第五讲阵列除法器..
- 格式:ppt
- 大小:302.50 KB
- 文档页数:11
摩尔定律:对集成电路上可容纳的晶体管数目、性能和价格等发展趋势的预测,其主要内容是:成集电路上可容纳的晶体管数量每18个月翻一番,性能将提高一倍,而其价格将降低一半。
主存: 计算机中存放正在运行的程序和数据的存储器,为计算机的主要工作存储器,可随机存取。
控制器:计算机的指挥中心,它使计算机各部件自动协调地工作。
时钟周期:时钟周期是时钟频率的倒数,也称为节拍周期或T周期,是处理操作最基本的时间单位。
多核处理器:多核处理器是指在一枚处理器中集成两个或多个完整的计算引擎(内核)。
字长:运算器一次运算处理的二进制位数。
存储容量: 存储器中可存二进制信息的总量。
CPI:指执行每条指令所需要的平均时钟周期数。
MIPS:用每秒钟执行完成的指令数量作为衡量计算机性能的一个指标,该指标以每秒钟完成的百万指令数作为单位。
CPU时间:计算某个任务时CPU实际消耗的时间,也即CPU真正花费在某程序上的时间。
计算机系统的层次结构:计算机系统的层次结构由多级构成,一般分成5级,由低到高分别是:微程序设计级,机器语言级,操作系统级,汇编语言级,高级语言级。
基准测试程序:把应用程序中使用频度最高的那那些核心程序作为评价计算机性能的标准程序。
软/硬件功能的等价性:从逻辑功能的角度来看,硬件和软件在完成某项功能上是相同的,称为软/硬件功能是等价的,如浮点运算既可以由软件实现,也可以由专门的硬件实现。
固件:是一种软件的固化,其目的是为了加快软件的执行速度。
可靠性:可靠性是指系统或产品在规定的条件和规定的时间内,完成规定功能的能力。
产品可靠性定义的要素是三个“规定”:“规定条件”、“规定时间”和“规定功能”。
MTTF:平均无故障时间,指系统自使用以来到第一次出故障的时间间隔的期望值。
MTTR:系统的平均修复时间。
MTBF:平均故障间隔时间,指相邻两次故障之间的平均工作时间。
可用性:指系统在任意时刻可使用的概率,可根据MTTF、MTTR和MTBF等指标计算处系统的可用性。
计算机组成原理第五版习题答案第一章 (1)第二章 (3)第三章 (14)第四章 (19)第五章 (21)第六章 (27)第七章 (31)第八章 (34)第九章 (36)第一章1.模拟计算机的特点是数值由连续量来表示,运算过程也是连续的。
数字计算机的主要特点是按位运算,并且不连续地跳动计算。
模拟计算机用电压表示数据,采用电压组合和测量值的计算方式,盘上连线的控制方式,而数字计算机用数字0 和1 表示数据,采用数字计数的计算方式,程序控制的控制方式。
数字计算机与模拟计算机相比,精度高,数据存储量大,逻辑判断能力强。
2.数字计算机可分为专用计算机和通用计算机,是根据计算机的效率、速度、价格、运行的经济性和适应性来划分的。
3.科学计算、自动控制、测量和测试、信息处理、教育和卫生、家用电器、人工智能。
4.主要设计思想是:采用存储程序的方式,编制好的程序和数据存放在同一存储器中,计算机可以在无人干预的情况下自动完成逐条取出指令和执行指令的任务;在机器内部,指令和数据均以二进制码表示,指令在存储器中按执行顺序存放。
主要组成部分有::运算器、逻辑器、存储器、输入设备和输出设备。
5.存储器所有存储单元的总数称为存储器的存储容量。
每个存储单元都有编号,称为单元地址。
如果某字代表要处理的数据,称为数据字。
如果某字为一条指令,称为指令字。
6.计算机硬件可直接执行的每一个基本的算术运算或逻辑运算操作称为一条指令,而解算某一问题的一串指令序列,称为程序。
7.取指周期中从内存读出的信息流是指令流,而在执行器周期中从内存读出的信息流是数据流。
8.半导体存储器称为内存,存储容量更大的磁盘存储器和光盘存储器称为外存,内存和外存共同用来保存二进制数据。
运算器和控制器合在一起称为中央处理器,简称CPU,它用来控制计算机及进行算术逻辑运算。
适配器是外围设备与主机联系的桥梁,它的作用相当于一个转换器,使主机和外围设备并行协调地工作。
9.计算机的系统软件包括系统程序和应用程序。
沈阳航空工业学院课程设计报告课程设计名称:计算机组成原理课程设计课程设计题目:阵列除法器的设计院(系):计算机学院专业:计算机科学与技术班级:7401101学号:*****************指导教师:***完成日期:2010年1月15日沈阳航空工业学院课程设计报告目录第1章总体设计方案 (1)1.1设计原理 (1)1.2设计思路 (2)1.3设计环境 (3)第2章详细设计方案 (6)2.1顶层方案图的设计与实现 (6)2.1.1创建顶层图形设计文件 (6)2.1.2器件的选择与引脚锁定 (7)2.1.3编译、综合、适配 (8)2.2功能模块的设计与实现 (8)2.3仿真调试 (10)第3章编程下载与硬件测试 (12)3.1编程下载 (12)3.2硬件测试及结果分析 (12)参考文献 (14)附录(电路原理图) (15)第1章总体设计方案1.1 设计原理阵列除法器的功能是利用一个可控加法/减法(CAS)单元所组成的流水阵列来实现的。
它有四个输出端和四个输入端。
当输入线P=0时,CAS作加法运算;当P=1时,CAS作减法运算。
可控加法/减法(CAS)单元的逻辑电路图如图1.1所示。
图1.1可控加法/减法(CAS)单元的逻辑图CAS单元的输入与输出关系可用如下一组逻辑方程来表示:S i=A i ⊕(B i ⊕P) ⨁CC i+1=(A i+C i) ∙(B i ⊕P)+A i C i当P=0时,就得到我们熟悉的一位全加器(FA)的公式:S i=A i ⊕B i ⊕C iC i+1=A i B i+B i C i+A i C i当P=1时,则得求差公式:S i=A i ⨁B i '⨁C iC i+1=A i B i '+B i 'C i+A i C i其中B i '=B i⨁1。
