高考数学复习题库 (35)
- 格式:ppt
- 大小:1.93 MB
- 文档页数:39
专题35:空间直线、平面的平行精讲温故知新一、直线和平面平行的判定(1)定义:直线和平面没有公共点,则称直线平行于平面;(2)判定定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。
简记为:线线平行,则线面平行。
符号: ////a b a a b ααα⊄⎫⎪⊂⇒⎬⎪⎭例1:(2022·全国·高考真题)如图,PO 是三棱锥P ABC -的高,PA PB =,AB AC ⊥,E 是PB 的中点.(1)证明://OE 平面PAC ;举一反三1.(多选)(2017·全国·高考真题(文))如图,在下列四个正方体中,A ,B 为正方体的两个顶点,M ,N ,Q 为所在棱的中点,则在这四个正方体中,直线AB 与平面MNQ 平行的是( )A .B .C .D .2.(2022·北京·高考真题)如图,在三棱柱111ABC A B C -中,侧面11BCC B 为正方形,平面11BCC B ⊥平面11ABB A ,2AB BC ==,M ,N 分别为11A B ,AC 的中点.(1)求证:MN∥平面11BCC B;二.直线和平面平行的性质定理:一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行。
简记为:线面平行,则线线平行.符号:aa a bbαβαβ⊂⇒=⎫⎪⎬⎪⎭例2:(2020·全国·高考真题(文))如图,已知三棱柱ABC–A1B1C1的底面是正三角形,侧面BB1C1C是矩形,M,N分别为BC,B1C1的中点,P 为AM上一点.过B1C1和P的平面交AB于E,交AC于F.(1)证明:AA1//MN,且平面A1AMN⊥平面EB1C1F;举一反三1.(2011·福建·高考真题(文))如图,在正方体ABCD-A1B1C1D1中,AB=2,点E为AD的中点,点F在CD上.若EF∥平面AB1C,则线段EF的长度等于________.2.(2014·安徽·高考真题(文))如图,四棱锥的底面边长为8的正方形,四条侧棱长均为.点分别是棱上共面的四点,平面平面,平面.证明:三.平面与平面平行的判定(1)定义:两个平面没有公共点,称这两个平面平行;(2)判定定理:一个平面内的两条相交直线与另一个平面平行,则这两个平面平行。
2023届高考数学复习:精选好题专项(不等式与逻辑用语多选题)练习题型一 不等式的性质1、(2022年湖南磁力一中高三月考试卷)下列四个条件中,能成为x y >的充分不必要条件的是( ) A. 22xc yc >B. 22x y >C. x y >D. ln ln x y >2、(2022年江苏镇江市高三月考试卷)已知a ,b ,c ,d ∈R ,下列命题正确的是( ) A. 若a <b <0,则a 2<ab <b 2B. 若a >b ,则ac 2≥bc 2C. 不等式e e 2a a -+≥恒成立D. 若a b >,且c d >,则()()ln ln ac bd >3、(2022ꞏ江苏无锡ꞏ高三期末)已知e e 1b a <<,则下列结论正确的是( ) A .22a b < B .2b aa b+>C .2ab b >D .2lg lg()a ab <4、(2022ꞏ广东汕尾ꞏ高三期末)已知a ,b 都是不等于1的正实数,且a >b ,0<c <1,则下列不等式一定成立的是( ) A .a b c c > B .c c a b >C .log log c c a b >D .11()()4a b a b++>5、(2022ꞏ山东济南ꞏ高三期末)已知实数a ,b ,c 满足0a b c >>>,则下列说法正确的是( ) A .()()11a c abc a <--B .b bc a a c+<+ C .2ab c ac bc +>+D .()11a b a b ⎛⎫++ ⎪⎝⎭的最小值为46、(2022ꞏ山东泰安ꞏ高三期末)若,,0a b R a b ∈<<,则下列不等式中,一定成立的是( ) A .11a b a>- B .11a b > C .2a bb a+>D .a b >7、(华南师范大学附属中学高三期末试题)已知0a b >>,则下列说法正确的是( ) A.33b b a a +>+ B.3223a b aa b b+<+C. <D. lg lg lg 22a b a b++> 题型二 简单不等式1、(2022·江苏苏州期中)已知不等式x 2+2ax +b -1>0的解集是{x |x ≠d },则b 的值可能是A .-1B .3C .2D .02、(2022·江苏常州期中)已知关于x 的不等式a e x +bx +c >0的解集为(-1,2),则A .a >0B .b >0C .c >0D .a +b +c >03、(2022年湖南湘阴县知源高级中学高三月考试卷)已知关于x 的不等式20ax bx c ++>的解集为(,2)(3,)-∞-⋃+∞,则( )A. 0a >B. 不等式0bx c +>的解集是{}|6x x <-C. 0a b c ++>D. 不等式20cx bx a -+<的解集为11(,(,)32-∞-⋃+∞4、(2022年江苏盐城市高三月考试卷)若“2340x x +-<”是“222()330x k x k k -+++≥”的充分不必要条件,则实数k 可以是( )A. 8-B. 5-C. 1D. 45、(2022年重庆市北山中学高三月考试卷). 下列叙述不正确的是( ) A.12x<的解是12x >B. “04m ≤≤”是“210mx mx ++≥”的充要条件C. 已知x ∈R ,则“0x >”是“11x -<”的必要不充分条件D. 函数()2232f x x x =++的最小值是2- 题型三 基本不等式1、(2022年辽宁葫芦岛市中学高三月考试卷)已知0a >,0b >,4165log 2log 16a b +=,则下列结论正确的是( )A. 45a b +=B. 542a b +=C. ab 的最大值为2564D.11a b+的最小值为1852、 (2022年湖南邵阳市高三月考试卷)已知实数a ,b ,c 满足0a b c <<<,则下列说法正确的是( )A.()()11a c abc a >-- B.b bc a a c+>+ C. 2ab c ac bc +>+D. 11()()a b a b++的最小值为43、(2022ꞏ广东ꞏ铁一中学高三期末)若0,0a b >>.且4a b +=,则下列不等式恒成立的是( )A .1104ab <≤ B 2 C .111a b+≥D .22118a b ≤+ 4、(2022ꞏ重庆ꞏ模拟预测)(多选题)已知正数a ,b 满足22a b ab +=,则下列说法一定正确的是( ) A .24a b +≥ B .4a b +≥ C .8ab ≥D .2248a b +≥5、(2022ꞏ湖南常德ꞏ高三期末)若0a >,0b >,111a b+=,则( )A .4ab ≤B .4a b +≥C .228a b +≤D .22log log 2a b +≥6、(2022ꞏ湖北襄阳ꞏ高三期末)已知()lg f x x =,当a b <时,()()f a f b =,则( ) A .01a <<,1b >B .10ab =C .2114b a -<D .224a b +>7、(2022ꞏ山东德州ꞏ高三期末)已知0a >,0b >,2a b ab +=,则下列结论正确的是( )A .a b +的最小值为3+B .22a b +的最小值为16CD .lg lg a b +的最小值为3lg 28、(2022ꞏ山东烟台ꞏ高三期末)已知0a >,0b >,则下列命题成立的有( ) A .若1ab =,则222a b +≥ B .若1ab =,则112a b +≥C .若1a b +=,则2212a b +≤D .若1a b +=,则114a b+≥9、(2022ꞏ湖北ꞏ蕲春县第一高级中学模拟预测)(多选题)若0,0a b >>,且4a b +=,则下列不等式恒成立的是( )A .1104ab <≤ B .111a b+≥C .22log log 2a b +<D .22118a b ≤+10、(2022ꞏ辽宁辽阳ꞏ二模)(多选题)已知0a >,0b >,且24a b +=,则( ) A .124a b ->B .22log log 1a b +≤C ≥D .412528a b +≥11、(2022ꞏ福建莆田ꞏ模拟预测)(多选题)已知直线l :()100,0ax by a b ++=>>与圆C :221x y +=相切,则下列说法正确的是( )A .12ab ≥B .22114a b+≥C .2122a b +⎛⎫≤ ⎪⎝⎭D .11a b+≤12、(2022ꞏ江苏ꞏ扬中市第二高级中学模拟预测)(多选题)已知0a >,0b >,且2a b ab +=,则( )A .8ab ≥B .3a b +≤+C .24b >D .()()221log 1log 24a b -⋅-≤13、(2022ꞏ湖南衡阳ꞏ三模)(多选题)已知实数0a >,0b >,1a b +=.则下列不等式正确的是( )A .22a b +≥ BC .112216a b ⎛⎫⎛⎫++≤ ⎪⎪⎝⎭⎝⎭D .222a b a b b a +≤++14、(2022ꞏ辽宁葫芦岛ꞏ二模)(多选题)已知0a b >>,115a b a b+++=,则下列不等式成立的是( )A .14a b <+<B .114b a a b ⎛⎫⎛⎫++≥ ⎪⎪⎝⎭⎝⎭C .2211b a a b ⎛⎫⎛⎫+>+ ⎪ ⎪⎝⎭⎝⎭D .2211a b a b ⎛⎫⎛⎫+>+ ⎪ ⎪⎝⎭⎝⎭15、(2022ꞏ河北ꞏ模拟预测)(多选题)已知220,0,2a b a b >>+=,则以下不等式成立的是( ) A .2a b +>B .332a b +≥C .114a b b a ⎛⎫⎛⎫++≥ ⎪⎪⎝⎭⎝⎭ D .112a b +≥参考答案题型一 不等式的性质1、(2022年湖南磁力一中高三月考试卷)下列四个条件中,能成为x y >的充分不必要条件的是( ) A. 22xc yc > B. 22x y >C. x y >D. ln ln x y >【答案】AD 【答案解析】【要点分析】由充分必要条件的概念与不等式性质对选项逐一判断, 【过程详解】对于A ,若22xc yc >,则20c >,x y >,而当0c =,x y >时,22xc yc =,故22xc yc >是x y >的充分不必要条件,故A 正确, 对于B ,若22x y >,则x y >,若x y >,则22x y >, 故22x y >是x y >的充要条件,故B 错误,对于C ,当2,1x y =-=时,x y >,而x y <,故C 错误,对于D ,若ln ln x y >,则0x y >>,当x y >,0y <时,ln y 无意义, 故ln ln x y >是x y >的充分不必要条件,故D 正确, 故选:AD2、(2022年江苏镇江市高三月考试卷)已知a ,b ,c ,d ∈R ,下列命题正确的是( ) A. 若a <b <0,则a 2<ab <b 2B. 若a >b ,则ac 2≥bc 2C. 不等式e e 2a a -+≥恒成立D. 若a b >,且c d >,则()()ln ln ac bd >【答案】BC 【答案解析】【要点分析】对于AD ,举反例即可排除; 对于B ,利用不等式的性质即可判断; 对于C ,利用基本不等式即可判断.【过程详解】对于A ,令2,1a b =-=-,则0a b <<,但2222(2)(1)a b =->-=,故A 错误; 对于B ,因为a b >,2c ≥0,所以22ac bc ≥,当0c =时取“"=,故B 正确;对于C ,因为e e 2a a -+≥=,当且仅当e e a a -=,即0a =时,等号成立,所以e e 2a a -+≥恒成立,故C 正确;对于D ,令1,2,3,4a b c d =-=-=-=-,则a b >,c d >,且3,8ac bd ==,所以由ln y x =的单调性可知()()ln ln ac bd <,故D 错误. 故选:BC.3、(2022ꞏ江苏无锡ꞏ高三期末)已知e e 1b a <<,则下列结论正确的是( ) A .22a b < B .2b aa b+>C .2ab b >D .2lg lg()a ab <【答案】ABD 【要点分析】先根据函数单调性,得到0b a <<,AC 选项用作差法比较大小;B 选项用基本不等式求取值范围;D 选项,先用作差法,再结合函数单调性比大小. 【过程详解】e e 1b a <<,则0b a <<,因为22()()0a b a b a b -=-+<,所以22a b <,A 选项正确;因为0b a <<,所以0,0b a a b >>,由基本不等式得:2a b b a +>=,B 选项正确;2()0ab b b a b -=-<,2ab b ∴<,C 选项错误;2()0a ab a a b -=-<,2a ab ∴<,2lg lg a ab ∴<,D 选项正确,故选:ABD4、(2022ꞏ广东汕尾ꞏ高三期末)已知a ,b 都是不等于1的正实数,且a >b ,0<c <1,则下列不等式一定成立的是( )A .a b c c >B .c c a b >C .log log c c a b >D .11()()4a b ab++>【答案】BD 【要点分析】根据指数函数,对数函数,幂函数的单调性,结合题意,可判断A 、B 、C 的正误,根据基本不等式,可判断D 的正误,即可得答案.【过程详解】函数x y c =,因为01c <<,所以x y c =是减函数, 因为a >b ,所以a b c c <,故A 错.函数c y x =,因为01c <<,所以c y x =在(0,)+∞是增函数, 因为a >b ,所以c c a b >,故B 正确.函数log c y x =,因为01c <<,所以log c y x =在(0,)+∞是减函数, 因为a >b ,所以log log c c a b <,故C 错.11()1124a b a b a b b a ⎛⎫++=+++≥+= ⎪⎝⎭,当且仅当a b =时取等号, 又a b >,所以11()4a b a b ⎛⎫++> ⎪⎝⎭,故D 正确.故选:BD5、(2022ꞏ山东济南ꞏ高三期末)已知实数a ,b ,c 满足0a b c >>>,则下列说法正确的是( )A .()()11a c abc a <--B .b bc a a c+<+ C .2ab c ac bc +>+ D .