●教学方法学生自主探索——教师引导的方法.学生已具备了列一元二次方程解决实际问题的经验基础.在教学中,教师可引导学生思考列二元一次方程时,如何寻求等量关系,放手让学生经过自主探索列出二元一次方程组.●教具准备投影片三张:第一张:老牛和小马的对话(记作§5.1 A);第二张:“希望工程”义演(记作§5.1 B);第三张:做一做(记作§5.1 C).●教学过程Ⅰ.创设情境,引入新课[师]小学时,我们就解答过著名的“鸡兔同笼”的问题,如“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?”谁能用我们学过的知识来解答一下呢?[生]解:设鸡有x只,则兔有(35-x)只,根据题意,可得:2x+4(35-x)=94解得x=23∵35-x=35-23=12答:鸡有23只,兔有12只.[生]不用方程也可以解答:如果让每只鸡都抬起一条腿,让每只兔子都抬起两条腿,即让它们表演“优美动人”的“金鸡独立”和“玉兔拜月”,这样它们一共抬起了94÷2=47条腿,并且只有47条腿着地了.接着让鸡飞上蓝天,让兔练习“金鸡独立”,也就是每只兔子只有一只腿着地,这样着地的腿数又减少了35条,而只有47-35=12条腿着地了,并且有一条腿着地,就有一只兔子,所以应该有12只兔子,35-12=23只鸡.[师]这两位同学解答“鸡兔同笼”的问题都非常精彩,特别是第二位同学.我们用掌声鼓励他们.接下来,老师说一种新的思路.在上面“鸡兔同笼”的问题中,我们会发现它有两个等量关系:鸡的只数+兔子的只数=35;鸡的腿数+兔子的腿数=94.如果我设鸡有x只,兔子有y只,这时我们就得到了方程x+y=35和2x+4y=94.这节课我们就来学习这样的方程及由它们组成的方程组.Ⅱ.讲授新课出示投影片(§5.1 A),并讨论回答下列问题.[师生共析]设老牛驮了x个包裹,小马驮了y个包裹.从老牛和小马的对话中,我们可以探索到其中的等量关系:①老牛驮的包裹-小马驮的包裹数=2,②老牛驮的包裹数+1=(小马驮的包裹数-1)×2.由此我们就可得到方程x-y=2和x+1=2(y-1).出示投影片(§5.1 B)[生]在上述问题中,我们可以找到的等量关系为:成人人数+儿童人数=8,成人票款+儿童票款=34.由此我们可得方程x+y=8和5x+3y=34.[师]在上面的两个问题中,我们得到了四个方程:x-y=2和x+1=2(y-1),x+y=8和5x+3y=34.在这四个方程中,它们有何共同的特点.下面请同学们分组讨论.(此时,老师可参与到学生的讨论中,引导学生和以前学过的一元一次方程相联系,观察方程中有几个未知数,未知数的次数是几次?含有未知数的项的次数是几次?)[生]上面我们所列的四个方程都含有两个未知数,未知数的次数和含有未知数的项的次数都是一次.老师,我们能不能把它们叫二元一次方程.因为我国古代就把未知数叫做元,并且它们的未知数的次数是一次.[师]很好.它们的确都是二元一次方程.但我有一个问题和大家共讨论.我这儿有一个方程6xy-3=2.它也含有两个未知数,且未知数的次数x,y都是一次,它和上面的四个方程一样吗?[生]不一样.它虽然含有两个未知数,未知数x ,y 也都是一次的,但6xy 这一项即含未知数的项却是二次的.[师]你真棒.正象这位同学说的,6xy -3=2不是二元一次方程.x -y=2和x+1=2(y -1),x+y=8和5x+3y=34它们才是二元一次方程.能用自己的语言归纳什么叫二元一次方程吗?[生]含有两个未知数,并且含有两个未知数的项的次数都是1的方程叫做二元一次方程.[师]接下来,我们讨论下面的问题:在上面的方程x -y=2和x+1=2(y -1)中,x ,y 的含义相同吗?