高考数学复习解析几何习题
- 格式:doc
- 大小:1.32 MB
- 文档页数:13
高考数学《解析几何》专项训练一、单选题1.已知直线l 过点A (a ,0)且斜率为1,若圆224x y +=上恰有3个点到l 的距离为1,则a 的值为( )A .B .±C .2±D .2.已知双曲线2222:1x y C a b-=(0,0)a b >>,过右焦点F 的直线与两条渐近线分别交于A ,B ,且AB BF =uu u r uu u r,则直线AB 的斜率为( ) A .13-或13B .16-或16C .2D .163.已知点P 是圆()()22:3cos sin 1C x y θθ--+-=上任意一点,则点P 到直线1x y +=距离的最大值为( )AB .C 1D 2+4.若过点(4,0)A 的直线l 与曲线22(2)1x y -+=有公共点,则直线l 的斜率的取值范围为( )A .⎡⎣B .(C .33⎡-⎢⎣⎦D .33⎛⎫- ⎪ ⎪⎝⎭5.已知抛物线C :22x py =的焦点为F ,定点()M ,若直线FM 与抛物线C 相交于A ,B 两点(点B 在F ,M 中间),且与抛物线C 的准线交于点N ,若7BN BF =,则AF 的长为( )A .78B .1C .76D6.已知双曲线2222:1x y C a b-=(0,0)a b >>的两个焦点分别为1F ,2F ,以12F F 为直径的圆交双曲线C 于P ,Q ,M ,N 四点,且四边形PQMN 为正方形,则双曲线C 的离心率为( )A .2-BC .2D7.已知抛物线C :22(0)y px p =>的焦点F ,点00(2p M x x ⎛⎫>⎪⎝⎭是抛物线上一点,以M 为圆心的圆与直线2p x =交于A 、B 两点(A 在B 的上方),若5sin 7MFA ∠=,则抛物线C 的方程为( )A .24y x =B .28y x =C .212y x =D .216y x =8.已知离心率为2的椭圆E :22221(0)x y a b a b +=>>的左、右焦点分别为1F ,2F ,过点2F 且斜率为1的直线与椭圆E 在第一象限内的交点为A ,则2F 到直线1F A ,y 轴的距离之比为( )A .5B .35C .2D二、多选题9.已知点A 是直线:0l x y +=上一定点,点P 、Q 是圆221x y +=上的动点,若PAQ ∠的最大值为90o ,则点A 的坐标可以是( )A .(B .()1C .)D .)1,110.已知抛物线2:2C y px =()0p >的焦点为F ,F ,直线l 与抛物线C交于点A 、B 两点(点A 在第一象限),与抛物线的准线交于点D ,若8AF =,则以下结论正确的是( ) A .4p = B .DF FA =uuu r uu rC .2BD BF = D .4BF =三、填空题11.已知圆C 经过(5,1),(1,3)A B 两点,圆心在x 轴上,则C 的方程为__________.12.已知圆()2239x y -+=与直线y x m =+交于A 、B 两点,过A 、B 分别作x 轴的垂线,且与x轴分别交于C 、D 两点,若CD =m =_____.13.已知双曲线()2222:10,0x y C a b a b-=>>的焦距为4,()2,3A 为C 上一点,则C 的渐近线方程为__________.14.已知抛物线()220y px p =>,F 为其焦点,l 为其准线,过F 任作一条直线交抛物线于,A B 两点,1A 、1B 分别为A 、B 在l 上的射影,M 为11A B 的中点,给出下列命题: (1)11A F B F ⊥;(2)AM BM ⊥;(3)1//A F BM ;(4)1A F 与AM 的交点的y 轴上;(5)1AB 与1A B 交于原点. 其中真命题的序号为_________.四、解答题15.已知圆22:(2)1M x y ++=,圆22:(2)49N x y -+=,动圆P 与圆M 外切并且与圆N 内切,圆心P 的轨迹为曲线C . (1)求曲线C 的方程;(2)设不经过点(0,Q 的直线l 与曲线C 相交于A ,B 两点,直线QA 与直线QB 的斜率均存在且斜率之和为-2,证明:直线l 过定点.16.已知椭圆方程为22163x y +=.(1)设椭圆的左右焦点分别为1F 、2F ,点P 在椭圆上运动,求1122PF PF PF PF +⋅u u u r u u u u r的值;(2)设直线l 和圆222x y +=相切,和椭圆交于A 、B 两点,O 为原点,线段OA 、OB 分别和圆222x y +=交于C 、D 两点,设AOB ∆、COD ∆的面积分别为1S 、2S ,求12S S 的取值范围.参考答案1.D 【解析】 【分析】因为圆224x y +=上恰有3个点到l 的距离为1,所以与直线l 平行且距离为1的两条直线,一条与圆相交,一条与圆相切,即圆心到直线l 的距离为1,根据点到直线的距离公式即可求出a 的值. 【详解】直线l 的方程为:y x a =-即0x y a --=.因为圆224x y +=上恰有3个点到l 的距离为1,所以与直线l 平行且距离为1的两条直线,一条与圆相交,一条与圆相切,而圆的半径为2,即圆心到直线l 的距离为1.1=,解得a =故选:D . 【点睛】本题主要考查直线与圆的位置关系的应用,以及点到直线的距离公式的应用,解题关键是将圆上存在3个点到l 的距离为1转化为两条直线与圆的位置关系,意在考查学生的转化能力与数学运算能力,属于中档题. 2.B 【解析】 【分析】根据双曲线的离心率求出渐近线方程,根据AB BF =u u u r u u u r,得到B 为AF 中点,得到B 与A 的坐标关系,代入到渐近线方程中,求出A 点坐标,从而得到AB 的斜率,得到答案. 【详解】因为双曲线2222:1x y C a b-=(0,0)a b >>,又222c e a =22514b a =+=,所以12b a =,所以双曲线渐近线为12y x =± 当点A 在直线12y x =-上,点B 在直线12y x =上时, 设(),A A Ax y (),B B B x y ,由(c,0)F 及B 是AF 中点可知22A B A B x c x y y +⎧=⎪⎪⎨⎪=⎪⎩,分别代入直线方程,得121222A A A A y x y x c ⎧=-⎪⎪⎨+⎪=⋅⎪⎩,解得24A Ac x c y ⎧=-⎪⎪⎨⎪=⎪⎩,所以,24c c A ⎛⎫-⎪⎝⎭, 所以直线AB 的斜率AB AFk k =42cc c =--16=-,由双曲线的对称性得,16k =也成立. 故选:B. 【点睛】本题考查求双曲线渐近线方程,坐标转化法求点的坐标,属于中档题. 3.D 【解析】 【分析】计算出圆心C 到直线10x y +-=距离的最大值,再加上圆C 的半径可得出点P 到直线10x y +-=的距离的最大值. 【详解】圆C 的圆心坐标为()3cos ,sin θθ+,半径为1,点C 到直线10x y +-=的距离为sin 14d πθ⎛⎫===++≤+ ⎪⎝⎭因此,点P 到直线1x y +=距离的最大值为12122++=+. 故选:D. 【点睛】本题考查圆上一点到直线距离的最值问题,当直线与圆相离时,圆心到直线的距离为d ,圆的半径为r ,则圆上一点到直线的距离的最大值为d r +,最小值为d r -,解题时要熟悉这个结论的应用,属于中等题. 4.D 【解析】设直线方程为(4)y k x =-,即40kx y k --=,直线l 与曲线22(2)1x y -+=有公共点,圆心到直线的距离小于等于半径22411k k d k -=≤+,得222141,3k k k ≤+≤,选择C 另外,数形结合画出图形也可以判断C 正确. 5.C 【解析】 【分析】由题意画出图形,求出AB 的斜率,得到AB 的方程,求得p ,可得抛物线方程,联立直线方程与抛物线方程,求解A 的坐标,再由抛物线定义求解AF 的长. 【详解】解:如图,过B 作'BB 垂直于准线,垂足为'B ,则'BF BB =,由7BN BF =,得7'BN BB =,可得1sin 7BNB '∠=, 3cos 7BNB '∴∠=-,tan 43BNB '∠=又()23,0M ,AB ∴的方程为2343y x =-, 取0x =,得12y =,即10,2F ⎛⎫ ⎪⎝⎭,则1p =,∴抛物线方程为22x y =. 联立223432y x x y ⎧=-⎪⎨⎪=⎩,解得23A y =.12172326A AF y ∴=+=+=. 故选:C . 【点睛】本题考查抛物线的简单性质,考查直线与抛物线位置关系的应用,考查计算能力,是中档题. 6.D 【解析】 【分析】设P 、Q 、M 、N 分别为第一、二、三、四象限内的点,根据对称性可得出22,22P c ⎛⎫⎪ ⎪⎝⎭,将点P 的坐标代入双曲线C 的方程,即可求出双曲线C 的离心率. 【详解】设双曲线C 的焦距为()20c c >,设P 、Q 、M 、N 分别为第一、二、三、四象限内的点, 由双曲线的对称性可知,点P 、Q 关于y 轴对称,P 、M 关于原点对称,P 、N 关于x 轴对称,由于四边形PQMN 为正方形,则直线PM 的倾斜角为4π,可得,22P c ⎛⎫ ⎪ ⎪⎝⎭, 将点P 的坐标代入双曲线C 的方程得2222122c c a b -=,即()22222122c c a c a -=-, 设该双曲线的离心率为()1e e >,则()2221221e e e -=-,整理得42420e e -+=,解得22e =,因此,双曲线C 故选:D. 【点睛】本题考查双曲线离心率的计算,解题的关键就是求出双曲线上关键点的坐标,考查计算能力,属于中等题. 7.C 【解析】 【分析】根据抛物线的定义,表示出MF ,再表示出MD ,利用5sin 7MFA ∠=,得到0x 和p 之间的关系,将M 点坐标,代入到抛物线中,从而解出p 的值,得到答案.【详解】抛物线C :22(0)y px p =>, 其焦点,02p F ⎛⎫⎪⎝⎭,准线方程2p x =-,因为点(002p M x x ⎛⎫> ⎪⎝⎭是抛物线上一点, 所以02p MF x =+AB所在直线2p x =, 设MD AB ⊥于D ,则02p MD x =-, 因为5sin 7MFA ∠=,所以57 MD MF=,即5272pxpx-=+整理得03x p=所以()3,66M p将M点代入到抛物线方程,得()26623p p=⨯,0p>解得6p=,所以抛物线方程为212y x=故选:C.【点睛】本题考查抛物线的定义,直线与圆的位置关系,求抛物线的标准方程,属于中档题.8.A【解析】【分析】结合椭圆性质,得到a,b,c的关系,设2AF x=,用x表示112,AF F F,结合余弦定理,用c表示x,结合三角形面积公式,即可。
专题18 解析几何中的双曲线问题【高考真题】1.(2022·北京) 已知双曲线221x y m +=的渐近线方程为y =,则m =__________. 1.答案 3- 解析 对于双曲线221x y m +=,所以0m <,即双曲线的标准方程为221x y m-=-,则1a =,b =,又双曲线221x ym +=的渐近线方程为y =,所以a b =,=解得3m =-;故答案为3-.2.(2022·全国甲理) 若双曲线2221(0)x y m m -=>的渐近线与圆22430x y y +-+=相切,则m =_________.2.答案解析 双曲线()22210x y m m-=>的渐近线为y x m =±,即0x my ±=,不妨取0x my +=,圆22430x y y +-+=,即()2221x y +-=,所以圆心为()0,2,半径1r =,依题意圆心()0,2到渐近线0x my +=的距离1d ==,解得m =或m =. 3.(2022·全国甲文) 记双曲线2222:1(0,0)x y C a b a b-=>>的离心率为e ,写出满足条件“直线2y x =与C 无公共点”的e 的一个值______________. 3.答案 2(满足1e <≤) 解析 2222:1(0,0)x y C a b a b -=>>,所以C 的渐近线方程为by x a=±, 结合渐近线的特点,只需02b a <≤,即224b a≤,可满足条件“直线2y x =与C 无公共点”,所以c e a ===1e >,所以1e <≤2(满足1e <≤4.(2022·全国乙理) 双曲线C 的两个焦点为12,F F ,以C 的实轴为直径的圆记为D ,过1F 作D 的切线与C 的两支交于M ,N 两点,且123cos 5F NF ∠=,则C 的离心率为( )A B .32 C D4.答案 C 解析 依题意不妨设双曲线焦点在x 轴,设过1F 作圆D 的切线切点为G ,所以1OG NF ⊥, 因为123cos 05F NF ∠=>,所以N 在双曲线的右支,所以OG a =,1OF c =,1GF b =,设12F NF α∠=,21F F N β∠=,由123cos 5F NF ∠=,即3cos 5α=,则4sin 5α=,sin a c β=,cos bcβ=,在21F F N 中,()()12sin sin sin F F N παβαβ∠=--=+4334sin cos cos sin 555b a a bc c cαβαβ+=+=⨯+⨯=,由正弦定理得211225sin sin sin 2NF NF c c F F N αβ===∠,所以112553434sin 2252c c a b a b NF F F N c ++=∠=⨯=,2555sin 222c c a a NF c β==⨯=,又12345422222a b a b aNF NF a +--=-==,所以23b a =,即32b a =,所以双曲线的离心率c e a ==.故选C .5.(2022·浙江)已知双曲线22221(0,0)x y a b ab-=>>的左焦点为F ,过F 且斜率为4ba的直线交双曲线于点 ()11,A x y ,交双曲线的渐近线于点()22,B x y 且120x x <<.若||3||FB FA =,则双曲线的离心率是_________.5.答案 解析 过F 且斜率为4b a 的直线:()4b AB y x c a =+,渐近线2:b l y x a =,联立()4b y x c a b y xa ⎧=+⎪⎪⎨⎪=⎪⎩,得,33c bc B a ⎛⎫ ⎪⎝⎭,由||3||FB FA =,得5,,99c bc A a ⎛⎫- ⎪⎝⎭而点A 在双曲线上,于是2222222518181c b c a a b -=,解得:228124c a=,所以离心率e =. 【知识总结】1.双曲线的定义(1)定义:平面内与两个定点F 1,F 2的距离的差的绝对值等于非零常数(小于|F 1F 2|)的点的轨迹. (2)符号表示:||MF 1|-|MF 2||=2a (常数)(0<2a <|F 1F 2|).(3)焦点:两个定点F 1,F 2. (4)焦距:两焦点间的距离,表示为|F 1F 2|. 2.双曲线的标准方程和简单几何性质F (-c ,0),F (c ,0)F (0,-c ),F (0,c )【题型突破】题型一 双曲线的标准方程1.(2017·全国Ⅲ)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线方程为y =52x ,且与椭圆x 212+y 23=1有公共焦点,则C 的方程为( )A .x 28-y 210=1B .x 24-y 25=1C .x 25-y 24=1D .x 24-y 23=11.答案 B 解析 由y =52x 可得b a =52,①.由椭圆x 212+y 23=1的焦点为(3,0),(-3,0),可得a 2+ b 2=9,②.由①②可得a 2=4,b 2=5.所以C 的方程为x 24-y 25=1.故选B .2.(2016·天津)已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的焦距为25,且双曲线的一条渐近线与直线2x +y =0垂直,则双曲线的方程为( )A .x 24-y 2=1B .x 2-y 24=1C .3x 220-3y 25=1D .3x 25-3y 220=12.答案 A 解析 依题意得b a =12,①,又a 2+b 2=c 2=5,②,联立①②得a =2,b =1.∴所求双曲线 的方程为x 24-y 2=1.3.(2018·天津)已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的离心率为2,过右焦点且垂直于x 轴的直线与双曲线交于A ,B 两点.设A ,B 到双曲线的同一条渐近线的距离分别为d 1和d 2,且d 1+d 2=6,则双曲线的方程为( )A .x 24-y 212=1B .x 212-y 24=1C .x 23-y 29=1D .x 29-y 23=13.答案 C 解析 因为双曲线的离心率为2,所以ca =2,c =2a ,b =3a ,不妨令A (2a,3a ),B (2a ,-3a ), 双曲线其中一条渐近线方程为y =3x ,所以d 1=|23a -3a |(3)2+(-1)2=23a -3a 2,d 2=|23a +3a |(3)2+(-1)2=23a +3a 2;依题意得:23a -3a 2+23a +3a 2=6,解得:a =3,b =3,所以双曲线方程为:x 23-y 29=1.4.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的右焦点为F ,点A 在双曲线的渐近线上,△OAF 是边长为2的等边三角形(O 为原点),则双曲线的方程为( )A .x 24-y 212=1B .x 212-y 24=1C .x 23-y 2=1D .x 2-y 23=14.答案 D 解析 根据题意画出草图如图所示⎝⎛ 不妨设点A⎭⎫在渐近线y =ba x 上.由△AOF 是边长为2的等边三角形得到∠AOF =60°,c =|OF |=2.又点A 在双曲线的渐近线y =b a x 上,∴b a =tan 60°=3.又a 2+b 2=4,∴a =1,b =3,∴双曲线的方程为x 2-y 23=1,故选D5.已知双曲线x 24-y 2b 2=1(b >0),以原点为圆心,双曲线的实半轴长为半径长的圆与双曲线的两条渐近线相交于A ,B ,C ,D 四点,四边形ABCD 的面积为2b ,则双曲线的方程为( ) A .x 24-3y 24=1 B .x 24-4y 23=1 C .x 24-y 24=1 D .x 24-y 212=15.答案 D 解析 根据圆和双曲线的对称性,可知四边形ABCD 为矩形.双曲线的渐近线方程为y =±b 2x ,圆的方程为x 2+y 2=4,不妨设交点A 在第一象限,由y =b 2x ,x 2+y 2=4得x A =44+b 2,y A =2b4+b 2,故四边形ABCD 的面积为4x A y A =32b 4+b 2=2b ,解得b 2=12,故所求的双曲线方程为x 24-y 212=1,选D . 6.已知双曲线E 的中心为原点,(3, 0)F 是E 的焦点,过F 的直线l 与E 相交于A ,B 两点,且AB 的中 点为(12, 15)N --,则E 的方程式为( )A .22136x y -=B .22145x y -=C .22163x y -=D .22154x y -=6.答案 B 解析 设双曲线方程为22222222221, x y b x a y a b a b-=-=即,1122(,),(,)A x y B x y ,由221b x -221a y =2222222222, a b b x a y a b -=得,2212121212()()()0()y y b x x a y y x x -+-+=-,1215AB PN N k k =又中点(-,-),,212b ∴-+222150, 45a b a ==即,22+9b a =,所以224, =5a b =.7.已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的右焦点为F ,点B 是虚轴的一个端点,线段BF 与双曲线C的右支交于点A ,若BA →=2AF →,且|BF →|=4,则双曲线C 的方程为( )A .x 26-y 25=1B .x 28-y 212=1C .x 28-y 24=1D .x 24-y 26=17.答案 D 解析 不妨设B (0,b ),由BA →=2AF →,F (c ,0),可得A ⎝⎛⎭⎫2c 3,b 3,代入双曲线C 的方程可得 49×c 2a 2-19=1,即49·a 2+b 2a 2=109,所以b 2a 2=32,①.又|BF →|=b 2+c 2=4,c 2=a 2+b 2,所以a 2+2b 2=16,②.由①②可得,a 2=4,b 2=6,所以双曲线C 的方程为x 24-y 26=1,故选D .8.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的离心率为32,过右焦点F 作渐近线的垂线,垂足为M .若△FOM的面积为5,其中O 为坐标原点,则双曲线的方程为( ) A .x 2-4y 25=1 B .x 22-2y 25=1 C .x 24-y 25=1 D .x 216-y 220=1 8.答案 C 解析 由题意可知e =c a =32,可得b a =52,取双曲线的一条渐近线为y =ba x ,可得F 到渐近线y =b a x 的距离d =bca 2+b2=b ,在Rt △FOM 中,由勾股定理可得|OM |=|OF |2-|MF |2=c 2-b 2=a ,由题意可得12ab =5,联立⎩⎨⎧b a =52,12ab =5,解得⎩⎨⎧a =2,b =5,所以双曲线的方程为x 24-y25=1.故选C .9.已知双曲线中心在原点且一个焦点为F (7,0),直线y =x -1与其相交于M ,N 两点,MN 中点的横坐 标为-23,则此双曲线的方程是( ).A .x 23-y 24=1B .x 24-y 23=1C .x 25-y 22=1D .x 22-y 25=19.答案 D 解析:设所求双曲线方程为x 2a 2-y 27-a 2=1.由⎩⎪⎨⎪⎧x 2a 2-y 27-a 2=1,y =x -1,得x 2a 2-(x -1)27-a 2=1,(7-a 2)x 2-a 2(x -1)2=a 2(7-a 2),整理得(7-2a 2)x 2+2a 2x -8a 2+a 4=0.又MN 中点的横坐标为-23,故x 0=x 1+x 22=-2a 22(7-2a 2)=-23,即3a 2=2(7-2a 2),所以a 2=2,故所求双曲线方程为x 22-y 25=1.10.双曲线x 2a 2-y 2b2=1(a ,b >0)的离心率为3,左、右焦点分别为F 1,F 2,P 为双曲线右支上一点,∠F 1PF 2的角平分线为l ,点F 1关于l 的对称点为Q ,|F 2Q |=2,则双曲线的方程为( ) A .x 22-y 2=1 B .x 2-y 22=1 C .x 2-y 23=1 D .x 23-y 2=110.答案 B 解析 ∵∠F 1PF 2的角平分线为l ,点F 1关于l 的对称点为Q ,∴|PF 1|=|P Q|,P ,F 2,Q 三点共线,而|PF 1|-|PF 2|=2a ,∴|P Q|-|PF 2|=2a ,即|F 2Q|=2=2a ,解得a =1.又e =c a =3,∴c =3,∴b 2=c 2-a 2=2,∴双曲线的方程为x 2-y 22=1.故选B . 题型二 双曲线中的求值11.(2018·全国Ⅰ)已知双曲线C :x 23-y 2=1,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为M ,N .若△OMN 为直角三角形,则|MN |等于( ) A .32 B .3 C .23 D .411.答案 B 解析 由已知得双曲线的两条渐近线方程为y =±13x .设两渐近线的夹角为2α,则有tan α =13=33,所以α=30°.所以∠MON =2α=60°.又△OMN 为直角三角形,由于双曲线具有对称性,不妨设MN ⊥ON ,如图所示.在Rt △ONF 中,|OF |=2,则|ON |=3.则在Rt △OMN 中,|MN |=|ON |·tan 2α=3·tan60°=3.故选B .12.(2019·全国Ⅰ)双曲线C :x 24-y 22=1的右焦点为F ,点P 在C 的一条渐近线上,O 为坐标原点,若|PO |=|PF |,则△PFO 的面积为( )A .324 B .322C .22D .3212.答案 A 解析 双曲线x 24-y 22=1的右焦点坐标为(6,0),一条渐近线的方程为y =22x ,不妨设点P 在第一象限,由于|PO |=|PF |,则点P 的横坐标为62,纵坐标为22×62=32,即△PFO 的底边长为6,高为32,所以它的面积为12×6×32=324.故选A . 13.已知双曲线Γ:x 2a 2-y 2b2=1(a >0,b >0)的右顶点为A ,与x 轴平行的直线交Γ于B ,C 两点,记∠BAC=θ,若Γ的离心率为2,则( )A .θ∈⎝⎛⎭⎫0,π2B .θ=π2C .θ∈⎝⎛⎭⎫3π4,πD .θ=3π413.答案 B 解析 ∵e =ca=2,∴c =2a ,∴b 2=c 2-a 2=a 2,∴双曲线方程可变形为x 2-y 2=a 2.设B (x 0,y 0),由对称性可知C (-x 0,y 0),∵点B (x 0,y 0)在双曲线上,∴x 20-y 20=a 2.∵A (a ,0),∴AB →=(x 0-a ,y 0),AC →=(-x 0-a ,y 0),∴AB →·AC →=(x 0-a )·(-x 0-a )+y 20=a 2-x 20+y 20=0,∴AB →⊥AC →,即θ=π2.故选B .14.已知F 1,F 2为双曲线C :x 2-y 2=2的左、右焦点,点P 在C 上,|PF 1|=2|PF 2|,则cos ∠F 1PF 2=________. 14.答案 34 解析 化双曲线的方程为x 22-y 22=1,则a =b =2,c =2,因为|PF 1|=2|PF 2|,所以点P 在双曲线的右支上,则由双曲线的定义,知|PF 1|-|PF 2|=2a =22,解得|PF 1|=42,|PF 2|=22,根据余弦定理得cos ∠F 1PF 2=(22)2+(42)2-162×22×42=34.15.如图,双曲线的中心在坐标原点O ,A ,C 分别是双曲线虚轴的上、下端点,B 是双曲线的左顶点,F为双曲线的左焦点,直线AB 与FC 相交于点D .若双曲线的离心率为2,则∠BDF 的余弦值是________.15.答案 714 解析 设双曲线的标准方程为x 2a 2-y 2b 2=1(a >0,b >0),由e =ca=2知,c =2a ,又c 2=a 2+b 2,故b =3a ,所以A (0,3a ),C (0,-3a ),B (-a ,0),F (-2a ,0),则BA →=(a ,3a ),CF →=(-2a ,3a ),结合题图可知,cos ∠BDF =cos <BA →,CF →>=BA →·CF →|BA →|·|CF →|=-2a 2+3a 22a ·7a =714.16.过点P (4,2)作一直线AB 与双曲线C :x 22-y 2=1相交于A ,B 两点,若P 为AB 的中点,则|AB |=( )A .22B .23C .33D .4316.答案 D 解析 法一:由已知可得点P 的位置如图所示,且直线AB 的斜率存在,设AB 的斜率为k ,则AB 的方程为y -2=k (x -4),即y =k (x -4)+2,由⎩⎪⎨⎪⎧y =k x -4+2,x 22-y 2=1,消去y 得(1-2k 2)x 2+(16k 2-8k )x -32k 2+32k -10=0,设A (x 1,y 1),B (x 2,y 2),由根与系数的关系得x 1+x 2=-16k 2+8k1-2k 2,x 1x 2=-32k 2+32k -101-2k 2,因为P (4,2)为AB 的中点,所以-16k 2+8k 1-2k 2=8,解得k =1,满足Δ>0,所以x 1+x 2=8,x 1x 2=10,所以|AB |=1+12×82-4×10=43,故选D .法二:由已知可得点P 的位置如法一中图所示,且直线AB 的斜率存在,设AB 的斜率为k ,则AB 的方程为y -2=k (x -4),即y =k (x -4)+2,设A (x 1,y 1),B (x 2,y 2),则⎩⎪⎨⎪⎧x 21-2y 21-2=0,x 22-2y 22-2=0,所以(x 1+x 2)(x 1-x 2)=2(y 1+y 2)(y 1-y 2),因为P (4,2)为AB 的中点,所以k =y 1-y 2x 1-x 2=1,所以AB 的方程为y =x -2,由⎩⎪⎨⎪⎧y =x -2,x 22-y 2=1,消去y 得x 2-8x +10=0,所以x 1+x 2=8,x 1x 2=10,所以|AB |=1+12×82-4×10=43,故选D .17.过点P (4,2)作一直线AB 与双曲线C :x 22-y 2=1相交于A 、B 两点,若P 为AB 中点,则|AB |=( )A .22B .23C .33D .4317.