在减法情况下,输入C i称为借位输入,而C i+1称为借位输出。
不恢复余数的除法也称加减交替法。
( 2= ==( 2= = =( 2===第二章1.(1) 35 =−100011)[ 35]原 10100011[ 35]补 11011100 [ 35]反 11011101(2)[127]原=01111111[127]反=01111111[127]补=01111111(3) 127 =−1111111)[ 127]原 11111111[ 127]补 10000001[ 127]反 10000000(4) 1 =−00000001)[ 1]原 10000001[ 1]补 11111111 [ 1]反 111111102.[x]补 = a 0. a 1a 2…a 6解法一、(1) 若 a 0 = 0, 则 x > 0, 也满足 x > -0.5此时 a 1→a 6 可任意(2) 若 a 0 = 1, 则 x <= 0, 要满足 x > -0.5, 需 a 1 = 1 即 a 0 = 1, a 1 = 1, a 2→a 6 有一个不为 0解法二、-0.5 = -0.1(2) = -0.100000 = 1, 100000(1) 若 x >= 0, 则 a0 = 0, a 1→a 6 任意即可;(2) [x]补= x = a 0. a 1a 2…a 6(2) 若 x < 0, 则 x > -0.5只需-x < 0.5, -x > 0[x]补 = -x, [0.5]补 = 01000000 即[-x]补 < 01000000a 0 * a 1 * a 2 a 6 + 1 < 01000000⋅ (1 2 ) 即: 2 2 ⋅ 2(最接近 0 的负数)即: 2 2 ⋅ (2 + 2[ 2 2 ⋅ 2 ⋅ (1 2 ) ] [ 22 1 ⋅ ( 1) , 2 2 ⋅ (2 1 + 2 ) ]a 0 a 1a 2 a 6 > 11000000即 a 0a 1 = 11, a 2→a 6 不全为 0 或至少有一个为 1(但不是“其余取 0”)3.字长 32 位浮点数,阶码 8 位,用移码表示,尾数 23 位,用补码表示,基为 2EsE 1→E 8MsM 21M 0(1) 最大的数的二进制表示E = 11111111Ms = 0, M = 11…1(全 1)1 11111111 01111111111111111111111(2) 最小的二进制数E = 11111111Ms = 1, M = 00…0(全 0) 1 11111111 1000000000000000000000(3) 规格化范围正最大E = 11…1, M = 11…1, Ms = 08 个22 个即: 227 122正最小E = 00…0, M = 100…0, Ms = 08 个7121 个负最大E = 00…0, M = 011…1, Ms = 18 个 21 个负最小7 1E = 11…1, M = 00…0, Ms =18 个22 个22 )即: 22⋅ ( 1) 规格化所表示的范围用集合表示为:71, 227122 7 7 2244.在 IEEE754 标准中,一个规格化的 32 位浮点数 x 的真值表示为:X=( 1)s ×(1.M )× 2 E 127(1)27/64=0.011011=1.1011× 22E= -2+127 = 125= 0111 1101 S= 0M= 1011 0000 0000 0000 0000 000最后表示为:0 01111101 10110000000000000000000 (2)-27/64=-0.011011=1.1011× 22E= -2+127 = 125= 0111 1101 S= 1M= 1011 0000 0000 0000 0000 000最后表示为:1 01111101 10110000000000000000000 5.(1)用变形补码进行计算:[x]补=00 11011 [y]补=00 00011[x]补 = [y]补 = [x+y]补00 11011 + 00 00011 00 11110结果没有溢出,x+y=11110(2) [x]补=00 11011 [y]补=11 01011[x]补 = [y]补 = [x+y]补=00 11011 + 11 01011 00 00110结果没有溢出,x+y=00110(3)[x]补=11 01010 [y]补=11 111111[x]补 = [y]补 = [x+y]补=00 01010 + 00 11111 11 01001结果没有溢出,x+y=−101116.[x-y]补=[x]补+[-y]补 (1)[x]补=00 11011[-y]补=00 11111[x]补 =00 11011 [-y]补 = + 00 11111 [x-y]补= 01 11010结果有正溢出,x−y=11010(2)[x]补=00 10111[-y]补=11 00101[x]补 =00 10111 [-y]补 = + 11 00101 [x-y]补结果没有溢出,x−y=−00100(3)[x]补=00 11011 [-y]补=00 10011[x]补= 00 11011[-y]补= + 00 10011[x-y]补= 01 01110结果有正溢出,x−y=100107.