[生]应该相同.在两个二元一次方程中,x 都表示老牛驮的包裹数,y 都表示小马驮的包裹数,因此x ,y 的含义是相同的.[师]也就是说,x 、y 既满足第一个方程x -y=2,又满足第二个方程x+1=2(y -1).于是我们把它们联立起来,得x-y=2x+1=2y-1⎧⎨⎩()像这样的含有两个未知数的两个一次方程所组成的一组方程,叫做二元一次方程组.如、x-y=2x+1=2y-1⎧⎨⎩()和x+2y=73y+1=2⎧⎨⎩都是二元一次方程组.注意在一个方程组中x 、y 应代表同一个量.出示投影片(§5.1 C)(请同学们分组讨论完成,教师深入学生当中,随时发现同学们讨论问题时的闪光点)[师生共析](1)把x=6,y=2代入方程x+y=8的左边得x+y=6+2=8,左边=右边,所以x=6,y=2是适合方程x+y=8.我们把适合二元一次方程的一组未知数的值,叫做这个二元一次方程的解.因此x=6,y=2即为x+y=8的一组解.我们会发现x=5,y=3也适合方程x+y=8,因此x=5,y=3也是方程x+y=8的一组解.还有没有其他的x ,y 的值适合方程x+y=8呢?[生]有.如x=1,y=7;x=4,y=4;x=8,y =0;……[生]我发现,只要给出x 的一个值,代入x+y=8中,便可得到y 的一个值.例如我们设x=-1,则代入x+y=8中,得-1+y=8,解得y=9.所以x=-1,y=9适合方程,是方程的一个解.也因此而得到x+y=8的解有无数多个.[师生共析](2)把x=5,y=3代入方程5x+3y=34的左边=5x+3y=5×5+3×3=34.所以x=5、y=3是方程5x+3y=34的一个解.同样x=2,y=8也是方程5x+3y=34的一个解.我们把x=2,y=8是方程5x+3y=34的一个解记作28x y =⎧⎨=⎩同样53x y =⎧⎨=⎩也是方程5x+3y=34的一个解. (3)由(1)、(2)我们可以发现53x y =⎧⎨=⎩既是方程x+y=8的一个解,也是5x+3y=34的一个解.我们把这两个二元一次方程的公共解,叫做由这两个二元一次方程组成的方程组的解.例如53x y =⎧⎨=⎩就是二元一次方程组85334x y x y +=⎧⎨+=⎩的解.Ⅲ.例题精析[例1](1)已知方程2x m+2+3y 1-2n =17是一个二元一次方程,则m=________,n=________.(2)方程①y=3x 2+x;②3x+y=1;③2x+4z=5z;④xy=2;⑤3y x ++y=0;⑥x+y+z=1; ⑦y 1+x=4中,是二元一次方程的有_________. 解:(1)由二元一次方程的定义,得m+2=1,1-2n=1∴m=-1,n=0(2)根据二元一次方程的定义.可知②③⑤是二元一次方程.评注:二元一次方程必须要同时符合下列条件的整式方程:①方程中含有两个未知数;②方程中含有未知数的项的次数都是1.[例2]写出一个以⎩⎨⎧-==11y x 为解的二元一次方程组. 解:答案不惟一.只要写出的二元一次方程组的解是⎩⎨⎧-==11y x 即可.例如⎩⎨⎧=-=+.212y x y x 评注:二元一次方程组的解必须同时适合方程组中的每个方程.Ⅳ.随堂练习课本练习的答案1.解:设小明买了面值50分的邮票x 枚和面值80分的邮票y 枚,则可列出方程组.⎩⎨⎧=+=+93.68.05.0y x y x 2.解:分别将四组数值代入方程2x+y=10的左边,可知:(1)⎩⎨⎧=-=62y x 代入左边=2x+y=2×(-2)+6=2≠10,即左边≠右边,所以⎩⎨⎧=-=62y x 不是方程2x+y=10的解.