答案 D 解析 易知直线AB 不与y 轴平行,设其方程为y -2=k (x -4),代入双曲线C :x 22-y 2=1,整理得(1-2k 2)x 2+8k (2k -1)x -32k 2+32k -10=0,设此方程两实根为x 1,x 2,则x 1+x 2=8k (2k -1)2k 2-1,又P (4,2)为AB 的中点,所以8k (2k -1)2k 2-1=8,解得k =1,当k =1时,直线与双曲线相交,即上述二次方程的Δ>0,所求直线AB 的方程为y -2=x -4化成一般式为x -y -2=0,x 1+x 2=8,x 1x 2=10,|AB |=2|x 1-x 2|=2·82-40=43.故选D .18.已知双曲线x 23-y 2=1的左、右焦点分别为F 1,F 2,点P 在双曲线上,且满足|PF 1|+|PF 2|=25,则△PF 1F 2的面积为()A .1B .3C .5D .1218.答案 A 解析 在双曲线x 23-y 2=1中,a =3,b =1,c =2.不妨设P 点在双曲线的右支上,则有|PF 1|-|PF 2|=2a =23,又|PF 1|+|PF 2|=25,∴|PF 1|=5+3,|PF 2|=5- 3.又|F 1F 2|=2c =4,而|PF 1|2+|PF 2|2=|F 1F 2|2,∴PF 1⊥PF 2,∴S △PF 1F 2=12×|PF 1|×|PF 2|=12×(5+3)×(5-3)=1.故选A .19.已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的离心率为2,左、右焦点分别为F 1,F 2,点A 在双曲线C 上,若△AF 1F 2的周长为10a ,则△AF 1F 2的面积为( )A .215a 2B .15a 2C .30a 2D .15a 2 19.答案 B 解析 (1)由双曲线的对称性不妨设A 在双曲线的右支上,由e =ca=2,得c =2a ,∴△AF 1F 2的周长为|AF 1|+|AF 2|+|F 1F 2|=|AF 1|+|AF 2|+4a ,又△AF 1F 2的周长为10a ,∴|AF 1|+|AF 2|=6a ,又∵|AF 1|-|AF 2|=2a ,∴|AF 1|=4a ,|AF 2|=2a ,在△AF 1F 2中,|F 1F 2|=4a ,∴cos ∠F 1AF 2=|AF 1|2+|AF 2|2-|F 1F 2|22|AF 1|·|AF 2|=(4a )2+(2a )2-(4a )22×4a ×2a =14.又0<∠F 1AF <π,∴sin ∠F 1AF 2=154,∴S △AF 1F 2=12|AF 1|·|AF 2|·sin∠F 1AF 2=12×4a ×2a ×154=15a 2.20.已知双曲线x 2-y 23=1的左、右焦点分别为F 1,F 2,双曲线的离心率为e ,若双曲线上存在一点P 使sin ∠PF 2F 1sin ∠PF 1F 2=e ,则F 2P →·F 2F 1→的值为( )A .3B .2C .-3D .-220.答案 B 解析 由题意及正弦定理得sin ∠PF 2F 1sin ∠PF 1F 2=|PF 1||PF 2|=e =2,∴|PF 1|=2|PF 2|,由双曲线的定义知|PF 1|-|PF 2|=2,∴|PF 1|=4,|PF 2|=2,又|F 1F 2|=4,由余弦定理可知cos ∠PF 2F 1=|PF 2|2+|F 1F 2|2-|PF 1|22|PF 2|·|F 1F 2|=4+16-162×2×4=14,∴F 2P →·F 2F 1→=|F 2P →|·|F 2F 1→|·cos ∠PF 2F 1=2×4×14=2.故选B .题型三 双曲线的离心率21.已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的两条渐近线的夹角为60°,则双曲线C 的离心率为( )A .2B .3C .3或233D .233或221.答案 D 解析 秒杀 ∵两条渐近线的夹角为60°,∴一条渐近线的倾斜角为30°,斜率为33.∴e =1+k 2=233.或一条渐近线的倾斜角为60°,斜率为3.∴e =1+k 2=2.故选D .通法 ∵两条渐近线的夹角为60°,且两条渐近线关于坐标轴对称,∴b a =tan 30°=33或ba =tan 60°=3.由b a =33,得b 2a 2=c 2-a 2a 2=e 2-1=13,∴e =233(舍负);由b a =3,得b 2a 2=c 2-a 2a 2=e 2-1=3,∴e =2(舍负).故选D .22.(2019·全国Ⅰ)双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的一条渐近线的倾斜角为130°,则C 的离心率为( )A .2sin 40°B .2cos 40° C.1sin 50° D.1cos 50°22.答案 D 解析 秒杀 由题意可得-ba =tan 130°,所以e =1+b 2a 2=1+tan 2130°=1+sin 2130°cos 2130°=1|cos 130°|=1cos 50°.故选D .23.(2019·全国Ⅰ)已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左,右焦点分别为F 1,F 2,过F 1的直线与C 的两条渐近线分别交于A ,B 两点.若F 1A →=AB →,F 1B →·F 2B →=0,则C 的离心率为________.23.答案 2 解析 秒杀 由F 1A →=AB →,得A 为F 1B 的中点.又∵O 为F 1F 2的中点,∴OA ∥BF 2.又F 1B →·F 2B →=0,∴∠F 1BF 2=90°.∴OF 2=OB ,∴∠OBF 2=∠OF 2B .又∵∠F 1OA =∠BOF 2,∠F 1OA =∠OF 2B ,∴∠BOF 2=∠OF 2B =∠OBF 2,∴△OBF 2为等边三角形.∴一条渐近线的倾斜角为60°,斜率为3.∴e =1+k 2=2.通法一:由F 1A →=AB →,得A 为F 1B 的中点.又∵O 为F 1F 2的中点,∴OA ∥BF 2.又F 1B →·F 2B →=0,∴∠F 1BF 2=90°.∴OF 2=OB ,∴∠OBF 2=∠OF 2B .又∵∠F 1OA =∠BOF 2,∠F 1OA =∠OF 2B ,∴∠BOF 2=∠OF 2B =∠OBF 2,∴△OBF 2为等边三角形.如图所示,不妨设B 为⎝⎛⎭⎫c 2,-32c .∵点B 在直线y=-b a x 上,∴b a =3,∴离心率e =ca=2.通法二:∵F 1B →·F 2B →=0,∴∠F 1BF 2=90°.在Rt △F 1BF 2中,O 为F 1F 2的中点,∴|OF 2|=|OB |=c .如图,作BH ⊥x 轴于H ,由l 1为双曲线的渐近线,可得|BH ||OH |=ba ,且|BH |2+|OH |2=|OB |2=c 2,∴|BH |=b ,|OH |=a ,∴B (a ,-b ),F 2(c ,0).又∵F 1A →=AB →,∴A 为F 1B 的中点.∴OA ∥F 2B ,∴b a =b c -a ,∴c =2a ,∴离心率e =c a =2.24.已知F 1,F 2分别是双曲线E :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点,点M 在E 上,MF 1与x 轴垂直,sin ∠MF 2F 1=13,则E 的离心率为( )A .2B .32C .3D .224.答案 A 解析 秒杀 作出示意图,如图,离心率e =c a =2c 2a =|F 1F 2||MF 2|-|MF 1|=sin ∠F 1MF 2sin ∠MF 1F 2-sin ∠MF 2F 1=2231-13=2.故选A .通法 因为MF 1与x 轴垂直,所以|MF 1|=b 2a .又sin ∠MF 2F 1=13,所以|MF 1||MF 2|=13,即|MF 2|=3|MF 1|.由双曲线的定义,得2a =|MF 2|-|MF 1|=2|MF 1|=2b 2a ,所以b 2=a 2,所以c 2=b 2+a 2=2a 2,所以离心率e =ca =2.故选A .25.已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,P 为双曲线C 上第二象限内一点,若直线y =ba x 恰为线段PF 2的垂直平分线,则双曲线C 的离心率为( )A .2B .3C .5D .625.答案 C 解析 秒杀 由已知△F 1PF 2是直角三角形,∠F 2PF 1=90°,sin ∠PF 1F 2=b c ,∠PF 2F 1=ac,∴e =c a =sin90°|sin ∠PF 1F 2+sin ∠PF 2F 1|=1|b c -a c|.即b a=2,所以e =1+⎝⎛⎭⎫b a 2=5.故选C .通法 如图,直线PF 2的方程为y =-a b (x -c ),设直线PF 2与直线y =ba x 的交点为N ,易知N ⎝⎛⎭⎫a 2c ,abc .又线段PF 2的中点为N ,所以P ⎝⎛⎭⎫2a 2-c 2c ,2ab c .因为点P 在双曲线C 上,所以(2a 2-c 2)2a 2c 2-4a 2b 2c 2b 2=1,即5a 2=c 2,所以e =ca =5.故选C .26.已知O 为坐标原点,点A ,B 在双曲线C :x 2a 2-y 2b2=1(a >0,b >0)上,且关于坐标原点O 对称.若双曲线C 上与点A ,B 横坐标不相同的任意一点P 满足k P A ·k PB =3,则双曲线C 的离心率为( ) A .2 B .4 C .10 D .10 26.答案 A 解析 秒杀 ∵k 1·k 2=e 2-1.∴3=e 2-1.∴e =2.故选A .通法 设A (x 1,y 1),P (x 0,y 0)(|x 0|≠|x 1|),则B (-x 1,-y 1),则k P A ·k PB =y 0-y 1x 0-x 1·y 0+y 1x 0+x 1=y 20-y 21x 20-x 21.因为点P ,A 在双曲线C 上,所以b 2x 20-a 2y 20=a 2b 2,b 2x 21-a 2y 21=a 2b 2,两式相减可得y 20-y 21x 20-x 21=b 2a 2,故b 2a 2=3,于是b 2=3a 2.又因为c 2=a 2+b 2,所以双曲线C 的离心率e =1+⎝⎛⎭⎫b a 2=2.故选A .27.已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0),过点P (3,6)的直线l 与C 相交于A ,B 两点,且AB 的中点为N (12,15),则双曲线C 的离心率为( )A .2B .32C .355D .5227.答案 B 解析 秒杀 由题意得,k 0·k =e 2-1.∴e =32.故选B .通法 设A (x 1,y 1),B (x 2,y 2),由AB 的中点为N (12,15),则x 1+x 2=24,y 1+y 2=30,由⎩⎨⎧x 21a 2-y 21b2=1,x 22a 2-y22b 2=1,两式相减得,(x 1+x 2)(x 1-x 2)a 2=(y 1+y 2)(y 1-y 2)b 2,则y 1-y 2x 1-x 2=b 2(x 1+x 2)a 2(y 1+y 2)=4b 25a 2,由直线AB 的斜率k =15-612-3=1,所以4b 25a 2=1,则b 2a 2=54,双曲线的离心率e =ca = 1+b 2a 2=32,所以双曲线C 的离心率为32.故选B .28.已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的右焦点为F ,直线l 经过点F 且与双曲线的一条渐近线垂直,直线l 与双曲线的右支交于不同两点A ,B ,若AF →=3FB →,则该双曲线的离心率为( ) A .52 B .62 C .233D .3 28.答案 A 解析 秒杀 由题可知,|31||cos ||31|e θ-=+,即1||2c b a c ⋅=,即12b a =所以e=52,故选B .通法 由题意得直线l 的方程为x =ba y +c ,不妨取a =1,则x =by +c ,且b 2=c 2-1.将x =by +c 代入x 2-y 2b 2=1,(b >0),得(b 4-1)y 2+2b 3cy +b 4=0.设A (x 1,y 1),B (x 2,y 2),则y 1+y 2=-2b 3cb 4-1,y 1y 2=b 4b 4-1.由AF →=3FB →,得y 1=-3y 2,所以⎩⎨⎧-2y 2=-2b 3cb 4-1-3y 22=b 4b 4-1,得3b 2c 2=1-b 4,解得b 2=14,所以c =b 2+1=54=52,故该双曲线的离心率为e =c a =52,故选A .29.已知双曲线Γ:x 2a 2-y 2b 2=1(a >0,b >0),过双曲线Γ的右焦点F ,且倾斜角为π2的直线l 与双曲线Γ交于A ,B 两点,O 是坐标原点,若∠AOB =∠OAB ,则双曲线Γ的离心率为( ) A .3+72 B .11+332 C .3+396 D .1+17429.答案 C 解析 由题意可知AB 是通径,根据双曲线的对称性和∠AOB =∠OAB ,可知△AOB 为等边三角形,所以tan ∠AOF =b 2a c =33,整理得b 2=33ac ,由c 2=a 2+b 2,得c 2=a 2+33ac ,两边同时除以a 2,得e 2-33e -1=0,解得e =3+396.故选C . 30.过双曲线C :x 2a 2-y 2b2=1(a >0,b >0)左焦点F 的直线l 与C 交于M ,N 两点,且FN →=3FM →,若OM ⊥FN ,则C 的离心率为( )A .2B .7C .3D .1030.答案 B 解析 设双曲线的右焦点为F ′,取MN 的中点P ,连接F ′P ,F ′M ,F ′N ,如图所示,由FN →=3FM →,可知|MF |=|MP |=|NP |.又O 为FF ′的中点,可知OM ∥PF ′.∵OM ⊥FN ,∴PF ′⊥FN .∴PF ′为线段MN 的垂直平分线.∴|NF ′|=|MF ′|.设|MF |=t ,由双曲线定义可知|NF ′|=3t -2a ,|MF ′|=2a +t ,则3t -2a =2a +t ,解得t =2a .在Rt △MF ′P 中,|PF ′|=|MF ′|2-|MP |2=16a 2-4a 2=23a ,∴|OM |=12|PF ′|=3a .在Rt △MFO 中,|MF |2+|OM |2=|OF |2,∴4a 2+3a 2=c 2⇒e =7.故选B . 题型四 双曲线的渐近线31.(2018·全国Ⅰ)双曲线x 2a 2-y 2b2=1(a >0,b >0)的离心率为3,则其渐近线方程为( )A .y =±2xB .y =±3xC .y =±22x D .y =±32x 31.答案 A 解析 法一:由题意知,e =c a =3,所以c =3a ,所以b =c 2-a 2=2a ,所以ba=2,所以该双曲线的渐近线方程为y =±ba x =±2x ,故选A .法二:由e =ca =1+⎝⎛⎭⎫b a 2=3,得b a =2,所以该双曲线的渐近线方程为y =±b a x =±2x ,故选A .32.已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,O 为坐标原点,P 是双曲线在第一象限上的点,直线PO 交双曲线C 左支于点M ,直线PF 2交双曲线C 右支于点N ,若|PF 1|=2|PF 2|,且∠MF 2N =60°,则双曲线C 的渐近线方程为( ) A .y =±2x B .y =±22x C .y =±2x D .y =±22x 32.答案 A 解析 由题意得,|PF 1|=2|PF 2|,|PF 1|-|PF 2|=2a ,∴|PF 1|=4a ,|PF 2|=2a ,由于P ,M 关于原点对称,F 1,F 2关于原点对称,∴线段PM ,F 1F 2互相平分,四边形PF 1MF 2为平行四边形,PF 1∥MF 2,∵∠MF 2N =60°,∴∠F 1PF 2=60°,由余弦定理可得4c 2=16a 2+4a 2-2·4a ·2a ·cos60°,∴c =3a ,∴b =c 2-a 2=2a .∴ba =2,∴双曲线C 的渐近线方程为y =±2x .故选A .33.过双曲线x 2a 2-y 2b 2=1(a >0,b >0)的右焦点F (1,0)作x 轴的垂线,与双曲线交于A ,B 两点,O 为坐标原点,若△AOB 的面积为83,则双曲线的渐近线方程为________.33.答案 y =±22x 解析 由题意得|AB |=2b 2a ,∵S △AOB =83,∴12×2b 2a ×1=83,∴b 2a =83①,又a 2+b 2=1②,由①②得a =13,b =223,∴双曲线的渐近线方程为y =±bax =±22x .34.已知双曲线C :x 2a 2-y 2b2=1(a ,b >0)的右顶点A 和右焦点F 到一条渐近线的距离之比为1∶2,则C 的渐近线方程为( )A .y =±xB .y =±2xC .y =±2xD .y =±3x34.答案 A 解析 由双曲线方程可得渐近线为:y =±b a x ,A (a,0),F (c,0),则点A 到渐近线距离d 1=|ab |a 2+b2=ab c ,点F 到渐近线距离d 2=|bc |a 2+b 2=bc c =b ,∴d 1∶d 2=ab c ∶b =a ∶c =1∶2,即c =2a ,则ba =c 2-a 2a =aa =1,∴双曲线渐近线方程为y =±x .故选A .35.双曲线x 2a 2-y 2b2=1(a >0,b >0)的两条渐近线分别为l 1,l 2,F 为其一个焦点,若F 关于l 1的对称点在l 2上,则双曲线的渐近线方程为( )A .y =±2xB .y =±3xC .y =±3xD .y =±2x35.答案 B 解析 不妨取F (c ,0),l 1:bx -ay =0,设其对称点F ′(m ,n )在l 2:bx +ay =0,由对称性可得⎩⎨⎧b ·m +c 2-a ·n 2=0n m -c ·ba =-1,解得⎩⎪⎨⎪⎧m =a 2-b 2a 2+b2cn =2abca 2+b2,点F ′(m ,n )在l 2:bx +ay =0,则a 2-b 2a 2+b 2·bc +2a 2bca 2+b2=0,整理可得b 2a 2=3,∴b a =3,双曲线的渐近线方程为:y =±bax =±3x .故选B.36.已知F 1,F 2分别是双曲线x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点,P 是双曲线上一点,若|PF 1|+|PF 2|=6a ,且△PF 1F 2的最小内角为π6,则双曲线的渐近线方程为( )A .y =±2xB .y =±12xC .y =±22x D .y =±2x36.答案 D 解析 不妨设P 为双曲线右支上一点,则|PF 1|>|PF 2|,由双曲线的定义得|PF 1|-|PF 2|=2a ,又|PF 1|+|PF 2|=6a ,所以|PF 1|=4a ,|PF 2|=2a .又因为⎩⎪⎨⎪⎧2c >2a ,4a >2a ,所以∠PF 1F 2为最小内角,故∠PF 1F 2=π6.由余弦定理,可得(4a )2+(2c )2-(2a )22·4a ·2c =32,即(3a -c )2=0,所以c =3a ,则b =2a ,所以双曲线的渐近线方程为y =±2x .37.已知F 2,F 1是双曲线y 2a 2-x 2b2=1(a >0,b >0)的上、下两个焦点,过F 1的直线与双曲线的上下两支分别交于点B ,A ,若△ABF 2为等边三角形,则双曲线的渐近线方程为( ) A .y =±2x B .y =±22x C .y =±6x D .y =±66x 37.答案 D 解析 根据双曲线的定义,可得|BF 1|-|BF 2|=2a ,∵△ABF 2为等边三角形,∴|BF 2|=|AB |,∴|BF 1|-|AB |=|AF 1|=2a ,又∵|AF 2|-|AF 1|=2a ,∴|AF 2|=|AF 1|+2a =4a ,∵在△AF 1F 2中,|AF 1|=2a ,|AF 2|=4a ,∠F 1AF 2=120°,∴|F 1F 2|2=|AF 1|2+|AF 2|2-2|AF 1|·|AF 2|cos 120°,即4c 2=4a 2+16a 2-2×2a ×4a ×⎝⎛⎭⎫-12=28a 2,亦即c 2=7a 2,则b =c 2-a 2=6a 2=6a ,由此可得双曲线C 的渐近线方程为y =±66x .38.已知F 1,F 2是双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的两个焦点,P 是C 上一点,若|PF 1|+|PF 2|=6a ,且△PF 1F 2最小内角的大小为30°,则双曲线C 的渐近线方程是( )A .2x ±y =0B .x ±2y =0C .x ±2y =0D .2x ±y =038.答案 A 解析 由题意,不妨设|PF 1|>|PF 2|,则根据双曲线的定义得,|PF 1|-|PF 2|=2a ,又|PF 1|+|PF 2|=6a ,解得|PF 1|=4a ,|PF 2|=2a .在△PF 1F 2中,|F 1F 2|=2c ,而c >a ,所以有|PF 2|<|F 1F 2|,所以∠PF 1F 2=30°,所以(2a )2=(2c )2+(4a )2-2·2c ·4a cos 30°,得c =3a ,所以b =c 2-a 2=2a .所以双曲线的渐近线方程为y =±ba x =±2x ,即2x ±y =0. 题型五 双曲线中的最值与范围39.P 是双曲线C :x 22-y 2=1右支上一点,直线l 是双曲线C 的一条渐近线,P 在l 上的射影为Q ,F 1是双曲线C 的左焦点,则|PF 1|+|PQ |的最小值为( ) A .1 B .2+155 C .4+155D .22+1 39.答案 D 解析 如图所示,设双曲线右焦点为F 2,则|PF 1|+|PQ |=2a +|PF 2|+|PQ |,即当|PQ |+|PF 2|最小时,|PF 1|+|PQ |取最小值,由图知当F 2,P ,Q 三点共线时|PQ |+|PF 2|取得最小值,即F 2到直线l 的距离d =1,故所求最值为2a +1=22+1.故选D .40.双曲线C 的渐近线方程为y =±233x ,一个焦点为F (0,-7),点A (2,0),点P 为双曲线上在第一象限内的点,则当点P 的位置变化时,△P AF 周长的最小值为( )A .8B .10C .4+37D .3+317 40.答案 B 解析 由已知得⎩⎪⎨⎪⎧a b =233,c =7,c 2=a 2+b 2,解得⎩⎪⎨⎪⎧a 2=4,b 2=3,c 2=7,则双曲线C 的方程为y 24-x 23=1,设双曲线的另一个焦点为F ′,则|PF |=|PF ′|+4,△P AF 的周长为|PF |+|P A |+|AF |=|PF ′|+4+|P A |+3,又点P 在第一象限,则|PF ′|+|P A |的最小值为|AF ′|=3,故△P AF 的周长的最小值为10. 41.过双曲线x 2-y 215=1的右支上一点P ,分别向圆C 1:(x +4)2+y 2=4和圆C 2:(x -4)2+y 2=1作切线, 切点分别为M ,N ,则|PM |2-|PN |2的最小值为( )A .10B .13C .16D .1941.答案 B 解析 由题意可知,|PM |2-|PN |2=(|PC 1|2-4)-(|PC 2|2-1),因此|PM |2-|PN |2=|PC 1|2-|PC 2|2-3=(|PC 1|-|PC 2|)(|PC 1|+|PC 2|)-3=2(|PC 1|+|PC 2|)-3≥2|C 1C 2|-3=13.故选B . 42.设P 为双曲线x 2-y 215=1右支上一点,M ,N 分别是圆C 1:(x +4)2+y 2=4和圆C 2:(x -4)2+y 2=1上 的点,设|PM |-|PN |的最大值和最小值分别为m ,n ,则|m -n |=( )A .4B .5C .6D .742.答案 C 解析 由题意得,圆C 1:(x +4)2+y 2=4的圆心为(-4,0),半径为r 1=2;圆C 2:(x -4)2+y 2=1的圆心为(4,0),半径为r 2=1.设双曲线x 2-y 215=1的左、右焦点分别为F 1(-4,0),F 2(4,0).如图所示,连接PF 1,PF 2,F 1M ,F 2N ,则|PF 1|-|PF 2|=2.又|PM |max =|PF 1|+r 1,|PN |min =|PF 2|-r 2,所以|PM |-|PN |的最大值m =|PF 1|-|PF 2|+r 1+r 2=5.又|PM |min =|PF 1|-r 1,|PN |max =|PF 2|+r 2,所以|PM |-|PN |的最小值n =|PF 1|-|PF 2|-r 1-r 2=-1,所以|m -n |=6.故选C .43.若点O 和点F (-2,0)分别为双曲线x 2a2-y 2=1(a >0)的中心和左焦点,点P 为双曲线右支上的任意一点,则OP →·FP →的取值范围为________.43.答案 [3+23,+∞) 解析 由题意,得22=a 2+1,即a =3,设P (x ,y ),x ≥3,FP →=(x +2, y ),则OP →·FP →=(x +2)x +y 2=x 2+2x +x 23-1=43⎝⎛⎭⎫x +342-74,因为x ≥3,所以OP →·FP →的取值范围为[3+23,+∞).44.已知F 1,F 2是双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点,点P 在双曲线的右支上,如果|PF 1|=t |PF 2|(t ∈(1,3]),则双曲线经过一、三象限的渐近线的斜率的取值范围是______________.44.答案 (0,3] 解析 由双曲线的定义及题意可得⎩⎪⎨⎪⎧|PF 1|-|PF 2|=2a ,|PF 1|=t |PF 2|,解得⎩⎨⎧|PF 1|=2att -1,|PF 2|=2a t -1.又|PF 1|+|PF 2|≥2c ,∴|PF 1|+|PF 2|=2at t -1+2a t -1≥2c ,整理得e =c a ≤t +1t -1=1+2t -1,∵1<t ≤3,∴1+2t -1≥2,∴1<e ≤2.又b 2a 2=c 2-a 2a 2=e 2-1,∴0<b 2a 2≤3,故0<ba ≤3.∴双曲线经过一、三象限的渐近线的斜率的取值范围是(0,3].45.已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点分别为F 1(-1,0),F 2(1,0),P 是双曲线上任一点,若双曲线的离心率的取值范围为[2,4],则PF 1→·PF 2→的最小值的取值范围是________.45.答案 ⎣⎡⎦⎤-1516,-34 解析 设P (m ,n ),则m 2a 2-n 2b 2=1,即m 2=a 2⎝⎛⎭⎫1+n 2b 2.又F 1(-1,0),F 2(1,0),则PF 1→=(-1-m ,-n ),PF 2→=(1-m ,-n ),PF 1→·PF 2→=n 2+m 2-1=n 2+a 2⎝⎛⎭⎫1+n 2b 2-1=n 2⎝⎛⎭⎫1+a 2b 2+a 2-1≥a 2-1,当且仅当n =0时取等号,所以PF 1→·PF 2→的最小值为a 2-1.由2≤1a ≤4,得14≤a ≤12,故-1516≤a 2-1≤-34,即PF 1→·PF 2→的最小值的取值范围是⎣⎡⎦⎤-1516,-34.。