()11a b a b ⎛⎫++ ⎪⎝⎭的最小值为4【答案】BC 【要点分析】对于A ,利用不等式的性质判断,对于BC ,作差判断即可,对于D ,利用基本不等式判断 【过程详解】对于A ,因为0a b c >>>,所以11a b <,10c a<-,所以()()11a c a b c a >--,所以A 错误, 对于B ,因为0a b c >>>,所以()0,()0c a b a a c ->+>, 所以()()()0()()()b c b a b c b a c ab ac ab bc c a b a c a a a c a a c a a c ++-++----===>++++,所以b b ca a c+<+,所以B 正确, 对于C ,因为0a b c >>>,所以0,0a c b c ->->,所以2()()()()()0ab c ac bc a b c c b c a c b c +-+=---=-->,所以2ab c ac bc +>+,所以C 正确,对于D ,因为0,0a b >>,所以()11224b a a b a b a b ⎛⎫++=++≥+= ⎪⎝⎭,当且仅当b a a b =即a b =时取等号,因为a b >,所以取不到等号,所以()11a b a b ⎛⎫++ ⎪⎝⎭的最小值不为4,所以D 错误,故选:BC6、(2022ꞏ山东泰安ꞏ高三期末)若,,0a b R a b ∈<<,则下列不等式中,一定成立的是( )A .11a b a>- B .11a b > C .2a bb a+>D .a b >【答案】BCD 【要点分析】以求差法判断选项AB ;以均值定理判断选项C ;以绝对值的几何意义判断选项D. 【过程详解】 选项A :()()11()a a b b a b a a b a a b a---==---,由0a b <<,可知0a <,0b <,0a b -<, 则()0ba b a <-,即11a b a<-.选项A 判断错误;选项B :11b aa b ab --=,由0a b <<,可知0a <,0b <,0b a ->,则0b a ab ->,即11a b>.选项B 判断正确; 选项C :当0a b <<时,2a b b a +>=.选项C 判断正确; 选项D :当0a b <<时,a b >.选项D 判断正确. 故选:BCD7、(华南师范大学附属中学高三期末试题)已知0a b >>,则下列说法正确的是( ) A.33b b a a +>+ B.3223a b aa b b+<+C. <D. lg lg lg 22a b a b++> 【答案】BD 【答案解析】【过程详解】对于A ,因为()()330,033b a b b a b a a a a -+>>-=<++,所以33b b a a +<+,故A 错误; 对于B ,因为0a b >>,所以22a b >,所以()()()()()2223223320232323b aa b b a a b a b a a b b a b b a b b-+-++-==<+++,即3223a b a a b b +<+,故B 正确; 对于C ,因为0a b >>>>,所以>,故C 错误;对于D ,因为0a b >>,所以lg lg lg 22a b a b++>=,故D 正确. 故选:BD.题型二 简单不等式1、(2022·江苏苏州期中)已知不等式x 2+2ax +b -1>0的解集是{x |x ≠d },则b 的值可能是A .-1B .3C .2D .0 【答案】BC【答案解析】由题意可知,方程x 2+2ax +b -1=0的根为d ,则∆=4a 2-4(b -1)=0,则b -1=a 2≥0,所以b ≥1,则选项B 、C 正确;选项A 、D 错误;综上,答案选BC .2、(2022·江苏常州期中)已知关于x 的不等式a e x +bx +c >0的解集为(-1,2),则A .a >0B .b >0C .c >0D .a +b +c >0 【答案】BCD【答案解析】由题意可知,当a =0时,不等式不成立;当a ≠0时,-1,2是方程a e x +bx +c =0的两个根,则有⎩⎪⎨⎪⎧a e -1-b +c =0a e 2+2b +c =0,所以⎩⎨⎧b =-a3()e 2-e -1>0c =-a 3()e 2+2e -1>0,故选项B 正确;选项C 正确;对于选项D ,a +b +c =a -a 3(e 2-e -1)-a 3(e 2-2e -1)=a [1-13(e 2-e -1)-13(e 2-2e -1)]=a (1-e 23+13e -e 23-23e )=a (1-2e 23-13e )>0,故选项D 正确;综上,答案选BCD .3、(2022年湖南湘阴县知源高级中学高三月考试卷)已知关于x 的不等式20ax bx c ++>的解集为(,2)(3,)-∞-⋃+∞,则( )A. 0a >B. 不等式0bx c +>的解集是{}|6x x <-C. 0a b c ++>D. 不等式20cx bx a -+<的解集为11(,(,)32-∞-⋃+∞ 【答案】ABD 【答案解析】【过程详解】关于x 的不等式20ax bx c ++>的解集为()(),23,,0,A a ∞∞--⋃+∴>选项正确;且-2和3是关于x 的方程20ax bx c ++=的两根,由韦达定理得2323b a c a ⎧-+=-⎪⎪⎨⎪-⨯=⎪⎩,则,6b a c a =-=-,则60a b c a ++=-<,C 选项错误;不等式0bx c +>即为60ax a -->,解得6,B x <-选项正确;不等式20cx bx a -+<即为260ax ax a -++<,即2610x x -->,解得13x <-或1,D 2x >选项正确.故选:ABD .4、(2022年江苏盐城市高三月考试卷)若“2340x x +-<”是“222()330x k x k k -+++≥”的充分不必要条件,则实数k 可以是( )A. 8-B. 5-C. 1D. 4【答案】ACD 【答案解析】【过程详解】2340x x +-<,解得41x -<<,222()330x k x k k -+++≥即[]()(3)0x k x k --+≥,解得x k ≤或3x k ≥+,由题意知(4,1)-是(][),3,k k -∞⋃++∞的真子集, 所以1k ≥或34k +≤-, 所以1k ≥或7k ≤-,即(,7][1,)k ∈-∞-⋃+∞. 故选:ACD5、(2022年重庆市北山中学高三月考试卷). 下列叙述不正确的是( ) A.12x<的解是12x >B. “04m ≤≤”是“210mx mx ++≥”的充要条件C. 已知x ∈R ,则“0x >”是“11x -<”的必要不充分条件D. 函数()2232f x x x =++的最小值是2- 【答案】AD 【答案解析】 【过程详解】选项A :12x<的解是12x >或0x <,故A 不正确;选项B :由21y mx mx =++得24m m ∆=-,210mx mx ++≥恒成立则240m m m >⎧⎨-≤⎩或0m =,解得 04m ≤≤,所以“04m ≤≤”是“210mx mx ++≥”的充要条件,故B 正确;选项C :由11x -<得111x -<-<,解得02x <<,所以“0x >”是“11x -<”的必要不充分条件,故C 正确;选项D :由均值不等式得22322x x ++≥=+,当且仅当22322x x +=+时等号成立,此时x 无实数解,所以()2232f x x x =++的最小值大于2-,故D 不正确; 故选:AD题型三 基本不等式1、(2022年辽宁葫芦岛市中学高三月考试卷)已知0a >,0b >,4165log 2log 16a b +=,则下列结论正确的是( )A. 45a b +=B. 542a b +=C. ab 的最大值为2564D.11a b+的最小值为185【答案】BCD【答案解析】【过程详解】由4165log 2log 16a b +=可得,52816a b +=,即542a b +=.所以A 错误,B 正确;因为5254264a b ab =+≥⇒≤,当且仅当55,164a b ==时取等号,所以ab 的最大值为2564,C 正确;因为()11211244555b a a b a b a b a b ⎛⎫⎛⎫+=++=++ ⎪ ⎪⎝⎭⎝⎭(218555≥+=,当且仅当55,126a b ==时取等号,所以11a b+的最小值为185,D 正确.故选:BCD .2、 (2022年湖南邵阳市高三月考试卷)已知实数a ,b ,c 满足0a b c <<<,则下列说法正确的是( )A.()()11a c abc a >--B.b bc a a c+>+ C. 2ab c ac bc +>+ D. 11()()a b a b++的最小值为4 【答案】ABC 【答案解析】【过程详解】由题0a b c <<<,所以有()()1111b a ac a b c a a b>⇒>⇒>--,故A 正确;()()b b c b a c a b c bc ac b a a a c+>⇒+>+⇒>⇒>+,故B 正确; ()()()()200ab c ac bc c c b a c b c a c b +>+⇒--->⇒-->,故C 正确;11()(224b a a b a b a b ++=++≥+=,当且仅当a b b a =即a b =时取等,又因为0a b <<,所以11()(4a b a b++>,即11()(a b a b++无最小值,故D 错误. 故选:ABC.3、(2022ꞏ广东ꞏ铁一中学高三期末)若0,0a b >>.且4a b +=,则下列不等式恒成立的是( )A .1104ab <≤ B 2C .111a b+≥D .22118a b ≤+ 【答案】CD 【要点分析】结合基本不等式对选项进行要点分析,由此确定正确选项. 【过程详解】22222a b a b ab ++⎛⎫≤≤⎪⎝⎭,当且仅当2a b ==时等号成立, 则2442ab ⎛⎫≤= ⎪⎝⎭或222422a b +⎛⎫≤ ⎪⎝⎭,则222211112,8,48a b ab a b ≥≤+≥≤+, 即AB 错误,D 正确.对于C 选项,1141414a b a ab ab b ++==≥⨯=,C 选项正确. 故选:CD4、(2022ꞏ重庆ꞏ模拟预测)(多选题)已知正数a ,b 满足22a b ab +=,则下列说法一定正确的是( ) A .24a b +≥ B .4a b +≥ C .8ab ≥ D .2248a b +≥【答案】AD 【要点分析】由基本不等式判断AD ,取1,2b a ==判断BC. 【过程详解】 由题意可知1112b a +=,1122(2)2422a b a b a b b a b a ⎛⎫+=++=++ ⎪⎝⎭…(当且仅当22a b ==时取等号),故A 正确;取1,2b a ==,则3,2a b ab +==,故BC 错误;因为22a b ab +=≥所以2ab …(当且仅当22a b ==时取等号),则22448a b ab +厖(当且仅当22a b ==时取等号),故D 正确; 故选:AD5、(2022ꞏ湖南常德ꞏ高三期末)若0a >,0b >,111a b+=,则( )A .4ab ≤B .4a b +≥C .228a b +≤D .22log log 2a b +≥【答案】BD 【要点分析】利用基本不等式及指对数函数的性质逐项要点分析即得. 【过程详解】∵0a >,0b >,111a b +=≥ ∴4ab ≥,当且仅当2a b ==时取等号,故A 错误;由()1124b a a b a b a b a b ⎛⎫+=++=++≥ ⎪⎝⎭,当且仅当b a a b =,即2a b ==时取等号,故B 正确;因为228a b ≥≥=+,当且仅当2a b ==时取等号,故C 错误; 因为()2222log log log log 42a b ab +=≥=,当且仅当2a b ==时取等号,故D 正确.故选:BD.6、(2022ꞏ湖北襄阳ꞏ高三期末)已知()lg f x x =,当a b <时,()()f a f b =,则( ) A .01a <<,1b >B .10ab =C .2114b a -<D .224a b +>【答案】ACD 【要点分析】利用()()f a f b =,可得lg lg a b -=,从而得到1ab =,再对每一个选项进行要点分析即可. 【过程详解】因为()()f a f b =,且a b <,可得lg lg lg lg 0a b a b -=⇒+=,从而得到1ab =, 因为0a b <<,所以01a b <<<,所以2221111()244b b b b a -=-+=--+<,而12a b b b +=+>=,(1b >,等号不成立)所以422ab>==>=+.从而可知选项ACD 正确. 故选:ACD7、(2022ꞏ山东德州ꞏ高三期末)已知0a >,0b >,2a b ab +=,则下列结论正确的是( )A .a b +的最小值为3+B .22a b +的最小值为16CD .lg lg a b +的最小值为3lg 2【答案】ACD 【要点分析】利用“1”的代换结合基本不等式判断AD +C ,由对数的运算结合基本不等式判断B. 【过程详解】由2a b ab +=可得,211b a +=,212()33a b a b a b b a b a ⎛⎫+=++=+++ ⎪⎝⎭…2b ==等号),故A 正确;214(2)448a b ab a b b a b a ⎛⎫=++=+++= ⎪⎝⎭…(当且仅当24b a ==时,取等号),即lg lg lg lg83lg 2a b ab +=≥=,故D 正确;222a b ab +≥(当且仅当3b a ==时,取等号),8ab …(当且仅当24b a ==时,取等号),即2216a b +>,故B 错误;212112a b =+++=≤(当且仅当1212a b ==时,取等号),故C 正确; 故选:ACD8、(2022ꞏ山东烟台ꞏ高三期末)已知0a >,0b >,则下列命题成立的有( ) A .若1ab =,则222a b +≥ B .若1ab =,则112a b +≥C .若1a b +=,则2212a b +≤ D .若1a b +=,则114a b+≥【答案】ABD 【要点分析】利用基本不等式逐项判断. 【过程详解】A.若1ab =,则2222a b ab +≥=,当且仅当1a b ==时,等号成立,故正确;B.若1ab =,则112a b +≥=当且仅当1a b ==时,等号成立,故正确;C.若1a b +=,则()2221122=+≥+a b a b ,当且仅当1a b ==时,等号成立,故错误; D.若1a b +=,则2111421a b ab a b ab a b +==≥++⎛⎫ ⎪⎝⎭=,当且仅当1a b ==时,等号成立,故正确;故选:ABD9、(2022ꞏ湖北ꞏ蕲春县第一高级中学模拟预测)(多选题)若0,0a b >>,且4a b +=,则下列不等式恒成立的是( )A .1104ab <≤ B .111a b +≥C .22log log 2a b +<D .22118a b ≤+【答案】BD 【要点分析】由基本不等式对选项逐一判断【过程详解】因为0,0a b >>,22222a b a b ab ++⎛⎫≤≤⎪⎝⎭,当且仅当2a b ==时等号成立, 则2442ab ⎛⎫≤= ⎪⎝⎭或222422a b +⎛⎫≤ ⎪⎝⎭,当且仅当2a b ==时等号成立,则222211112,8,48a b ab a b ≥≤+≥≤+, 当且仅当2a b ==时等号成立,则22222log log log log 22a b ab +=≤≤,当且仅当2a b ==时等号成立,故AC 错误,D 正确. 对于B 选项,1141414a b a ab ab b ++==≥⨯=, 当且仅当2a b ==时等号成立,故B 正确. 