(2) ⎩⎨⎧==43y x 代入左边=2x+y=2×3+4=10即左边=右边,所以⎩⎨⎧==43y x 是方程2x+y=10的解.(3) ⎩⎨⎧==34y x 代入左边=2x+y=2×4+3=11即左边≠右边,所以⎩⎨⎧==34y x 不是方程2x+y=10的解.(4) ⎩⎨⎧-==26y x 代入左边=2x+y=2×6+(-2)=10即左边=右边,所以⎩⎨⎧-==26y x 是方程2x+y=10的解.3.解:根据二元一次方程组的解的定义,将四个解分别代入方程组的每一个方程,可得⎩⎨⎧==42y x 是方程组⎩⎨⎧==+x y y x 2102的解. Ⅴ.课时小结这节课通过对实际问题的分析,使学生进一步体会到了方程是刻画现实世界的有效模型.在此基础上,我们了解了二元一次方程.二元一次方程组及其解等概念,并学会了判断一组数是不是某个二元一次方程组的解.Ⅵ.课后作业(一)习题5.1(二)预习课本,体会二元一次方程组是如何转化为一元一次方程问题的. Ⅶ.活动与探究求二元一次方程2x+y=7的正整数解.过程:我们知道求二元一次方程2x+y=7的正整数解,就是求适合2x+y=7的一组未知数的正整数的值.2x+y=7的解有无数多个,而正整数解只有九个.由等式的性质可由方程2x+y=7得到y=7-2x ,由于x ,y 只能取正整数,所以x=1,2或3.当x=1时,y=7-2×1=5;当x=2时,y=7-2×2=3;当x=3时,y=7-2×3=1.结果:二元一次方程2x+y=7的正整数解为⎩⎨⎧==⎩⎨⎧==⎩⎨⎧==.1,3;3,2;5,1y x y x y x ●板书设计●备课资料一、参考例题[例1]已知方程8x=31y+4.(1)用x 的代数式表示y .(2)求当x 为何值时,y=12?分析:第(1)小题中,关键是把x 看作是已知数,把y 看作是未知数,然后按解一元一次方程的解法解;第(2)小题中把y=12代入方程8x=31y+4实际就是含未知数x 的一元一次方程.解:(1)去分母,得24x=y+12移项,得y=24x -12(2)若y=12,即24x -12=12∴24x=24,x=1评注:将二元一次方程中的一个未知数用另一未知数的代数式表示出来,这个过程实质是方程的一个变形,这种变形的方法是,把二元一次方程看做一元一次方程,其中把要表示的未知数仍看作是未知数,把另一个未知数看作已知数,然后解一元一次方程即可.[例2]已知⎩⎨⎧==12y x 是方程组⎩⎨⎧=+=-+12)1(2y nx y m x 的解,求m+n 的值. 分析:因为⎩⎨⎧==12y x 是方程组⎩⎨⎧=+=-+12)1(2y nx y m x 的解,所以⎩⎨⎧==12y x 同时满足方程①和方程②,将⎩⎨⎧==12y x 分别代入方程①和方程②,可得⎩⎨⎧=+=-+112214n m 则③和④可求出m 、n 的值.解:∵⎩⎨⎧==12y x 是方程组的解,所以将其代入原方程组中两个等式仍成立,即⎩⎨⎧=+=⨯-+⨯11221)1(22n m 解得⎩⎨⎧=-=01n m ,∴m+n=-1+0=-1 评注:仔细体会“已知方程组的解”这类已知条件的用法,并加深理解方程组的解的意义.二、参考练习1.填空题(1)已知方程2x 2n -1-3y 3m -n +1=0是二元一次方程,则m=_________,n=_________.(2)方程①2x+5y=0;②2x -y 1=8;③5x+2y=7;④4x -xy=3;⑤514y x =+;⑥x -2y 2=6;⑦4y x -+y=5中,二元一次方程有_________.(填序号) (3)若x -3y=2,则7-2x+6y=_________.