苏州市高三数学 解析几何一.填空题【考点一】:直线方程及直线与直线的位置关系例1.若直线ax +(2a -1)y +1=0和直线3x +ay +3=0垂直,则a 的值为_________. 【答案】a =0或a =-1.【解析】由两直线垂直得3a +(2a -1)a =0,解得a =0或a =-1.例2.若直线l :y =kx -3与直线2x +3y -6=0的交点位于第一象限,则直线l 的倾斜角的范围是_________. 【答案】⎝⎛⎭⎫π6,π2.【解析】方法一:由⎩⎨⎧y =kx -3,2x +3y -6=0,解得:⎩⎪⎨⎪⎧x =6+332+3k ,y =6k -232+3k .因为交点在第一象限,所以⎩⎪⎨⎪⎧6+332+3k >0,6k -232+3k >0,解得:k >33. 所以,直线l 的倾斜角的范围是⎝⎛⎭⎫π6,π2.方法二:因为直线l :y =kx -3恒过定点(0,-3),直线2x +3y -6=0与x 轴,y 轴交点的坐标分别为(3,0),(0,2) .又点(0,-3)与点(3,0)连线的斜率为0+33-0=33,点(0,-3)与点(0,2)连线的斜率不存在,所以要使直线l 与直线2x +3y -6=0的交点位于第一象限,则k >33,所以直线l 的倾斜角的范围是⎝⎛⎭⎫π6,π2.例3.已知点A (-1,0),B (1,0),C (0,1),直线y =ax +b (a >0)将△ABC 分割为面积相等的两部分,则b 的取值范围是 . 【答案】⎝⎛⎭⎫1-22,12.【解析】由⎩⎪⎨⎪⎧x +y =1,y =ax +b 消去x ,得y =a +ba +1,当a >0时,直线y =ax +b 与x 轴交于点⎝⎛⎭⎫-b a ,0,结合图形知12×a +b a +1×⎝⎛⎭⎫1+b a =12,化简得(a +b )2=a (a +1),则a =b 21-2b.∵a >0,∴b 21-2b >0,解得b <12.考虑极限位置,即a =0,此时易得b =1-22,故答案为⎝⎛⎭⎫1-22,12. 例4.设m ∈R ,过定点A 的动直线x +my =0和过定点B 的动直线mx -y -m +3=0交于点P (x ,y ),则P A ·PB 的最大值是 . 【答案】5.【解析】因为直线x +my =0与mx -y -m +3=0分别过定点A ,B ,所以A (0,0),B (1,3). 当点P 与点A (或B )重合时,P A ·PB 为零; 当点P 与点A ,B 均不重合时,因为P 为直线x +my =0与mx -y -m +3=0的交点,且易知此两直线垂直, 所以△APB 为直角三角形,所以AP 2+BP 2=AB 2=10,所以P A ·PB ≤P A 2+PB 22=102=5,当且仅当P A =PB 时,上式等号成立.【考点二】: 圆方程及直线与圆的位置关系例5.圆心在直线y =-4x 上,且与直线l :x +y -1=0相切于点P (3,-2),则该圆的标准方程是 . 【答案】(x -1)2+(y +4)2=8.【解析】方法一: 如图,设圆心(x 0,-4x 0),依题意得4x 0-23-x 0=1,∴x 0=1,即圆心坐标为(1,-4),半径r =22, 故圆的方程为(x -1)2+(y +4)2=8.方法二:设所求方程为(x -x 0)2+(y -y 0)2=r 2,根据已知条件得⎪⎪⎪⎩⎪⎪⎪⎨⎧=-+=--+--=r y x r y x x y 2|1|)2()3(4002202000,解得⎪⎩⎪⎨⎧=-==224100r y x ,因此所求圆的方程为(x -1)2+(y +4)2=8.例6.已知圆C :(x -3)2+(y -4)2=1和两点A (-m ,0),B (m ,0)(m >0).若圆C 上存在点P ,使得∠APB =90°,则m 的最大值为________. 【答案】6【解析】如图所示,则圆心C 的坐标为(3,4),半径r =1,且AB =2m .因为∠APB =90°,连接OP ,易知OP =12AB =m .要求m 的最大值,即求圆C 上的点P 到原点O 的最大距离.因为OC =32+42=5, 所以OP max =OC +r =6, 即m 的最大值为6.例7.在平面直角坐标系xOy 中,(2,0)A ,O 是坐标原点,若在直线0x y m ++=上总存在点P,使得PA ,则实数m 的取值范围是 .【答案】11m +≤.【解析】设P (x ,y ),由PA =得,化简得22(1)3x y ++=,所以点P 是直线0x y m ++=与圆22(1)3x y ++=,的公共点,即直线与圆,解得11m -≤.例8.已知圆C :22(1)5x y +-=,A 为圆C 与x 负半轴的交点,过点A 作圆的弦AB ,记线段AB 的中点为M .若OA OM =,则直线AB 的斜率 . 【答案】2k =.【解析】设直线AB :(2)y k x =+. 因为CM AB ⊥,直线CM :11y x k=-+. 将它与直线AB 的方程联立得222(12)2(,)11k k k kM k k -+++.因为2OA OM ==2=,2k =±. 当2k =-不符合,故2k =.例9.已知直线3y ax =+与圆22280x y x ++-=相交于,A B 两点,点00(,)P x y 在直线2y x =上,且PB PA =,则0x 的取值范围为 .【答案】(1,0)(0,2)-.【解析】先从第一个条件出发,确定参数a 的取值范围.因为P 在线段AB 的中垂线上,从而用a 的代数式表示直线PC 的斜率后得到00211x x a=-+, 3,04a a <->解得:0x 的取值范围为(1,0)(0,2)-.例10.设P 为直线3x +4y +3=0上的动点,过点P 作圆C :x 2+y 2-2x -2y +1=0的两条切线,切点分别为A ,B ,则四边形P ACB 的面积的最小值为________. 【答案】3.【解析】圆C :(x -1)2+(y -1)2=1的圆心是点C (1,1),半径是1, 易知PC 的最小值等于圆心C (1,1)到直线3x +4y +3=0的距离,即105=2,而四边形P ACB 的面积等于2S △P AC =2×(12P A ·AC )=P A ·AC =P A =PC 2-1=22-1=3,因此四边形P ACB 的面积的最小值是3.例11.在平面直角坐标系xOy 中,已知圆()41:22=-+y x C .若等边PAB ∆的一边AB为圆C 一条弦,则PC 的最大值为 . 【答案】4.【解析】由PAB ∆为等腰三角形,PAB ∆为等边三角形,故PC 与AB 垂直,设PC 与AB 交于点H ,记,,AH BH x PH y PC t ====,则CH =,满足()224,0x y x y t y ⎧+=>⎪⎨=+⎪⎩求PC的最小值.记直线:l y t =+,利用线性规划作图,可知当直线l 与圆弧()224,0x y x y +=>相切时,则t 取最大值,求得max 4t =,即PC 的最大值为4.例12.已知圆C 的方程为22(1)(1)9x y -+-=,直线:3l y kx =+与圆C 交于,A B 两点,M 为弦AB 上一动点,以M 为圆心,2为半径的圆与圆C 总有公共点,则实数k 的范围________. 【答案】k ≥34-. 【解析】因为5MC <,只要MC ≥1对于任意的点M 恒成立, 只需点位于的中点时存在公共点即可. 点(1,1)到直线的距离d =≥1,解得:k ≥34-. 【考点三】: 圆锥曲线方程与性质例13.若椭圆2215x y m+=的离心率e =,则m 的值是________.【答案】3或253. 【解析】当焦点在x轴上时,e ==3m =; 当焦点在y轴上时,e ==253m =. 例14.设12F F 是椭圆2222:1(0)x y E a b a b +=>>的左、右焦点,P 为直线32ax =上的一点,∆21F PF 是底角为30的等腰三角形,则E 的离心率为________. 【答案】34.【解析】∆21F PF 是底角为30的等腰三角形221332()224c PF F F a c c e a ⇒==-=⇔== .例15.已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左焦点为F ,C 与过原点的直线相交于A ,B 两点,连接AF ,BF .若AB =10,BF =8,cos ∠ABF =45,则C 的离心率为________.【答案】35.【解析】如图,设AF =x ,则cos ∠ABF =82+102-x 22×8×10=45. 解得x =6,∴∠AFB =90°,由椭圆及直线关于原点对称可知AF 1=8,∠F AF 1=∠F AB +∠FBA =90°,△F AF 1是直角三角形,所以F 1F =10,故2a =8+6=14,2c =10,∴c a =57.例16.若点O 和点F 分别为椭圆22143x y +=的中心和左焦点,点P 为椭圆上的任意一点,则OP FP 的最大值为 . 【答案】6.【解析】由题意,F (-1,0),设点P 00(,)x y ,则有2200143x y +=,解得22003(1)4x y =-, 因为00(1,)FP x y =+,00(,)OP x y =,所以2000(1)OP FP x x y ⋅=++=00(1)OP FP x x ⋅=++203(1)4x -=20034x x ++,此二次函数对应的抛物线的对称轴为02x =-,因为022x -≤≤,所以当02x =时,OP FP ⋅取得最大值222364++=.例17.设P 是有公共焦点F 1,F 2的椭圆C 1与双曲线C 2的一个交点,且PF 1⊥PF 2,椭圆C 1的离心率为e 1,双曲线C 2的离心率为e 2.若e 2=3e 1,则e 1=________.【答案】53. 【解析】设椭圆C 1的长半轴长为a 1,短半轴长为b 1,双曲线C 2的实半轴长为a 2,虚半轴长为b 2.∵ PF 1⊥PF 2,根据椭圆的性质可得S △PF 1F 2=b 21,又e 1=c a 1,∴ a 1=c e 1,∴ b 21=a 21-c 2=c 2⎝⎛⎭⎫1e 21-1.根据双曲线的性质可得S △PF 1F 2=b 22,∵ e 2=c a 2,a 2=c e 22,∴ b 22=c 2-a 22=c 2⎝⎛⎭⎫1-1e 22,∴ c 2⎝⎛⎭⎫1e 21-1=c 2⎝⎛⎭⎫1-1e 22,即1e 21+1e 22=2.∵ 3e 1=e 2,∴ e 1=53. 例18.已知直线:20l x y m -+=上存在点M 满足与两点(2,0)A -,(2,0)B 连线的斜率34MA MB K K =-,则实数m 的值是___________.【答案】[]4,4-.【解析】点M 的轨迹为221(2)43x y x +=≠. 把直线:2l x y m =-代入椭圆方程得,221612(312)0y my m -+-=. 根据条件,上面方程有非零解,得△≥0,解得-4≤m ≤4.例19.已知椭圆2222:1(0)x y C a b a b+=>>.双曲线221x y -=的渐近线与椭圆C 有四个交点,以这四个焦点为顶点的四边形的面积为16,则椭圆C 的方程为 .【答案】152022=+y x . 【解析】因为椭圆的离心率为23, 所以23==a c e ,2243a c =,222243b a ac -==,所以2241a b =,即224b a =. 双曲线的渐近线为x y ±=,代入椭圆得12222=+bx a x ,即1454222222==+b x b x b x . 所以b x b x 52,5422±==,2254b y =,b y 52±=, 则第一象限的交点坐标为)52,52(b b .四边形的面积为16516525242==⨯⨯b b b ,故52=b .因此,椭圆方程为152022=+y x . 例20.已知双曲线22221(00)x y a b a b-=>>,的左、右焦点分别为12F F ,,以12F F 为直径的圆与双曲线在第一象限的交点为P .若1230PF F ∠=︒,则该双曲线的离心率为 .1.【解析】由双曲线定义易得,12122,PF PF a PF -==,1212212F F ce a PF PF ===-. 例21.已知圆O :224x y +=与x 轴负半轴的交点为A ,点P 在直线l0y a +-=上,过点P 作圆O 的切线,切点为T .(1)若a =8,切点1)T -,求直线AP 的方程; (2)若P A =2PT ,求实数a 的取值范围.【解析】由题意,直线PT 切于点T ,则OT ⊥PT ,又切点T 的坐标为(4,3)-,所以OT k =,1PT OT k k =-=,故直线PT的方程为1y x +-40y --=. 联立直线l 和PT,40,80,y y --=+-=解得2,x y ⎧=⎪⎨=⎪⎩即2)P ,所以直线AP的斜率为k ===,故直线AP的方程为2)y x =+,即1)21)0x y -+=,即1)20x y -+=.(2)设(,)Pxy ,由P A =2PT ,可得2222(2)4(4)x y x y ++=+-,即22334200x y x ++-=,即满足P A =2PT 的点P 的轨迹是一个圆22264()39x y -+=,所以问题可转化为直线0y a +-=与圆22264()39x y -+=有公共点,所以83d =,即16|3a -≤a . 例22.已知圆C :x 2+(y -1)2=5,直线l :mx -y +1-m =0. (1)求证:对m ∈R ,直线l 与圆C 总有两个交点;(2)设直线l 与圆C 交于点A ,B ,若AB =17,求直线l 的倾斜角;(3)设直线l 与圆C 交于A ,B ,若定点P (1,1)满足2AP →=PB →,求此时直线l 的方程. 【解析】(1)证明 直线l 恒过定点P (1,1),由12+(1-1)2<5知点P 在圆C 内, 所以直线l 与圆C 总有两个交点.(2)圆心到直线的距离d =222⎪⎭⎫ ⎝⎛-AB r =32,又d =|0-1+1-m |m 2+1,所以32=|0-1+1-m |m 2+1,解得m =±3,所以,l 的倾斜角为π3或2π3.(3)方法一:设A (x 1,y 1),B (x 2,y 2).由2AP →=PB →得:2(1-x 1,1-y 1)=(x 2-1,y 2-1), 所以x 2+2x 1=3,①直线l 的斜率存在,设其方程为y -1=k (x -1),⎩⎨⎧=-+-=-5)1()1(122y x x k y ⇒(k 2+1)x 2-2k 2x +k 2-5=0, 所以⎪⎪⎩⎪⎪⎨⎧+-=+=+③②,15,1222212221k k x x k k x x由①②③消去x 1,x 2解得k =±1,故所求直线l 的方程为x -y =0或x +y -2=0.方法二:如图,过点C 作CD ⊥AB 于D ,设AP =t ,则PB =2t ,AD =1.5t ,PD =0.5t .在Rt △CDP 中,有CP 2=CD 2+PD 2,得CD 2=1-(0.5t )2,在Rt △CDA 中,CD 2=5-()1.5t 2,所以t =2, 从而,CD =22,又直线AB 的方程为mx -y +1-m =0,d =|m |m 2+1=22, 解得m =±1,故所求直线l 的方程为x -y =0或x +y -2=0.例23.如图,在平面直角坐标系xOy 中,椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,P 为椭圆上一点(在x 轴上方),连结PF 1并延长交椭圆于另一点Q ,设PF 1→=λF 1Q →.(1) 若点P 的坐标为⎝⎛⎭⎫1,32,且△PQF 2的周长为8,求椭圆C 的方程; (2) 若PF 2垂直于x 轴,且椭圆C 的离心率e ∈⎣⎡⎦⎤12,22,求实数λ的取值范围.【解析】 (1) 因为F 1,F 2为椭圆C 的两焦点,且P ,Q 为椭圆上的点,所以PF 1+PF 2=QF 1+QF 2=2a , 从而△PQF 2的周长为4a .由题意,得4a =8,解得a =2.因为点P 的坐标为⎝⎛⎭⎫1,32, 所以1a 2+94b2=1,解得b 2=3.所以椭圆C 的方程为x 24+y 23=1.(2) (法1)因为PF 2⊥x 轴,且P 在x 轴上方,故设P (c ,y 0),y 0>0.设Q (x 1,y 1). 因为P 在椭圆上,所以c 2a 2+y 20b 2=1,解得y 0=b 2a ,即P ⎝⎛⎭⎫c ,b 2a .因为F 1(-c ,0),所以PF 1→=⎝⎛⎭⎫-2c ,-b 2a ,F 1Q →=(x 1+c ,y 1).由PF 1→=λF 1Q →,得-2c =λ(x 1+c ),-b 2a=λy 1,解得x 1=-λ+2λc ,y 1=-b2λa ,所以Q ⎝⎛⎭⎪⎫-λ+2λc ,-b 2λa .因为点Q 在椭圆上,所以⎝⎛⎭⎫λ+2λ2e 2+b2λ2a2=1,即(λ+2)2e 2+(1-e 2)=λ2,(λ2+4λ+3)e 2=λ2-1.因为λ+1≠0,所以(λ+3)e 2=λ-1,从而λ=3e 2+11-e 2=41-e 2-3. 因为e ∈⎣⎡⎦⎤12,22,所以14≤e 2≤12,即73≤λ≤5.所以λ的取值范围是⎣⎡⎦⎤73,5.(法2)因为PF 2⊥x 轴,且P 在x 轴上方, 故设P (c ,y 0),y 0>0.因为P 在椭圆上,所以c 2a 2+y 20b 2=1,解得y 0=b 2a,即P ⎝⎛⎭⎫c ,b 2a . 因为F 1(-c ,0),故直线PF 1的方程为y =b 22ac(x +c ).由⎩⎨⎧y =b22ac(x +c ),x 2a 2+y2b 2=1,得(4c 2+b 2)x 2+2b 2cx +c 2(b 2-4a 2)=0.因为直线PF 1与椭圆有一个交点为P ⎝⎛⎭⎫c ,b 2a ,设Q (x 1,y 1),则x 1+c =-2b 2c 4c 2+b 2,即-c -x 1=2b 2c4c 2+b 2.因为PF 1→=λF 1Q →所以λ=2c -c -x 1=4c 2+b 2b 2=3c 2+a 2a 2-c 2=3e 2+11-e 2=41-e 2-3. 因为e ∈⎣⎡⎦⎤12,22,所以14≤e 2≤12,即73≤λ≤5.所以λ的取值范围是⎣⎡⎦⎤73,5.例24.如图,椭圆C :x 2a 2+y 2b 2=1(a >b >0)经过点P (1,32),离心率e =12,直线l 的方程为x=4.(1)求椭圆C 的方程;(2)AB 是经过右焦点F 的任一弦(不经过点P ),设直线AB 与直线l 相交于点M ,记P A ,PB ,PM 的斜率分别为k 1,k 2,k 3.问:是否存在常数λ,使得k 1+k 2=λk 3?若存在,求λ的值;若不存在,说明理由.【解析】(1)由P ⎝⎛⎭⎫1,32在椭圆上得,1a 2+94b 2=1.① 依题设知a =2c ,则b 2=3c 2.② ②代入①解得c 2=1,a 2=4,b 2=3. 故椭圆C 的方程为x 24+y 23=1.(2)法一:由题意可设直线AB 的斜率为k , 则直线AB 的方程为y =k (x -1).③代入椭圆方程3x 2+4y 2=12并整理,得(4k 2+3)x 2-8k 2x +4(k 2-3)=0. 设A (x 1,y 1),B (x 2,y 2),则有 x 1+x 2=8k 24k 2+3,x 1x 2=4(k 2-3)4k 2+3.④在方程③中令x =4得,M 的坐标为(4,3k ). 从而k 1=y 1-32x 1-1,k 2=y 2-32x 2-1,k 3=3k -324-1=k -12.由于A ,F ,B 三点共线,则有k =k AF =k BF ,即有y 1x 1-1=y 2x 2-1=k . 所以k 1+k 2=y 1-32x 1-1+y 2-32x 2-1=y 1x 1-1+y 2x 2-1-32⎝⎛⎭⎫1x 1-1+1x 2-1=2k -32·x 1+x 2-2x 1x 2-(x 1+x 2)+1.⑤④代入⑤得k 1+k 2=2k -32·8k 24k 2+3-24(k 2-3)4k 2+3-8k 24k 2+3+1=2k -1,又k 3=k -12,所以k 1+k 2=2k 3.故存在常数λ=2符合题意.法二:设B (x 0,y 0)(x 0≠1),则直线FB 的方程为y =y 0x 0-1(x -1),令x =4,求得M ⎝⎛⎭⎫4,3y 0x 0-1,从而直线PM 的斜率为k 3=2y 0-x 0+12(x 0-1),联立⎩⎨⎧y =y 0x 0-1(x -1),x 24+y23=1,得A ⎝⎛⎭⎪⎫5x 0-82x 0-5,3y 02x 0-5,则直线P A 的斜率为k 1=2y 0-2x 0+52(x 0-1),直线PB 的斜率为k 2=2y 0-32(x 0-1),所以k 1+k 2=2y 0-2x 0+52(x 0-1)+2y 0-32(x 0-1)=2y 0-x 0+1x 0-1=2k 3,故存在常数λ=2符合题意.例25.如图6,已知椭圆22:1124x y C +=,点B 是其下顶点,过点B 的直线交椭圆C 于另一点A (A 点在x 轴下方),且线段AB 的中点E 在直线y x =上. (1)求直线AB 的方程;(2)若点P 为椭圆C 上异于,A B 的动点,且直线,AP BP 分别交直线y x =于点,M N ,证明:OM ON ⋅为定值.【解析】(1)设点E (m ,m ),由B (0,-2)得A (2m ,2m +2). 代入椭圆方程得224(22)1124m m ++=,即22(1)13m m ++=, 解得32m =-或0m =(舍). 所以A (3-,1-).故直线AB 的方程为360x y ++=.(2)设00(,)P x y ,则22001124x y +=,即220043x y =-. 设),(M M y x M ,由M P A ,,三点共线, ∴)3)(1()1)(3(00++=++M M x y y x . 又点M 在直线x y =上,图6解得M 点的横坐标000032M y x x x y -=-+.设),(N N y x N ,由N P B ,,三点共线, ∴00(2)(2)N N x y y x +=+.点N 在直线y x =上,解得N 点的横坐标00022N x x x y -=--.所以OM ON ⋅0|0|M N x x --=2||||M N x x ⋅=200003||2y x x y --+0002||2x x y -⋅--=2000200262||()4x x y x y ---=2000220000262||23x x y x x x y ---=2000200032||3x x y x x y --=6. 例26.已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左焦点为F (-1,0),左准线方程为x =-2.(1) 求椭圆C 的标准方程;(2) 已知直线l 交椭圆C 于A ,B 两点.① 若直线l 经过椭圆C 的左焦点F ,交y 轴于点P ,且满足P A →=λAF →,PB →=μBF →.求证:λ+μ为定值;② 若OA ⊥OB (O 为原点),求△AOB 面积的取值范围.【解析】(1)由题设知c =1,a 2c=2,a 2=2c ,∴ a 2=2,b 2=a 2-c 2=1,∴ 椭圆C :x 22+y 2=1.(2) ① 证明:由题设知直线l 的斜率存在,设直线l 的方程为y =k (x +1),则P (0,k ).设A (x 1,y 1),B (x 2,y 2),直线l 方程代入椭圆方程,得x 2+2k 2(x +1)2=2,整理得(1+2k 2)x 2+4k 2x +2k 2-2=0,∴ x 1+x 2=-4k 21+2k 2,x 1x 2=2k 2-21+2k 2.由P A →=λAF →,PB →=μBF →知,λ=-x 11+x 1,μ=-x 21+x 2,∴ λ+μ=-x 1+x 2+2x 1x 21+x 1+x 2+x 1x 2=--4k 21+2k 2+4k 2-41+2k 21+-4k 21+2k 2+2k 2-21+2k2=--4-1=-4(定值). ②当直线OA ,OB 分别与坐标轴重合时,易知△AOB 的面积S =22.当直线OA ,OB 的斜率均存在且不为零时,设OA :y =kx ,OB :y =-1kx .设A (x 1,y 1),B (x 2,y 2),将y =kx 代入椭圆C 方程,得x 2+2k 2x 2=2,∴ x 21=22k 2+1,y 21=2k 22k 2+1,同理可得x 22=2k 22+k 2,y 22=22+k 2, △AOB 的面积S =OA ·OB 2=(k 2+1)2(2k 2+1)(k 2+2).令t =k 2+1∈[1,+∞),则S =t 2(2t -1)(t +1)=12+1t -1t2;令u =1t∈(0,1),则S =1-u 2+u +2=1-⎝⎛⎭⎫u -122+94∈⎣⎡⎭⎫23,22. 综上所述,S ∈⎣⎡⎦⎤23,22,即△AOB 面积的取值范围是⎣⎡⎦⎤23,22.三.课本改编题1.课本原题(必修2第112页习题2.2第12题):已知点(,)M x y 与两个定点(0,0),(3,0)O A 的距离之比为12,那么点M 的坐标应满足什么关系?画出满足条件的点M 所构成的曲线.改编1:(2008高考江苏卷第13题)满足条件2,AB AC ==的三角形ABC 的面积的最大值为 .改编2:(2013高考江苏卷第18题)如图,在平面直角坐标系xOy 中,点A (0,3),直线l :y=2x -4.设圆C 的半径为1,圆心在l 上.(1)若圆心C 也在直线y =x -1上,过点A 作圆C 的切线,求切线方程; (2)若圆C 上存在点M ,使MA =2MO ,求圆心C 的横坐标a 的取值范围.[说明]:利用阿波罗尼斯圆进行命题的经典考题很多,最著名的当属高考中出现的这两题.课本上虽未出现阿波罗尼斯圆的字眼,但是必修2教材上的这道习题已经体现了这类问题的本质.如果我们平时能钻研教材,对这道习题有所研究,那么我们的数学意识就会有所增强,再碰到此类问题时就会得心应手.2.课本原题(1)(选修2-1第42页习题第5题)在ABC D 中,(6,0),(6,0)B C -,直线AB 、AC 的斜率乘积为94,求顶点A 的轨迹.原题(2)(选修2-2第105页复习题第14题):已知椭圆具有如下性质:设M 、N 是椭圆22221(0)x y a b a b+=>>上关于原点对称的两点,点P 是椭圆上的任意一点.若直线PM 、PN 的斜率都存在并分别记为,PM PN k k ,则P M P N k k ×是与点P 的位置无关的定值.试类比椭圆,写出双曲线22221(0,0)x y a b a b-=>>的一个类似性质,并加以证明.改编1:(2012年南通市高三数学第二次模拟考试第13题)在平面直角坐标系xOy 中,F 1,F 2分别为椭圆x 2a 2+y 2b2=1(a >b >0)的左、右焦点,B 、C 分别为椭圆的上、下顶点,直线BF 2与椭圆的另一交点为D .若cos ∠F 1BF 2=725,则直线CD 的斜率为____.改编2:(2013苏北四市期末18题第2、3问)如图,在平面直角坐标系xOy 中,椭圆E的方程为22143x y +=.若点A ,B 分别是椭圆E 的左、右顶点,直线l 经过点B 且垂直于x 轴,点P 是椭圆 上异于A ,B 的任意一点,直线AP 交l 于点.M(1)设直线OM 的斜率为,1k 直线BP 的斜率为2k ,求证:21k k 为定值;(2)设过点M 垂直于PB 的直线为m .求证:直线m 过定点,并求出定点的坐标.改编3:(2011年高考江苏卷第18题)如图,在平面直角坐标系xOy中,M、N分别是椭圆22142x y+=的顶点,过坐标原点的直线交椭圆于P、A两点,其中P在第一象限,过P作x轴的垂线,垂足为C,连接AC,并延长交椭圆于点B,设直线P A的斜率为k.(1)当直线P A平分线段MN,求k的值;(2)当k=2时,求点P到直线AB的距离d;(3)对任意k>0,求证:P A⊥PB.[说明]原题是推理与证明中的复习题,教学中可以把握教材前后的联系,在椭圆的学习中就可以对该结论进行探究.利用该结论进行命题的经典考题非常多,以上几例利用这个结论会大大降低运算的难度.平时我们要多留意课本上的常见结论,加强知识储备,这对提高我们的解题能力大有帮助.3.课本原题(必修2 P88思考运用13):已知直线l 过点(2,3),与两坐标轴在第一象限围成的三角形面积为16,求该直线l 的方程改编1:过点(-5,-4)且与两坐标轴围成的三角形面积为5的直线方程是 . [解析]设所求直线方程为)5(4+=+x k y .依题意有5)45)(54(21=--k k. ∴01630252=+-k k (无解)或01650252=+-k k ,解得52=k ,或58=k . ∴直线的方程是01052=--y x ,或02058=+-y x .改编2:(2006年上海春季卷)已知直线l 过点)1,2(P ,且与x 轴、y 轴的正半轴分别交于A 、B 两点,O 为坐标原点,则△OAB 面积的最小值为 . [解析]设直线AB 的方程为)0()2(1<-=-k x k y ,则1111111(2)(12)44[4(4)()][442222OAB S k k k k k k ∆=--=--=+-+-+=≥,当且仅当k k 14-=-即21-=k 时取等号, ∴当21-=k 时,OAB S ∆有最小值4. 改编3:已知射线)0(4:>=x x y l 和点)4,6(M ,在射线l 上求一点N ,使直线MN 与l 及x 轴围成的三角形面积S 最小. [解析]设)1)(4,(000>x x x N ,则直线MN 的方程为0)4)(6()6)(44(00=-----y x x x .令0=y 得1500-=x x x , ∴]211)1[(101]1)1[(101104)15(2100020020000+-+-=-+-=-=⋅-=x x x x x x x x x S2]40=≥, 当且仅当11100-=-x x 即20=x 时取等号. ∴当N 为(2,8)时,三角形面积S 最小.[说明]原题的本质是建立三角形的面积与斜率之间的方程关系,通过解方程求出未知量,而变体题则是建立这两者之间的函数关系,利用求函数最值的知识解决问题。