故选:BD10、(2022ꞏ辽宁辽阳ꞏ二模)(多选题)已知0a >,0b >,且24a b +=,则( ) A .124a b ->B .22log log 1a b +≤C ≥D .412528a b +≥ 【答案】BD【要点分析】由不等式的性质与基本不等式对选项逐一判断 【过程详解】对于A ,02a <<,()()42344,2a b a a a -=--=-∈-,所以12416a b -<<,故A 错误,对于B ,420a b =+≥>,即0<≤02ab <?,()222log log log 1a b ab +=≤,故B 正确,对于C ,228a b =++≤≤C 错误,对于D ,4122171725288488a b a b b a a b a b a b ++⎛⎫+=+=++≥+= ⎪⎝⎭,当且仅当825a b ==时,等号成立,故D 正确. 故选:BD11、(2022ꞏ福建莆田ꞏ模拟预测)(多选题)已知直线l :()100,0ax by a b ++=>>与圆C :221x y +=相切,则下列说法正确的是( )A .12ab ≥B .22114a b+≥C .2122a b +⎛⎫≤ ⎪⎝⎭D .11a b+≤【答案】BC 【要点分析】先根据直线和圆相切得到221a b +=,再利用基本不等式判定选项A 错误、选项B 、C 正确,利用反例得到选项D 错误. 【过程详解】因为直线l :10ax by ++=与圆C :221x y +=相切, 所以圆心(0,0)C 到直线l 的距离等于1,1=,即221a b +=,且0a >,0b >;对于A :因为222a b ab +≥且221a b +=,所以22122a b ab +=≤,即选项A 错误;对于B :因为221a b +=,所以222222222222112a b a b b a a b a b a b+++=+=++24≥+=(当且仅当2222b a a b =,即a b =时取等号), 即选项B 正确;对于C :因为222a b ab +≥且221a b +=, 所以222222224412()a b ab a a b b +++⎛⎫+⎭≤ ⎝=⎪=(当且仅当a b =时取等号), 即选项C 正确;对于D :当219a =且289b =时,1134a b +=+>即选项D 错误. 故选:BC.12、(2022ꞏ江苏ꞏ扬中市第二高级中学模拟预测)(多选题)已知0a >,0b >,且2a b ab +=,则( ) A.8ab ≥B .3a b +≤+C .24b >D .()()221log 1log 24a b -⋅-≤【答案】ACD 【要点分析】利用基本不等式判断AB ,由不等式性质和指数函数性质判断C .由基本不等式结合对数运算法则判断D . 【过程详解】对于A,2a b ab +=≥8ab ≥,当且仅当2a =,4b =时,等号成立.对于B ,2a b ab +=变形得211b a +=,所以()212213ab a b a b b a b a ⎛⎫+=++=+++≥+ ⎪⎝⎭当且仅当2a b b a =,即2b ==时,等号成立,故B 错误. 对于C ,因为211ba+=,所以201b<<,即2b >,则24b >. 对于D ,由2a b ab +=可得()()122a b --=,()()222log [(1)(2)]1log 1log 2a a b b -+---==,()()()()22222log 1log 2log 1log 22a b a b -+-⎡⎤-⋅-≤⎢⎥⎣⎦14=,当且仅当12a b -=-,即1a =,2b =+时等号成立. 故选:ACD .13、(2022ꞏ湖南衡阳ꞏ三模)(多选题)已知实数0a >,0b >,1a b +=.则下列不等式正确的是( ) A.22a b +≥ BC .112216a b ⎛⎫⎛⎫++≤ ⎪⎪⎝⎭⎝⎭D.222a b a b b a+≤++【答案】ABD 【要点分析】对于A 、D 利用1b a =-换元整理,22222abaa +=+,222211313a b a a b b a a a t t++==++-++-,再结合基本不等式;对于B 根据()2222a b a b ++≥,代入整理;对于C 113224a b ab ⎛⎫⎛⎫++=+ ⎪⎪⎝⎭⎝⎭,结合()24a b ab +≤计算处理. 【过程详解】∵1a b +=,则1b a =-∴12222222a b a a a a-+=+≥=+222aa =即12ab ==时等号成立A 正确;()222222211111a b a a a a b b a a a a a a a -++=+=+++--+-+令()11,2t a =+∈,则1a t =-221131333a t a a t t t t +==≤-+-++-3t t=即t 时等号成立 D 正确;∵22a b +≥,即212≥≤,当且仅当12a b ==时等号成立,B 正确; ∵()2144a b ab +≤=,当且仅当12a b ==时等号成立 ()421112121322416ab a b a b a b a b ab ab +++++⎛⎫⎛⎫++=⨯==+≥ ⎪⎪⎝⎭⎝⎭,C 不正确; 故选:ABD .14、(2022ꞏ辽宁葫芦岛ꞏ二模)(多选题)已知0a b >>,115a b a b+++=,则下列不等式成立的是( ) A .14a b <+<B .114b a a b ⎛⎫⎛⎫++≥ ⎪⎪⎝⎭⎝⎭C .2211b a a b ⎛⎫⎛⎫+>+ ⎪ ⎪⎝⎭⎝⎭D .2211a b a b ⎛⎫⎛⎫+>+ ⎪ ⎪⎝⎭⎝⎭【答案】AB 【要点分析】AB 选项,利用基本不等式进行求解;CD 选项,利用作差法比较大小. 【过程详解】 115a b a b +++=,即5a b a b ab+++=,所以()5a b ab a b +=-+,因为0a b >>,所以由基本不等式得:()24a b ab +<,所以()()254a b a ba b ++<-+,解得:14a b <+<,A 正确;111224b a ab a b ab ⎛⎫⎛⎫++=++≥≥ ⎪⎪⎝⎭⎝⎭,当且仅当1ab ab =时等号成立,故B 正确; ()221111111111b a b a b a b a b a a b a b a b a b ab ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+-+=++++--=++++- ⎪ ⎪ ⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,因为0a b >>,所以()11110b a b a a b ab ⎛⎫⎛⎫++++-< ⎪⎪⎝⎭⎝⎭,所以2211b a a b ⎛⎫⎛⎫+<+ ⎪ ⎪⎝⎭⎝⎭,C 错误;()221111111111a b a b a b a b b a a b a b a b a b ab ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+-+=++++--=+++-- ⎪ ⎪ ⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,因为0a b >>,而1ab 可能比1大,可能比1小,所以()1111a b b a a b ab ⎛⎫⎛⎫+++-- ⎪⎪⎝⎭⎝⎭符号不确定,所以D 错误, 故选:AB15、(2022ꞏ河北ꞏ模拟预测)(多选题)已知220,0,2a b a b >>+=,则以下不等式成立的是( ) A .2a b +> B .332a b +≥C .114a b b a ⎛⎫⎛⎫++≥ ⎪⎪⎝⎭⎝⎭ D .112a b +≥【答案】BCD 【要点分析】直接利用基本不等式即可判断ACD ,由2a b +≤,可得()()()33332a b a b a b +≥++,整理即可判断B.【过程详解】解:对于A ,因为220,0,2a b a b >>+=,所以()()22224a b a b +≤+=,所以2a b +≤,当且仅当1a b ==时取等号,故A 错误;对于B ,()()()33332a b a b a b +≥++4334a ab a b b =+++()()22222222=+-++a b a b ab a b ()()222222a b ab a b ab ab =+++-⋅ ()()222222a b ab a b ab =+++- ()()22224a b ab a b =++-≥,当且仅当1a b ==时取等号,所以()3324a b +≥,即332a b +≥,故B 正确;对于C ,111224a b ab b a ab ⎛⎫⎛⎫++=++= ⎪⎪⎝⎭⎝⎭≥,当且仅当1abab=,即1ab=时取等号,故C正确;对于D,112a b+≥≥=,当且仅当11a b=且a b=,即1a b==时取等号,故D正确.故选:BCD.。
高考数学一轮考点扫描专题35 基本不等式一、【知识精讲】 1.基本不等式:ab ≤a +b2(1)基本不等式成立的条件:a ≥0,b ≥0. (2)等号成立的条件:当且仅当a =b 时取等号.(3)其中a +b2称为正数a ,b a ,b 的几何平均数.2.两个重要的不等式(1)a 2+b 2≥2ab (a ,b ∈R ),当且仅当a =b 时取等号.(2)ab ≤⎝ ⎛⎭⎪⎫a +b 22(a ,b ∈R ),当且仅当a =b 时取等号. 3.利用基本不等式求最值 已知x ≥0,y ≥0,则(1)如果积xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值是2p (简记:积定和最小). (2)如果和x +y 是定值s ,那么当且仅当x =y 时,xy 有最大值是s 24(简记:和定积最大).[微点提醒]1.b a +a b≥2(a ,b 同号),当且仅当a =b 时取等号.2.ab ≤⎝ ⎛⎭⎪⎫a +b 22≤a 2+b 22. 3.21a +1b≤ab ≤a +b 2≤a 2+b 22(a >0,b >0).二、【典例精练】考点一 利用基本不等式求最值 角度1 通过配凑法求最值 【例1-1】设a >b >0,则a 2+1ab +1aa -b 的最小值是( ) A .1 B .2 C .3D .4【答案】D 【解析】 a 2+1ab +1aa -b =(a 2-ab )+1a 2-ab +1ab+ab ≥2a 2-ab ·1a 2-ab+21ab×ab =4,当且仅当a 2-ab =1a 2-ab 且1ab=ab , 即a =2,b =22时取等号,故选D. 角度2 通过常数代换法求最值【例1-2】已知x >0,y >0,且x +2y =xy ,则x +y 的最小值为________. 【答案】3+2 2【解析】由x >0,y >0,x +2y =xy ,得2x +1y=1,所以x +y =(x +y )⎝ ⎛⎭⎪⎫2x +1y=3+2y x +xy ≥3+2 2.当且仅当x =2y 时取等号.【解法小结】 在利用基本不等式求最值时,要根据式子的特征灵活变形,配凑出积、和为常数的形式,主要有两种思路:(1)对条件使用基本不等式,建立所求目标函数的不等式求解.常用的方法有:折项法、变系数法、凑因子法、换元法、整体代换法等.(2)条件变形,进行“1”的代换求目标函数最值. 考点二 基本不等式在实际问题中的应用【例2】 运货卡车以每小时x 千米的速度匀速行驶130千米,按交通法规限制50≤x ≤100(单位:千米/时).假设汽油的价格是每升2元,而汽车每小时耗油⎝ ⎛⎭⎪⎫2+x 2360升,司机的工资是每小时14元.(1)求这次行车总费用y 关于x 的表达式;(2)当x 为何值时,这次行车的总费用最低,并求出最低费用的值. 【解析】 (1)设所用时间为t =130x(h),y =130x ×2×⎝ ⎛⎭⎪⎫2+x 2360+14×130x ,x ∈[50,100].所以,这次行车总费用y 关于x 的表达式是y =130×18x +2×130360x ,x ∈[50,100](或y =2 340x +1318x ,x ∈[50,100]).(2)y =130×18x +2×130360x ≥2610,当且仅当130×18x =2×130360x ,即x =1810时等号成立.故当x =1810千米/时,这次行车的总费用最低,最低费用的值为2610元. 【解法小结】 1.设变量时一般要把求最大值或最小值的变量定义为函数. 2.根据实际问题抽象出函数的解析式后,只需利用基本不等式求得函数的最值. 3.在求函数的最值时,一定要在定义域(使实际问题有意义的自变量的取值范围)内求解. 考点三 基本不等式的综合应用【例3】 (1) (2017·山东高考)若直线x a +y b=1(a >0,b >0)过点(1,2),则2a +b 的最小值为________. (2)(一题多解)(2018·江苏卷)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,∠ABC =120°,∠ABC 的平分线交AC 于点D ,且BD =1,则4a +c 的最小值为________. 【答案】 (1)8 (2)9【解析】(1) ∵直线x a +y b=1(a >0,b >0)过点(1,2), ∴1a +2b=1,∴2a +b =(2a +b )⎝ ⎛⎭⎪⎫1a +2b =4+4a b +b a≥4+24a b ·ba=8,当且仅当b a =4ab,即a =2,b =4时,等号成立. 故2a +b 的最小值为8.(2)法一 依题意画出图形,如图所示.易知S △ABD +S △BCD =S △ABC ,即12c sin 60°+12a sin 60°=12ac sin 120°, ∴a +c =ac ,∴1a +1c=1,∴4a +c =(4a +c )⎝ ⎛⎭⎪⎫1a +1c=5+c a +4a c≥9,当且仅当c a =4a c ,即a =32,c =3时取“=”.法二 以B 为原点,BD 所在直线为x 轴建立如图所示的平面直角坐标系,则D (1,0),∵AB =c ,BC =a , ∴A ⎝ ⎛⎭⎪⎫c 2,32c ,C ⎝ ⎛⎭⎪⎫a2,-32a .∵A ,D ,C 三点共线,∴AD →∥DC →. ∴⎝ ⎛⎭⎪⎫1-c 2⎝ ⎛⎭⎪⎫-32a +32c ⎝ ⎛⎭⎪⎫a 2-1=0,∴ac =a +c ,∴1a +1c=1,∴4a +c =(4a +c )⎝ ⎛⎭⎪⎫1a +1c =5+c a +4a c≥9,当且仅当c a =4a c , 即a =32,c =3时取“=”. 【解法小结】 基本不等式的应用非常广泛,它可以和数学的其他知识交汇考查,解决这类问题的策略是: 1.先根据所交汇的知识进行变形,通过换元、配凑、巧换“1”等手段把最值问题转化为用基本不等式求解,这是难点.2.要有利用基本不等式求最值的意识,善于把条件转化为能利用基本不等式的形式.3.检验等号是否成立,完成后续问题. 三、【名校新题】1.(2019·孝感调研)“a >b >0”是“ab <a 2+b 22”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】A【解析】由a >b >0,可知a 2+b 2>2ab ,充分性成立,由ab <a 2+b 22,可知a ≠b ,a ,b ∈R,故必要性不成立.2.(2019·玉溪一中月考)已知f (x )=x 2-2x +1x ,则f (x )在⎣⎢⎡⎦⎥⎤12,3上的最小值为( )A.12 B.43C.-1D.0【答案】D【解析】 f (x )=x 2-2x +1x =x +1x -2≥2-2=0,当且仅当x =1x,即x =1时取等号.