(4)若x=1,y=-1适合方程3x -4my=1,则m=_________.(5)在x -5y=7中,用x 表示y=_________;若用y 表示x ,则_________.答案:(1)21 21 (2)①③⑤⑦ (3)7-2x+6y=7-2(x -3y)=7-2×2=3 (4)-21 (5)57-x 7+5y 2.选择题(1)下列方程组中,是二元一次方程组的是( )A .⎪⎩⎪⎨⎧=-=+7353z x y x B .⎩⎨⎧=-=--25412y x xy y x ① ②③ ④C .⎪⎪⎩⎪⎪⎨⎧=+=413272y x xD .⎪⎪⎩⎪⎪⎨⎧-=-=+3132y xy x(2)下列各对数中,是方程组⎪⎩⎪⎨⎧-=+=-12472y x y x 的解是( ) A .⎩⎨⎧-==20y x B . ⎝⎛-==32y x C .⎩⎨⎧-=-=51y x D .均不对 (3)已知⎩⎨⎧==12y x 是方程组⎩⎨⎧=+=-51by ax by ax 的解,则a 等于( ) A .23B .2C .1D .-2(4)若⎩⎨⎧==b y a x 是方程3x+y=0的一个解(a ≠0).则有( ) A .a 、b 异号 B .a 、b 同号C .a 、b 同号也可能异号D .以上均不对 答案:(1)C (2)B (3)A (4)A3.已知方程y x 311)1(21=+-,求当x=-3时,y 的值. 答案:-3。
§5.1认识二元一次方程组》导学案【学习目标】1、了解二元一次方程、二元一次方程组及其解等有关概念,并会判断一组数是不是某个二元一次方程组的解。
2、会根据实际问题列简单的二元一次方程或二元一次方程组。
3、通过加深对概念的理解,提高对“元”和“次”的认识,能够逐步培养类比分析和归纳概括的能力。
【重点】二元一次方程组的含义【难点】判断一组数是不是某个二元一次方程组的解,培养学生良好的数学应用意识。
【预习作业】1、老牛和小马一起驮运包裹,老牛比小马多驮了2个,如果将小马背上挪1个到老牛背上,老牛驮的包裹数是小马的2倍,那么老牛和小马各驮了多少包裹?正确率72.1%设老牛驮了x个包裹,小马驮了y个包裹,列方程:2、国庆假期,小花和家人一起去公园玩,8个人买门票花了34元,已知每张成人票5元,每张儿童票3元,那么这次出游去了几个成人几个儿童?正确率90.7%设他们中有x个成人,y个儿童,列方程:3、前两题列出的方程有什么相同之处,列举出来:4、预习课本,回答什么是二元一次方程?什么是二元一次方程组?举例:5、预习课本,回答什么是二元一次方程的解?二元一次方程有多少个解?6、预习课本,回答什么是二元一次方程组的解?二元一次方程组有多少个解?7、预习中有什么疑惑?【教学过程】一、解答疑惑老牛和小马一起驮运包裹,老牛比小马多驮了2个,如果将小马背上挪1个到老牛背上,老牛驮的包裹数是小马的2倍,那么老牛和小马各驮了多少包裹?方法一:解:设小马驮了x个包裹,方法二:解:设老牛驮了x个包裹,则老牛驮了(x+2)个包裹小马驮了y个包裹x)1=y+(21-x+y=+xx2+)121()2-=(⨯※议一议:1)方法一列的是什么方程?还记得其概念吗?2)方法二列的是什么方程?你能归纳出它的概念吗?3)列方程关键找什么?请找出这道题的等量关系。
4)方法二中两个方程中的x,y所表示的意思相同吗?分别表示什么量?5)将方法一中的方程解出来。
北师大版数学八年级上册5.1 认识二元一次方程组教学设计一、教学目标1.理解二元一次方程组的概念,以及方程组的解的意义;2.掌握解二元一次方程组的方法,包括图解法和代入法;3.能够应用解二元一次方程组的方法解决实际问题。