高考数学历年(2018-2022)真题按知识点分类平面解析几何(直线与方程)练习一、单选题1.(2022ꞏ全国ꞏ统考高考真题)椭圆2222:1(0)x y C a b a b+=>>的左顶点为A ,点P ,Q 均在C 上,且关于y 轴对称.若直线,AP AQ 的斜率之积为14,则C 的离心率为( )A B C .12D .132.(2022ꞏ全国ꞏ统考高考真题)图1是中国古代建筑中的举架结构,,,,AA BB CC DD ''''是桁,相邻桁的水平距离称为步,垂直距离称为举,图2是某古代建筑屋顶截面的示意图.其中1111,,,DD CC BB AA 是举,1111,,,OD DC CB BA 是相等的步,相邻桁的举步之比分别为11111231111,0.5,,DD CC BB AAk k k OD DC CB BA ====.已知123,,k k k 成公差为0.1的等差数列,且直线OA 的斜率为0.725,则3k =( )A .0.75B .0.8C .0.85D .0.93.(2021ꞏ全国ꞏ统考高考真题)抛物线22(0)y px p =>的焦点到直线1y x =+的距离为p =( )A .1B .2C .D .44.(2020ꞏ全国ꞏ统考高考真题)点(0,﹣1)到直线()1y k x =+距离的最大值为( )A.1BC D .25.(2020ꞏ浙江ꞏ统考高考真题)已知点O (0,0),A (–2,0),B (2,0).设点P 满足|P A |–|PB |=2,且P 为函数y =图像上的点,则|OP |=( )A .2B .5C D6.(2020ꞏ山东ꞏ统考高考真题)直线2360x y +-=关于点()1,2-对称的直线方程是( ) A .32100x y --= B .32230x y --= C .2340x y +-=D .2320x y +-=7.(2020ꞏ山东ꞏ统考高考真题)已知直线sin cos :y x l θθ=+的图像如图所示,则角θ是( )A .第一象限角B .第二象限角C .第三象限角D .第四象限角8.(2018ꞏ全国ꞏ高考真题)已知双曲线22221(00)x y C a b a b -=>>:,则点(4,0)到C 的渐近线的距离为A B .2 C .2D .9.(2018ꞏ北京ꞏ高考真题)在平面直角坐标系中,记d 为点()cos ,sin P θθ到直线20x my --=的距离,当θ、m 变化时,d 的最大值为A .1B .2C .3D .410.(2019ꞏ北京ꞏ高考真题)已知直线l 的参数方程为13,24x t y t =+⎧⎨=+⎩(t 为参数),则点(1,0)到直线l 的距离是A .15B .25C .45D .65二、多选题11.(2022ꞏ全国ꞏ统考高考真题)已知O 为坐标原点,过抛物线2:2(0)C y px p =>焦点F 的直线与C 交于A ,B 两点,其中A 在第一象限,点(,0)M p ,若||||AF AM =,则( )A .直线AB 的斜率为B .||||OB OF =C .||4||AB OF >D .180OAM OBM ∠+∠<︒三、填空题12.(2022ꞏ全国ꞏ统考高考真题)设点(2,3),(0,)A B a -,若直线AB 关于y a =对称的直线与圆22(3)(2)1x y +++=有公共点,则a 的取值范围是________.13.(2022ꞏ全国ꞏ统考高考真题)设点M 在直线210x y +-=上,点(3,0)和(0,1)均在M 上,则M 的方程为______________.14.(2021ꞏ全国ꞏ统考高考真题)双曲线22145x y -=的右焦点到直线280x y +-=的距离为________.15.(2021ꞏ全国ꞏ统考高考真题)已知函数12()1,0,0xf x e x x <=>-,函数()f x 的图象在点()()11,A x f x 和点()()22,B x f x 的两条切线互相垂直,且分别交y 轴于M ,N 两点,则||||AM BN 取值范围是_______. 16.(2019ꞏ江苏ꞏ高考真题)在平面直角坐标系xOy 中,P 是曲线4(0)y x x x=+>上的一个动点,则点P 到直线x +y =0的距离的最小值是_____.四、解答题17.(2018ꞏ全国ꞏ高考真题)设椭圆22:12x C y +=的右焦点为F ,过F 的直线l 与C 交于,A B两点,点M 的坐标为(2,0).(1)当l 与x 轴垂直时,求直线AM 的方程; (2)设O 为坐标原点,证明:OMA OMB ∠=∠.18.(2018ꞏ全国ꞏ高考真题)设抛物线22C y x =:,点()20A ,,()20B -,,过点A 的直线l 与C 交于M ,N 两点.(1)当l 与x 轴垂直时,求直线BM 的方程; (2)证明:ABM ABN ∠=∠.19.(2019ꞏ江苏ꞏ高考真题)如图,一个湖的边界是圆心为O 的圆,湖的一侧有一条直线型公路l ,湖上有桥AB (AB 是圆O 的直径).规划在公路l 上选两个点P 、Q ,并修建两段直线型道路PB 、QA .规划要求:线段PB 、QA 上的所有点到点O 的距离均不小..于圆..O 的半径.已知点A 、B 到直线l 的距离分别为AC 和BD (C 、D 为垂足),测得AB =10,AC =6,BD =12(单位:百米).(1)若道路PB与桥AB垂直,求道路PB的长;(2)在规划要求下,P和Q中能否有一个点选在D处?并说明理由;(3)对规划要求下,若道路PB和QA的长度均为d(单位:百米).求当d最小时,P、Q两点间的距离.五、双空题20.(2020ꞏ北京ꞏ统考高考真题)已知双曲线22:163x yC-=,则C的右焦点的坐标为_________;C的焦点到其渐近线的距离是_________.参考答案1.A【要点分析】设()11,P x y ,则()11,Q x y -,根据斜率公式结合题意可得2122114y x a =-+,再根据2211221x y a b +=,将1y 用1x 表示,整理,再结合离心率公式即可得解. 【答案详解】[方法一]:设而不求 设()11,P x y ,则()11,Q x y - 则由14AP AQk k ⋅=得:21112211114AP AQ y y y k k x a x a x a ⋅=⋅==+-+-+, 由2211221x y a b +=,得()2221212b a x y a-=, 所以()2221222114b a x ax a -=-+,即2214b a =, 所以椭圆C的离心率c e a === A.[方法二]:第三定义设右端点为B ,连接PB ,由椭圆的对称性知:PB AQ k k =-故14AP AQ PA AQ k k k k ⋅=⋅-=-,由椭圆第三定义得:22PA AQb k k a⋅=-,故2214b a = 所以椭圆C的离心率c e a === A.2.D【要点分析】设11111OD DC CB BA ====,则可得关于3k 的方程,求出其解后可得正确的选项.【答案详解】设11111OD DC CB BA ====,则111213,,CC k BB k AA k ===, 依题意,有31320.2,0.1k k k k -=-=,且111111110.725DD CC BB AA OD DC CB BA +++=+++,所以30.530.30.7254k +-=,故30.9k =,故选:D 3.B【要点分析】首先确定抛物线的焦点坐标,然后结合点到直线距离公式可得p 的值. 【答案详解】抛物线的焦点坐标为,02p ⎛⎫⎪⎝⎭,其到直线10x y -+=的距离:d == 解得:2p =(6p =-舍去). 故选:B. 4.B【要点分析】首先根据直线方程判断出直线过定点(1,0)P -,设(0,1)A -,当直线(1)y k x =+与AP 垂直时,点A 到直线(1)y k x =+距离最大,即可求得结果. 【答案详解】由(1)y k x =+可知直线过定点(1,0)P -,设(0,1)A -, 当直线(1)y k x =+与AP 垂直时,点A 到直线(1)y k x =+距离最大,即为||AP =故选:B.【名师点睛】该题考查的是有关解析几何初步的问题,涉及到的知识点有直线过定点问题,利用几何性质是解题的关键,属于基础题. 5.D【要点分析】根据题意可知,点P既在双曲线的一支上,又在函数y =的图象上,即可求出点P 的坐标,得到OP 的值.【答案详解】因为||||24PA PB -=<,所以点P 在以,A B 为焦点,实轴长为2,焦距为4的双曲线的右支上,由2,1c a ==可得,222413b c a =-=-=,即双曲线的右支方程为()22103y x x -=>,而点P还在函数y =的图象上,所以,由()22103y x x y ⎧⎪⎨->==⎪⎩,解得2x y ⎧=⎪⎪⎨⎪=⎪⎩,即OP ==故选:D.【名师点睛】本题主要考查双曲线的定义的应用,以及二次曲线的位置关系的应用,意在考查学生的数学运算能力,属于基础题. 6.D【要点分析】设对称的直线方程上的一点的坐标为()x y ,,则其关于点()1,2-对称的点的坐标为(2,4)x y ---,代入已知直线即可求得结果.【答案详解】设对称的直线方程上的一点的坐标为()x y ,, 则其关于点()1,2-对称的点的坐标为(2,4)x y ---, 因为点(2,4)x y ---在直线2360x y +-=上, 所以()()223460x y --+--=即2320x y +-=. 故选:D.7.D【要点分析】本题可根据直线的斜率和截距得出sin 0θ<、cos 0θ>,即可得出结果. 【答案详解】结合图像易知,sin 0θ<,cos 0θ>, 则角θ是第四象限角, 故选:D.8.D【答案详解】要点分析:由离心率计算出ba,得到渐近线方程,再由点到直线距离公式计算即可.答案详解:e c a === 1ba∴= 所以双曲线的渐近线方程为x y 0±=所以点(4,0)到渐近线的距离d== 故选D名师点睛:本题考查双曲线的离心率,渐近线和点到直线距离公式,属于中档题.9.C【要点分析】P 为单位圆上一点,而直线20x my --=过点()2,0A ,则根据几何意义得d 的最大值为1OA +.【答案详解】22cos sin 1θθ+=∴Q ,P 为单位圆上一点,而直线20x my --=过点()2,0A , 所以d 的最大值为1213OA +=+=,选C.【名师点睛】与圆有关的最值问题主要表现在求几何图形的长度、面积的最值,求点到直线的距离的最值,求相关参数的最值等方面.解决此类问题的主要思路是利用圆的几何性质将问题转化.10.D【要点分析】首先将参数方程化为直角坐标方程,然后利用点到直线距离公式求解距离即可. 【答案详解】直线l 的普通方程为()()41320x y ---=,即4320x y -+=,点()1,0到直线l 的距离65d ==,故选D. 【名师点睛】本题考查直线参数方程与普通方程的转化,点到直线的距离,属于容易题,注重基础知识、基本运算能力的考查.11.ACD【要点分析】由AF AM =及抛物线方程求得3(42p A ,再由斜率公式即可判断A 选项;表示出直线AB的方程,联立抛物线求得(,33p B -,即可求出OB 判断B 选项;由抛物线的定义求出2512pAB =即可判断C 选项;由0OA OB ⋅< ,0MA MB ⋅< 求得AOB ∠,AMB∠为钝角即可判断D 选项.【答案详解】对于A ,易得(,0)2pF ,由AF AM =可得点A 在FM 的垂直平分线上,则A 点横坐标为3224p pp +=, 代入抛物线可得2233242p y p p =⋅=,则3()42p A ,则直线AB的斜率为2342p p =-,A 正确;对于B,由斜率为可得直线AB的方程为2px y =+,联立抛物线方程得220y py p -=,设11(,)B x y1p y p +=,则1y =2123p x ⎛⎫-=⋅ ⎪ ⎪⎝⎭,解得13p x =,则(,)33p B ,则2p OB OF =≠=,B 错误; 对于C ,由抛物线定义知:325244312p p pAB p p OF =++=>=,C 正确; 对于D,2333(,(,0423343234p p p p p OA OB ⎛⎫⋅=⋅-=⋅+⋅-=-< ⎪ ⎪⎝⎭,则AOB ∠为钝角,又2225()(,)0423343236p p p p p MA MB ⎛⎫⎛⎫⋅=-⋅--=-⋅-+⋅=-< ⎪ ⎪ ⎪⎝⎭⎝⎭,则AMB ∠为钝角,又360AOB AMB OAM OBM ∠+∠+∠+∠= ,则180OAM OBM ∠+∠< ,D 正确. 故选:ACD.12.13,32⎡⎤⎢⎥⎣⎦【要点分析】首先求出点A 关于y a =对称点A '的坐标,即可得到直线l 的方程,根据圆心到直线的距离小于等于半径得到不等式,解得即可;【答案详解】解:()2,3A -关于y a =对称的点的坐标为()2,23A a '--,()0,B a 在直线y a =上,所以A B '所在直线即为直线l ,所以直线l 为32a y x a -=+-,即()3220a x y a -+-=; 圆()()22:321C x y +++=,圆心()3,2C --,半径1r =, 依题意圆心到直线l 的距离1d =≤,即()()2225532a a -≤-+,解得1332a ≤≤,即13,32a ⎡⎤∈⎢⎥⎣⎦;故答案为:13,32⎡⎤⎢⎥⎣⎦13.22(1)(1)5x y -++=【要点分析】设出点M 的坐标,利用(3,0)和(0,1)均在M 上,求得圆心及半径,即可得圆的方程.【答案详解】[方法一]:三点共圆∵点M 在直线210x y +-=上,∴设点M 为(,12)-a a ,又因为点(3,0)和(0,1)均在M 上,∴点M到两点的距离相等且为半径R , ∴==R ,222694415-++-+=a a a a a ,解得1a =,∴(1,1)M -,R=M 的方程为22(1)(1)5x y -++=. 故答案为:22(1)(1)5x y -++= [方法二]:圆的几何性质由题可知,M 是以(3,0)和(0,1)为端点的线段垂直平分线 y=3x-4与直线210xy +-=的交点(1,-1).R =M 的方程为22(1)(1)5x y -++=. 故答案为:22(1)(1)5x y -++= 14【要点分析】先求出右焦点坐标,再利用点到直线的距离公式求解.【答案详解】由已知,3c ==,所以双曲线的右焦点为(3,0),所以右焦点(3,0)到直线280x y +-===.15.()0,1【要点分析】结合导数的几何意义可得120x x +=,结合直线方程及两点间距离公式可得1A x M =,2B x N =,化简即可得解.【答案详解】由题意,()1011,0,xx x e x f x e e x <=⎧---≥⎪=⎨⎪⎩,则()0,,0xx x f x e e x ⎧-⎪=<>⎨'⎪⎩,所以点()11,1x A x e -和点()22,1x B x e -,12,x xAM BN k e k e =-=,所以12121,0x xe e x x -⋅=-+=,所以()()111111,0:,11x x x xe e x x e AM e y M x -+=---+,所以1x AM ==,同理2B x N =,所以()10,1x e N AM B ===∈=. 故答案为:()0,1【名师点睛】关键点名师点睛:解决本题的关键是利用导数的几何意义转化条件120x x +=,消去一个变量后,运算即可得解. 16.4.【要点分析】将原问题转化为切点与直线之间的距离,然后利用导函数确定切点坐标可得最小距离【答案详解】当直线0x y +=平移到与曲线4y x x=+相切位置时,切点Q 即为点P 到直线0x y +=的距离最小.由2411y x '=-=-,得)x =,y =即切点Q ,则切点Q 到直线0x y +=4=,故答案为4.【名师点睛】本题考查曲线上任意一点到已知直线的最小距离,渗透了直观想象和数学运算素养.采取导数法和公式法,利用数形结合和转化与化归思想解题.17.(1)AM的方程为2y x =-2y x =(2)证明见解析. 【要点分析】(1)根据l 与x 轴垂直,且过点()1,0F ,求得直线l 的方程为=1x ,代入椭圆方程求得点A的坐标为2⎛⎫ ⎪ ⎪⎝⎭或1,2⎛-⎝⎭,利用两点式求得直线AM 的方程; (2)方法一:分直线l 与x 轴重合、l 与x 轴垂直、l 与x 轴不重合也不垂直三种情况证明,特殊情况比较简单,也比较直观,对于一般情况将角相等通过直线的斜率的关系来体现,从而证得结果.【答案详解】(1)由已知得()1,0F ,l 的方程为=1x .由已知可得,点A的坐标为1,2⎛ ⎝⎭或1,2⎛⎫ ⎪ ⎪⎝⎭. 所以AM的方程为2y x =+2y x =. (2)[方法一]:【通性通法】分类+常规联立 当l 与x 轴重合时,0OMA OMB ∠=∠=o .当l 与x 轴垂直时,OM 为AB 的垂直平分线,所以OMA OMB ∠=∠.当l 与x 轴不重合也不垂直时,设l 的方程为()()10y k x k =-≠,()()1122,,,A x y B x y ,则12x x <<MA 、MB 的斜率之和为121222MA MB y yk k x x +=+--. 由1122,y k k x y k x k =-=-得()()()12121223422MA MB kx x k x x kk k x x -+++=--.将()1y k x =-代入2212x y +=得()2222214220k x k x k +-+-=.所以,22121222422,2121k k x x x x k k -+==++. 则()33312122441284234021k k k k kkx x k x x k k --++-++==+.从而0MA MB k k +=,故MA 、MB 的倾斜角互补,所以OMA OMB ∠=∠. 综上,OMA OMB ∠=∠.[方法二]:角平分线定义的应用当直线l 与x 轴重合或垂直时,显然有OMA OMB ∠=∠.当直线l 与x 轴不垂直也不重合时,设直线l 的方程为1x my =+,交椭圆于()11,A x y ,()22,B x y . 由22+=12=+1x y x my ⎧⎪⎨⎪⎩得()222210m y my ++-=. 由韦达定理得12122221,22m y y y y m m --+==++. 点A 关于x 轴的对称点()11,N x y -,则直线BN 的方程为()()()()121121y y x x y y x x +-=+-.令=0y ,()()221211212122111212122122222222mm y x x my y y y x y x y m m x x m y y y y y y m -⋅--+++++=+====-++++,则直线BN 过点M ,OMA OMB ∠=∠. [方法三]:直线参数方程的应用设直线l 的参数方程为=1+cos =sin x t y t αα⎧⎨⎩(t 为参数).(*)将(*)式代入椭圆方程2212x y +=中,整理得()221sin 2cos 10t t αα++-=.则12211sin t t α-⋅=+,1222cos 1sin t t αα+=-+. 又()()11221cos ,sin ,1cos ,sin A t t B t t αααα++,则MA MB k k +=1212sin sin 1cos 21cos 2t t t t αααα+=+-+-1212sin sin cos 1cos 1t t t t αααα+=--()(()()122112sin cos 1+sin cos=cos 1cos 1t t t t t t αα-αα-α-()()()1212122sin cos sin cos 1cos 1t t t t t t ααααα-+=--()()22122sin cos 2sin cos 1sin 1sin 0cos 1cos 1t t αααααααα-+++=--, 即MA MB k k =-.所以OMA OMB ∠=∠. [方法四]:【最优解】椭圆第二定义的应用 当直线l 与x 轴重合时,0OMA OMB ∠=∠=︒.当直线l 与x 轴不重合时,如图6,过点A ,B 分别作准线=2x 的垂线,垂足分别为C ,D ,则有AC BD x ∥∥轴.由椭圆的第二定义,有e AF AC=,||e ||BF BD =,得||||||||AF BF AC BD =,即||||||||AF AC BF BD =.由AC BD x ∥∥轴,有||||||||AF BF CM DM =,即||||||||AF CM BF DM =,于是||||||||AC CM BD DM =,且90ACM BDM ∠=∠=︒.可得AMC BMD ∠=∠,即有∠=∠AMO BMO .[方法五]:角平分线定理逆定理+极坐标方程的应用椭圆22:12x C y +=以右焦点为极点,x轴正方向为极轴,得ρ=设()()12,,,A B ρθρθπ+.22221122||12cos ,||12cos AM BM ρρθρρθ=+-=++.所以1||||AM AF ==2||||BM BF ==由角平分线定理的逆定理可知,命题得证. [方法六]:角平分线定理的逆定理的应用设点O (也可选点F )到直线,MA MB 的距离分别为12,d d ,根据角平分线定理的逆定理,要证OMA OMB ∠=∠,只需证12d d =. 当直线l 的斜率为0时,易得120d d ==.当直线l 的斜率不为0时,设直线l 的方程为:()()11221,,,,x my A x y B x y =+.由方程组22+=1,2=+1,x y x my ⎧⎪⎨⎪⎩得()222210,Δ0m y my ++-=>恒成立,12222m y y m +=-+.12212y y m =-+. 直线MA 的方程为:()1111220,y x x y y d ---==因为点A 在直线l 上,所以111x my =+,故1d =同理,2d =()()()()12121222122222112242121121y y y y my y d d m y my m y my -+-⎡⎤⎣⎦-=⎡⎤⎡⎤+-++-+⎣⎦⎣⎦.因为()121222222022m m y y my y m m +-=-+=++,所以22120d d -=,即12d d =. 综上,OMA OMB ∠=∠.[方法七]:【通性通法】分类+常规联立当直线l 与x 轴重合或垂直时,显然有OMA OMB ∠=∠.当直线l 与x 轴不垂直也不重合时,设直线l 的方程为1x my =+,交椭圆于()11,A x y ,()22,B x y .由22+=12=+1x y x my ⎧⎪⎨⎪⎩得()222210m y my ++-=. 由韦达定理得12122221,22m y y y y m m --+==++. 所以()()()1212121212121220221111MA MB my y y y y y y y k k x x my my my my -++=+=+==------, 故MA 、MB 的倾斜角互补,所以OMA OMB ∠=∠. [方法八]:定比点差法设()0,1AF FB λλ=≠± ,()()1122,,,A x y B x y ,所以1212+1=1++0=1+x x y y λλλλ⎧⎪⎪⎨⎪⎪⎩,由22112222222+=12+=2x y x y λλλ⎧⎪⎪⎨⎪⎪⎩作差可得,()12121212112111x x x x y y y y λλλλλλλλ+-+-⨯+⨯=+-+-,所以, ()1221x x λλ-=-,又121x x λλ+=+,所以,()121113,322x x λλ⎛⎫=-=- ⎪⎝⎭,故()1222120111221122MA MB y y y y k k x x λλλ-+=+=+=--⎛⎫-+-+ ⎪⎝⎭,MA 、MB 的倾斜角互补,所以OMA OMB ∠=∠.当1λ=时,l 与x 轴垂直,OM 为AB 的垂直平分线,所以OMA OMB ∠=∠. 故OMA OMB ∠=∠.【整体点评】(2)方法一:通过分类以及常规联立,把角相等转化为斜率和为零,再通过韦达定理即可实现,是解决该类问题的通性通法;方法二:根据角平分线的定义可知,利用点A 关于x 轴的对称点N 在直线BM 上,证直线AN 过点M 即可;方法三:利用直线的参数方程证明斜率互为相反数;方法四:根据点M 是椭圆的右准线=2x 与x 轴的交点,用椭圆的第二定义结合平面几何知识证明,运算量极小,是该题的最优解;方法五:利用椭圆的极坐标方程以及角平分线定理的逆定理的应用,也是不错的方法选择; 方法六:类比方法五,角平分线定理的逆定理的应用; 方法七:常规联立,同方法一,只是设直线的方程形式不一样; 方法八:定比点差法的应用.18.(1)112y x =+或112y x =--;(2)证明见解析.【要点分析】(1)根据题意可得直线l 的方程为=2x ,从而得出点M 的坐标为()2,2或()2,2-,利用两点式求得直线BM 的方程;(2)方法一:设直线l 的方程为2x ty =+,点()11,M x y 、()22,N x y ,将直线l 的方程与抛物线的方程联立,列出韦达定理,由斜率公式并结合韦达定理计算出直线BM 、BN 的斜率之和为零,从而得出所证结论成立.【答案详解】(1)当l 与x 轴垂直时,l 的方程为=2x ,可得M 的坐标为()2,2或()2,2-. 所以直线BM 的方程为112y x =+或112y x =--;(2)[方法一]:【通性通法】韦达定理+斜率公式 设l 的方程为2x ty =+,()11,M x y 、()22,N x y ,由2=+2=2x ty y x ⎧⎨⎩,得2240y ty --=,可知122y y t +=,124y y =-. 直线BM 、BN 的斜率之和为()()()()()()()()21122112121212122244222222BM BN x y x y ty y ty y y yk k x x x x x x +++++++=+==++++++()()()()()()1212121224244202222ty y y y t tx x x x ++⨯-+⨯===++++,所以0BM BN k k +=,可知BM 、BN 的倾斜角互补,所以ABM ABN ∠=∠. [方法2]:【最优解】斜率公式+三点共线的坐标表示因为M ,N 在抛物线上,可设()2112,2M t t ,()2222,2N t t ,故()21122,2AM t t =- ,()22222,2AN t t =- .而A ,M ,N 共线,故AM AN ∥,即()()2221122222220t t t t -⋅--⋅=,化简得()()1221410t t t t +-=.而M ,N 是不同的点,故12t t ≠,可得1210t t +=.这样()()()()121212222212121220222211BM BN t t t t t t k k t t t t +++=+==++++.故ABM ABN ∠=∠. 【整体点评】(2)方法一:通过联立方程得出根与系数的关系,再直接使用斜率公式化简即可证出,是此题问题的通性通法;方法二:通过设点,根据三点共线的坐标表示寻找关系,再利用斜率公式化简证出,省略了联立过程,适当降低了运算量,是此类问题的最优解. 19.(1)15(百米); (2)见解析;(3)17+. 【要点分析】解:解法一:(1)过A 作AE BD ⊥,垂足为E .利用几何关系即可求得道路PB 的长; (2)分类讨论P 和Q 中能否有一个点选在D 处即可.(3)先讨论点P 的位置,然后再讨论点Q 的位置即可确定当d 最小时,P 、Q 两点间的距离. 解法二:(1)建立空间直角坐标系,分别确定点P 和点B 的坐标,然后利用两点之间距离公式可得道路PB 的长;(2)分类讨论P 和Q 中能否有一个点选在D 处即可.(3)先讨论点P 的位置,然后再讨论点Q 的位置即可确定当d 最小时,P 、Q 两点间的距离.【答案详解】解法一:(1)过A 作AE BD ⊥,垂足为E .由已知条件得,四边形ACDE 为矩形,6, 8DE BE AC AE CD =====. 因为PB ⊥AB ,所以84cos sin 105PBD ABE ∠=∠==. 所以12154cos 5BD PB PBD ===∠. 因此道路PB 的长为15(百米).(2)①若P 在D 处,由(1)可得E 在圆上,则线段BE 上的点(除B ,E )到点O 的距离均小于圆O 的半径,所以P 选在D 处不满足规划要求.②若Q 在D 处,连结AD ,由(1)知10AD ==,从而2227cos 0225AD AB BD BAD AD AB +-∠==>⋅,所以∠BAD 为锐角.所以线段AD 上存在点到点O 的距离小于圆O 的半径. 因此,Q 选在D 处也不满足规划要求. 综上,P 和Q 均不能选在D 处. (3)先讨论点P 的位置.当∠OBP <90°时,线段PB 上存在点到点O 的距离小于圆O 的半径,点P 不符合规划要求; 当∠OBP ≥90°时,对线段PB 上任意一点F ,OF ≥OB ,即线段PB 上所有点到点O 的距离均不小于圆O 的半径,点P 符合规划要求.设1P 为l 上一点,且1PB AB ⊥,由(1)知,115PB =, 此时11113sin cos 1595PD PB PBD PB EBA =∠=∠=⨯=; 当∠OBP >90°时,在1PPB △中,115PB PB >=. 由上可知,d ≥15. 再讨论点Q 的位置.由(2)知,要使得QA≥15,点Q只有位于点C的右侧,才能符合规划要求.当QA=15时,CQ===此时,线段QA上所有点到点O的距离均不小于圆O 的半径.综上,当PB⊥AB,点Q位于点C右侧,且CQ=d最小,此时P,Q两点间的距离PQ=PD+CD+CQ=17+因此,d最小时,P,Q两点间的距离为17+.解法二:(1)如图,过O作OH⊥l,垂足为H.以O为坐标原点,直线OH为y轴,建立平面直角坐标系.因为BD=12,AC=6,所以OH=9,直线l的方程为y=9,点A,B的纵坐标分别为3,−3. 因为AB为圆O的直径,AB=10,所以圆O的方程为x2+y2=25.从而A(4,3),B(−4,−3),直线AB的斜率为3 4 .因为PB⊥AB,所以直线PB的斜率为43 -,直线PB的方程为42533 y x=--.所以P(−13,9),15PB==.因此道路PB的长为15(百米).(2)①若P在D处,取线段BD上一点E(−4,0),则EO=4<5,所以P选在D处不满足规划要求.②若Q在D处,连结AD,由(1)知D(−4,9),又A(4,3),所以线段AD:36(44)4y x x=-+-剟.在线段AD上取点M(3,154),因为5OM=<=,所以线段AD 上存在点到点O 的距离小于圆O 的半径. 因此Q 选在D 处也不满足规划要求. 综上,P 和Q 均不能选在D 处. (3)先讨论点P 的位置.当∠OBP <90°时,线段PB 上存在点到点O 的距离小于圆O 的半径,点P 不符合规划要求; 当∠OBP ≥90°时,对线段PB 上任意一点F ,OF ≥OB ,即线段PB 上所有点到点O 的距离均不小于圆O 的半径,点P 符合规划要求.设1P 为l 上一点,且1PB AB ⊥,由(1)知,115PB =,此时()113,9P -;当∠OBP >90°时,在1PPB △中,115PB PB >=. 由上可知,d ≥15. 再讨论点Q 的位置.由(2)知,要使得QA ≥15,点Q 只有位于点C 的右侧,才能符合规划要求.当QA =15时,设Q (a ,9),由15(4)AQ a ==>,得a =4+Q (4+9),此时,线段QA 上所有点到点O 的距离均不小于圆O 的半径.综上,当P (−13,9),Q (4+9)时,d 最小,此时P ,Q 两点间的距离4(13)17PQ =+-=+.因此,d 最小时,P ,Q 两点间的距离为17+.【名师点睛】本题主要考查三角函数的应用、解方程、直线与圆等基础知识,考查直观想象和数学建模及运用数学知识要点分析和解决实际问题的能力.20. ()3,0【要点分析】根据双曲线的标准方程可得出双曲线C 的右焦点坐标,并求得双曲线的渐近线方程,利用点到直线的距离公式可求得双曲线的焦点到渐近线的距离.【答案详解】在双曲线C 中,a =b =3c ==,则双曲线C 的右焦点坐标为()3,0,双曲线C 的渐近线方程为2y x =±,即0x =,所以,双曲线C.故答案为:()3,0【名师点睛】本题考查根据双曲线的标准方程求双曲线的焦点坐标以及焦点到渐近线的距离,考查计算能力,属于基础题.。