又1∈⎣⎢⎡⎦⎥⎤12,3,所以f (x )在⎣⎢⎡⎦⎥⎤12,3上的最小值为0.3.(2019·济南联考)若a >0,b >0且2a +b =4,则1ab的最小值为( )A.2B.12C.4D.14【答案B【解析】】因为a >0,b >0,故2a +b ≥22ab (当且仅当2a =b 时取等号). 又因为2a +b =4, ∴22ab ≤4⇒0<ab ≤2, ∴1ab ≥12,故1ab 的最小值为12(当且仅当a =1,b =2时等号成立). 4.(2019·长春质量监测)已知x >0,y >0,且4x +y =xy ,则x +y 的最小值为( ) A .8 B .9 C .12 D .16【答案】B【解析】 由4x +y =xy 得4y +1x=1,则x +y =(x +y )·⎝ ⎛⎭⎪⎫4y +1x =4x y +yx +1+4≥24+5=9,当且仅当4x y=yx,即x =3,y =6时取“=”,故选B. 5.(2019·江西上饶联考)已知正数a ,b ,c 满足2a -b +c =0,则ac b2的最大值为( ) A .8 B .2 C .18 D .16【答案】 C【解析】 因为a ,b ,c 都是正数,且满足2a -b +c =0,所以b =2a +c ,所以ac b 2=ac 2a +c2=ac4a 2+4ac +c2=14a c +ca+4≤124a c ·c a+4=18,当且仅当c =2a >0时等号成立.故选C. 6.(2019·太原模拟)若P 为圆x 2+y 2=1上的一个动点,且A (-1,0),B (1,0),则|PA |+|PB |的最大值为( ) A.2 B.2 2C.4D.4 2【答案】B【解析】由题意知∠APB =90°,∴|PA |2+|PB |2=4,∴⎝ ⎛⎭⎪⎫|PA |+|PB |22≤|PA |2+|PB |22=2(当且仅当|PA |=|PB |时取等号), ∴|PA |+|PB |≤22,∴|PA |+|PB |的最大值为2 2.7.(2019·衡水中学质检)正数a ,b 满足1a +9b=1,若不等式a +b ≥-x 2+4x +18-m 对任意实数x 恒成立,则实数m 的取值范围是( ) A.[3,+∞) B.(-∞,3] C.(-∞,6]D.[6,+∞)【答案】D【解析】 因为a >0,b >0,1a +9b=1,所以a +b =(a +b )⎝ ⎛⎭⎪⎫1a +9b =10+b a +9a b≥16,当且仅当b a =9ab,即a =4,b =12时取等号. 依题意,16≥-x 2+4x +18-m ,即x 2-4x -2≥-m 对任意实数x 恒成立. 又x 2-4x -2=(x -2)2-6,所以x 2-4x -2的最小值为-6,所以-6≥-m ,即m ≥6.8.(2019·山西模拟)已知不等式(x +y )·⎝ ⎛⎭⎪⎫1x +a y ≥9对任意正实数x ,y 恒成立,则正实数a 的最小值为( ) A .2 B .4 C .6 D .8【答案】 B【解析】 (x +y )⎝ ⎛⎭⎪⎫1x +a y =1+a ·x y +y x +a ≥1+a +2a =(a +1)2,当且仅当a ·x y =y x,即ax 2=y 2时“=”成立.∵(x +y )⎝ ⎛⎭⎪⎫1x +a y ≥9,∴(x +y )⎝ ⎛⎭⎪⎫1x +a y 的最小值为(a +1)2≥9.∴a ≥4.故选B.9. (2019·厦门模拟)已知f (x )=32x-(k +1)3x+2,当x ∈R 时,f (x )恒为正值,则k 的取值范围是( ) A.(-∞,-1)B.(-∞,22-1)C.(-1,22-1)D.(-22-1,22-1)【答案】B【解析】由f (x )>0得32x -(k +1)3x +2>0,解得k +1<3x+23x .又3x +23x ≥22(当且仅当3x=23x ,即x =log 3 2时,等号成立).所以k +1<22,即k <22-1.10.(2019·上海模拟)设x ,y 均为正实数,且32+x +32+y =1,则xy 的最小值为( )A .4B .4 3C .9D .16【答案】 D 【解析】32+x +32+y=1可化为xy =8+x +y ,∵x ,y 均为正实数,∴xy =8+x +y ≥8+2xy (当且仅当x =y 时等号成立),即xy -2xy -8≥0,解得xy ≥4,即xy ≥16,故xy 的最小值为16.故选D.11.(2019·湖南师大附中模拟)已知△ABC 的面积为1,内切圆半径也为1,若△ABC 的三边长分别为a ,b ,c ,则4a +b +a +bc 的最小值为( )A.2B.2+ 2C.4D.2+2 2【答案】D【解析】 因为△ABC 的面积为1,内切圆半径也为1, 所以12(a +b +c )×1=1,所以a +b +c =2,所以4a +b +a +b c =2(a +b +c )a +b +a +b c =2+2c a +b +a +b c≥2+22, 当且仅当a +b =2c ,即c =22-2时,等号成立, 所以4a +b +a +bc的最小值为2+2 2. 12.(2019·绵阳诊断)若θ∈⎝ ⎛⎭⎪⎫0,π2,则y =1sin 2θ+9cos 2θ的取值范围为( ) A .[6,+∞) B .[10,+∞) C .[12,+∞) D .[16,+∞)【答案】 D【解析】 ∵θ∈⎝ ⎛⎭⎪⎫0,π2,∴sin 2θ,cos 2θ∈(0,1),∴y =1sin 2θ+9cos 2θ=⎝ ⎛⎭⎪⎫1sin 2θ+9cos 2θ(sin 2θ+cos 2θ)=10+cos 2θsin 2θ+9sin 2θcos 2θ≥10+2cos 2θsin 2θ·9sin 2θcos 2θ=16,当且仅当cos 2θsin 2θ=9sin 2θcos 2θ,即θ=π6时等号成立.故选D.13. (2019·合肥调研)设x ,y 满足约束条件⎩⎪⎨⎪⎧y ≤x +1,y ≥2x -1,x ≥0,y ≥0,若目标函数z =abx +y (a >0,b >0)的最大值为35,则a +b 的最小值为________. 【答案】8【解析】 可行域如图所示,当直线abx +y =z (a >0,b >0)过点B (2,3)时,z 取最大值2ab +3.于是有2ab +3=35,ab =16.所以a +b ≥2ab =8,当且仅当a =b =4时等号成立, 所以(a +b )min =8.14. (2019·乐山一中月考)设0<x <32,则函数y =4x (3-2x )的最大值为________.【答案】92【解析】 y =4x (3-2x )=2[2x (3-2x )]≤2⎣⎢⎡⎦⎥⎤2x +(3-2x )22=92, 当且仅当2x =3-2x ,即x =34时,等号成立.∵34∈⎝ ⎛⎭⎪⎫0,32,∴函数y =4x (3-2x )⎝ ⎛⎭⎪⎫0<x <32的最大值为92. 15.(2019·潍坊调研)函数y =a1-x(a >0,a ≠1)的图象恒过定点A ,若点A 在直线mx +ny -1=0上,且m ,n为正数,则1m +1n的最小值为________.【答案】4【解析】∵曲线y =a 1-x恒过定点A ,x =1时,y =1,∴A (1,1).将A 点代入直线方程mx +ny -1=0(m >0,n >0), 可得m +n =1,∴1m +1n =⎝ ⎛⎭⎪⎫1m +1n ·(m +n )=2+n m +mn≥2+2n m ·mn=4, 当且仅当n m =m n 且m +n =1(m >0,n >0),即m =n =12时,取得等号.16.(2019·河南八校测评)已知等差数列{a n }中,a 3=7,a 9=19,S n 为数列{a n }的前n 项和,则S n +10a n +1的最小值为________. 【答案】3【解析】∵a 3=7,a 9=19, ∴d =a 9-a 39-3=19-76=2,∴a n =a 3+(n -3)d =7+2(n -3)=2n +1, ∴S n =n (3+2n +1)2=n (n +2),因此S n +10a n +1=n (n +2)+102n +2=12⎣⎢⎡⎦⎥⎤(n +1)+9n +1≥12×2(n +1)·9n +1=3, 当且仅当n =2时取等号.故S n +10a n +1的最小值为3. 17.(2019·孝感模拟)经测算,某型号汽车在匀速行驶过程中每小时耗油量y (L)与速度x (km/h)(50≤x ≤120)的关系可近似表示为y =⎩⎪⎨⎪⎧175x 2-130x +4 900,x ∈[50,80,12-x60,x ∈[80,120].(1)该型号汽车的速度为多少时,可使得每小时耗油量最少?(2)已知A ,B 两地相距120 km ,假定该型号汽车匀速从A 地驶向B 地,则汽车速度为多少时总耗油量最少? 【解析】(1)当x ∈[50,80)时,y =175(x 2-130x +4 900)=175[(x -65)2+675],所以当x =65时,y 取得最小值,最小值为175×675=9.当x ∈[80,120]时,函数y =12-x 60单调递减,故当x =120时,y 取得最小值,最小值为12-12060=10.因为9<10,所以当x =65,即该型号汽车的速度为65 km/h 时,可使得每小时耗油量最少. (2)设总耗油量为l L ,由题意可知l =y ·120x,①当x ∈[50,80)时,l =y ·120x =85⎝ ⎛⎭⎪⎫x +4 900x -130≥85⎝⎛⎭⎪⎫2 x ×4 900x-130=16,当且仅当x =4 900x,即x =70时,l 取得最小值,最小值为16;②当x ∈[80,120]时,l =y ·120x =1 440x-2为减函数,所以当x =120时,l 取得最小值,最小值为10.因为10<16,所以当速度为120 km/h 时,总耗油量最少.18. (2019·西安模拟)某商人投资81万元建一间工作室,第一年装修费为1万元,以后每年增加2万元,把工作室出租,每年收入租金30万元.(1)若扣除投资和各种装修费,则从第几年开始获取纯利润?(2)若干年后该商人为了投资其他项目,对该工作室有两种处理方案:①年平均利润最大时,以46万元出售该工作室;②纯利润总和最大时,以10万元出售该工作室.问该商人会选择哪种方案? 【解析】 (1)设第n 年获取利润为y 万元.n 年付出的装修费构成一个首项为1,公差为2的等差数列,n 年付出的装修费之和为n ×1+n n -12×2=n 2,又投资81万元,n 年共收入租金30n 万元, ∴利润y =30n -n 2-81(n ∈N *).令y >0,即30n -n 2-81>0,∴n 2-30n +81<0, 解得3<n <27(n ∈N *),∴从第4年开始获取纯利润. (2)方案①:年平均利润t =30n -81+n2n=30-81n-n =30-⎝ ⎛⎭⎪⎫81n +n ≤30-281n ·n =12(当且仅当81n=n ,即 n =9时取等号),∴年平均利润最大时,以46万元出售该工作室共获利润12×9+46=154(万元). 方案②:纯利润总和y =30n -n 2-81=-(n -15)2+144(n ∈N *), 当n =15时,纯利润总和最大,为144万元,∴纯利润总和最大时,以10万元出售该工作室共获利润144+10=154(万元), 两种方案盈利相同,但方案①时间比较短,所以选择方案①.。
2024届高考数学复习:精选历年真题、好题专项(椭圆)练习一. 基础小题练透篇1.已知定点F 1,F 2,且|F 1F 2|=8,动点P 满足|PF 1|+|PF 2|=8,则动点P 的轨迹是( ) A .椭圆 B .圆 C .直线 D .线段2.[2023ꞏ山西省忻州市高三联考]“m >0”是“方程x 24 +y 2m =1表示椭圆”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件 3.[2023ꞏ重庆市高三模拟]几何学中,把满足某些特定条件的曲线组成的集合叫做曲线族.点Q 是椭圆族T 上任意一点,如图所示,椭圆族T 的元素满足以下条件:①长轴长为4;②一个焦点为原点O ;③过定点P ()0,3 ,则||QP +||QO 的最大值是( )A .5B .7C .9D .114.[2023ꞏ四川省遂宁市模拟]已知椭圆x 2a 2 +y 2b 2 =1(a >b >0)的离心率为12 ,则( ) A .a 2=2b 2 B .3a 2=4b 2 C .a =2b D .3a =4b5.[2023ꞏ甘肃省张掖市高三检测]已知椭圆x 2+y 2b 2 =1(1>b >0)的左、右焦点分别为F 1,F 2,点M 是椭圆上一点,点A 是线段F 1F 2上一点,且∠F 1MF 2=2∠F 1MA =2π3 ,|MA |=32 ,则该椭圆的离心率为( )A .3B .12C .223D .36.在平面直角坐标系xOy 中,已知点A (0,3 ),B (0,-3 ),动点M 满足|MA |+|MB |=4,则MA → ꞏMB →的最大值为( )A .-2B .0C .1D .27.已知椭圆C 的焦点在x 轴上,过点(322 ,2)且离心率为13 ,则椭圆C 的焦距为________. 8.[2023ꞏ陕西省西安市模拟]椭圆x 29 +y 23 =1的左、右焦点分别为F 1,F 2,点P 在椭圆上,如果PF 1的中点在y 轴上,那么|PF 1|是|PF 2|的________倍.二. 能力小题提升篇1.[2023ꞏ陕西省安康市高三联考]已知F 1,F 2是椭圆C :x 2a 2 +y 215 =1(a >15 )的两个焦点,P 为C 上一点,且∠F 1PF 2=60°.||PF 1 =5||PF 2 ,则C 的方程为( )A .x 221 +y 215 =1B .x 218 +y 215 =1C .x 236 +y 215 =1 D .x 242 +y 215 =12.[2023ꞏ广西贵港市高三联考]若2<m <8,椭圆C :x 2m +y 22 =1与椭圆D :x 2m +y 28 =1的离心率分别为e 1,e 2,则( )A .e 1ꞏe 2的最小值为32B .e 1ꞏe 2的最小值为12C .e 1ꞏe 2的最大值为3D .e 1ꞏe 2的最大值为123.[2023ꞏ江西名校联盟模拟]在直角坐标系xOy 中,F 是椭圆C :x 2a 2 +y 2b 2 =1(a >b >0)的左焦点,A ,B 分别为C 的左、右顶点,过点F 作x 轴的垂线交椭圆C 于P ,Q 两点,连接PB 交y 轴于点E ,连接AE 交PQ 于点M ,若M 是线段PF 的中点,则椭圆C 的离心率为( )A.22 B .12 C .13 D .144.[2023ꞏ陕西省西安市高三检测]设椭圆C :x 2a 2 +y 2b 2 =1()a >b >0 的右焦点为F ,椭圆C 上的两点A ,B 关于原点对称,且满足F A → ꞏFB →=0,||FB ≤||F A ≤2||FB ,则椭圆C 的离心率的最大值是( )A .13B .33C .23D .535.[2023ꞏ陕西省咸阳市摸底]已知椭圆C :x 2m 2-1+y 2m 2 =1(m >0)的两个焦点分别为F 1,F 2,点P 为椭圆上一点,且△PF 1F 2面积的最大值为3 ,则椭圆C 的短轴长为________.6.