二、教学重点和难点1.教学重点:二元一次方程组的解的概念和求解方法;2.教学难点:运用二元一次方程组的解的概念和求解方法解决实际问题。
三、教学准备1.教材:北师大版数学八年级上册;2.教具:黑板、彩色粉笔、教学PPT、课件。
四、教学过程步骤一:导入新知识1.教师出示一个简单的实际问题,如小明买了苹果和橙子两种水果,总共花了10元,苹果每个0.5元,橙子每个1.5元,问小明分别买了多少个苹果和橙子?2.学生思考并讨论,试图用一个方程解决这个问题。
步骤二:引入二元一次方程组的概念1.引导学生讲解他们是如何利用方程解决上述实际问题的。
2.教师引入二元一次方程组的概念,解释二元一次方程组是由两个未知数的一次方程构成的方程组。
3.教师出示一个二元一次方程组的例子,并帮助学生解释每一个部分的含义。
步骤三:认识方程组的解的意义1.教师引导学生思考方程组的解的意义,即方程组的解是使得方程组中的所有方程都成立的数值。
2.教师出示几个简单的例子,并与学生一起求解方程组的解,帮助学生理解解的概念。
步骤四:图解法求解二元一次方程组1.教师讲解图解法的基本思路:将二元一次方程组转换为一个图形,通过观察图形的交点得到方程组的解。
2.教师出示一个图解法求解二元一次方程组的例子,并与学生一起解答。
步骤五:代入法求解二元一次方程组1.教师讲解代入法的基本思路:将一个方程的解代入到另一个方程中,通过求解得到另一个未知数的值,进而得到方程组的解。
2.教师出示一个代入法求解二元一次方程组的例子,并与学生一起解答。
步骤六:应用解二元一次方程组解决实际问题1.教师提供几个实际问题,让学生运用所学的知识解决问题。
2.学生独立或小组合作完成问题的解答,并与教师和其他同学分享。
北师大版数学八年级上册1《认识二元一次方程组》教学设计1一. 教材分析《认识二元一次方程组》是北师大版数学八年级上册的教学内容。
本节课的主要内容是让学生了解二元一次方程组的概念,学会用图像的方法解决二元一次方程组问题,以及理解二元一次方程组在实际生活中的应用。
教材通过丰富的例子和实际问题,引导学生逐步理解和掌握二元一次方程组的知识。
二. 学情分析学生在学习本节课之前,已经掌握了初一、初二的相关数学知识,包括一元一次方程、不等式等。
但是,对于二元一次方程组这个概念,学生可能比较陌生,需要通过具体的例子和实际问题来理解和掌握。
此外,学生对于方程组的解法可能存在疑惑,需要通过实际操作和讲解来解决。
三. 教学目标1.了解二元一次方程组的概念,理解二元一次方程组的图像解法。
2.学会用图像的方法解决二元一次方程组问题,提高解决问题的能力。
3.理解二元一次方程组在实际生活中的应用,培养学生的应用意识。
四. 教学重难点1.重点:二元一次方程组的概念,二元一次方程组的图像解法。
2.难点:二元一次方程组的解法,二元一次方程组在实际生活中的应用。
五. 教学方法1.采用问题驱动的教学方法,通过实际问题引导学生理解和掌握二元一次方程组的知识。
2.使用多媒体教学,通过动画和图像的方式,帮助学生形象地理解二元一次方程组的解法。
3.采用小组合作学习的方式,让学生在讨论和交流中提高解决问题的能力。
六. 教学准备1.多媒体教学设备。
2.教学课件和教学素材。
3.练习题和测试题。
七. 教学过程1. 导入(5分钟)通过一个实际问题引入二元一次方程组的概念,例如:某商店同时进行两个优惠活动,第一个优惠活动是满100元减30元,第二个优惠活动是满200元减60元。
如果小明想买一个价值150元的商品和一个价值250元的商品,他应该如何选择优惠活动才能使得花费最少?2. 呈现(10分钟)通过多媒体展示二元一次方程组的图像解法,让学生直观地理解二元一次方程组的解法。