1. 设抛物线22(0)y px p =>的焦点为F ,点(0,2)A .若线段FA 的中点B 在抛物线上,则B 到该抛物线准线的距离为_____________。
(3分)2 .已知m >1,直线2:02m l x my --=,椭圆222:1x C y m+=,1,2F F 分别为椭圆C 的左、右焦点. (Ⅰ)当直线l 过右焦点2F 时,求直线l 的方程;(Ⅱ)设直线l 与椭圆C 交于,A B 两点,12AF F V ,12BF F V 的重心分别为,G H .若原点O 在以线段GH 为直径的圆内,求实数m 的取值范围.(6分)3已知以原点O 为中心,)F 为右焦点的双曲线C 的离心率2e =。
(I )求双曲线C 的标准方程及其渐近线方程;(II )如题(20)图,已知过点()11,M x y 的直线111:44l x x y y +=与过点()22,N x y (其中2x x ≠)的直线222:44l x x y y +=的交点E 在双曲线C 上,直线MN 与两条渐近线分别交与G 、H 两点,求OGH ∆的面积。
(8分)4.如图,已知椭圆22221(0)x y a b a b +=>>的离心率为2,以该椭圆上的点和椭圆的左、右焦点12,F F 为顶点的三角形的周长为1).一等轴双曲线的顶点是该椭圆的焦点,设P 为该双曲线上异于顶点的任一点,直线1PF 和2PF 与椭圆的交点分别为B A 、和C D 、.(Ⅰ)求椭圆和双曲线的标准方程;(Ⅱ)设直线1PF 、2PF 的斜率分别为1k 、2k ,证明12·1k k =;(Ⅲ)是否存在常数λ,使得·A B C D A B C Dλ+=恒成立?若存在,求λ的值;若不存在,请说明理由.(7分)5.在平面直角坐标系xoy 中,如图,已知椭圆15922=+y x的左、右顶点为A 、B ,右焦点为F 。
设过点T (m t ,)的直线TA 、TB 与椭圆分别交于点M ),(11y x 、),(22y x N ,其中m>0,0,021<>y y 。
高考数学平面解析几何专项训练(100题-含答案)1.在平面直角坐标系xOy 中,已知点12(1,0),(1,0)F F -,点M 满足12MF MF +=记点M 的轨迹为曲线C .(1)求曲线C 的方程;(2)点T 在直线2x =上,过T 的两条直线分别交C 于,A B 两点和,P Q 两点,且||||||||TA TB TP TQ ⋅=⋅,求直线AB 的斜率与直线PQ 的斜率之和.【答案】(1)2212x y +=(2)0【解析】【分析】(1)根据122MF MF +=,利用椭圆的定义求解;(2)设()2,T m ,直线AB 的参数方程为()2cos ,sin x t y m t θθθ=+⎧⎨=+⎩为参数,与椭圆方程联立,利用参数的几何意义求解.(1)解:因为122MF MF +=,所以点M 的轨迹是以12(1,0),(1,0)F F -为焦点的椭圆,则21,1a c b ===,所以椭圆的方程是2212x y +=;(2)设()2,T m ,直线AB 的参数方程为()2cos ,sin x t y m t θθθ=+⎧⎨=+⎩为参数,与椭圆方程联立()()2222cos 2sin 4cos 4sin 420t m t m θθθθ+++++=,由参数的几何意义知:12,TA t TB t ==,则22122224242cos 2sin 2cos m m t t θθθ++⋅=-=-+-,设直线PQ 的参数方程为:()2cos ,sin x y m λαλλα=+⎧⎨=+⎩为参数,则12,TP TQ λλ==,则22122224242cos 2sin 2cos m m λλααα++⋅=-=-+-,由题意得:222242422cos 2cos m m θα++-=---,即22cos cos θα=,因为αθ≠,所以cos cos θα=-,因为0,0θπαπ<<<<,所以θαπ+=,所以直线AB 的斜率tan θ与直线PQ 的斜率tan α之和为0.2.设n S 是数列{}n a 的前n 项和,13a =,点(),N n S n n n *⎛⎫∈ ⎪⎝⎭在斜率为1的直线上.(1)求数列{}n a 的通项公式;(2)求数列12n n a +⎧⎫⎨⎬⎩⎭的前n 项和n T .【答案】(1)21n a n =+(2)152522n n n T ++=-【解析】【分析】(1)根据斜率公式可得出()222n S n n n =+≥,可知13S =满足()222n S n n n =+≥,可得出22n S n n =+,再利用11,1,2n n n S n a S S n -=⎧=⎨-≥⎩可求得数列{}n a 的通项公式;(2)求得1212n n n c ++=,利用错位相减法可求得n T .(1)解:由13a =,点,n S n n ⎛⎫ ⎪⎝⎭在斜率为1的直线上,知1111n S S n n -=-,即()222n S n n n =+≥.当1n =时,113S a ==也符合上式,故22n S n n =+.当2n ≥时,()()221212121n n n a S S n n n n n -⎡⎤=-=+--+-=+⎣⎦;13a =也满足上式,故21n a n =+.(2)解:112122n n n n a n c +++==.则2341357212222n n n T ++=++++ ,所以,3412135212122222n n n n n T ++-+=++++ ,上式-下式得1232211113111213214212422224212n n n n n n n T -++⎛⎫- ⎪++⎛⎫⎝⎭=++++-=+- ⎝⎭- 252542n n ++=-,因此,152522n n n T ++=-.3.椭圆2222:1(0)x y C a b a b +=>>的离心率为3,且过点(3,1).(1)求椭圆C 的方程;(2)A ,B ,P 三点在椭圆C 上,O 为原点,设直线,OA OB 的斜率分别是12,k k ,且1213k k ⋅=-,若OP OA OB λμ=+,证明:221λμ+=.【答案】(1)221124x y +=(2)证明见解析【解析】【分析】(1)由条件可得c a22911a b +=,222c b a +=,解出即可;(2)设()()()112200,,,,,A x y B x y P x y ,由条件可得012012x x x y y y λμλμ=+⎧⎨=+⎩,12123x x y y =-,然后将01212x x x y y y λμλμ=+⎧⎨=+⎩代入椭圆方程可得2222221122121221124124124x y x y x x y y λμλμ⎛⎫⎛⎫⎛⎫+++++= ⎪ ⎪⎝⎭⎝⎭⎝⎭,然后可得答案.(1)因为ca=22911a b +=,222c b a +=所以可解得2a b ⎧=⎪⎨=⎪⎩所以椭圆C 的方程221124x y +=.(2)设()()()112200,,,,,A x y B x y P x yOP OA OB λμ=+ ,012012x x x y y y λμλμ=+⎧∴⎨=+⎩()()222212120011124124x x y y x y λμλμ+++=∴+= 即2222221122121221124124124x y x y x x y y λμλμ⎛⎫⎛⎫⎛⎫+++++= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭2222112211124124x y x y +=+= ,,即22121221124x x y y λμλμ⎛⎫+++= ⎪⎝⎭又1212121133y y k k x x ⋅=-∴=- ,即12123x x y y =-,221λμ∴+=4.已知椭圆()2222:10x y C a b a b+=>>,A 、B 分别为椭圆C 的右顶点、上顶点,F 为椭圆C的右焦点,椭圆C 的离心率为12,ABF 的面积为32.(1)求椭圆C 的标准方程;(2)点P 为椭圆C 上的动点(不是顶点),点P 与点M ,N 分别关于原点、y 轴对称,连接MN 与x 轴交于点E ,并延长PE 交椭圆C 于点Q ,则直线MP 的斜率与直线MQ 的斜率之积是否为定值?若是,求出该定值;若不是,请说明理由.【答案】(1)22143x y +=(2)是定值,定值为32-【解析】【分析】(1)根据椭圆的离心率可得到a,b,c 的关系,再结合ABF 的面积可得到()a c b -=,由此解得a,b ,可得答案.(2)设直线方程,并联立椭圆方程,得到根与系数的关系式,结合直线MP 的斜率与直线MQ 的斜率之积,代入化简可得答案.(1)由题意得12c a =,则2a c =,b =.ABF 的面积为()1322a cb -=,则()a c b -将2a c =,b =代入上式,得1c =,则2a =,b =,故椭圆C 的标准方程为22143x y +=.(2)由题意可知直线PQ 的斜率一定存在,设直线PQ 的方程为y kx m =+,设()11,P x y ,()22,Q x y ,则()11,M x y --,()11,N x y -,()1,0E x -,联立方程22143x y y kx m ⎧+=⎪⎨⎪=+⎩,得()2223484120k x kmx m +++-=,∴122834kmx x k +=-+,∴()12122286223434km m y y k x x m k m k k ⎛⎫+=++=-+= ⎪++⎝⎭,∴21212263348434MQmy y k k km x x kk ++===-+-+,112PEPQ y k k k x ===,∵11112222MP PE y yk k k x x ====,∴33242MP MQ k k k k ⋅=-⨯=-∴MP MQ k k ⋅为定值32-.【点睛】本题考查了椭圆方程的求法以及直线和椭圆的位置关系,综合考查了学生分析问题,解决问题以及计算方面的能力和综合素养,解答的关键是理清解决问题的思路,并能正确地进行计算.5.已知圆M 过点()1,0,且与直线1x =-相切.(1)求圆心M 的轨迹C 的方程;(2)过点()2,0P 作直线l 交轨迹C 于A 、B 两点,点A 关于x 轴的对称点为A '.问A B '是否经过定点,若经过定点,求出定点坐标;若不经过,请说明理由.【答案】(1)24y x =(2)()2,0-【解析】【分析】(1)根据抛物线的定义计算可得;(2)设直线l 的方程为2x ty =+,()11,A x y 、()22,B x y ,则()11,A x y '-,联立直线与抛物线方程,消元、列出韦达定理,再表示出直线A B '的方程,将12y y +、12y y 代入整理即可得解;(1)解:由题意知动点M 的轨迹C 是以(0,0)O 为顶点,()1,0为焦点,1x =-为准线的抛物线,所以动圆圆心M 的轨迹方程为:24y x =;(2)解:设直线l 的方程为2x ty =+,()11,A x y 、()22,B x y 不妨令21y y >,则()11,A x y '-,联立直线l 与抛物线方程得224x ty y x =+⎧⎨=⎩消去x 得2480y ty --=,则124y y t +=、128y y =-,则直线A B '的方程为()()211121y y y y x x x x +--=--,即()()21212121x x y x y y y x y x -+=+-,则()()()()2121212122ty ty y ty y y y x y ty -++=+-+,()()()2121211222t y y y y y x ty y y y -=+--+,即()()21211222y y y x ty y y y =+--+,所以()42824y tx t t ⋅=-⨯--⨯,即()2y t x =+,令200x y +=⎧⎨=⎩解得20x y =-⎧⎨=⎩,所以直线A B '恒过定点()2,0-;6.已知1F ,2F 是椭圆C :()222104x yb b+=>的左、右焦点,过1F 的直线与C 交于A ,B两点,且22::3:4:5AF AB BF =.(1)求C 的离心率;(2)设M ,N 分别为C 的左、右顶点,点P 在C 上(P 不与M ,N 重合),证明:MPN MAN ∠≤∠.【答案】(2)见解析【解析】【分析】(1)由题意设223,4,5AF m AB m BF m ===,由勾股定理的逆定理可得290BAF ∠=︒,再根据椭圆的定义可求出m 的值,从而可求出12,AF AF 的值,则可得点A 是椭圆短轴的一个端点,进而可求出离心率,(2)由椭圆的对称性,不妨设00(,)P x y,0y ∈,,PMN PNM αβ=∠=∠,则可得0000tan ,tan 22y y x x αβ==+-,然后求出tan tan αβ+,tan tan αβ,再利用正切的两角和公式可得02tan()y αβ+=,由正切函数可求出αβ+的最小值,从而可求出()MPN παβ∠=-+的最大值,进而可证得结论(1)由()222104x y b b+=>,得24a =,得2a =,由题意设223,4,5AF m AB m BF m ===,则22222AF AB BF +=,所以290BAF ∠=︒,因为223451248AF AB BF m m m m a ++=++===,所以23m =,所以22AF =,所以122422AF a AF =-=-=,所以12AF F △为等腰直角三角形,所以点A 是椭圆短轴的一个端点,所以b c =,因为222224b c b a +===,得b c =所以椭圆的离心率为2c e a ==(2)由(1)可得椭圆方程为22142x y +=,则(2,0),(2,0)M N -,因为点A是椭圆短轴的一个端点,所以不妨设A ,由椭圆的对称性,不妨设00(,)P x y,0y ∈,,PMN PNM αβ=∠=∠,则0000tan ,tan 22y y x x αβ==+-,2200142x y +=,所以2200002200001tan tan 22422y y y y x x x y αβ⋅=⋅===+--,00002200000442tan tan 2242y y y y x x x y y αβ+=+===+--,所以0tan tan 4tan()1tan tan y αβαβαβ++==-,所以当0y =tan()αβ+取得最小值由(1)可知290BAF ∠=︒,所以()0,2παβ⎛⎫+∈ ⎪⎝⎭,所以当tan()αβ+取得最小值时,αβ+取得最小值,即点P 与点A 重合时,αβ+取得最小值,此时()MPN παβ∠=-+取得最大,所以MPN MAN∠≤∠7.已知椭圆()2222:10x y C a b a b+=>>的长轴长为,且过点)P(1)求C 的方程:(2)设直线()0y kx m m =+>交y 轴于点M ,交C 于不同两点A ,B ,点N 与M 关于原点对称,BO AN ⊥,Q 为垂足.问:是否存在定点M ,使得·NQ NA 为定值?【答案】(1)221102x y +=(2)存在【解析】【分析】(1)利用待定系数法求方程;(2)联立方程组,结合韦达定理可得直线恒过定点,进而求解.(1)依题意知2a =a =所以C 的方程可化为222110x y b+=,将点)P代入C 得251110b +=,解得22b =,所以椭圆方程为221102x y +=;(2)设点()11,A x y ,()22,B x y ,联立221102x y y kx m ⎧+=⎪⎨⎪=+⎩得,()22215105100k x kmx m +++-=,()()()222104155100km k m ∆=-+->,解得22210m k <+,1221015km x x k -+=+,212251015m x x k -=+,注意到Q ,N ,A 三点共线,NQ NA NQ NA ⋅=⋅,又()NQ NA NB BQ NA NB NA ⋅=+⋅=⋅()()()()1212121222x x y m y m x x kx m kx m =+++=+++()()()()222222212122215102012441515k m k mkx xmk x x mm kk+-=++++=-+++()222221510510415k m m m k--+-=++当()2215105510m m --=-,解得1m =±,因为0m >,所以1m =,此时1NQ NA ⋅=-,满足0∆>,故存在定点()0,1M ,使得1NQ NA ⋅=-等于定值1.【点睛】解决直线与椭圆的综合问题时,要注意:(1)注意观察应用题设中的每一个条件,明确确定直线、椭圆的条件;(2)强化有关直线与椭圆联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.8.已知椭圆C :22221(0)x y a b a b +=>>,4a M b ⎛⎫ ⎪⎝⎭为焦点是22y x =的抛物线上一点,H 为直线y a =-上任一点,A ,B 分别为椭圆C 的上,下顶点,且A ,B ,H 三点的连线可以构成三角形.(1)求椭圆C 的方程;(2)直线HA ,HB 与椭圆C 的另一交点分别交于点D ,E ,求证:直线DE 过定点.【答案】(1)2214x y +=(2)证明见解析【解析】【分析】(1)由椭圆的离心率求出,a c 的关系式,再由,4a M b ⎛⎫⎪⎝⎭为抛物线22=y x 上的点,结合222a b c =+,即可求出椭圆C 的方程.(2)设点()(),20H m m -≠,求得HA ,HB 的方程,与椭圆联立求得,D E 坐标,写出直线DE 的方程,即可求出DE 恒过的定点.(1)由题意知,222224c aa b a b c⎧=⎪⎪⎪=⨯⎨⎪=+⎪⎪⎩,解得21a b c ⎧=⎪=⎨⎪=⎩,∴椭圆C 的方程为2214x y +=.(2)设点()(),20H m m -≠,易知()0,1A ,()0,1B -,∴直线HA 的方程为31y x m =-+,直线HB 的方程为11y x m=--.联立223114y x m x y ⎧=-+⎪⎪⎨⎪+=⎪⎩,得22362410x x m m ⎛⎫+-= ⎪⎝⎭,∴22436D m x m =+,223636D m y m -=+,同理可得284E m x m -=+,2244E m y m -=+,∴直线DE 的斜率为21216m k m-=,∴直线DE 的方程为222241284164m m m y x m m m --⎛⎫-=+ ⎪++⎝⎭,即2121162m y x m -=-,∴直线DE 过定点10,2⎛⎫- ⎪⎝⎭.9.已知点(1,2)M -在抛物线2:2(0)E y px p =>上.(1)求抛物线E 的方程;(2)直线12,l l 都过点12(2,0),,l l 的斜率之积为1-,且12,l l 分别与抛物线E 相交于点A ,C 和点B ,D ,设M 是AC 的中点,N 是BD 的中点,求证:直线MN 恒过定点.【答案】(1)24y x =(2)证明见解析【解析】【分析】(1)将点坐标代入求解抛物线方程;(2)设出直线方程,表达出,M N 的坐标,求出直线MN 的斜率,利用直线斜率之积为-1,求出直线MN 恒过的定点,从而证明出结论.(1)∵点(1,2)M -在抛物线2:2E y px =上,∴2(2)2p -=,∴解得:2p =,∴抛物线E 的方程为:24y x =.(2)由12,l l 分别与E 相交于点A ,C 和点B ,D ,且由条件知:两直线的斜率存在且不为零.∴设1122:2,:2l x m y l x m y =+=+由214,2y x x m y ⎧=⎨=+⎩得:21480y m y --=设()()1122,,,A x y C x y ,则1214y y m +=,∴12M y m =,又2122M x m =+,即()21122,2M m m +同理可得:()22222,2N m m +∴()()212212212212222MN m m k m m m m -==++-+,∴()211121:222MN y m x m m m -=--+即MN :()1212121y x m m m m =--⎡⎤⎣⎦+,∵12,l l 的斜率之积为1-,∴12111m m ⋅=-,即121m m =-,∴121:(4)MN y x m m =-+,即直线MN 过定点(4,0).10.已知抛物线()20x ay a =>,过点0,2a M ⎛⎫ ⎪⎝⎭作两条互相垂直的直线12,l l ,设12,l l 分别与抛物线相交于,A B 及,C D 两点,当A 点的横坐标为2时,抛物线在点A 处的切线斜率为1.(1)求抛物线的方程;(2)设线段,AB CD 的中点分别为,E F ,O 为坐标原点,求证直线EF 过定点.【答案】(1)24x y =;(2)证明见解析.【解析】【分析】(1)结合导数知识,利用切线斜率构造方程可得a ,由此可得抛物线方程;(2)将直线AB 方程代入抛物线方程中,结合韦达定理可确定中点坐标,同理可得CD中点坐标,利用直线方程两点式可得直线EF 方程,化简可知其过定点()0,4.(1)由2x ay =得:21y ax =,则2y x a '=,241x y a=∴==',解得:4a =,∴抛物线方程为:24x y =;(2)由题意知:直线12,l l 的斜率都存在且都不为零,由(1)知:()0,2M ,设直线:2AB y kx =+,代入24x y =得:2480x kx --=,设()11,A x y ,()22,B x y ,则124x x k +=,128x x =-,()21212444y y k x x k ∴+=++=+,AB ∴中点()22,22E k k +;12l l ⊥ ,1:2CD y x k ∴=-+,同理可得:CD 中点222,2F k k ⎛⎫-+ ⎪⎝⎭;EF ∴的方程为:()()222222222222k k y k x k k k ⎛⎫+-+ ⎪⎝⎭-+=-+,化简整理得:14y k x k ⎛⎫=-+ ⎪⎝⎭,则当0x =时,4y =,∴直线EF 恒过定点()0,4.【点睛】思路点睛:本题考查直线与抛物线综合应用中的直线过定点问题的求解,求解此类问题的基本思路如下:①假设直线方程,与抛物线方程联立,整理为关于x 或y 的一元二次方程的形式;②利用0∆>求得变量的取值范围,得到韦达定理的形式;③利用韦达定理表示出已知中的等量关系,代入韦达定理可整理得到变量间的关系,从而化简直线方程;④根据直线过定点的求解方法可求得结果.11.在直角坐标系xOy 中,曲线:C 221x y +=经过伸缩变换x xy '='=⎧⎪⎨⎪⎩后的曲线为1C ,以x 轴正半轴为级轴,建立极坐标系.曲线2C的极坐标方程为sin 4πρθ⎛⎫+= ⎪⎝⎭(1)写出1C 的普通方程和2C 的直角坐标方程;(2)若1C 上的一点P 到2C 的距离的最大,求距离的最大值及P 点的坐标.【答案】(1)1C :2213y x +=,2C :40x y +-=;(2)max d =,1322P ⎛⎫-- ⎪⎝⎭,.【解析】【分析】()1直接利用转换关系,把参数方程,直角坐标方程和极坐标方程之间进行转换;()2利用三角函数关系式的变换和点到直线的距离公式的应用求出结果.(1)解:由伸缩变换x xy '='=⎧⎪⎨⎪⎩得,代入曲线:C 221x y +=得:1C 的普通方程为2213y x +=,由极坐标方程sin 4πρθ⎛⎫+= ⎪⎝⎭sin y ρθ=,cos x ρθ=可得:2C 的直角坐标方程为40x y +-=.(2)解:直线2C 的普通方程为40x y +-=,设1C上的为点()cos P θθ,到2C 的距离为d =当且仅当()223k k Z πθπ=-+∈时,取得max d =,又因为1cos 23y 2x θθ⎧==-⎪⎪⎨⎪==-⎪⎩,即点P 的坐标为1322⎛⎫-- ⎪⎝⎭.12.已知椭圆C :2222+x y a b=1(a >b >0)经过点A (0,1),且右焦点为F (1,0).(1)求C 的标准方程;(2)过点(0,12)的直线l 与椭圆C 交于两个不同的点P .Q ,直线AP 与x 轴交于点M ,直线AQ 与x 轴交于点N .证明:以MN 为直径的圆过y 轴上的定点.【答案】(1)2212x y +=(2)证明见解析【解析】【分析】(1)由已知得,c b ,再求得a ,即得椭圆方程;(2)由题意直线l 斜率存在,可设直线1:2l y kx =+,设()()1122,,,P x y Q x y ,直线方程代入椭圆方程应用韦达定理得1212,x x x x +,由直线,AP AQ 方程求出,M N 坐标,求出以MN 为直径的圆的方程,然后代入1212,x x x x +求得圆方程的常数项,从而可得y 的定点坐标.(1)由题意可得1,1c b ==从而22a =.所以椭圆的标准方程为2212x y +=.(2)证明:由题意直线l 斜率存在,可设直线1:2l y kx =+,设()()1122,,,P x y Q x y ,将直线l 代入椭圆方程得()2242430k x kx ++-=,所以12122243,,4242k x x x x k k --+==++,直线AP 的方程为1111y y x x -=+,直线AQ 的方程为2211y y x x -=+.可得1212,0,,011x x M N y y ⎛⎫⎛⎫--⎪ ⎪--⎝⎭⎝⎭,以MN 为直径的圆方程为,21212011x x x x y y y ⎛⎫⎛⎫+++= ⎪⎪--⎝⎭⎝⎭,即()()221212121201111x x x x x y x y y y y ⎛⎫++++= ⎪----⎝⎭.①因为()()()1212122121212124111142122x x x x x x y y k x x k x x kx kx ==---++⎛⎫⎛⎫-- ⎪⎪⎝⎭⎝⎭22212612842k k k -==--+++.所以在①中令0x =,得26y =,即以MN 为直径的圆过y轴上的定点(0,,13.已知抛物线C :()220y px p =>,过点()2,0R 作x 轴的垂线交抛物线C 于G ,H 两点,且OG OH ⊥(O 为坐标原点).(1)求p ;(2)过()2,1Q 任意作一条不与x 轴垂直的直线交抛物线C 于A ,B 两点,直线AR 交抛物线C 于不同于点A 的另一点M ,直线BR 交抛物线C 于不同于点B 的另一点N .求证:直线MN 过定点.