[2023ꞏ福建省高三联考]抛物线C 1:y 2=4x 的焦点F ,点P ()3,2 ,以点F ,P 为焦点的椭圆与抛物线有公共点,则椭圆的离心率的最大值为________.三. 高考小题重现篇1.[2021ꞏ山东卷]已知F 1,F 2是椭圆C :x 29 +y 24 =1的两个焦点,点M 在C 上,则||MF 1 ꞏ||MF 2 的最大值为( )A .13 B. 12 C .9 D. 62.[全国卷Ⅰ]已知椭圆C :x 2a 2 +y 24 =1的一个焦点为(2,0),则C 的离心率为( )A .13B .12C .22 D .2233.[2022ꞏ全国甲卷]已知椭圆C :x 2a 2 +y 2b 2 =1(a >b >0)的离心率为13 ,A 1,A 2分别为C的左、右顶点,B 为C 的上顶点.若BA → 1ꞏBA →2=-1,则C 的方程为( )A .x 218 +y 216 =1B .x 29 +y 28 =1C .x 23 +y 22 =1 D .x 22 +y 2=14.[2022ꞏ全国甲卷]椭圆C :x 2a 2 +y 2b 2 =1(a >b >0)的左顶点为A ,点P ,Q 均在C 上,且关于y轴对称.若直线AP,AQ的斜率之积为14,则C的离心率为()A.32B.22C.12D.135.[2019ꞏ全国卷Ⅲ]设F1,F2为椭圆C:x236+y220=1的两个焦点,M为C上一点且在第一象限.若△MF1F2为等腰三角形,则M的坐标为________.6.[2021ꞏ全国甲卷]已知F1,F2为椭圆C:x216+y24=1的两个焦点,P,Q为C上关于坐标原点对称的两点,且|PQ|=|F1F2|,则四边形PF1QF2的面积为________.四. 经典大题强化篇1.已知椭圆x2a2+y2b2=1(a>b>0)的一个顶点为B(0,4),离心率e=5,直线l交椭圆于M,N两点.(1)若直线l的方程为y=x-4,求弦|MN|的长;(2)如果△BMN的重心恰好为椭圆的右焦点F,求直线l方程的一般式.2.[2022ꞏ湖北武汉调研]已知椭圆C:x2a2+y2b2=1(a>b>0)的一个顶点为A(2,0),离心率为22,直线y=k(x-1)与椭圆C交于不同的两点M,N.(1)求椭圆C的方程;(2)当△AMN的面积为103时,求k的值.参考答案一 基础小题练透篇1.答案:D答案解析:因为|PF 1|+|PF 2|=|F 1F 2|,所以动点P 的轨迹是线段F 1F 2. 2.答案:B答案解析:当m >0时方程x 24 +y 2m =1不一定表示椭圆,如m =4时方程x 24 +y 24=1,即x 2+y 2=4就表示一个圆,所以“m >0”不是“方程x 24 +y2m=1表示椭圆”的充分条件;但是当方程x 24 +y 2m =1表示椭圆时,应有m >0,所以“m >0”是“方程x 24 +y 2m=1表示椭圆”的必要条件,故选B. 3.答案:A答案解析:如图所示设点Q 所在椭圆的另一焦点为F ,则||QP +||QO =||QP +4-||QF ≤||PF +4=4-||PO +4=5. 故选A. 4.答案:B答案解析:椭圆的离心率e =c a =12,c 2=a 2-b 2,化简得3a 2=4b 2,故选B.5.答案:B答案解析:设|MF 1|=r 1,|MF 2|=r 2,则r 1+r 2=2a =2,由余弦定理得|F 1F 2|2=|MF 1|2+|MF 2|2-2|MF 1||MF 2|cos 2π3,即4c 2=r 21 +r 22 +r 1r 2=(r 1+r 2)2-r 1r 2=4-r 1r 2,所以r 1r 2=4-4c 2,因为S △F 1MF 2=S △F 1MA +S △AMF 2,所以12 r 1r 2sin 23 π=12 r 1·|MA |·sin π3 +12 r 2·|MA |·sin π3,整理得r 1r 2=(r 1+r 2)·|MA |,即4-4c 2=2×32 ,整理得c 2=14,所以c =12 ,a =1,e =c a =12.故选B. 6.答案:C答案解析:易知M 的轨迹为椭圆,其方程为y 24+x 2=1,设M (x ,y ),则x 2=1-y 24,∴MA → ·MB → =(-x ,3 -y )·(-x ,-3 -y )=x 2+y 2-3=y 2+(1-y 24)-3=3y24-2, 因为y ∈[-2,2],所以34y 2∈[0,3],即3y24 -2∈[-2,1],∴(MA → ·MB →)max =1. 7.答案:2答案解析:设椭圆方程为x 2a 2 +y 2b 2 =1,由离心率为13 可得c a =13,由a 2=b 2+c 2可得b 2a 2=89 ,又92a 2 +4b 2 =1,解得a 2=9,b 2=8,c =1,焦距为2. 8.答案:5答案解析:由题得c =6 ,由题得PF 2⊥x 轴,当x =6 时,69+y 23 =1,所以y =±1,∴|PF 2|=1,所以|PF 1|=2×3-|PF 2|=6-1=5, 所以|PF 1|是|PF 2|的5倍.二 能力小题提升篇1.答案:C答案解析:在椭圆C :x 2a 2 +y 215=1(a >15 )中,由椭圆的定义可得||PF 1 +||PF 2 =2a ,因为||PF 1 =5||PF 2 ,所以||PF 2 =a 3,||PF 1 =5a3,在△PF 1F 2中,||F 1F 2 =2c ,由余弦定理得||F 1F 2 2=||PF 1 2+||PF 2 2-2||PF 1 ||PF 2 cos ∠F 1PF 2,即4c 2=25a 29 +a29-5a 29 =21a 29 ,所以c 2a 2 =2136 ,又b 2=15.所以a 2=36,所以椭圆C 的方程为x 236 +y 215 =1. 故选C. 2.答案:D答案解析:因为2<m <8,所以e 1= 1-2m ,e 2= 1-m8,所以e 1·e 2=⎝ ⎛⎭⎪⎫1-2m ⎝ ⎛⎭⎪⎫1-m 8 =1+14-⎝ ⎛⎭⎪⎫2m +m 8 ≤54-22m ·m 8 =12, 当且仅当m =4时,等号成立,故e 1·e 2的最大值为12,e 1·e 2无最小值.故选D.3.答案:C答案解析:不妨设点P 在x 轴上方,如图,连接BQ ,则由椭圆的对称性易得∠PBF =∠QBF ,∠EAB =∠EBA ,所以∠EAB =∠QBF ,所以ME ∥BQ ,所以|PE ||EB | =|PM ||MQ | .因为OE ∥PF ,所以|OF ||OB |=|EP ||EB | ,从而有|PM ||MQ | =|OF ||OB | .又M 是线段PF 的中点,所以e =c a =|OF ||OB | =|PM ||MQ | =13 . 4.答案:D答案解析:如图所示:设椭圆的左焦点F ′,由椭圆的对称性可知,四边形AFBF ′为平行四边形,又FA → ·FB →=0,即FA ⊥FB , 所以平行四边形AFBF ′为矩形,所以||AB =||FF ′ =2c ,设||AF ′ =|BF |=n ,||AF =m, 在直角△ABF 中,m +n =2a ,m 2+n 2=4c 2,得mn =2b 2,所以m n+n m =2c 2b 2 ,令m n =t ,得t +1t =2c2b 2 ,又由||FB ≤||FA ≤2||FB ,得m n =t ∈[1,2],所以t +1t =2c 2b 2 ∈⎣⎢⎡⎦⎥⎤2,52 ,所以c 2b 2 ∈⎣⎢⎡⎦⎥⎤1,54 ,即b 2a 2 =11+c 2b2∈⎣⎢⎡⎦⎥⎤49,12 , 所以e =ca=1-b 2a 2 ∈⎣⎢⎡⎦⎥⎤22,53 ,所以离心率最大值为53 .故选D.5.答案:23答案解析:由椭圆的方程可知,椭圆的焦点F 1,F 2在y 轴上,且|F 1F 2|=2m 2-(m 2-1) =2,由题意可知,当点P 为椭圆C 左右顶点时,△PF 1F 2的面积最大,且12 |F 1F 2|m 2-1 =3 ,解得m =2,所以椭圆C 的短轴长为2m 2-1 =23 .6.答案:22答案解析:抛物线C 1:y 2=4x 的焦点F (1,0),根据题意2c =(3-1)2+(2-0)2=22 ,c =2 .设椭圆和抛物线的交点为Q ,Q 到抛物线准线x =-1的距离为d ,离心率最大,即a 最小,a =||QF +||QP 2 =d +||QP 2 ≥3-(-1)2=2, 当PQ 与准线垂直时等号成立,此时e =ca =22. 三 高考小题重现篇1.答案:C答案解析:由题,a 2=9,b 2=4,则||MF 1 +||MF 2 =2a =6,所以||MF 1 ·||MF 2 ≤⎝ ⎛⎭⎪⎫||MF 1+||MF 22 2=9(当且仅当||MF 1 =||MF 2 =3时,等号成立).2.答案:C答案解析:由题意可知c =2,b 2=4,∴a 2=b 2+c 2=4+22=8,则a =22 ,∴e =c a =222 =22 . 3.答案:B答案解析:由椭圆C 的离心率为13 ,可得e =c a =a 2-b 2a 2=13.化简,得8a 2=9b 2.易知A 1(-a ,0),A 2(a ,0),B (0,b ),所以BA 1·BA 2=(-a ,-b )·(a ,-b )=-a 2+b 2=-1.联立得方程组⎩⎪⎨⎪⎧8a 2=9b 2,-a 2+b 2=-1, 解得⎩⎪⎨⎪⎧a 2=9,b 2=8. 所以C 的方程为x 29 +y 28 =1.故选B.4.答案:A答案解析:A ()-a ,0 ,设P ()x 1,y 1 ,则Q ()-x 1,y 1 ,则k AP =y 1x 1+a ,k AQ =y 1-x 1+a, 故k AP ·k AQ =y 1x 1+a ·y 1-x 1+a =y 21 -x 21 +a 2 =14, 又x 21 a2 +y 21 b2 =1,则y 21 =b 2()a 2-x 21 a 2, 所以b 2()a 2-x 21 a 2-x 21 +a2 =14 ,即b 2a 2 =14 , 所以椭圆C 的离心率e =c a=1-b 2a 2 =32 .故选A. 5.答案:(3,15 )答案解析:不妨令F 1,F 2分别为椭圆C 的左、右焦点,根据题意可知c =36-20 =4.因为△MF 1F 2为等腰三角形,所以易知|F 1M |=2c =8,所以|F 2M |=2a -8=4.设M (x ,y ),则⎩⎪⎨⎪⎧x 236+y220=1,|F 1M |2=(x +4)2+y 2=64,x >0,y >0,得⎩⎨⎧x =3,y =15,所以M 的坐标为(3,15 ).6.答案:8答案解析:根据椭圆的对称性及|PQ |=|F 1F 2|可以得到四边形PF 1QF 2为对角线相等的平行四边形,所以四边形PF 1QF 2为矩形.设|PF 1|=m ,则|PF 2|=2a -|PF 1|=8-m ,则|PF 1|2+|PF 2|2=m 2+(8-m )2=2m 2+64-16m =|F 1F 2|2=4c 2=4(a 2-b 2)=48,得m (8-m )=8,所以四边形PF 1QF 2的面积为|PF 1|×|PF 2|=m (8-m )=8.四 经典大题强化篇1.答案解析:(1)由已知得b =4,且c a =55 ,即c 2a 2 =15,∴a 2-b 2a 2 =15,解得a 2=20,∴椭圆方程为x 220 +y 216=1. 则4x 2+5y 2=80与y =x -4联立,消去y 得9x 2-40x =0,∴x 1=0,x 2=409,∴所求弦长|MN |=1+12|x 2-x 1|=4029. (2)椭圆右焦点F 的坐标为(2,0),设线段MN 的中点为Q (x 0,y 0),由三角形重心的性质知BF → =2FQ →, 又B (0,4),∴(2,-4)=2(x 0-2,y 0), 故得x 0=3,y 0=-2, 即Q 的坐标为(3,-2). 设M (x 1,y 1),N (x 2,y 2), 则x 1+x 2=6,y 1+y 2=-4,且x 21 20 +y 21 16 =1,x 22 20 +y 2216=1, 以上两式相减得k MN =y 1-y 2x 1-x 2 =-45 ·x 1+x 2y 1+y 2 =-45 ×6-4 =65,故直线MN 的方程为y +2=65(x -3),即6x -5y -28=0.2.答案解析:(1)由题意得⎩⎪⎨⎪⎧a =2,c a =22,a 2=b 2+c 2,得b =2 ,所以椭圆C 的方程为x 24+y 22=1.(2)由⎩⎪⎨⎪⎧y =k (x -1),x 24+y22=1, 得(1+2k 2)x 2-4k 2x +2k 2-4=0.Δ=24k 2+16>0恒成立. 设点M ,N 的坐标分别为(x 1,y 1),(x 2,y 2),则y 1=k (x 1-1),y 2=k (x 2-1),x 1+x 2=4k 21+2k 2 ,x 1x 2=2k 2-41+2k 2 ,所以|MN |=(x 2-x 1)2+(y 2-y 1)2=(1+k 2)[(x 1+x 2)2-4x 1x 2]=2(1+k 2)(4+6k 2)1+2k 2. 又点A (2,0)到直线y =k (x -1)的距离d =|k |1+k2 ,所以△AMN的面积S=12|MN|·d=|k|4+6k21+2k2,由|k|4+6k21+2k2=103,得k=±1.所以当△AMN的面积为103时,k=±1.。