【答案】(1)1p =(2)证明见解析【解析】【分析】(1)由题意知2RG OR ==,不妨设()2,2G ,代入抛物线方程中可求出p 的值,(2)设211,2y A y ⎛⎫ ⎪⎝⎭,222,2y B y ⎛⎫ ⎪⎝⎭,233,2y M y ⎛⎫ ⎪⎝⎭,244,2y N y ⎛⎫⎪⎝⎭,则可表示出直线AB ,AM ,BN 的方程,再由直线AB 过()2,1Q 及直线AM ,BN 过()2,0R 可得()121240y y y y -++=,13244y y y y ==-,再表示出直线MN 的方程,结合前面的式子化简可得结论(1)由题意知,2RG OR ==.不妨设()2,2G ,代入抛物线C 的方程,得44p =解得1p =.(2)由(1)知,抛物线C 的方程为22y x =.设211,2y A y ⎛⎫ ⎪⎝⎭,222,2y B y ⎛⎫ ⎪⎝⎭,233,2y M y ⎛⎫ ⎪⎝⎭,244,2y N y ⎛⎫ ⎪⎝⎭,则直线AB 的斜率为12221212222AB y y k y y y y -==+-.所以直线AB 的方程为2111222y y x y y y ⎛⎫=-+ ⎪+⎝⎭,即()121220x y y y y y -++=.同理直线AM ,BN ,MN 的方程分别为()131320x y y y y y -++=,()242420x y y y y y -++=,()343420x y y y y y -++=,由直线AB 过()2,1Q 及直线AM ,BN 过()2,0R 可得()121240y y y y -++=,13244y y y y ==-.又直线MN 的方程为()343420x y y y y y -++=,即1212441620x y y y y y ⎛⎫+++= ⎪⎝⎭.所以直线MN 的方程为()1212280y y x y y y +++=.把()121240y y y y -++=代入()1212280y y x y y y +++=,得()12122480y y x y y y +++=,()122)880(y y x y y +++=,所以由20x y +=,880y +=可得2x =,1y =-.所以直线MN 过定点()2,1-.14.已知抛物线C :y 2=4x 的焦点为F ,过点F 的直线l 与抛物线C 交于P ,A 两点,且PF λFA = .(1)若λ=4,求直线l 的方程;(2)设点E (a ,0),直线PE 与抛物线C 的另一个交点为B ,且PE EB μ=.若λ=4μ,求a的值.【答案】(1)4340x y --=或4340x y +-=(2)4【解析】【分析】(1)由4PF FA =得014y y =-,设直线l :1x my =+,与抛物线C :24y x =联立,结合韦达定理,即得解;(2)由PF λFA = 得01y y λ=-,结合014y y =-,可得204y λ=,再由PE EB μ= 得02y y μ=-,设直线PB :x ny a =+,与抛物线C :24y x =联立由韦达定理可得024y y a =-,故204y aμ=,又4λμ=,代入运算即得解(1)易知焦点F (1,0),设P (0x ,0y ),A (1x ,1y )由4PF FA =得014y y =-设直线l :1x my =+,与抛物线C :24y x =联立得2440y my --=,其中216160m ∆=+>,所以014y y =-由①②可得0141y y =⎧⎨=-⎩或0141y y =-⎧⎨=⎩又014y y m +=,所以34m =或34m =-所以直线l 的方程为314x y =+或314x y =-+.化简得4340x y --=或4340x y +-=(2)由PF λFA =得01y y λ=-又014y y =-可得204y λ=设点B (2x ,2y ),由PE EB μ= 得02y y μ=-设直线PB :x ny a =+,与抛物线C :24y x =联立得2440y ny a --=.所以216()0n a ∆=+>,024y y a=-故204y aμ=又4λμ=,所以2200444y y a=⋅,考虑到点P 异于原点,所以00y ≠,解得4a =此时2216()16(4)0n a n ∆=+=+>所以a 的值为415.平面直角坐标系xOy 中,双曲线22:136x y C -=的右焦点为F ,T 为直线:1l x =上一点,过F 作TF 的垂线分别交C 的左、右支于P 、Q 两点,交l 于点A .(1)证明:直线OT 平分线段PQ ;(2)若3PA QF =,求2TF 的值.【答案】(1)证明见解析(2)12+【解析】【分析】(1)设直线PQ 的方程为3x ty =+,设点()11,P x y 、()22,Q x y ,将直线PQ 的方程与双曲线的方程联立,列出韦达定理,求出线段PQ 的中点N 的坐标,计算得出ON OT k k =,证明出O 、T 、N 三点共线,即可证得结论成立;(2)由3PA QF =得3PA QF = ,可得出1238x x -+=,变形可得出()()12212184384x x x x x x ⎧++=⎪⎨+-=⎪⎩,两式相乘结合韦达定理可求得2t 的值,再利用两点间的距离公式可求得2TF 的值.(1)解:依题意,3F x ==,即()3,0F ,设()1,2T t ,则直线PQ 的方程为3x ty =+,由22326x ty x y =+⎧⎨-=⎩得()222112120t y ty -++=,设()11,P x y 、()22,Q x y ,则()222210Δ14448210t t t ⎧-≠⎪⎨=-->⎪⎩,故212t ≠,由韦达定理可得1221221t y y t +=--,1221221y y t =-,所以()121226621x x t y y t +=++=--,又直线PQ 分别交C 的左、右支于P 、Q 两点,所以()()()22121212122963339021t x x ty ty t y y t y y t +=++=+++=-<-,故212t >所以PQ 中点为2236,2121t N t t ⎛⎫-- ⎪--⎝⎭,所以2ON OT k t k ==,故O 、T 、N 三点共线,即直线OT 平分线段PQ .(2)解:依题意,由3PA QF =得3PA QF =,则()12133x x -=-,即1238x x -+=,所以()12284x x x ++=,①,()121384x x x +-=,②①×②得()()21212123166416x x x x x x +++-=,所以()22222366963166416212121t t t t+⨯-⨯-=-⨯---,解得28374t +=,或28374t -=(舍去),此时,224412t TF =+=+【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下:(1)设直线方程,设交点坐标为()11,x y 、()22,x y ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,必要时计算∆;(3)列出韦达定理;(4)将所求问题或题中的关系转化为12x x +、12x x (或12y y +、12y y )的形式;(5)代入韦达定理求解.16.已知抛物线2:4E y x =,F 为其焦点,O 为原点,A ,B 是E 上位于x 轴两侧的不同两点,且5OA OB ⋅=.(1)求证:直线AB 恒过一定点;(2)在x 轴上求一定点C ,使F 到直线AC 和BC 的距离相等;(3)在(2)的条件下,当F 为ABC 的内心时,求ABC 重心的横坐标.【答案】(1)证明见解析(2)见解析(3)173【解析】【分析】(1)设直线AB 的方程为x my n =+,211(,)4y A y ,222(,)4y B y ,联立24x my n y x =+⎧⎨=⎩,消x 得:2440y my n --=,124y y m +=,124y y n =-,结合向量的数量积,转化求解直线AB 的方程,推出结果.(2)在x 轴上求一定点C ,使F 到直线AC 和BC 的距离相等即CF 平分ACB ∠,即直线AC 与直线BC 关于x 轴对称,根据斜率和为零,从而可得结果;(3)设11(,)A x y ,22(,)B x y ,直线AB 与x 轴交于N ,由题意可得32AC CF AN NF ==,坐标化,结合点在抛物线上可得点的坐标,从而得到结果.(1)设直线AB 的方程为x my n =+,211(,)4y A y ,222(,)4y B y ,联立24x my n y x=+⎧⎨=⎩,消x 得:2440y my n --=,则124y y m +=,124y y n =-,由5OA OB ⋅= 得:21212()516y y y y +=,所以:1220y y =-或124y y =(舍去),即4205n n -=-⇒=,所以直线AB 的方程为5x my =+,所以直线AB 过定点(5,0)P .(2)由(1)知,直线AB 过定点(5,0)P 可设直线AB 的方程为5x my =+,此时124y y m +=,1220y y =-,设x 轴上定点C 坐标为(,0)t ,要使F 到直线AC 和BC 的距离相等,则CF 平分ACB ∠,即直线AC 与直线BC 关于x 轴对称,故0AC BC k k +=,即21210y yx t x t+=--,∴()()21120y x t y x t -+-=,∴()()1212250my y t y y +-+=,∴()40450m m t -+-=对任意m 恒成立,∴510t -=,5t =-,故在x 轴上有一定点C (5,0)-,使F 到直线AC 和BC 的距离相等;(3)设11(,)A x y ,22(,)B x y ,直线AB 与x 轴交于N ,∵F 为ABC 的内心,∴32AC CF AN NF ==,32=,即2211126250x y x +-+=,又2114y x =,∴21122250x x -+=,同理22222250x x -+=,∴12,x x 是方程222250x x -+=的两个根,∴1222x x +=,∴三角形重心的横坐标为1251733x x +-=.17.已知椭圆C 的两个顶点分别为()2,0A -,()2,0B ,焦点在x (1)求椭圆C 的方程;(2)若直线()()10y k x k =-≠与x 轴交于点P ,与椭圆C 交于M ,N 两点,线段MN 的垂直平分线与x 轴交于Q ,求MN PQ的取值范围.【答案】(1)2214x y +=;(2)(4,【解析】【分析】(1)由顶点和离心率直接求,,a b c 即可;(2)先联立直线和椭圆方程,借助弦长公式表示出弦长MN ,再求出垂直平分线和Q 坐标,表示出PQ ,最后分离常数求取值范围即可.(1)由题意知2222,a c a a b c =⎧⎪⎪=⎨⎪=+⎪⎩可得1,2a b ==,故椭圆C 的方程为2214x y +=.(2)由()22114y k x x y ⎧=-⎪⎨+=⎪⎩,可得()2222418440k x k x k +-+-=,设()()1122,,,M x y N x y ,则22121222844,4141k k x x x x k k -+=⋅=++,()121222241k y y k x x k -+=+-=+,线段MN 的中点为2224,4141k k k k ⎛⎫- ⎪++⎝⎭,线段MN 的垂直平分线方程为22214()4141k k y x k k k --=--++,令0y =,得22341kx k =+,所以223,041k Q k ⎛⎫ ⎪+⎝⎭,又(1,0)P ,则22223114141k k PQ k k +=-=++,又12MN x x =-=所以2241141MN k k PQk +==++220,1331k k ≠∴<-<+ ,故MN PQ的取值范围为(4,.【点睛】(1)关键在于建立,,a b c 的关系式求解;(2)关键在于联立直线和椭圆方程,依次求出垂直平分线和弦长MN 、PQ ,转化成关于k 的代数式求范围即可.18.定义平面曲线的法线如下:经过平面曲线C 上一点M ,且与曲线C 在点M 处的切线垂直的直线称为曲线C 在点M 处的法线.设点()()000,0M x y y >为抛物线2:2(0)C y px p =>上一点.(1)求抛物线C 在点M 处的切线的方程(结果不含0x );(2)求抛物线C 在点M 处的法线被抛物线C 截得的弦长||AB 的最小值,并求此时点M 的坐标.【答案】(1)002y py x y =+(2);()p 【解析】【分析】(1)先化简求导确定切线斜率,再按照在点处的切线方程进行求解;(2)先联立法线和抛物线方程,借助弦长公式表示弦长,最后换元构造函数,求导确定最小值.(1)因为点()()000,0M x y y >在抛物线上方,所以由2:2(0)C y px p =>得y =py y'=,所以在点M 处的切线斜率0y y pk y y ='==,所求切线方程为000()py y x x y -=-,又202y x p=,故切线方程为2000()2y p y y x y p -=-,即002y p y x y =+.(2)点M 处的法线方程为2000()2y y y y x p p-=--,即220022y p p x y y p +=-+.联立抛物线2:2(0)C y px p =>,可得()2232000220y y p y y p y +-+=,可知0∆>,设()()1122,,,A x y B x y ,()2221212002,2p y y y y y p y +=-⋅=-+,所以322212202()y p AB y y y +⋅-=.令200t y =>,则3222()(0)t p AB t t +=>,令3222()()(0)t p f t t t +=>,1312222222223()()()(2)2()2t p t t p t p t p f t t t +⋅-++⋅-'=⨯=,所以()f t 在()20,2p 单调递减,在()22,p +∞单调递增,所以()2min ()2f t f p ==,即min AB =,此时点M的坐标为()p .【点睛】(1)关键在于化简出0y >时的抛物线方程,借助求导确定切线斜率;(2)写出法线方程,联立抛物线求弦长是通用解法,关键在于换元构造函数之后,借助导数求出最小值.19.已知点()11,0F -,()21,0F ,M 为圆22:4O x y +=上的动点,延长1F M 至N ,使得1MN MF =,1F N 的垂直平分线与2F N 交于点P ,记P 的轨迹为Γ.(1)求Γ的方程;(2)过2F 的直线l 与Γ交于,A B 两点,纵坐标不为0的点E 在直线4x =上,线段OE 分别与线段AB ,Γ交于,C D 两点,且2OD OC OE =⋅,证明:AC BC =.【答案】(1)22143x y +=;(2)证明见解析.【解析】【分析】(1)由线段垂直平分线和三角形中位线性质可证得12124PF PF F F +=>,可知P 点轨迹为椭圆,由此可得轨迹方程;(2)由已知可知24D C x x =;当l 斜率不存在时显然不成立;当l 斜率存在时,设l 方程,将其与椭圆方程联立,结合韦达定理可得AB 中点横坐标;设():0OE y k x k ''=≠,与直线l 和椭圆方程联立可求得34k k'=-,由此可整理得到C x ,与AB 中点横坐标相同,由此可得结论.(1)连接1,MO PF,PM 是1NF 的垂直平分线,1PF PN ∴=,1222PF PF PN PF NF ∴+=+=;,M O 分别为112,NF F F 中点,224NF MO ∴==,12124PF PF F F ∴+=>,P ∴点轨迹是以12,F F 为焦点,长轴长为4的椭圆,即2a =,1c =,23b ∴=,P ∴点轨迹Γ的方程为:22143x y +=;(2)2OD OC OE =⋅ ,即OD OE OC OD =,D EC Dx x x x ∴=,由题意知:0C x >,4E x =,24D C x x ∴=,①当直线l 斜率不存在时,即:1l x =,此时1C x =,2D x <,此时24D C x x =不成立;②当直线l 斜率存在时,设():1l y k x =-,()11,A x y ,()22,B x y ,由()221431x y y k x ⎧+=⎪⎨⎪=-⎩得:()22223484120k x k x k +-+-=,2122212283441234k x x k k x x k ⎧+=⎪⎪+∴⎨-⎪=⎪+⎩,AB ∴中点的横坐标为21224234x x k k +=+;设直线OE 的方程为:()0y k x k ''=≠,由()1y k x y k x ='=⎧⎨-⎩得:kx k k ='-,即C k x k k ='-;由22143y k xx y =⎧='⎪⎨+⎪⎩得:221234x k ='+,即221234D x k ='+;由24D C x x =得:212434k k k k =''+-,整理可得:34k k '=-,2122434324C x x kk x k k k+∴===++,C ∴为线段AB 的中点,AC BC ∴=.【点睛】关键点点睛:本题考查定义法求解轨迹方程、直线与椭圆综合应用问题;本题证明C 为AB 中点的关键是能够通过已知等式得到,C D 两点横坐标之间满足的等量关系,进而表示出AB 中点横坐标和C 点横坐标,证明二者相等即可.20.已知椭圆()2222:10x y E a b a b +=>>的左、右焦点分别为1F ,2F,离心率2e =,P为椭圆上一动点,12PF F △面积的最大值为2.(1)求椭圆E 的方程;(2)若C ,D 分别是椭圆E 长轴的左、右端点,动点M 满足MD CD ⊥,连结CM 交椭圆于点N ,O 为坐标原点.证明:OM ON ⋅为定值;(3)平面内到两定点距离之比是常数()1λλ≠的点的轨迹是圆.椭圆E 的短轴上端点为A ,点Q 在圆228x y +=上,求22QA QP PF +-的最小值.【答案】(1)22142x y +=;(2)见解析;4.【解析】【分析】(1)结合离心率和12PF F △面积的最大值列出关于,,a b c 的方程,解方程即可;(2)设直线CM 方程,写出点M 坐标,联立椭圆方程,求点N 坐标,通过向量数量积计算即可;(3)设点R 坐标,借助点Q 在圆228x y +=上,将2QA 转化成RA ,再借助椭圆定义将2PF 转化成14PF -,最后通过1,,R P F 三点共线求出最小值.(1)当P 为短轴端点时,12PF F △的面积最大,2bc =,222222,c a bc a b c ⎧=⎪⎪⎪=⎨⎪=+⎪⎪⎩解得2,a b c ===,故椭圆E 的方程为22142x y +=.(2)由(1)知,()2,0,(2,0)C D -,设直线():2CM y k x =+,11(,)N x y ,,(2,4)MD CD M k ⊥∴ ,联立221,42(2)x y y k x ⎧+=⎪⎨⎪=+⎩整理得()22222218840k x k x k +++-=,由21284221k x k --=+得2122421k x k -=+,1124(2)21ky k x k =+=+,222244(,)2121k k N k k -∴++,2222442442121k kOM ON k k k -⋅=⨯⨯++ ,故OM ON ⋅为定值4.(3)由题意(A ,设()(0,),,R m Q x y ,使2QA QR =,()()22222,4QR x y m QAx y +-==+,整理得222282833m m x y y --++=,又点Q 在圆228x y +=上,20,883m =∴⎨-⎪=⎪⎩解得m =,(0,R 由椭圆定义得124PF PF =-,2112(4)4QA QP PF QR QP PF QR QP PF +-=+--∴=++-,当1,,R P F三点共线时,(10,,(R F 22QA QP PF +-∴4.【点睛】(1)关键在于建立,,a b c 的方程;(2)关键在于设出直线方程,联立得出点N 坐标;(3)关键在于利用题目中给出的圆的定义将2QA 转化成RA ,再结合椭圆定义,将问题简化成共线问题.21.已知椭圆C :22221(0)x y a b a b+=>>的长轴长为4,点31,2⎛⎫ ⎪⎝⎭在椭圆C 上.(1)求椭圆C 的标准方程;(2)已知O 为坐标原点,P 为椭圆C 上的一个动点,过点E0)作OP 的平行线交椭圆C 于M ,N 两点,问:是否存在实数t (t >0),使得||,||,||EM t OP EN 构成等比数列?若存在,求出t 的值;若不存在,请说明理由.【答案】(1)22143x y +=(2)存在,12t =【解析】【分析】(1)由题意可得2a =,再将点31,2⎛⎫ ⎪⎝⎭代入椭圆方程中可求出2b ,从而可求得椭圆的方程,(2)①当OP 的斜率存在时,设直线OP 的方程为y kx =,将直线方程代入椭圆方程中可求出22,x y ,则可得2OP ,设直线MN的方程为()()1122(,,,y k x M x y N x y =,将直线方程代入椭圆方程消去y ,利用根与系数的关系,再利用两点间的距离公式表示出||,||EM EN ,再计算||||EM EN 与2OP 比较可求出t 的值,②当OP 的斜率不存在时,可得||OP =MN的方程为x ||||EM EN 的值,进而可求出t (1)由题意可得24a =,所以2a =.因为点(1,32)在椭圆C 上,所以221914a b +=,解得23b =.所以椭圆C 的标准方程为22143x y +=.(2)①当OP 的斜率存在时,设直线OP 的方程为y kx =.联立方程,得22143y kxx y =⎧⎪⎨+=⎪⎩解得221234x k =+,2221234k y k =+.解得()2222221211212||343434k k OP k k k+=+=+++,设直线MN的方程为()()1122(,,,y k x M x y N x y =-.联立方程,得(22143y k x x y ⎧=-⎪⎨⎪+=⎩化简,得()22223412120k x x k +=+-=.因为点E0)在椭圆内部,所0∆>,221213221212,3434k x x x x k k-+=⋅=++,所以1||EM x =-.同理可得2||EN x =所以()(())22121212||||113EM EN kx xk x x x x ⋅=+=+⋅++()()22222223112122413343434k k kk k k k +-=+⋅-+=+++,假设存在实数(0)t t >),使得||,||,||EM t OP EN 构成等比数列,则22||||||EM EN t OP ⋅=.所以()()22222311213434k k tk k ++=⋅++.解得214t=.四为1t >,所以12t =,②当OP 的斜率不存在时,||OP =MN 的方程为x =x =22143x y +=,得234y =.所以||||2EM EN ==,当||,||,||EM t OP EN 构成等比数列时,22||||||EM EN t OP ⋅=,即2334t =.因为0t >,所以12t =.综上所述,存在实数12t =,使得||,||,||EM t OP EN 构成等比数列.22.在平面直角坐标系xOy 中,曲线C 的参数方程为x y αααα⎧=-⎪⎨=+⎪⎩(α为参数),以坐标原点为极点,x 轴正半轴为极轴建立极坐标系.直线l 的极坐标方程为()cos sin 3m m ρθθ++=l 与曲线C 交于A ,B 两点.(1)求曲线C 的普通方程和直线l 的直角坐标方程;(2)过A ,B 分别作l 的垂线与x 轴交于C ,D 两点,若AB =CD .【答案】(1)2212x y +=,30mx y m ++=;(2)4.【解析】【分析】(1)消参法求曲线C 的普通方程,公式法求直线l 的直角坐标方程.(2)由(1)所得普通方程,结合圆中弦长、半径、弦心距的几何关系求圆心到直线l 的距离,再利用点线距离公式列方程求参数m ,即可得直线的倾斜角大小,由AB 、CD 的关系求CD 即可.(1)由题意,消去参数α,得曲线C 的普通方程为2212x y +=.将cos x ρθ=,sin y ρθ=代入()cos sin 3m m ρθθ++得直线l的直角坐标方程为30mx y m ++=.(2)设圆心到直线l:30mx y m ++=的距离为d,则AB =3d =.3=,解得3m =-.所以直线l的方程为60x +=,则直线l 的倾斜角为30θ=︒.所以4cos30AB CD ==︒.23.在平面直角坐标系xOy中,已知直线340x y ++=与圆1C :222x y r +=相切,另外,椭圆2C :()222210x y a b a b +=>>的离心率为32,过左焦点1F 作x 轴的垂线交椭圆于C ,D 两点.且1CD =.(1)求圆1C 的方程与椭圆2C 的方程;(2)经过圆1C 上一点P 作椭圆2C 的两条切线,切点分别记为A ,B ,直线PA ,PB 分别与圆1C 相交于M ,N 两点(异于点P ),求△OAB 的面积的取值范围.【答案】(1)225x y +=,2214x y +=;(2)4,15⎡⎤⎢⎥⎣⎦.【解析】【分析】(1)由直线与圆的相切关系及点线距离公式求参数r ,即可得圆1C 的方程,根据椭圆离心率、22b CD a=及椭圆参数关系求出a 、b 、c ,即可得椭圆2C 的方程.(2)设()11,A x y 、()22,B x y 、()00,P x y ,讨论直线PA ,PB 斜率存在性,则直线PA 为()111y k x x y =-+、直线PB 为()222y k x x y =-+,联立椭圆方程并结合所得一元二次方程0∆=求1k 、2k ,进而得直线PA 为1114x x y y +=、直线PB 为2214x xy y +=,结合P 在直线PA ,PB 上有AB 为0014x xy y +=,联立椭圆方程,应用韦达定理、弦长公式、点线距离公式,结合三角形面积公式得0OAB S = .(1)由题设,圆1C :222x y r +=的圆心为()0,0,因为直线340x y ++=与圆1C相切,则r ==所以圆1C 的方程为225x y +=,因为椭圆2Cc e a ==c =,由221b CD a==,则22a b =,又222a b c =+,所以22324a a a =+,解得2a =,1b =,所以椭圆2C 的方程为2214x y +=.综上,圆1C 为225x y +=,椭圆2C 为2214x y +=.(2)设点()11,A x y ,()22,B x y ,()00,P x y .当直线PA ,PB 斜率存在时,设直线PA ,PB 的斜率分别为1k ,2k ,则直线PA 为()111y k x x y =-+,直线PB 为()222y k x x y =-+.由()11122440y k x x y x y ⎧=-+⎨+-=⎩,消去y 得:()()()22211111111148440k x k y k x x y k x ++-+--=.所以()()()2222111111116441444k y k x k y k x ⎡⎤∆=--+--⎣⎦.令0∆=,整理得()2221111114210x k x y k y -++-=,则11111122111444x y x y x k x y y --=-==-,所以直线PA 为()11114x y x x y y -=-+,化简得:22111144x x y y y x +=+,即1114x x y y +=.经验证,当直线PA 斜率不存在时,直线PA 为2x =或2x =-也满足1114x xy y +=.同理,可得直线PB 为2214x xy y +=.因为()00,P x y 在直线PA ,PB 上,所以101014x x y y +=,202014x xy y +=.综上,直线AB 为0014x xy y +=.由00221444x xy y x y ⎧+=⎪⎨⎪+=⎩,消去y 得:()22200035816160y x x x y +-+-=.所以01220835x x x y +=+,21220161635y x x y -=+.所以12AB x =-=)20203135y y +==+.又O 到直线AB的距离d ==所以)20200311235OABy S y +=⋅+ t =,[]1,4t ∈,则24444OAB t S t t t∆==++,又[]44,5t t+∈,所以△OAB 的面积的取值范围为4,15⎡⎤⎢⎥⎣⎦.【点睛】关键点点睛:第二问,设点及直线PA ,PB 的方程,联立椭圆结合相切关系求参数关系,进而确定PA ,PB 的方程,由P 在直线PA ,PB 上求直线AB 的方程,再联立椭圆并应用韦达定理、弦长公式、点线距离公式求三角形面积的范围.24.已知点A ,B 是抛物线x 2=2py (p 为常数且p >0)上不同于坐标原点O 的两个点,且0OA OB ⋅= .(1)求证:直线AB 过定点;(2)过点A 、B 分别作抛物线的切线,两切线相交于点M ,记 OMA 、 OAB 、 OMB 的面积分别为S 1、S 2、S 3;是否存在定值λ使得22s =λS 1S 3?若存在,求出λ值;若不存在,请说明理由.【答案】(1)证明见解析(2)存在,4λ=【解析】【分析】(1)设11(,)A x y ,22(,)B x y ,设直线AB 方程为y kx t =+,代入抛物线方程中,消去y ,。
解析几何小题基础练-新高考数学复习分层训练(新高考通用)一、单选题1.(2023·福建莆田·统考二模)已知F 为抛物线C :y 2=4x 的焦点,A 为C 上的一点,AF 中点的横坐标为2,则|AF |=()A.3B.4C.5D.62.(2023·广东惠州·统考模拟预测)“m >2”是“方程x 22-m +y 2m +1=1表示双曲线”的( )条件A.必要不充分条件B.充分不必要条件C.充要条件D.既不充分也不必要条件3.(2023·浙江·统考一模)设直线y =2x 与抛物线y =x -3 2交于A ,B 两点,M 是线段AB 的中点,则点M 的横坐标是()A.3B.4C.5D.64.(2023·浙江·校联考模拟预测)设椭圆C :x 2a 2+y 2b2=1(a >b >0)的半焦距为c ,若a -c =4,b =6,则C 的离心率为()A.512B.35C.513D.12135.(2023·江苏·统考一模)已知椭圆x 2a 2+y 2b2=1a >b >0 的右焦点为F c ,0 ,点P ,Q 在直线x =a 2c 上,FP ⊥FQ ,O 为坐标原点,若OP ⋅OQ =2OF 2,则该椭圆的离心率为()A.23B.63C.22D.326.(2023·广东肇庆·统考二模)已知F 为双曲线C :x 24-y 25=1的左焦点,P 为其右支上一点,点A 0,-6 ,则△APF 周长的最小值为()A.4+62B.4+65C.6+62D.6+657.(2023·广东佛山·统考一模)已知双曲线C 的中心位于坐标原点,焦点在坐标轴上,且虚轴比实轴长.若直线4x +3y -20=0与C 的一条渐近线垂直,则C 的离心率为()A.54B.43C.53D.748.(2023·江苏常州·校考一模)设点A -2,3 ,B 0,a ,若直线AB 关于y =a 对称的直线与圆(x +3)2+(y +2)2=1有公共点,则a 的取值范围是()A.13,32B.-∞,13 ∪32+∞ C.12,1D.-∞,12 ∪1+∞二、多选题9.(2023·江苏南通·统考模拟预测)已知双曲线x 2-y 23=1的右顶点为A ,右焦点为F ,双曲线上一点P 满足PA =2,则PF 的长度可能为()A.2B.3C.4D.510.(2023·山东枣庄·统考二模)已知曲线C 1:5x 2+y 2=5,C 2:x 2-4y 2=4,则()A.C 1的长轴长为5B.C 2的渐近线方程为x ±2y =0C.C 1与C 2的离心率互为倒数D.C 1与C 2的焦点相同11.(2023·湖北武汉·统考模拟预测)若椭圆x 2m 2+2+y 2m2=1(m >0)的某两个顶点间的距离为4,则m 的可能取值有()A.5B.7C.2D.212.(2023·湖北·校联考模拟预测)已知F 1,F 2是椭圆E :y 24+x 23=1的两个焦点,点P 在椭圆E 上,则()A.点F 1,F 2在x 轴上B.椭圆E 的长轴长为4C.椭圆E 的离心率为12D.使得△F 1PF 2为直角三角形的点P 恰有6个13.(2023·湖南长沙·统考一模)已知双曲线的方程为y 264-x 216=1,则()A.渐近线方程为y =±12xB.焦距为85C.离心率为52D.焦点到渐近线的距离为814.(2023·湖南·模拟预测)已知圆C 1:x -1 2+y -3 2=12与圆C 2:x +1 2+y -m 2=4,则下列说法正确的是()A.若圆C 2与x 轴相切,则m =±4B.直线kx -y -2k +1=0与圆C 1始终有两个交点C.若m =-3,则圆C 1与圆C 2相离D.若圆C 1与圆C 2存在公共弦,则公共弦所在的直线方程为4x +6-2m y +m 2+2=015.(2023·广东江门·统考一模)已知曲线C :x 2sin α+y 2cos α=10≤α<π ,则下列说法正确的是()A.若曲线C 表示两条平行线,则α=0B.若曲线C 表示双曲线,则π2<α<πC.若0<α<π2,则曲线C 表示椭圆 D.若0<α<π4,则曲线C 表示焦点在x 轴的椭圆16.(2023·浙江·校联考模拟预测)已知圆O 1:(x -1)2+y 2=4,圆O 2:(x -5)2+y 2=4m ,下列说法正确的是()A.若m =4,则圆O 1与圆O 2相交B.若m =4,则圆O 1与圆O 2外离C.若直线x -y =0与圆O 2相交,则m >258D.若直线x -y =0与圆O 1相交于M ,N 两点,则|MN |=142三、填空题17.(2023·山东青岛·统考一模)已知O 为坐标原点,在抛物线y 2=2px p >0 上存在两点E ,F ,使得△OEF 是边长为4的正三角形,则p =.18.(2023·浙江·统考一模)已知F 1,F 2分别是双曲线C :x 2a2-y 2=1a >0 的左右焦点,且C 上存在点P 使得PF 1 =4PF 2 ,则a 的取值范围是.19.(2023·浙江温州·统考二模)已知抛物线y 2=4x 和椭圆x 2a 2+y 2b2=1(a >b >0)相交于A ,B 两点,且抛物线的焦点F 也是椭圆的焦点,若直线AB 过点F ,则椭圆的离心率是.20.(2023·江苏连云港·统考模拟预测)直线y =23x 与双曲线x 2a2-y 28=1(a >0)相交于A ,B 两点,且A ,B 两点的横坐标之积为-9,则离心率e =.21.(2023·江苏泰州·统考一模)已知圆O :x 2+y 2=r 2(r >0),设直线x +3y -3=0与两坐标轴的交点分别为A ,B ,若圆O 上有且只有一个点P 满足AP =BP ,则r 的值为.22.(2023·江苏·统考一模)已知圆C :x 2-2x +y 2-3=0,过点T 2,0 的直线l 交圆C 于A ,B 两点,点P 在圆C 上,若CP ∥AB ,PA ⋅PB =12,则AB =23.(2023·江苏·统考一模)已知抛物线y 2=4x 的焦点为F ,点Р是其准线上一点,过点P 作PF 的垂线,交y 轴于点A ,线段AF 交抛物线于点B .若PB 平行于x 轴,则AF 的长度为.24.(2023·山东潍坊·统考模拟预测)已知圆M 满足与直线l :x -6=0和圆N :x -1 2+y -2 2=9都相切,且直线MN 与l 垂直,请写出一个符合条件的圆M 的标准方程.25.(2023·湖北·校联考模拟预测)过抛物线y 2=2px (p >0)焦点F 的射线与抛物线交于点A ,与准线交于点B ,若|AF |=2,|BF |=6,则p 的值为.26.(2023·湖北武汉·统考模拟预测)若两条直线l 1:y =3x +m ,l 2:y =3x +n 与圆x 2+y 2+3x +y +k =0的四个交点能构成矩形,则m +n =.27.(2023·广东茂名·统考一模)过四点-1,1 、1,-1 、2,2 、3,1 中的三点的一个圆的方程为(写出一个即可).28.(2023·广东·统考一模)在平面直角坐标系中,等边三角形ABC 的边AB 所在直线斜率为23,则边AC 所在直线斜率的一个可能值为.29.(2023·广东·统考一模)已知动圆N 经过点A -6,0 及原点O ,点P 是圆N 与圆M :x 2+(y -4)2=4的一个公共点,则当∠OPA最小时,圆N的半径为.30.(2023·浙江温州·统考模拟预测)已知F1,F2是椭圆C的两个焦点,点M在C上,且MF1的最大⋅MF2值是它的最小值的2倍,则椭圆的离心率为.。
高考数学解析几何专题练习解析版82页【1】1.一个顶点的坐标()2,0,焦距的一半为3的椭圆的标准方程是( ) A.19422=+y x B.14922=+y x C.113422=+y x D.141322=+y x2.已知双曲线的方程为22221(0,0)x y a b a b-=>>,过左焦点F 1的直线交双曲线的右支于点P ,且y 轴平分线段F 1P ,则双曲线的离心率是( ) A . 3B .32+C . 31+D . 323.已知过抛物线y 2 =2px (p>0)的焦点F 的直线x -my+m=0与抛物线交于A ,B 两点,且△OAB (O 为坐标原点)的面积为,则m 6+ m 4的值为( ) A .1 B . 2 C .3D .44.若直线经过(0,1),(3,4)A B 两点,则直线AB 的倾斜角为 A .30o B . 45o C .60o D .120o5.已知曲线C 的极坐标方程ρ=2θ2cos ,给定两点P(0,π/2),Q (-2,π),则有( )(A)P 在曲线C 上,Q 不在曲线C 上 (B)P 、Q 都不在曲线C 上 (C)P 不在曲线C 上,Q 在曲线C 上 (D)P 、Q 都在曲线C 上 6.点M 的直角坐标为)1,3(--化为极坐标为( ) A .)65,2(π B .)6,2(π C .)611,2(π D .)67,2(π7.曲线的参数方程为⎩⎨⎧-=+=12322t y t x (t 是参数),则曲线是( ) A 、线段 B 、直线 C 、圆 D 、射线 8.点(2,1)到直线3x-4y+2=0的距离是( )A .54B .45 C .254D .425 9. 圆06422=+-+y x y x 的圆心坐标和半径分别为( )A.)3,2(-、13B.)3,2(-、13C.)3,2(--、13D.)3,2(-、1310.椭圆12222=+b y x 的焦点为21,F F ,两条准线与x 轴的交点分别为M 、N ,若212F F MN ≤,则该椭圆离心率取得最小值时的椭圆方程为 ( )A.1222=+y x B.13222=+y x C.12222=+y xD.13222=+y x 11.过双曲线的右焦点F 作实轴所在直线的垂线,交双曲线于A ,B 两点,设双曲线的左顶点M ,若MAB ∆是直角三角形,则此双曲线的离心率e 的值为 ( )A .32B .2C .2D .3 12.已知)0(12222>>=+b a b y a x ,N M ,是椭圆上关于原点对称的两点,P 是椭圆上任意一点且直线PN PM ,的斜率分别为21,k k ,021≠k k ,则21k k +的最小值为1,则椭圆的离心率为( ). (A)22 (B) 42 (C) 23 (D)43 13.设P 为双曲线11222=-y x 上的一点,F 1、F 2是该双曲线的两个焦点,若2:3:21=PF PF ,则△PF 1F 2的面积为( )A .36B .12C .123D .2414.如果过点()m P ,2-和()4,m Q 的直线的斜率等于1,那么m 的值为( ) A .4B .1C .1或3D .1或415.已知动点(,)P x y 在椭圆2212516x y +=上,若A 点坐标为(3,0),||1AM =,且0PM AM ⋅=则||PM 的最小值是( )A .2B .3C .2D .3 16.直线l 与抛物线交于A,B 两点;线段AB 中点为,则直线l 的方程为A 、B 、、C 、D 、17.已知椭圆2222:1(0)x y C a b a b +=>>的离心率为32,过右焦点F 且斜率为(0)k k >的直线与C 相交于A B 、两点.若3AF FB =,则k =( )(A )1 (B 2 (C 3(D )2 18.圆22(2)4x y ++=与圆22(2)(1)9x y -+-=的位置关系为( )A.内切B.相交C.外切D.相离19.已知点P 在定圆O 的圆内或圆周上,动圆C 过点P 与定圆O 相切,则动圆C 的圆心轨迹可能是( ) (A)圆或椭圆或双曲线 (B)两条射线或圆或抛物线 (C)两条射线或圆或椭圆 (D)椭圆或双曲线或抛物线20.若直线l :y =kx -3与直线2x +3y -6=0的交点位于第一象限,则直线l 的倾斜角的取值范围是( ) A .[6π,3π) B .(6π,2π)C .(3π,2π) D .[6π,2π] 21.直线l 与两直线1y =和70x y --=分别交于,A B 两点,若线段AB 的中点为(1,1)M -,则直线l 的斜率为( )A .23 B .32C .32-D .23- 22.已知点()()0,0,1,1O A -,若F 为双曲线221x y -=的右焦点,P 是该双曲线上且在第一象限的动点,则OA FP ⋅的取值范围为( ) A .()21,1-B .()21,2-C .()1,2D .()2,+∞23.若b a ,满足12=+b a ,则直线03=++b y ax 过定点( ).A ⎪⎭⎫ ⎝⎛-21,61B .⎪⎭⎫ ⎝⎛-61,21C .⎪⎭⎫ ⎝⎛61,21.D ⎪⎭⎫ ⎝⎛-21,6124.双曲线1922=-y x 的实轴长为 ( ) A. 4B. 3C. 2D. 125.已知F 1 、F 2分别是双曲线1by a x 2222=-(a>0,b>0)的左、右焦点,P 为双曲线上的一点,若︒=∠9021PF F ,且21PF F ∆的三边长成等差数列,则双曲线的离心率是( )A .2B . 3C . 4D . 526.过A(1,1)、B(0,-1)两点的直线方程是( )A.B.C.D.y=x27.抛物线x y 122=上与焦点的距离等于6的点横坐标是( )A .1B .2 C.3 D.428.已知圆22:260C x y x y +-+=,则圆心P 及半径r 分别为 ( ) A 、圆心()1,3P ,半径10r =; B 、圆心()1,3P ,半径10r =;C 、圆心()1,3P -,半径10r =;D 、圆心()1,3P -,半径10r =。
高三数学解析几何习题集
一、直线与平面
1. 已知直线L1的方程为x + 2y - 3 = 0,点A(2, -1)在该直线上,求直线L1与直线L2:2x - y + 4 = 0的交点坐标。
2. 平面α过点A(1, -2, 3),且与直线L:x = 2 + 3t,y = -1 - t,z = 3t相交于点P(5, 1, -2),求平面α的方程。
3. 已知平面α与平面β垂直,平面α通过点A(1, 2, -1),平面β通过直线L:x = 2 - 4t,y = t,z = 3t,求平面β的方程。
二、曲线的方程
1. 曲线C为椭圆,已知其焦点F1(-3, 0),F2(3, 0),且顶点为(0, 2),求曲线C的方程。
2. 曲线C为双曲线,已知其离心率为2,焦点为F1(3, 0),F2(-3, 0),求曲线C的方程。
3. 曲线C为抛物线,已知其焦点为F(2, -1),过顶点V(0, 0),求曲线C的方程。
三、空间向量与坐标系
1. 已知向量AB = 2i + j - k,向量AC = i - 2j + 3k,求向量BC的坐标表示。
2. 平行四边形ABCD中,已知向量AB = 2i - 3j + 4k,向量AC = 3i + 4j - k,求向量BD的坐标表示。
3. 在XYZ坐标系中,已知A(2, -1, 3),B(-1, 2, -3),C(4, 3, -2),求三角形ABC的面积。
以上是高三数学解析几何习题集的部分题目,希望能对高三学生的数学学习有所帮助。
请自行努力解答,并核对答案,巩固知识理解和运用能力。
祝你学业进步,取得优异成绩!。
1 / 21高考数学解析几何专题经典试题练习及解析1、已知椭圆C :22221(0)x y a b a b +=>>的离心率为2,且过点A (2,1)(1)求C 的方程:(2)点M ,N 在C 上,且AM ⊥AN ,AD ⊥MN ,D 为垂足、证明:存在定点Q ,使得|DQ |为定值【解析】(1)由题意可得:22222411c aa b a b c ⎧=⎪⎪⎪+=⎨⎪=+⎪⎪⎩,解得:2226,3a b c ===,故椭圆方程为:22163x y +=.(2)设点()()1122,,,M x y N x y .因为AM ⊥AN ,∴·0AM AN =,即()()()()121222110x x y y --+--=,① 当直线MN 的斜率存在时,设方程为y kx m =+,如图1. 代入椭圆方程消去y 并整理得:()22212k4260xkmx m +++-=,2121222426,1212km m x x x x k k-+=-=++ ②, 根据1122,y kx m y kx m =+=+,代入①整理可得:()()()()221212k1x 2140x km k x x m ++--++-+=将②代入,()()()22222264k 121401212m kmkm k m k k-⎛⎫++---+-+= ⎪++⎝⎭,2 / 21整理化简得()()231210k m k m +++-=,∵2,1A ()不在直线MN 上,∴210k m +-≠,∴23101k m k ++=≠,,于是MN 的方程为2133y k x ⎛⎫=-- ⎪⎝⎭, 所以直线过定点直线过定点21,33E ⎛⎫-⎪⎝⎭. 当直线MN 的斜率不存在时,可得()11,N x y -,如图2.代入()()()()121222110x x y y --+--=得()2212210x y -+-=,结合2211163x y +=,解得()1122,3x x ==舍,此时直线MN 过点21,33E ⎛⎫-⎪⎝⎭,由于AE 为定值,且△ADE 为直角三角形,AE 为斜边,3 / 21所以AE 中点Q 满足QD 为定值(AE=). 由于()21,32,13,A E ⎛⎫-⎪⎝⎭,故由中点坐标公式可得41,33Q ⎛⎫ ⎪⎝⎭. 故存在点41,33Q ⎛⎫⎪⎝⎭,使得|DQ|为定值. 2、已知椭圆22221(0)x y a b a b+=>>的一个顶点为(0,3)A -,右焦点为F ,且||||OA OF =,其中O 为原点(Ⅰ)求椭圆的方程;(Ⅱ)已知点C 满足3OC OF =,点B 在椭圆上(B 异于椭圆的顶点),直线AB 与以C 为圆心的圆相切于点P ,且P 为线段AB 的中点、求直线AB 的方程、【答案】(Ⅰ)221189x y +=;(Ⅰ)132y x =-,或3y x =-、 【解析】(Ⅰ)椭圆()222210x y a b a b +=>>的一个顶点为()0,3A -,∴3b =,由OA OF=,得3c b ==,又由222a b c =+,得2228313a =+=,所以,椭圆的方程为221189x y +=;(Ⅱ)直线AB 与以C 为圆心的圆相切于点P ,所以CP AB ⊥,根据题意可知,直线AB 和直线CP 的斜率均存在,4 / 21设直线AB 的斜率为k ,则直线AB 的方程为3y kx ,即3y kx =-,2231189y kx x y =-⎧⎪⎨+=⎪⎩,消去y ,可得()2221120k x kx +-=,解得0x =或21221k x k =+. 将21221k x k =+代入3y kx =-,得222126321213k y k k k k =⋅--=++, 所以,点B 的坐标为2221263,2121k k k k ⎛⎫- ⎪++⎝⎭,因为P 为线段AB 的中点,点A 的坐标为()0,3-,所以点P 的坐标为2263,2121k k k -⎛⎫⎪++⎝⎭, 由3OC OF =,得点C 的坐标为()1,0,所以,直线CP 的斜率为222303216261121CPk k k k k k --+=-+-+=, 又因为CP AB ⊥,所以231261k k k ⋅=--+,整理得22310k k -+=,解得12k =或1k =. 所以,直线AB 的方程为132y x =-或3y x =-. 3、已知椭圆2222:1x y C a b+=过点(2,1)A --,且2a b =(Ⅰ)求椭圆C 的方程:5 / 21(Ⅱ)过点(4,0)B -的直线l 交椭圆C 于点,M N ,直线,MA NA 分别交直线4x =-于点,P Q 、求||||PB BQ 的值【解析】(1)设椭圆方程为:()222210x y a b a b+=>>,由题意可得:224112a ba b⎧+=⎪⎨⎪=⎩,解得:2282a b ⎧=⎨=⎩, 故椭圆方程为:22182x y +=.(2)设()11,M x y ,()22,N x y ,直线MN 的方程为:()4y k x =+,与椭圆方程22182x y +=联立可得:()222448x k x ++=,即:()()222241326480k x k x k +++-=,则:2212122232648,4141k k x x x x k k --+==++. 直线MA 的方程为:()111122y y x x ++=++, 令4x =-可得:()()()1111111141214122122222P k x k x y x y x x x x ++-++++=-⨯-=-⨯-=++++, 同理可得:()()222142Q k x y x -++=+.6 / 21很明显0P Q y y <,且:PQPB y PQy =,注意到: ()()()()()()()()122112121242424421212222P Q x x x x x x y y k k x x x x +++++⎛⎫+++=-++=-+⨯ ⎪++++⎝⎭, 而:()()()()()122112124242238x x x x x x x x +++++=+++⎡⎤⎣⎦2222648322384141k k k k ⎡⎤⎛⎫--=+⨯+⎢⎥ ⎪++⎝⎭⎣⎦()()()22226483328412041k k k k -+⨯-++=⨯=+,故0,P Q P Q y y y y +==-.从而1PQPB y BQy ==. 4、已知椭圆C :22221(0)x y a b a b+=>>过点M (2,3),点A 为其左顶点,且AM 的斜率为12,(1)求C 的方程;(2)点N 为椭圆上任意一点,求△AMN 的面积的最大值. 【解析】(1)由题意可知直线AM 的方程为:13(2)2y x -=-,即24-=-x y . 当y =0时,解得4x =-,所以a =4,椭圆()2222:10x y C a b a b+=>>过点M (2,3),可得249116b +=, 解得b 2=12.7 / 21所以C 的方程:2211612x y +=.(2)设与直线AM 平行的直线方程为:2x y m -=,如图所示,当直线与椭圆相切时,与AM 距离比较远的直线与椭圆的切点为N ,此时△AMN 的面积取得最大值.联立直线方程2x y m -=与椭圆方程2211612x y +=,可得:()2232448m y y ++=,化简可得:2216123480y my m ++-=,所以()221444163480m m ∆=-⨯-=,即m 2=64,解得m =±8,与AM 距离比较远的直线方程:28x y -=, 直线AM 方程为:24-=-x y ,点N 到直线AM 的距离即两平行线之间的距离,利用平行线之间的距离公式可得:d==,由两点之间距离公式可得||AM==.所以△AMN的面积的最大值:11825⨯=.5、如下图已知椭圆221:12xC y+=,抛物线22:2(0)C y px p=>,点A是椭圆1C与抛物线2C的交点,过点A的直线l交椭圆1C于点B,交抛物线2C于M(B,M不同于A)(Ⅰ)若116=p,求抛物线2C的焦点坐标;(Ⅱ)若存在不过原点的直线l使M为线段AB的中点,求p的最大值、【答案】(Ⅰ)1(,0)32;【解析】(Ⅰ)当116=p时,2C的方程为218y x=,故抛物线2C的焦点坐标为1(,0)32;(Ⅱ)设()()()112200,,,,,,:A x yB x y M x y I x y mλ=+,8/ 219 / 21由()22222222220x y y my m x y mλλλ⎧+=⇒+++-=⎨=+⎩, 1200022222,,222m m my y y x y m λλλλλλ--∴+===+=+++, 由M 在抛物线上,所以()222222244222m pm mp λλλλλ=⇒=+++, 又22222()220y pxy p y m y p y pm x y mλλλ⎧=⇒=+⇒--=⎨=+⎩, 012y y p λ∴+=,2101022x x y m y m p m λλλ∴+=+++=+,2122222mx p m λλ∴=+-+.由2222142,?22x y x px y px ⎧+=⎪⇒+=⎨⎪=⎩即2420x px +-=12x p ⇒==-222221822228162p p p m p p p λλλλλ+⇒-=+⋅=++≥+,18p ≥,21160p ≤,40p ≤, 所以,p,此时A . 法2:设直线:(0,0)l x my t m t =+≠≠,()00,A x y .10 / 21将直线l 的方程代入椭圆221:12x C y +=得:()2222220m y mty t +++-=,所以点M 的纵坐标为22M mty m =-+.将直线l 的方程代入抛物线22:2C y px =得:2220y pmy pt --=,所以02M y y pt =-,解得()2022p m y m+=,因此()220222p m xm+=,由220012x y +=解得22212242160m m p m m ⎛⎫⎛⎫=+++ ⎪ ⎪⎝⎭⎝⎭,所以当m t ==p模拟试题1、在平面直角坐标系中,曲线Γ:0(),F x y =和函数21()4f x x =的图像关于点(1,2)对称. (1)函数21()4f x x =的图像和直线4y k x =⋅+交于A 、B两点,O 是坐标原点,求证:2AOB π∠=; (2)求曲线Γ的方程;(3)对于(2),依据课本章节《圆锥曲线》的抛物线的定义,求证:曲线Γ为抛物线.【解析】(1)设()()1122,,A B x y x y ,,由2144y x y kx ⎧=⎪⎨⎪=+⎩得24160x kx --=,则1212+4,16x x k x x =⋅=-, 又1212+OA OB x x y y ⋅=⋅⋅ ()()22112121222211++16+160441616x x x x x x x x =⋅⋅=⋅⋅=-⨯-=,11 / 21所以OA OB ⊥,所以2AOB π∠=;(2)设曲线Γ:0(),F x y =上任意一点(),P x y ,点P 关于点(1,2)对称的点()111,P x y ,则1124x xy y =-⎧⎨=-⎩,代入到214y x =中得()21424y x -=-, 所以曲线Γ的方程是2134y x x =-++;(3)设曲线Γ:0(),F x y =上任意一点(),P x y ,则满足2134y x x =-++,设点()2,3F ,直线:5l y =,则()()22223PFx y =-+-()()22222211233244x x x x x x ⎛⎫⎛⎫=-+-++-=-+-+ ⎪ ⎪⎝⎭⎝⎭()2222251123544x x x x y ⎛⎫⎛⎫=-+=-++-= ⎪ ⎪⎝⎭-⎝⎭,所以曲线Γ:0(),F x y =上任意一点P 到点()2,3F 的距离与到直线:5l y =的距离相等,根据抛物线的定义得到曲线Γ为抛物线.2、点P 是直线2y =-上的动点,过点P 的直线1l 、2l 与抛物线2y x 相切,切点分别是A 、B .(1)证明:直线AB 过定点;(2)以AB 为直径的圆过点()2,1M ,求点P 的坐标及圆的方程. 【解析】(1)设点()11,A x y 、()22,B x y 、(),2P b -,对函数2yx 求导得2y x '=,所以,直线1l 的方程为()1112y y x x x -=-,即1120x x y y --=,同理可得直线2l 的方程为2220x x y y --=,12 / 21将点P 的坐标代入直线1l 、2l 的方程得1122220220bx y bx y -+=⎧⎨-+=⎩,所以,点A 、B 的坐标满足方程220bx y -+=,由于两点确定一条直线,所以,直线AB 的方程为220bx y -+=,该直线过定点()0,2; (2)设直线AB 的方程为()22y kx k b =+=,将直线AB 的方程与抛物线的方程联立得220x kx --=,则240k ∆=+>,由韦达定理得122x x =-,12x x k +=,因为()2,1M 在AB 为直径的圆上,所以0MA MB ⋅=,()()11112,12,1MA x y x kx =--=-+,同理()222,1MB x kx =-+,()()()()()()()21212121222111250MA MB x x kx kx k x x k x x ∴⋅=--+++=++-++=,即2230k k +-=,解得1k =或3k =-.当1k =时,1,22P ⎛⎫-⎪⎝⎭,直线AB 的方程为2y x =+,圆心为15,22⎛⎫⎪⎝⎭,半径2r ==,圆的标准方程为22159222x y ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭; 当3k =-时,3,22P ⎛⎫-- ⎪⎝⎭,直线AB 的方程为32y x =-+,圆心为313,22⎛⎫- ⎪⎝⎭,半径r ==2231385222x y ⎛⎫⎛⎫++-= ⎪ ⎪⎝⎭⎝⎭. 