3.5 幂函数与一元二次函数(精讲)(提升版)思维导图考点呈现考点一 幂函数及性质【例1-1】(2022·全国·高三专题练习)幂函数223()(55)()m mf x m m x m Z -=+-∈是偶函数,且在(0,+∞)上是减函数,则m 的值为( ) A .﹣6 B .1 C .6 D .1或﹣6【答案】B【解析】∵幂函数223()(55)()mmf x m m x m Z -=+-∈是偶函数,且在(0,+∞)上是减函数,∵2255130m m m m ⎧+-=⎨-<⎩,且23m m -为偶数1m ∴=或6m =- 当1m =时,232m m -=-满足条件;当6m =-时,2354m m -=,舍去因此:m =1故选:B【例1-2】(2022·全国·高三专题练习)幂函数2232m m y x --=是偶函数,在()0,∞+上是减函数,则整数m 的值为( ) A .0 B .1 C .0或1 D .2【答案】A【解析】因为幂函数2232m m y x --=在()0,∞+上是减函数,所以22320m m --<,解得122m -<<,又m Z ∈,所以0m =或1m =, 当0m =时,221yxx 定义域为()(),00,-∞⋃+∞,且()2211x x =-,所以2y x 是偶函数,满足题意;当1m =时,331y x x -==定义域为()(),00,-∞⋃+∞,而()3311x x =--,所以3y x -=是奇函数,不满足题意,舍去;综上,0m =.故选:A 【一隅三反】1.(2022·全国·高三专题练习)(多选)已知幂函数()f x x α=的图象经过点(16,4),则下列说法正确的有( )例题剖析A .函数是偶函数B .函数是增函数C .当1x >时,()1f x >D .当120x x <<时,1212()()22f x f x x x f ++⎛⎫< ⎪⎝⎭【答案】BCD【解析】因为幂函数()f x x α=的图象经过点(16,4),所以164α=,则12α=, 所以12()f x x ==[)0,+∞,不关于原点对称,所以该函数是非奇非偶函数,故A 错; 又102>,所以12()f x x =是增函数,故B 正确; 因此当1x >时,()(1)1f x f >=,故C 正确;当120x x <<时,因为12()()2f x f x +122x x f +⎛⎫ ⎪⎝⎭则22121212()()222f x f x x x x x f +⎡+⎤+⎡⎤⎛⎫-=-= ⎪⎢⎥⎢⎥⎣⎦⎝⎭⎣⎦20=-<⎝⎭,所以1212()()22f x f x x x f ++⎛⎫< ⎪⎝⎭,故D 正确.故选:BCD. 2.(2022·全国·高三专题练习)(多选)已知函数()()2231mm f x m m x+-=--是幂函数,对任意1x ,()20,x ∈+∞,且12x x ≠,满足()()12120f x f x x x ->-.若a ,b R ∈,且()()f a f b +的值为负值,则下列结论可能成立的有( )A .0a b +>,0ab <B .0a b +<,0ab >C .0a b +<,0ab <D .0a b +>,0ab >【答案】BC【解析】由于函数()f x 为幂函数,故211m m --=,即220m m --=,解得1,2m m =-=.当1m =-时,()21f x x =,当2m =时,()3f x x =.由于“对任意()12,0,,x x ∈+∞,且12x x ≠,满足()()12120f x f x x x ->-”知,函数在()0,∞+上为增函数,故()3f x x =.易见()()f x f x -=-,故函数()3f x x =是单调递增的奇函数.由于()()0f a f b +<,即()()()f a f b f b <-=-,得a b <-,所以0a b +<,此时,若当0a =时,0b <,故0ab =;当0a >时,0a b <<-,故0b <,故0ab <;当0a <时,由a b <-知,b a <-,故0b <或0b =或0b >,即0ab >或0ab =或0ab <.综上可知,0a b +<,且0ab >或0ab =或0ab <.故选:BC. 3.(2022·全国·高三专题练习(理))已知幂函数()223()mm f x x m Z --=∈的图像关于y 轴对称,与x 轴及y 轴均无交点,则由m 的值构成的集合是__________. 【答案】{}1,1,3-【解析】由幂函数()f x 与x 轴及y 轴均无交点,得2230m m -≤-,解得13m -≤≤, 又m Z ∈,即{}1,0,1,2,3m ∈-,()223()mm f x x m Z --=∈的图像关于y 轴对称,即函数为偶函数,故223m m --为偶数,所以{}1,1,3m ∈-,故答案为:{}1,1,3-.4.(2022·上海·高三专题练习)已知函数()22()1a f x a a x +=-+为幂函数,且为奇函数,则实数a 的值_____.【答案】1【解析】因为函数()22()1a f x a a x +=-+为幂函数,所以2211,0,1a a a a a -+=∴-=∴=或0a =.当0a =时,()2f x x =为偶函数,不符合题意,所以舍去;当1a =时,()3f x x =为奇函数,符合题意.故答案为:1考点二 一元二次函数【例2-1】(2021·重庆市清华中学校高三阶段练习)若函数234y x x =--的定义域为[]0,m ,值域为25,44⎡⎤--⎢⎥⎣⎦,则实数m 的取值范围是( ) A .(]0,4 B .25,44⎡⎤--⎢⎥⎣⎦C .3,32⎡⎤⎢⎥⎣⎦D .3,2⎡⎫+∞⎪⎢⎣⎭【答案】C【解析】函数234y x x =--的图象如图所示,因为223253424y x x x ⎛⎫=--=-- ⎪⎝⎭当0x =或3x =时,4y =-;当32x =时,254y =-,因为函数的定义域为[]0,m ,所以3,32m ⎡⎤∈⎢⎥⎣⎦.故选:C .【例2-2】(2022·宁夏·平罗中学模拟预测(理))已知,(0,1)a b ∈,则函数2()41f x ax bx =-+在[1,)+∞上是增函数的概率为( )A .45B .34C .25D .14【答案】D【解析】由题设()f x 对称轴为2bx a=,而,(0,1)a b ∈,函数开口向上, 所以()f x 的增区间为2[,)b a +∞,故在[1,)+∞上是增函数有201b a <≤,综上,01012a b b a<<⎧⎪<<⎨⎪≤⎩对应可行域如下阴影部分:所以阴影部分面积为14,而,(0,1)a b ∈的面积为1,故在[1,)+∞上是增函数的概率为14.故选:D 【例2-3】(2022·全国·高三专题练习)(多选)若函数244y x x =--的定义域为[)0,a ,值域为[]8,4--,则正整数a 的值可能是( ) A .2B .3C .4D .5【答案】BC 【解析】函数244y x x =--的图象如图所示:因为函数在[)0,a 上的值域为[]8,4--,结合图象可得24a <≤,结合a 是正整数,所以BC 正确.故选: BC. 【一隅三反】1.(2022·全国·高三专题练习)若a ,b ,c 成等差数列,则二次函数22y ax bx c =-+的图象与x 轴的交点个数为( ) A .0 B .1 C .2 D .1或2【答案】D【解析】由a ,b ,c 成等差数列,可得2b a c =+, 所以()()2224440b ac a c ac a c ∆=-=+-=-≥,所以二次函数22y ax bx c =-+的图象与x 轴交点的个数为1或2.故选:D.2.(2022·天津·南开中学二模)已知函数()21,14log 1,1a ax x x f x x x ⎧--≤⎪=⎨⎪->⎩是R 上的单调函数,则实数a 的取值范围为( ) A .11,42⎡⎫⎪⎢⎣⎭B .11,42⎡⎤⎢⎥⎣⎦C .10,2⎛⎤ ⎥⎝⎦D .1,12⎛⎫ ⎪⎝⎭【答案】B 【解析】当函数()21,14log 1,1a ax x x f x x x ⎧--≤⎪=⎨⎪->⎩是R 上的单调递减函数,所以01112514a a a ⎧⎪<<⎪⎪≥⎨⎪⎪-≥-⎪⎩,解得1142a ≤≤,因为0a >且1a ≠,所以当1x ≤时,()f x 不可能是增函数,所以函数()f x 在R 上不可能是增函数, 综上:实数a 的取值范围为11,42⎡⎤⎢⎥⎣⎦,故选:B3(2022·重庆·模拟预测)已知二次函数24y x x a =-+的两个零点都在区间()1,+∞内,则a 的取值范围是( ) A .(),4-∞ B .()3,+∞C .()3,4D .(),3-∞【答案】C【解析】二次函数24y x x a =-+,对称轴为2x =,开口向上,在(),2-∞上单调递减,在()2,+∞上单调递增,要使二次函数2()4f x x x a =-+的两个零点都在区间()1,+∞内,需(1)140(2)480f a f a =-+>⎧⎨=-+<⎩,解得34a <<故实数a 的取值范围是()3,4故选:C4.(2022·全国·高三专题练习(理))若集合2{|(2)20,}A x x a x a x Z =-++-<∈中有且只有一个元素,则正实数a 的取值范围是___________ 【答案】12(,]23【解析】由题意,不等式2(2)20x a x a -++-<且0a >,即222(1)x x a x -+<+,令()()222,(1)f x x x g x a x =-+=+,所以()(){|,}A x f x g x x Z =<∈,所以()y f x =是一个二次函数,图象是确定的一条抛物线, 而()y g x =一次函数,图象是过一定点(1,0)-的动直线,作出函数()222f x x x =-+和()(1)g x a x =+的图象,如图所示,其中()()11,22f f ==,又因为,0x Z a ∈>,结合图象,要使得集合2{|(2)20,}A x x a x a x Z =-++-<∈中有且只有一个元素,可得()(1)122g g >⎧⎨≤⎩,即2132a a >⎧⎨≤⎩,解得1223a <≤.即正实数a 的取值范围是12(,]23.故答案为:12(,]23.考点三 一元二次函数与其他知识综合【例3】(2022·山东济宁·三模)已知二次函数()()22f x ax x c x =++∈R 的值域为[)1,+∞,则14a c+的最小值为( ) A .3- B .3 C .4- D .4【答案】B【解析】若0a =,则函数()f x 的值域为R ,不合乎题意,因为二次函数()()22f x ax x c x =++∈R 的值域为[)1,+∞,则0a >,且()min 44114ac ac f x a a --===,所以,1ac a -=,可得101a c =>-,则1c >,所以,144113c a c c +=+-≥=,当且仅当2c =时,等号成立,因此,14a c +的最小值为3.故选:B.【一隅三反】1.(2021·广东·湛江二十一中)若函数()25log 212a f x x ax a ⎛⎫=-+- ⎪⎝⎭有最大值,则a 的取值范围为( ) A .10,2⎛⎫⎪⎝⎭B .1,12⎛⎫ ⎪⎝⎭C .21,52⎛⎫ ⎪⎝⎭D .()1,2【答案】B【解析】令25212t x ax a =-+-,要使函数()25log 212a f x x ax a ⎛⎫=-+- ⎪⎝⎭有最大值,则内层函数25212t x ax a =-+-要有最小正值,且外层函数()log a f t t =为减函数,可知0<a <1.要使内层函数25212t x ax a =-+-要有最小正值,则2544(1)02a a ∆=--<,解得122a <<.综合得a 的取值范围为1,12⎛⎫⎪⎝⎭.故选:B.2.(2022·黑龙江)若关于x 的方程19310x x m ++-+=有解,则实数m 的取值范围是( ) A .()1,+∞ B .5,4⎡⎫-+∞⎪⎢⎣⎭C .(],3-∞D .(]1,3【答案】A【解析】方程19310x x m ++-+=有解,2(3)3310x x m ∴+⨯-+=有解, 令30x t =>,则可化为2310t t m +-+=有正根,则231t t m +=-在()0,∞+有解,又当()0,t ∈+∞时,230t t +>所以101m m ->⇒>,故选:A .3.(2022·全国·高三专题练习)函数y =R ,则实数a 的取值范围是( ) A .(][),22,-∞-+∞ B .[)()1,00,-⋃+∞ C .(,1)-∞-D .[)1,1-【答案】A【解析】因为函数y =R ,可得真数部分y = 即函数21y x ax =++取到所有的正数,所以(0,)+∞是函数21y x ax =++的值域的子集, 所以240a ∆=-≥解得:2a ≤-或2a ≥,所以实数a 的取值范围是:(][),22,-∞-+∞.故选:A.考点四 图像问题【例4-1】(2022·全国·高三专题练习)函数x y a =(0a >且1a ≠)与函数()2121y a x x =---(0a >且1a ≠)在同一个坐标系内的图象可能是( )A .B .C .D .【答案】C【解析】两个函数分别为指数函数和二次函数,其中二次函数图象过点(0,-1),故排除A ,D ; 二次函数图象的对称轴为直线11x a =-,当01a <<时,指数函数递减,101a <-,C 符合题意; 当1a >时,指数函数递增,101a >-,B 不符合题意.故选:C . 【例4-2】(陕西省部分地市学校2022届高三下学期高考全真模拟考试理科数学试题)函数2ln x y x=的图象大致是( )A .B .C .D .【答案】C【解析】由题意,函数()2ln x f x x=的定义域为(,1)(1,0)(0,1)(1,)-∞--+∞,关于原点对称,且满足()()22()ln ln x x f x f x x x--===-, 所以函数()f x 为偶函数,其图象关于y 轴对称,排除B 选项;当1x >时,可得()2ln x f x x=,则()()()222ln (2ln 1)ln ln x x x x x f x x x --'==,当x ∈时,()0f x '<,()f x 单调递减;排除A 选项当)x ∈+∞时,()0f x '>,()f x 单调递增,所以排除D 选项,选项C 符合.故选:C.【一隅三反】1.(2021·山东·新泰市第一中学高三阶段练习)若不等式20ax x c -->的解集为1{|1}2x x -<<,则函数2y cx x a =--的图象可以为( )A .B .C .D .【答案】C【解析】由题可得1-和12是方程20ax x c --=的两个根,且0a <, 1112112a ca ⎧-+=⎪⎪∴⎨⎪-⨯=-⎪⎩,解得2,1a c =-=-,则()()22221y cx x a x x x x =--=--+=-+-, 则函数图象开口向下,与x 轴交于()()2,01,0,-.故选:C.2.(2022·全国·高三专题练习)已知函数2y ax bx c =++,如果a b c >>且0a b c ++=,则它的图象可能是( ) A . B . C . D .【答案】A【解析】由题意,函数2y ax bx c =++,因为0a b c ++=,令1x =,可得0y a b c =++=,即函数图象过点(1,0), 又由a b c >>,可得0,0a c ><,所以抛物线的开口向上,可排除D 项, 令0x =,可得0y c =<,可排除B 、C 项;故选:A.3.(2022·全国·高三专题练习)函数43y x =的图象是( )A .B .C .D .【答案】A【解析】函数443()y f x x ===,满足()()f x f x -=,即函数是偶函数,图象关于y 轴对称,D 错误;该函数是幂函数y x α=,413α=>,故该函数是增函数,且增长得越来越快,故A 正确,BC 错误. 故选:A.4.(江西省2022届高三5月高考适应性大练兵联考数学(理)试题)函数()f x 的部分图象大致为( )A .B .C .D .【答案】C【解析】由题得()()f x f x -===,则f (x )为偶函数,排除A ;又()01f =,排除B ;当2,0x π⎛∈⎫ ⎪⎝⎭时()0f x >,当3(,)22x ππ∈时,()1f x =所以()11f x -<<排除D , 故选:C . 5.(安徽省十校联盟2022届高三下学期最后一卷文科数学试题)函数()3e 2x f x x x =-在R 上的图象大致为( )A . B . C . D .【答案】A【解析】由题意得,()()()33e 2e 2x x f x x x x x f x --=---=-+=-, 故函数()f x 为奇函数,图象关于原点对称,排除D ;()2322e 220f =-⨯<,排除B ;()()()30.10.10.10.1e 20.10.1e 0.020f =-⨯=->,排除C , 故选:A.。
高三文科数学高考复习试题(附答案)考试是检测学生学习效果的重要手段和方法,考前需要做好各方面的知识储备。