综上所述,当1k =时,1,22P ⎛⎫- ⎪⎝⎭,圆的标准方程为22159222x y ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭;13 / 21当3k =-时,3,22P ⎛⎫-- ⎪⎝⎭,圆的标准方程为2231385222x y ⎛⎫⎛⎫++-= ⎪ ⎪⎝⎭⎝⎭.3、设椭圆E 的方程为2212x y +=,斜率为1的动直线l 交椭圆E 于A 、B 两点,以线段AB 的中点C 为圆心,AB 为直径作圆S(1)求圆心C 的轨迹方程,并描述轨迹的图形; (2)若圆S 经过原点,求直线l 的方程;(3)证明:圆S 内含或内切于圆223x y +=.【答案】(1)圆心C的轨迹方程为1233y x x ⎛⎫=--<< ⎪ ⎪⎝⎭,轨迹为线段;(2)3y x =±;(3) 【解析】(1)设斜率为1的动直线l 的方程为y x t =+,联立椭圆方程2222x y +=,可得2234220x tx t ++-=,设()11,A x y 、()22,B x y ,则()2221612222480t t t ∆=--=->,即t <<由韦达定理得1243t x x +=-,212223t x x -=,则中点2,33t t C ⎛⎫- ⎪⎝⎭,可得圆心C的轨迹方程为12y x x ⎛=-<< ⎝⎭,即轨迹为线段; (2)由(1)可得AB ===可得圆S 的方程为2222124339t t t x y -⎛⎫⎛⎫++-= ⎪ ⎪⎝⎭⎝⎭,若圆S 经过原点,可得()2243599t t -=,解得3t =±,14 / 21因此,直线l的方程为y x =±; (3)圆223x y +=的圆心设为()0,0O圆S 的圆心2,33t t S ⎛⎫-⎪⎝⎭由222225124133393933t t OS t ⎫⎛⎫--=--+=+-⎪ ⎪⎪ ⎪⎝⎭⎝⎭,()03m m =<<,则2293m t -=,可得()2222941312033333m m OS m ⎫--=+-=--≤⎪⎪⎝⎭, 可得圆S 内含或内切于圆223x y +=.4、在平面直角坐标系xOy 中,抛物线C 关于x 轴对称,顶点为坐标原点,且经过点()2,2 (1)求抛物线C 的标准方程;(2)过点()1,0Q 的直线交抛物线于M 、N 两点,P 点是直线:1l x =-上任意一点.证明:直线PM PQ PN 、、的斜率依次成等差数列.【解析】(1)由条件设抛物线为22y px =,而点()2,2在抛物线上,从而有2222p =⨯,得1p =,故抛物线方程为22y x =;(2)设点()1,P t -是直线l 上任意一点,15 / 21由条件知直线MN 的斜率不等于0,设:1MN x my =+交抛物线于()()1122,,M x y N x y 、,由212x my y x=+⎧⎨=⎩可得:2220y my --= 从而有12122,2y y m y y +==-1212112PM PN PQ y t y t tk k k x x --===-++,, 121211PM PN y t y tk k x x --+=+++ ()()()12122121222424my y tm y y tm y y m y y +-+-=+++222424tm t t m --==-+, 而2PQ k t =-,即证2PM PN PQ k k k +=. 即证直线PM ,PQ ,PN 的斜率成等差数列.5、已知椭圆C :22221x y a b +=(0a b >>)的离心率是2,原点到直线1x y a b +=的距离等于3. (1)求椭圆C 的标准方程.(2)已知点()0,3Q ,若椭圆C 上总存在两个点,A B 关于直线y x m =+对称,且328QA QB ⋅<,求实数m 的取值范围【答案】(1)22142x y+=;(2)13⎛⎫⎪⎪⎝⎭,.【解析】(1)因为椭圆的离心率是2,原点到直线1x ya b+=的距离等于3,所以=⎪⎪⎨=,解得224,2a b==,所以椭圆C的标准方程为22142x y+=、(2)根据题意可设直线AB的方程为y x n=-+,联立22142y x nx y=-+⎧⎪⎨+=⎪⎩,整理得22342(2)0x nx n-+-=,由22(4)432(2)0n n=--⨯⨯->△,得26n<、设1122(),(,)A x x nB x x n-+-+,,则()21212224,33nnx x x x-+==又设AB的中点为00()M x x n-+,,则12002,233x x n nx x n+==-+=.由于点M在直线y x m=+上,所以233n nm=+,得3n m=-代入26n<,得296m<,所以m<<,因为1122(,3),(,3)QA x x n QB x x n=-+-=-+-,所以212122(3)()(3)QA QB x x n x x n⋅=--++-2224(2)4(3)3619(3)333n n n n nn---+=-+-=.由328QA QB⋅<,得2361928n n-+<,即13n-<<,所以133m-<-<,即113m-<<,16/ 2117 / 21所以113m m ⎧<<⎪⎪⎨⎪-<<⎪⎩,解得13m <<.实数m的取值范围为133⎛⎫- ⎪ ⎪⎝⎭,. 6、椭圆2222:1(0)x y C a b a b +=>>F 与长轴垂直的直线与椭圆在第一象限相交于点M ,1||2MF =. (1)求椭圆C 的标准方程;(2)设椭圆C 的左顶点为A ,右顶点为B ,点P 是椭圆上的动点,且点P 与点A ,B 不重合,直线PA 与直线3x =相交于点S ,直线PB 与直线3x =相交于点T ,求证:以线段ST 为直径的圆恒过定点.【答案】(1)2214x y +=;(2)证明见解析. 【解析】(1)由题意,离心率为c e a ==,右焦点为(),0F c ,将x c =代入22221x y a b +=,可得2b y a=±;又过椭圆右焦点F 与长轴垂直的直线与椭圆在第一象限相交于点M ,1||2MF =,所以21||2b MF a ==,联立2212c a b a ⎧==⎪⎪⎨⎪=⎪⎩解得:2a =,1b =,18 / 21所以椭圆C 的标准方程为2214x y +=;(2)证明:由(1)知()2,0A -,()2,0B ,设直线AP 的斜率为k ,则直线AP 的方程为(2)y k x =+, 联立3x =得()3,5S k ;设()00,P x y 代入椭圆的方程有:()22000124x y x +=≠±整理得:()220144y x =--,故2020144y x =--, 又002y k x =+,002y k x '=-(k ,k '分别为直线PA ,PB 的斜率) 所以2020144y kk x '==--, 所以直线PB 的方程为:1(2)4y x k =--,联立3x =得13,4T k ⎛⎫ ⎪-⎝⎭, 所以以ST 为直径的圆的方程为:2225151(3)2828k k x y k k ⎡⎤⎛⎫⎛⎫-+--=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,令0y =,解得:3x =±, 所以以线段ST为直径的圆恒过定点3⎛⎫± ⎪ ⎪⎝⎭. 7、已知定点()1,0M -,圆()22:116N x y -+=,点Q 为圆N 上动点,线段MQ 的垂直平分线交NQ 于19 / 21点P ,记P 的轨迹为曲线C (1)求曲线C 的方程;(2)过点M 与N 作平行直线1l 和2l ,分别交曲线C 于点A 、B 和点D 、E ,求四边形ABDE 面积的最大值.【答案】(1)22143x y +=;(2)6. 【解析】(1)由中垂线的性质得PM PQ =,42MP NP PQ NP MN ∴+=+=>=, 所以,动点P 的轨迹是以M 、N 为焦点,长轴长为4的椭圆,设曲线C 的方程为()222210x y a b a b +=>>,则2a =,b =,因此,曲线C 的方程为:22143x y +=;(2)由题意,可设2l 的方程为1x ty =+,联立方程得()2222134690431x y t y ty x ty ⎧+=⎪⇒++-=⎨⎪=+⎩, 设()11,D x y 、()22,E x y ,则由根与系数关系有122122634934t y y t y y t ⎧+=-⎪⎪+⎨⎪⋅=-⎪+⎩,所以()2212134t DE t +===+,20 / 21同理()2212134t AB t +=+,1l 与2l的距离为d =所以,四边形ABDE的面积为24S =,u =,则1u ≥,得224241313u S u u u==++,由双勾函数的单调性可知,函数13y u u=+在[)1,+∞上为增函数, 所以,函数2413S u u=+在[)1,+∞上为减函数, 当且仅当1u =,即0t =时,四边形ABDE 的面积取最大值为6.8、已知椭圆C :22221x y a b +=(0a b >>)的左、右焦点分别为1F ,2F ,M 为椭圆上任意一点,当1260F MF ∠=︒时,12F MF △2b =(1)求椭圆C 的方程;(2)设O 为坐标原点,过椭圆C 内的一点()0,t 作斜率为k 的直线l 与椭圆C 交于A ,B 两点,直线OA ,OB 的斜率分别为1k ,2k ,若对任意实数k ,存在实数m ,使得124k k mk +=,求实数m 的取值范围.【答案】(1)22143x y +=;(2)1,2⎛⎫+∞ ⎪⎝⎭. 【解析】(1)设1MF m =,2MF n =,则2m n a +=,在12MF F △中,1sin 602S mn =︒=4mn =, 由余弦定理可得2222cos604m n mn c +-︒=,即()2234m n mn c +-=,21 / 21代入计算可得223a c -=,23b ∴=,又2b =,2a ∴=,则椭圆C 的方程为22143x y +=; (2)设直线l 的方程为y kx t =+, 由22143y kx t x y =+⎧⎪⎨+=⎪⎩,得()2223484120k x ktx t +++-=, 设()11,A x y ,()22,B x y , 则122834kt x x k +=-+,212241234t x x k-=+. ()212121221212122223t x x y y t t kt k k k k k k x x x x x x t ++=+=+++=+=--. 由124k k mk +=对任意k 成立,得()221223t m t =--, ()23212m t m -∴=, 又()0,t 在椭圆内部,203t ∴<<, 即()321032m m-<<,解得12m >. m ∴的取值范围是1,2⎛⎫+∞ ⎪⎝⎭.。
高考数学解析几何试题(附参考答案)一、选择题(本大题共12小题,每小题5分,共60分.)1、(2013年高考山东数学(理))过点(3,1)作圆22(1)1x y -+=的两条切线,切点分别为A ,B ,则直线AB 的方程为( )A .230x y +-=B .230x y --=C .430x y --=D .430x y +-=2、(2013年高考新课标Ⅱ卷数学(理))已知点(1,0),(1,0),(0,1)A B C -,直线(0)yax b a =+>将△ABC 分割为面积相等的两部分,则b 的取值范围是( ) A .(0,1)B.1(1)2( C) 1(1]3 D . 11[,)323、【贵州省六校联盟2013届高三第一次联考理】 若点(1,1)P 为圆2260x y x +-=的弦MN的中点,则弦MN 所在直线方程为( )A .230x y +-=B .210x y -+=C .230x y +-=D .210x y --=4.(2013年高考新课标1(理))已知椭圆2222:1(0)x y E a b a b+=>>的右焦点为(3,0)F ,过点F 的直线交椭圆于,A B 两点.若AB 的中点坐标为(1,1)-,则E 的方程为( )A .2214536x y += B .2213627x y += C .2212718x y += D .221189x y += 5 .【2012厦门期末质检理】直线x +y -1=0被圆(x +1)2+y 2=3截得的弦长等于( )A .2 B . 2 C .22 D . 46、(广东省惠州市2013届高三4月模拟考试)设抛物线的顶点在原点,准线方程为-2,x =则抛物线的方程是( ) A .28y x =B .28y x =-C .24y x =-D .24y x =7、(上海青浦区2013届高三一模)15.设双曲线)0,0(12222>>=-b a by a x 的虚轴长为2,焦距为32,则双曲线的渐近线方程为………………………………………………( ).A . x y 2±= .B x y 2±=C . x y 21±=D . x y 22±=8、【北京市朝阳区2013届高三上学期期末理】已知双曲线的中心在原点,一个焦点为)0,5(1-F ,点P 在双曲线上,且线段PF 1的中点坐标为(0,2),则此双曲线的方程是A .1422=-y x B .1422=-y x C .13222=-y x D .12322=-y x 9、(2013年高考四川卷(理))抛物线24y x =的焦点到双曲线2213yx -=的渐近线的距离是 ( )A .12B .2C .1D 10、【云南师大附中2013届高三高考适应性月考卷(四)理】设F 是双曲线22221(0,0)x y a b a b-=>>的右焦点,双曲线两条渐近线分别为12,l l ,过F 作直线1l 的垂线,分别交12,l l 于A 、B 两点,且向量BF 与FA 同向.若||,||,||OA AB OB 成等差数列,则双曲线离心率e 的大小为A .2B C D 11、【山东省枣庄三中2013届高三上学期1月阶段测试理】抛物线212y x =-的准线与双曲线22193x y -=的两渐近线围成的三角形的面积为12、(2013年高考重庆数学(理)试题)已知圆()()221:231C x y -+-=,圆()()222:349C x y -+-=,,M N 分别是圆12,C C 上的动点,P 为x 轴上的动点,则PM PN +的最小值为( )A .4B 1C .6-D二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中横线上)13.【北京市丰台区2013届高三上学期期末理】12,l l 是分别经过A(1,1),B(0,-1)两点的两条平行直线,当12,l l 间的距离最大时,直线1l 的方程是 .14、(2013年普通高等学校招生全国统一招生考试江苏卷(数学)(已校对纯WORD 版含附加题))双曲线191622=-y x 的两条渐近线的方程为_____________. 15、(2013年高考湖南卷(理))设12,F F 是双曲线2222:1(0,0)x y C a b a b-=>>的两个焦点,P是C 上一点,若216,PF PF a +=且12PF F ∆的最小内角为30,则C 的离心率为___. 16、(2013年普通高等学校招生统一考试福建数学(理)试题(纯WORD 版))椭圆2222:1(0)x y a b a bΓ+=>>的左.右焦点分别为12,F F ,焦距为2c,若直线)y x c =+与椭圆Γ的一个交点M 满足12212MF F MF F ∠=∠,则该椭圆的离心率等于__________三、解答题(本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分) .(2013年普通高等学校招生全国统一招生考试江苏卷)本小题满分14分.如图,在平面直角坐标系xOy 中,点)3,0(A ,直线42:-=x y l ,设圆C 的半径为,圆心在上.(1)若圆心C 也在直线1-=x y 上,过点A 作圆C 的切线,求切线的方程; (2)若圆C 上存在点M ,使MO MA 2=,求圆心C 的横坐标a 的取值范围.18. (本小题满分12分) (2013广东理)已知抛物线C 的顶点为原点,其焦点()()0,0F c c >到直线:20x y --=.设P 为直线上的点,过点P 作抛物线C 的两条切线,PA PB ,其中,A B 为切点.(Ⅰ) 求抛物线C 的方程;(Ⅱ) 当点()00,P x y 为直线上的定点时,求直线AB 的方程; (Ⅲ) 当点P 在直线上移动时,求AF BF ⋅的最小值.19.(本小题满分12分) 【山东省青岛一中2013届高三1月调研理】(本大题满分13分)已知椭圆2222:1(0)x y C a b a b+=>>的离心率为12,以原点为圆心,椭圆的短半轴为半径的圆与直线0x y -=相切,过点P (4,0)且不垂直于x 轴直线l 与椭圆C 相交于A 、B 两点。
(1)求椭圆C 的方程; (2)求⋅的取值范围;(3)若B 点在于x 轴的对称点是E ,证明:直线AE 与x 轴相交于定点。
20.(本小题满分12分) 【安徽省安庆市2013届高三第三次模拟理】已知焦点在x 轴上的椭圆C 1:1:11222222222=-=+ny m x C y a x 和双曲线的离心率互为倒数,它们在第一象限交点的坐标为)556,5104(,设直线m kx y l +=:(其中k ,m 为整数). (1)试求椭圆C 1和双曲线C 2 的标准方程;(2)若直线l 与椭圆C 1交于不同两点A 、B ,与双曲线C 2交于不同两点C 、D ,问是否存在直线l ,使得向量0=+,若存在,指出这样的直线有多少条?若不存在,请说明理由。
21.(本小题满分12分) (2013年高考四川卷(理))已知椭圆C :22221,(0)x y a b a b +=>>的两个焦点分别为12(1,0),(1,0)F F -,且椭圆C 经过点41(,)33P . (Ⅰ)求椭圆C 的离心率;(Ⅱ)设过点(0,2)A 的直线l 与椭圆C 交于M 、N 两点,点Q 是线段MN 上的点,且222211||||||AQ AM AN =+,求点Q 的轨迹方程.22.(本小题满分12分) (2013年普通高等学校招生统一考试浙江数学(理)试题)如图,点)1,0(-P 是椭圆)0(1:22221>>=+b a by a x C 的一个顶点,1C 的长轴是圆4:222=+y x C 的直径.21,l l 是过点P 且互相垂直的两条直线,其中1l 交圆2C 于两点,2l 交椭圆1C 于另一点D(1)求椭圆1C 的方程; (2)求ABD ∆面积取最大值时直线1l 的方程.(第21题图)参考答案一、选择题 1、【答案】A【解析】由图象可知,(1,1)A 是一个切点,所以代入选项知,,B D 不成立,排除。
又AB 直线的斜率为负,所以排除C ,选A.设切线的斜率为k ,则切线方程为1(3)y k x -=-,即130kx y k -+-= 利用圆心到直线的距离等于半径,也可以求解。
2、B[解析]:易得△ABC 面积为1,利用极限位置和特值法.当a =0时,易得b =1-22;当a =13时,易得b =13;当a =1时,易得b =2-1>13.故选B. 3、【答案】D【解析】圆的标准方程为22(3)9x y -+=,圆心为(3,0)A ,因为点(1,1)P 弦MN 的中点,所以AP MN ⊥,AP 的斜率为101132k -==--,所以直线MN 的斜率为2,所以弦MN 所在直线方程为12(1)y x -=-,即210x y --=,选D.4、【答案】D【解析】设1122(,),(,)A x y B x y ,则12x x +=2,12y y +=-2,2211221x y a b += ① 2222221x y a b+= ② ①-②得1212121222()()()()0x x x x y y y y a b +-+-+=,∴AB k =1212y y x x --=212212()()b x x a y y +-+=22b a,又AB k =0131+-=12,∴22b a =12,又9=2c =22a b -,解得2b =9,2a =18,∴椭圆方程为221189x y +=,故选D. 5、【答案】B【解析】求圆的弦长利用勾股定理,弦心距232,4,3,2222-=+===l l d r r d =2,选B; 6、A【解析】抛物线的准线方程为-2,x =,∴抛物线的开口向右.设抛物线的标准方程为y 22(0)px p =>,则其准线方程为2p x =-, ∴22p-=-,解得4,p = ∴抛物线的标准方程为y 28x =.故选A . 7、D 8、【答案】B【解析】由双曲线的焦点可知c =线段PF 1的中点坐标为(0,2),所以设右焦点为2F ,则有2P F x⊥,且24PF =,点P在双曲线右支上。
所以16PF ===,所以126422PF PF a -=-==,所以2221,4a b c a ==-=,所以双曲线的方程为1422=-y x ,选B. 9、B 10、【答案】D【解析】设OA =m −d ,AB =m ,OB =m +d ,由勾股定理,得 (m −d )2+m 2=(m +d )2.解得m =4d .设∠AOF =α,则cos2α=35OA OB=.cos α所以,离心率e =1cos α=.选D. 11、【答案】D【解析】抛物线212y x =-的准线为3x =,双曲线22193x y -=的两渐近线为y x =和3y x =,令3x =,分别解得12y y ==,所以三角形的低为()3,高为3,所以三角形的面积为132⨯= D.12、A[解析] 如图,作圆C 1关于x 轴的对称圆C ′1:(x -2)2+(y +3)2=1,则|PM |+|PN |=|PN |+|PM ′|.由图可知当C 2,N ,P ,M ′,C ′1在同一直线上时,|PM |+|PN |=|PN |+|PM ′|取得最小值,即为|C ′1C 2|-1-3=5 2-4,故选A.图1-3二、填空题13、【答案】230x y +-=14、【答案】x y 4±= 15、【答案】3解析:设P 点在右支上,a n a m a n m an m PF n PF m 2,426|,||,|21==⇒⎩⎨⎧=-=+==则23)3(4182441630cos :.302222121=+=⋅-+=︒︒=∠∆a c c a ac a c a F PF F PF 由余弦定理得中,由题知,3==⇒ace16、1【解析】由直线方程)y x c =+⇒直线与x 轴的夹角12233MF F ππ∠=或,且过点1-F (c,0)12212MF F MF F ∠=∠∴122123MF F MF F π∠=∠=即12F M F M ⊥12RT F MF ∴∆在中,12122,,F F c F M c F M ===∴由椭圆的第一定义可得21c a c a =+∴==-三、解答题17、解:(1)由⎩⎨⎧-=-=142x y x y 得圆心C 为(3,2),∵圆C 的半径为∴圆C 的方程为:1)2()3(22=-+-y x显然切线的斜率一定存在,设所求圆C 的切线方程为3+=kx y ,即03=+-y kx∴113232=++-k k ∴1132+=+k k ∴0)34(2=+k k ∴0=k 或者43-=k∴所求圆C 的切线方程为:3=y 或者343+-=x y 即3=y 或者01243=-+y x (2)解:∵圆C 的圆心在在直线42:-=x y l 上,所以,设圆心C 为(a,2a-4) 则圆C 的方程为:[]1)42()(22=--+-a y a x又∵MO MA 2=∴设M 为(x,y)则22222)3(y x y x +=-+整理得:4)1(22=++y x 设为圆D∴点M 应该既在圆C 上又在圆D 上 即:圆C 和圆D 有交点 ∴[]12)1()42(1222+≤---+≤-a a由08852≥+-a a 得R x ∈ 由01252≤-a a 得5120≤≤x 终上所述,a 的取值范围为:⎥⎦⎤⎢⎣⎡512,0 18、【解析】(Ⅰ) 依题意,设抛物线C 的方程为24x cy =,结合0c >, 解得1c =.所以抛物线C 的方程为24x y =. (Ⅱ) 抛物线C 的方程为24x y =,即214y x =,求导得12y x '= 设()11,A x y ,()22,B x y (其中221212,44x x y y ==),则切线,PA PB 的斜率分别为112x ,212x , 所以切线PA 的方程为()1112x y y x x -=-,即211122x x y x y =-+,即11220x x y y --=同理可得切线PB 的方程为22220x x y y --=因为切线,PA PB 均过点()00,P x y ,所以1001220x x y y --=,2002220x x y y --= 所以()()1122,,,x y x y 为方程00220x x y y --=的两组解. 所以直线AB 的方程为00220x x y y --=.(Ⅲ) 由抛物线定义可知11AF y =+,21BF y =+, 所以()()()121212111AF BF y y y y y y ⋅=++=+++联立方程0022204x x y y x y--=⎧⎨=⎩,消去x 整理得()22200020y y x y y +-+=由一元二次方程根与系数的关系可得212002y y x y +=-,2120y y y = 所以()221212000121AF BF y y y y y x y ⋅=+++=+-+又点()00,P x y 在直线上,所以002x y =+,所以22220000001921225222y x y y y y ⎛⎫+-+=++=++ ⎪⎝⎭所以当012y =-时, AF BF ⋅取得最小值,且最小值为92.19、(1)解:由题意知12c e a ==,∴22222214c a b e a a-===,即2243a b =又b 2243a b ==,故椭圆的方程为22143y x += 2分 (2)解:由题意知直线l 的斜率存在,设直线l 的方程为(4)y k x =-由22(4)143y k x y x =-⎧⎪⎨+=⎪⎩得:2222(43)3264120k x k x k +-+-= 4分 由2222(32)4(43)(6412)0k k k ∆=--+->得:214k <设A (x 1,y 1),B (x 2,y 2),则221212223264124343k k x x x x k k -+==++, ① 6分 ∴22212121212(4)(4)4()16y y k x k x k x x k x x k =--=-++21、解:122a PF PF =+==所以,a =又由已知,1c =, 所以椭圆C的离心率2c e a ===()II 由()I 知椭圆C 的方程为2212x y +=.设点Q 的坐标为(x,y).(1)当直线l 与x 轴垂直时,直线l 与椭圆C 交于()()0,1,0,1-两点,此时Q点坐标为0,25⎛- ⎝⎭(2) 当直线l 与x 轴不垂直时,设直线l 的方程为2y kx =+.因为,M N 在直线l 上,可设点,M N 的坐标分别为1122(,2),(,2)x kx x kx ++,则22222212(1),(1)AM k x AN k x =+=+. 又()222222(1).AQ x y k x =+-=+由222211AQAMAN=+,得()()()22222212211111k x k x k x =++++,即()212122222212122211x x x x x x x x x +-=+=① 将2y kx =+代入2212x y +=中,得 ()2221860kx kx +++= ②由()()22842160,k k ∆=-⨯+⨯>得232k >. 由②可知12122286,,2121k x x x x k k +=-=++ 代入①中并化简,得2218103x k =- ③因为点Q 在直线2y k x =+上,所以2y k x-=,代入③中并化简,得()22102318y x --=.由③及232k >,可知2302x <<,即60,22x ⎛⎫⎛⎫∈- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭. 又0,25⎛-⎝⎭满足()22102318y x --=,故22x ⎛∈- ⎝⎭. 由题意,(),Q x y 在椭圆C 内部,所以11y -≤≤,又由()22102183y x -=+有()2992,54y ⎡⎫-∈⎪⎢⎣⎭且11y -≤≤,则1,225y ⎛∈-⎝⎦. 所以点Q 的轨迹方程是()22102318y x --=,其中,22x ⎛∈- ⎝⎭,22、解:(Ⅰ)由已知得到1b =,且242a a =∴=,所以椭圆的方程是2214x y +=; (Ⅱ)因为直线12l l ⊥,且都过点(0,1)P -,所以设直线1:110l y kx kx y =-⇒--=,直线21:10l yx x k y k k=--⇒++=,所以圆心(0,到直线1:110l y kx kx y =-⇒--=的距离为d =,所以直线1l 被圆224x y +=所截的弦AB ==;由22222048014x ky k k x x kx x y ++=⎧⎪⇒++=⎨+=⎪⎩,所以28||44D P k x x DP k k +=-∴==++所以11||||22444313ABDS AB DP k k k ∆==⨯==++++23232==≤=++当252k k =⇒=⇒=时等号成立,此时直线1:12l y x =±-。