下面是店铺为大家整理的高三文科数学高考复习试题,请认真复习!高三文科数学高考复习试题一、选择题:每小题只有一项是符合题目要求的,将答案填在题后括号内.1.函数y=log2x-2的定义域是( )A.(3,+∞)B.[3,+∞)C.(4,+∞)D.[4,+∞)2.设集合A={(x,y) | },B={(x,y)|y=2x},则A∩B的子集的个数是( )A.1B.2C.3D.43.已知全集I=R,若函数f(x)=x2-3x+2,集合M={x|f(x)≤0},N={x| <0},则M∩∁IN=( )A.[32,2]B.[32,2)C.(32,2]D.(32,2)4.设f(x)是R上的奇函数,当x>0时,f(x)=2x+x,则当x<0时,f(x)=( )A.-(-12)x-xB.-(12)x+xC.-2x-xD.-2x+x5.下列命题①∀x∈R,x2≥x;②∃x∈R,x2≥x;③4≥3;④“x2≠1”的充要条件是“x≠1或x≠-1”.其中正确命题的个数是( )A.0B.1C.2D.36. 已知下图(1)中的图像对应的函数为,则下图(2)中的图像对应的函数在下列给出的四个式子中,只可能是( )7.在用二分法求方程x3-2x-1=0的一个近似解时,现在已经将一根锁定在区间(1,2)内,则下一步可断定该根所在的区间为( )A.(1.4,2)B.(1,1.4)C.(1,32)D.(32,2)8.点M(a,b)在函数y=1x的图象上,点N与点M关于y轴对称且在直线x-y+3=0上,则函数f(x)=abx2+(a+b)x-1在区间[-2,2)上( )A.既没有最大值也没有最小值B.最小值为-3,无最大值C.最小值为-3,最大值为9D.最小值为-134,无最大值9.已知函数有零点,则的取值范围是( )A. B. C. D.二、填空题:将正确答案填在题后横线上.10.若全集U=R,A={x∈N|1≤x≤10},B={x∈R|x2+x-6=0},则如图中阴影部分表示的集合为_______ _.11.若lga+lgb=0(a≠1),则函数f(x)=ax与g(x)=-bx的图象关于________对称.12.设 ,一元二次方程有正数根的充要条件是 = .13.若函数f(x)在定义域R内可导,f(2+x)=f(2-x),且当x∈(-∞,2)时,(x-2) >0.设a=f(1),,c=f(4),则a,b,c的大小为.14、已知。
第二讲 等差数列及其前n 项和A 组基础巩固一、单选题1.在等差数列{a n }中,a 2=2,a 3=4,则a 10=( D ) A .12 B .14 C .16D .18[解析] 由a 2=2,a 3=4知d =4-23-2=2.所以a 10=a 2+8d =2+8×2=18.故选D.2.(2021·贵州阶段性检测)在等差数列{a n }中,已知a 3+a 5+a 7=15,则该数列前9项和S 9=( D )A .18B .27C .36D .45[解析] 本题考查等差数列的性质,前n 项和公式.在等差数列{a n }中,a 3+a 5+a 7=3a 5=15,a 5=5,所以S 9=a 1+a 92×9=2a 52×9=9a 5=9×5=45.故选D.3.已知等差数列{a n }的前n 项和为S n ,若a 2=4,S 4=22,a n =28,则n =( D ) A .3 B .7 C .9D .10[解析] 因为S 4=a 1+a 2+a 3+a 4=4a 2+2d =22,所以d =22-4a 22=3,a 1=a 2-d =4-3=1,a n =a 1+(n -1)d =1+3(n -1)=3n -2,由3n -2=28,解得n =10.4.(2022·安徽合肥模拟)记等差数列{a n }的公差为d ,前n 项和为S n .若S 10=40,a 6=5,则( C )A .d =3B .a 10=12C .S 20=280D .a 1=-4[解析] 依题意,得S 10=a 1+a 10·102=5(a 5+a 6)=40,解得a 5=3,则d =a 6-a 5=2,则a 10=a 6+4d =5+8=13,a 1=a 5-4d =3-8=-5,S 20=20a 1+190d =-100+380=280,故选C.5.一个等差数列的首项为125,从第10项起开始比1大,则这个等差数列的公差d 的取值范围是( D )A .d >875B .d <325C .875<d <325D .875<d ≤325[解析] 由题意可得⎩⎪⎨⎪⎧a 10>1,a 9≤1,即⎩⎪⎨⎪⎧125+9d >1,125+8d ≤1,解得875<d ≤325.故选D.6.(2021·六校联盟第二次联考)设等差数列{a n }的前n 项和为S n ,若a 4+S 5=2,S 7=14,则a 10=( C )A .18B .16C .14D .12[解析] 设{a n }的公差为d ,由⎩⎪⎨⎪⎧a 1+3d +5a 1+5×42d =2,7a 1+7×62d =14,可得⎩⎪⎨⎪⎧6a 1+13d =2,a 1+3d =2,解得⎩⎪⎨⎪⎧a 1=-4,d =2,所以a 10=-4+9×2=14,选C. 二、多选题7.等差数列{a n }是递增数列,满足a 7=3a 5,前n 项和为S n ,下列选项正确的是( AD ) A .d >0 B .a 1>0C .当n =5时S n 最小D .S n >0时,n 最小值为8[解析] ∵a 7=3a 5,∴a 1+6d =3a 1+12d , ∴a 1=-3d ,由已知得d >0, ∴a 1<0,故A 正确,B 不正确.S n =d 2n 2+(a 1-d 2)n =d 2n 2-72dn =d2(n 2-7n ),当n =3或4时,S n 最小,故C 不正确.S n >0解得n >7或n <0,因此S n >0时n 最小为8,故D 正确,选A 、D.8.已知数列{a n }是公差不为0的等差数列,前n 项和为S n ,满足a 1+5a 3=S 8,下列选项正确的有( AC )A .a 10=0B .S 10最小C .S 7=S 12D .S 20=0[解析] 根据题意,数列{a n }是等差数列,若a 1+5a 3=S 8, 即a 1+5a 1+10d =8a 1+28d ,变形可得a 1=-9d , 又由a n =a 1+(n -1)d =(n -10)d , 则有a 10=0,故A 一定正确;不能确定a 1和d 的符号,不能确定S 10最小,故B 不正确; 又由S n =na 1+n n -1d2=-9nd +n n -1d 2=d2×(n 2-19n ), 则有S 7=S 12,故C 一定正确;则S 20=20a 1+20×192d =-180d +190d =10d ,∵d ≠0,∴S 20≠0,则D 不正确. 三、填空题9.已知数列{a n }中,a 1=1且1a n +1=1a n +13(n ∈N *),则a 10= 14 . [解析] 由已知得1a 10=1a 1+(10-1)×13=1+3=4,故a 10=14. 10.已知等差数列{a n }的前n 项为S n ,若S 4=3,S 5=4,则a 9= 75.[解析] 由题知:⎩⎪⎨⎪⎧S 4=4a 1+6d =3S 5=5a 1+10d =4,解得a 1=35,d =110.∴a 9=a 1+8d =35+8×110=75.11.若等差数列{a n }的前17项和S 17=51,则a 5-a 7+a 9-a 11+a 13= 3 . [解析] 因为S 17=a 1+a 172×17=17a 9=51,所以a 9=3.根据等差数列的性质知a 5+a 13=a 7+a 11,所以a 5-a 7+a 9-a 11+a 13=a 9=3.12.记S n 为正项等差数列{a n }的前n 项和,若a 1=1,a 3·a 4=S 7,则S n = 32n 2-12n .[解析] 设等差数列的公差为d ,由题意得a 3·a 4=S 7=a 1+a 72×7=7a 4,所以a 3=7,所以1+2d =7,∴d =3,所以S n =n +n n -12×3=32n 2-12n .故答案为:32n 2-12n .四、解答题13.(2019·全国卷Ⅰ)记S n 为等差数列{a n }的前n 项和.已知S 9=-a 5. (1)若a 3=4,求{a n }的通项公式;(2)若a 1>0,求使得S n ≥a n 的n 的取值范围.[解析] (1)设{a n }的公差为d .由S 9=-a 5得a 1+4d =0.由a 3=4得a 1+2d =4. 于是a 1=8,d =-2.因此{a n }的通项公式为a n =10-2n .(2)由S 9=-a 5得a 1=-4d ,故a n =(n -5)d ,S n =n n -9d2.由a 1>0知d <0,故S n ≥a n 等价于n 2-11n +10≤0, 解得1≤n ≤10.所以n 的取值范围是{n |1≤n ≤10,n ∈N }.14.已知数列{a n }的各项均为正数,其前n 项和为S n ,且满足2S n =a 2n +n -4(n ∈N *). (1)求证:数列{a n }为等差数列; (2)求数列{a n }的通项公式.[解析] (1)证明:当n =1时,有2a 1=a 21+1-4,即a 21-2a 1-3=0, 所以a 1=3(a 1=-1舍去). 当n ≥2时,有2S n -1=a 2n -1+n -5, 又2S n =a 2n +n -4,所以两式相减得2a n =a 2n -a 2n -1+1,即a 2n -2a n +1=a 2n -1, 即(a n -1)2=a 2n -1,因此a n -1=a n -1或a n -1=-a n -1.若a n -1=-a n -1,则a n +a n -1=1.而a 1=3, 所以a 2=-2,这与数列{a n }的各项均为正数矛盾, 所以a n -1=a n -1,即a n -a n -1=1, 因此数列{a n }为等差数列.(2)由(1)知a 1=3,数列{a n }的公差d =1,所以数列{a n }的通项公式为a n =3+(n -1)×1=n +2.B 组能力提升1.(2021·湖北咸宁联考)等差数列{a n }的前n 项和为S n ,若S 2=3,S 5=10,则{a n }的公差为( C )A .23B .12C .13D .14[解析] 由题意知a 1+a 2=3①,S 5=5a 1+a 52=10,即a 1+a 5=4②,②-①得3d =1,∴d =13,故选C.2.设S n 是等差数列{a n }的前n 项和,若S 674=2,S 1 348=12,则S 2 022=( C ) A .22 B .26 C .30D .34[解析] 由等差数列的性质知,S 674,S 1 348-S 674,S 2 022-S 1 348成等差数列,则2(S 1 348-S 674)=S 674+S 2 022-S 1 348,即2×(12-2)=2+S 2 022-12,解得S 2 022=30.3.(2020·课标Ⅱ)北京天坛的圜丘坛为古代祭天的场所,分上、中、下三层.上层中心有一块圆形石板(称为天心石),环绕天心石砌9块扇面形石板构成第一环,向外每环依次增加9块.下一层的第一环比上一层的最后一环多9块,向外每环依次也增加9块.已知每层环数相同,且下层比中层多729块,则三层共有扇面形石板(不含天心石)( C )A .3 699块B .3 474块C .3 402块D .3 339块[解析] 本题考查等差数列的性质及其前n 项和.设由内到外每环的扇面形石板的块数构成数列{a n },由题意知a 1=9.又因为向外每环依次增加9块,下一层的第一环比上一层的最后一环多9块,向外每环依次也增加9块,所以数列{a n }为公差为9的等差数列.解法一:设每层环数为n (n ∈N *),则上层由内向外每环的扇面形石板的块数依次为a 1,a 2,…,a n ,中层由内向外每环的扇面形石板的块数依次为a n +1,a n +2,…,a 2n ,下层由内向外每环的扇面形石板的块数依次为a 2n +1,a 2n +2,…,a 3n .由题意知(a 2n +1+a 2n +2+…+a 3n )-(a n+1+a n +2+…+a 2n )=729,由等差数列的性质知a 2n +1-a n +1=a 2n +2-a n +2=…=a 3n -a 2n =9n ,所以9n 2=729,得n =9.则数列{a n }共有9×3=27项,故三层共有扇面形石板(不含天心石)的块数即为数列{a n }的前27项和,即27×9+27×262×9=3 402,故选C.解法二:设每层环数为n (n ∈N *),设数列{a n }的前n 项和为S n ,由等差数列的性质知,S n ,S 2n -S n ,S 3n -S 2n 成等差数列,且(S 3n -S 2n )-(S 2n -S n )=9n 2,则9n 2=729,解得n =9.则数列{a n }共有9×3=27项,故三层共有扇面形石板(不含天心石)的块数即为数列{a n }的前27项和,即27×9+27×262×9=3 402,故选C.4.(多选题)(2021·商洛市高考模拟)我国天文学和数学著作《周髀算经》中记载:一年有二十四个节气,每个节气的晷长损益相同(晷是按照日影测定时刻的仪器,晷长即为所测量影子的长度).二十四节气及晷长变化如图所示,相邻两个节气晷长减少或增加的量相同,周而复始,已知每年冬至的晷长为一丈三尺五寸,夏至的晷长为一尺五寸(一丈等于十尺,一尺等于十寸),则下列选项正确的有( ABC )A.相邻两个节气晷长减少或增加的量为一尺B.春分和秋分两个节气的晷长相同C.立冬的晷长为一丈五寸D.立春的晷长比立秋的晷长短[解析] 由题意可知夏至到冬至的晷长构成等差数列{a n},其中a1=15寸,a13=135寸,公差为d寸,则135=15+12d,解得d=10寸,同理可知由冬至到夏至的晷长构成等差数列{b n},首项b1=135,末项b13=15,公差d=-10(单位都为寸).故A正确;∵春分的晷长为b7,∴b7=b1+6d=135-60=75,∵秋分的晷长为a7,∴a7=a1+6d=15+60=75,故B正确;∵立冬的晷长为a10,∴a10=a1+9d=15+90=105,即立冬的晷长为一丈五寸,故C正确;∵立春的晷长,立秋的晷长分别为b4,a4,∴a4=a1+3d=15+30=45,b4=b1+3d=135-30=105,∴b4>a4,故D错误.故选A、B、C.。
2024届高考数学复习:精选历年真题、好题专项(直线与方程)练习一. 基础小题练透篇1.过点P (3 ,-23 )且倾斜角为135°的直线方程为( ) A .3x -y -43 =0 B .x -y -3 =0 C .x +y -3 =0 D .x +y +3 =02.直线l :x +3 y +1=0的倾斜角的大小为( ) A .30° B .60° C .120° D .150°3.[2023ꞏ河北示范性高中开学考]“λ=3”是“直线(2λ-3)x +(λ+1)y +3=0与直线(λ+1)x -λy +3=0互相垂直”的( )A .充分不必要条件B .充要条件C .必要不充分条件D .既不充分也不必要条件 4.[2023ꞏ广东韶关月考]过点M ()-1,-2 ,在两坐标轴上截距相等的直线方程为( ) A .x +y +3=0B .2x -y =0或x +y +3=0C .y =x -1D .x +y +3=0或y =x -15.[2023ꞏ湖北省质量检测]在平面直角坐标系中,某菱形的一组对边所在的直线方程分别为x +2y +1=0和x +2y +3=0,另一组对边所在的直线方程分别为3x -4y +c 1=0和3x -4y +c 2=0,则|c 1-c 2|=( )A .23B .25C .2D .46.[2023ꞏ杭州市长河高级中学期中]已知直线l 过点P ()2,4 ,且在y 轴上的截距是在x 轴上的截距的两倍,则直线l 的方程为( )A .2x -y =0B .2x +y -8=0C .2x -y =0或x +2y -10=0D .2x -y =0或2x +y -8=07.经过两条直线2x +3y +1=0和x -3y +4=0的交点,并且垂直于直线3x +4y -7=0的直线方程为________.8.[2023ꞏ宁夏银川月考]已知直线3x +4y +3=0与直线6x +my -14=0平行,则它们之间的距离是________.二. 能力小题提升篇1.[2023ꞏ江苏泰州调研]已知直线l :x +()a -1 y +2=0,l 2:3 bx +y =0,且l 1⊥l 2,则a 2+b 2的最小值为( )A .14B .12C .22 D .13162.[2023ꞏ河北邢台市月考]下列四个命题中,正确的是( ) A .直线3x +y +2=0在y 轴上的截距为2 B .直线y =0的倾斜角和斜率均存在C .若两直线的斜率k 1,k 2满足k 1=k 2,则两直线互相平行D .若两直线的倾斜角相等,则它们的斜率也一定相等3.[2023ꞏ福建宁德质量检测]已知点A (-2,1)和点B 关于直线l :x +y -1=0对称,斜率为k 的直线m 过点A 交l 于点C .若△ABC 的面积为2,则实数k 的值为( )A .3或13 B .0C .13 D .34.[2023ꞏ云南大理检测]设m ∈R ,过定点A 的动直线x +my =0和过定点B 的动直线mx -y -m +3=0交于点P (x ,y )(点P 与点A ,B 不重合),则△P AB 面积的最大值是( )A .25B .5C .52 D .55.[2023ꞏ重庆黔江检测]在平面直角坐标系中,△ABC 的一个顶点是A (-3,1),∠B ,∠C 的平分线所在直线的方程分别为x =0,y =x ,则直线BC 的方程为________.6.[2023ꞏ云南楚雄期中]已知平面上一点M (5,0),若直线l 上存在点P ,使|PM |=4,则称该直线为点M 的“相关直线”,下列直线中是点M 的“相关直线”的是________.(填序号)①y =x +1;②y =2;③4x -3y =0;④2x -y +1=0.三. 高考小题重现篇1.[2020ꞏ全国卷Ⅱ]若过点(2,1)的圆与两坐标轴都相切,则圆心到直线2x -y -3=0的距离为( )A .55 B .255 C .355 D .4552.[2020ꞏ全国卷Ⅲ]点(0,-1)到直线y =k (x +1)距离的最大值为( ) A .1 B .2 C .3 D .2 3.[北京卷]在平面直角坐标系中,记d 为点P (cos θ,sin θ)到直线x -my -2=0的距离.当θ,m 变化时,d 的最大值为( )A .1B .2C .3D .44.[2019ꞏ江苏卷]在平面直角坐标系xOy 中,P 是曲线y =x +4x (x >0)上的一个动点,则点P 到直线x +y =0的距离的最小值是________.四. 经典大题强化篇1.[2023ꞏ武汉调研]已知直线l 经过直线2x +y -5=0与x -2y =0的交点. (1)若点A (5,0)到l 的距离为3,求l 的方程;(2)求点A (5,0)到l 的距离的最大值.2.在△ABC 中,BC 边上的高所在直线的方程为x -2y +1=0,∠A 的平分线所在直线的方程为y =0,若点B 的坐标为(1,2),求:(1)点A 和点C 的坐标; (2)△ABC 的面积.参考答案一 基础小题练透篇1.答案:D答案解析:因为直线的倾斜角为135°,所以直线的斜率为k =tan 135°=-1, 所以直线方程为y +23 =-(x -3 ),即x +y +3 =0. 2.答案:D答案解析:由l :x +3 y +1=0可得y =-33 x -33 ,所以直线l 的斜率为k =-33 ,设直线l 的倾斜角为α,则tan α=-33,因为0°≤α<180°,所以α=150°. 3.答案:A答案解析:∵直线(2λ-3)x +(λ+1)y +3=0与直线(λ+1)x -λy +3=0互相垂直,∴(2λ-3)(λ+1)-λ(λ+1)=0,∴λ=3或-1, 而“λ=3”是“λ=3或-1”的充分不必要条件,∴“λ=3”是“直线(2λ-3)x +(λ+1)y +3=0与直线(λ+1)x -λy +3=0互相垂直”的充分不必要条件,故选A. 4.答案:B答案解析:当所求直线不过原点时,设所求直线的方程为x +y =a , 因为直线过点M ()-1,-2 ,代入可得a =-3,即x +y +3=0; 当所求直线过原点时,设直线方程为y =kx ,因为直线过点M ()-1,-2 ,代入可得k =2,即2x -y =0, 综上可得,所求直线的方程为2x -y =0或x +y +3=0. 故选B. 5.答案:B答案解析:设直线x +2y +1=0与直线3x -4y +c 2=0的交点为A ,则⎩⎪⎨⎪⎧x +2y +1=03x -4y +c 2=0 ,解得⎩⎪⎨⎪⎧x =-c 2+25y =c 2-310,故A (-c 2+25 ,c 2-310 ),同理设直线x +2y +1=0与直线3x -4y +c 1=0的交点为B ,则B (-c 1+25 ,c 1-310),设直线x +2y +3=0与直线3x -4y +c 1=0的交点为C ,则C (-c 1+65 ,c 1-910),设直线x +2y +3=0与直线3x -4y +c 2=0的交点为D ,则D (-c 2+65 ,c 2-910),由菱形的性质可知BD ⊥AC ,且BD ,AC 的斜率均存在,所以k BD ·k AC =-1,则c 1-310-c 2-910-c 1+25-⎝ ⎛⎭⎪⎫-c 2+65 ·c 2-310-c 1-910-c 2+25-⎝ ⎛⎭⎪⎫-c 1+65 =-1,即36-(c 2-c 1)24[]16-(c 2-c 1)2 =-1,解得|c 1-c 2|=25 .6.答案:D答案解析:若直线l 经过原点,满足条件,可得直线l 的方程为y =2x ,即2x -y =0;若直线l 不经过原点,可设直线l 的方程为x a +y2a=1()a ≠0 ,把点P ()2,4 代入可得2a +42a =1,解得a =4,∴直线l 的方程为x 4 +y8=1,即2x +y -8=0,综上可得直线l 的方程为2x -y =0或2x +y -8=0. 故选D.7.答案:4x -3y +9=0答案解析:方法一 由方程组⎩⎪⎨⎪⎧2x +3y +1=0,x -3y +4=0, 解得⎩⎪⎨⎪⎧x =-53,y =79即交点为(-53 ,79),∵所求直线与直线3x +4y -7=0垂直,∴所求直线的斜率为k =43.由点斜式得所求直线方程为y -79 =43 (x +53),即4x -3y +9=0.方法二 由垂直关系可设所求直线方程为4x -3y +m =0,由方程组⎩⎪⎨⎪⎧2x +3y +1=0,x -3y +4=0, 可解得交点为(-53 ,79 ),代入4x -3y +m =0,得m =9,故所求直线方程为4x -3y +9=0. 方法三 由题意可设所求直线方程为(2x +3y +1)+λ(x -3y +4)=0,即(2+λ)x +(3-3λ)y +1+4λ=0 ① 又∵所求直线与直线3x +4y -7=0垂直,∴3(2+λ)+4(3-3λ)=0,∴λ=2,代入①式得所求直线方程为4x -3y +9=0.8.答案:2答案解析:∵直线3x +4y +3=0与直线6x +my -14=0平行,∴m =8,6x +8y -14=0可化为3x +4y -7=0.∴它们之间的距离为|3-(-7)|32+42=2.二 能力小题提升篇1.答案:A答案解析:l 1⊥l 2,则3 b +a -1=0,∴a =1-3 b , 所以a 2+b 2=()1-3b 2+b 2=4b 2-23 b +1,二次函数的抛物线的对称轴为b =--232×4 =34,当b =34 时,a 2+b 2取最小值14. 故选A. 2.答案:B答案解析:对于直线3x +y +2=0,令x =0得y =-2,所以直线3x +y +2=0在y 轴上的截距为-2,故A 错误;直线y =0的倾斜角为0,斜率为0,存在,故B 正确;若两直线的斜率k 1,k 2满足k 1=k 2,则两直线互相平行或重合,所以C 错误;若两直线的倾斜角为90°,则它们的斜率不存在,所以D 错误.故选B. 3.答案:B答案解析:设点B (x ,y ),则⎩⎪⎨⎪⎧y -1x +2=1,x -22+y +12-1=0,解得⎩⎪⎨⎪⎧x =0,y =3, 则B (0,3).由已知可得直线m 的方程为y -1=k (x +2),与方程x +y -1=0联立, 解得x =-2k k +1,y =3k +1k +1 ,则C ⎝ ⎛⎭⎪⎫-2k k +1,3k +1k +1 . 由已知可得直线AB 的方程为y -1=x +2,即y =x +3,且|AB |=22 , 则点C 到直线AB 的距离d =⎪⎪⎪⎪⎪⎪-2k k +1-3k +1k +1+32 =|2-2k |2|k +1|, 所以S △ABC =12 ×22 ·|2-2k |2|k +1|=2,即|1-k |=|k +1|(k ≠-1),解得k =0. 4.答案:C答案解析:动直线x +my =0,令y =0,解得x =0,因此此直线过定点A (0,0). 动直线mx -y -m +3=0,即m (x -1)+3-y =0,令x -1=0,3-y =0,解得x =1,y =3,因此此直线过定点B (1,3).当m =0时,两条直线分别为x =0,y =3,交点P (0,3),S △PAB =12 ×1×3=32.当m ≠0时,两条直线的斜率分别为-1m ,m ,则-1m·m =-1,因此两条直线相互垂直.设|PA |=a ,|PB |=b ,∵|AB |=12+32 =10 ,∴a 2+b 2=10.又a 2+b 2≥2ab ,∴ab ≤5,当且仅当a =b =5 时等号成立.∴S △PAB =12 |PA |·|PB |=12 ab ≤52.综上,△PAB 的面积最大值是52.5.答案:2x -y -5=0答案解析:因为∠B ,∠C 的平分线所在直线的方程分别为x =0,y =x ,所以直线AB 与直线BC 关于直线x =0对称,直线AC 与直线BC 关于直线y =x 对称.则点A (-3,1)关于直线x =0对称的点A ′(3,1)在直线BC 上,点A (-3,1)关于直线y =x 对称的点A″(1,-3)也在直线BC上,所以由两点式得直线BC的方程为y+31+3=x-13-1,即y=2x-5.6.答案:②③答案解析:①点M到直线y=x+1的距离d=|5-0+1|12+(-1)2=32>4,即点M与该直线上的点的距离的最小值大于4,所以该直线上不存在点P,使|PM|=4成立,故①不是点M 的“相关直线”.②点M到直线y=2的距离d=|0-2|=2<4,即点M与该直线上的点的距离的最小值小于4,所以该直线上存在点P,使|PM|=4成立,故②是点M的“相关直线”.③点M到直线4x-3y=0的距离d=|4×5-3×0|42+(-3)2=4,即点M与该直线上的点的距离的最小值等于4,所以该直线上存在点P,使|PM|=4成立,故③是点M的“相关直线”.④点M到直线2x-y+1=0的距离d=|2×5-0+1|22+(-1)2=1155>4,即点M与该直线上的点的距离的最小值大于4,所以该直线上不存在点P,使|PM|=4成立,故④不是点M的“相关直线”.三 高考小题重现篇1.答案:B答案解析:设圆心为P(x0,y0),半径为r,∵圆与x轴,y轴都相切,∴|x0|=|y0|=r,又圆经过点(2,1),∴x0=y0=r且(2-x0)2+(1-y0)2=r2,∴(r-2)2+(r-1)2=r2,解得r=1或r=5.①r=1时,圆心P(1,1),则圆心到直线2x-y-3=0的距离d=|2-1-3|22+(-1)2=255;②r=5时,圆心P(5,5),则圆心到直线2x-y-3=0的距离d=|10-5-3|22+(-1)2=255.2.答案:B答案解析:方法一 点(0,-1)到直线y=k(x+1)的距离为d=|k·0-(-1)+k|k2+1=|k+1|k2+1,注意到k2+1≥2k,于是2(k2+1)≥k2+2k+1=|k+1|2,当且仅当k=1时取等号.即|k+1|≤k2+1·2,所以d=|k+1|k2+1≤2,故点(0,-1)到直线y=k(x+1)距离的最大值为2.方法二 由题意知,直线l:y=k(x+1)是过点P(-1,0)且斜率存在的直线,点Q(0,-1)到直线l的最大距离在直线l与直线PQ垂直时取得,此时k=1,最大距离为|PQ|=2.3.答案:C答案解析:由题意可得d=|cos θ-m sin θ-2|m2+1=|m sin θ-cos θ+2|m2+1=⎪⎪⎪⎪⎪⎪m2+1(mm2+1sin θ-1m2+1cos θ)+2m2+1=|m2+1sin (θ-φ)+2|m2+1(其中cos φ=mm2+1,sin φ=1m2+1),∵-1≤sin (θ-φ)≤1,∴|2-m 2+1|m 2+1 ≤d ≤m 2+1+2m 2+1 ,m 2+1+2m 2+1 =1+2m 2+1,∴当m =0时,d 取最大值3.4.答案:4答案解析:通解 设P ⎝ ⎛⎭⎪⎫x ,x +4x ,x >0,则点P 到直线x +y =0的距离d =|x +x +4x |2=2x +4x 2 ≥22x ·4x 2=4,当且仅当2x =4x,即x =2 时取等号,故点P 到直线x +y =0的距离的最小值是4.优解 由y =x +4x (x >0)得y ′=1-4x 2 ,令1-4x2 =-1,得x =2 ,则当点P 的坐标为(2 ,32 )时,点P 到直线x +y =0的距离最小,最小值为|2+32|2=4. 四 经典大题强化篇1.答案解析:(1)易知点A 到直线x -2y =0的距离不等于3,可设经过两已知直线交点的直线系方程为(2x +y -5)+λ(x -2y )=0,即(2+λ)x +(1-2λ)y -5=0.由题意得|10+5λ-5|(2+λ)2+(1-2λ)2 =3,即2λ2-5λ+2=0,∴λ=2或12.∴l 的方程为4x -3y -5=0或x =2.(2)由⎩⎪⎨⎪⎧2x +y -5=0,x -2y =0,解得交点为P (2,1),如图,过P 作任一直线l ,设d 为点A到l 的距离,则d ≤|PA |(当l ⊥PA 时等号成立).∴d max =|PA |=10 .2.答案解析:(1)由方程组⎩⎪⎨⎪⎧x -2y +1=0,y =0,解得点A (-1,0).又直线AB 的斜率为k AB =1,且x 轴是∠A 的平分线,故直线AC 的斜率为-1,所以AC 所在的直线方程为y =-(x +1). 已知BC 边上的高所在的直线方程为x -2y +1=0,故直线BC 的斜率为-2,故BC 所在的直线方程为y -2=-2(x -1).解方程组⎩⎪⎨⎪⎧y =-(x +1),y -2=-2(x -1), 得点C 的坐标为(5,-6).(2)因为B (1,2),C (5,-6),所以|BC |=(1-5)2+(2+6)2=45 ,点A(-1,0)到直线BC:y-2=-2(x-1)的距离为d=|2×(-1)-4|5=65,所以△ABC的面积为12×45×65=12.。