(1)用原码阵列乘法器:[x]原=0 11011 [y]原=1 11111因符号位单独考虑,|x|=11011 |y|=111111 1 0 1 1×) 1 1 1 1 1——————————————————————————1 1 0 1 11 1 0 1 11 1 0 1 11 1 0 1 11 1 0 1 11 1 0 1 0 0 0 1 0 1[x×y]原=1 1101000101用补码阵列乘法器:[x]补=0 11011 [y]补=1 00001乘积符号位为:1|x|=11011 |y|=111111 1 0 1 1×) 1 1 1 1 1——————————————————————————1 1 0 1 11 1 0 1 11 1 0 1 11 1 0 1 11 1 0 1 0 0 0 1 0 1[x×y]补=1 0010111011(2) 用原码阵列乘法器:[x]原=1 11111 [y]原=1 11011因符号位单独考虑,|x|=11111 |y|=110111 1 1 1 1×) 1 1 0 1 1——————————————————————————1 1 1 1 11 1 1 1 10 0 0 0 01 1 1 1 11 1 1 1 11 1 0 1 0 0 0 1 0 1[x×y]原=0 1101000101用补码阵列乘法器:[x]补=1 00001 [y]补=1 00101乘积符号位为:1|x|=11111 |y|=110111 1 1 1 1×) 1 1 0 1 1——————————————————————————1 1 1 1 11 1 1 1 10 0 0 0 01 1 1 1 111111[x×y]补=0 11010001018.(1) [x]原=[x]补=0 11000[-∣y ∣]补=1 00001被除数 X 0 11000 +[-|y|]补 1 00001----------------------------------------------------余数为负 1 11001 →q0=0左移 1 10010 +[|y|]补0 11111----------------------------------------------------余数为正 0 10001 →q1=1左移 1 00010 +[-|y|]补1 00001----------------------------------------------------余数为正 0 00011 →q2=1左移 0 00110 +[-|y|]补1 00001----------------------------------------------------余数为负 1 00111 →q3=0左移 0 01110 +[|y|]补0 11111----------------------------------------------------余数为负 1 01101 →q4=0左移 0 11010 +[|y|]补0 11111----------------------------------------------------余数为负 1 11001 →q5=0+[|y|]补0 11111 ----------------------------------------------------余数 0 11000故 [x÷y]原=1.11000 即 x÷y= −0.11000 余数为 0 11000(2)[∣x ∣]补=0 01011[-∣y ∣]补=1 00111被除数 X 0 01011 +[-|y|]补 1 00111----------------------------------------------------余数为负 1 10010 →q0=0x+y= 1.010010*2 = 2 *-0.101110左移 1 00100 +[|y|]补 0 11001----------------------------------------------------余数为负 1 11101 →q1=0左移 1 11010 +[|y|]补0 11001----------------------------------------------------余数为正 0 10011 →q2=1左移 1 00110 +[-|y|]补1 00111----------------------------------------------------余数为正 0 01101 →q3=1左移 0 11010 +[-|y|]补1 00111----------------------------------------------------余数为正 0 00001 →q4=1左移 0 00010 +[-|y|]补1 00111----------------------------------------------------余数为负 1 01001 →q5=0 +[|y|]补0 11001----------------------------------------------------余数 0 00010x÷y= −0.01110余数为 0 000109.(1) x = 2-011*0.100101, y = 2-010*(-0.011110)[x]浮 = 11101,0.100101 [y]浮 = 11110,-0.011110 Ex-Ey = 11101+00010=11111 [x]浮 = 11110,0.010010(1)x+y 0 0. 0 1 0 0 1 0 (1)+ 1 1. 1 0 0 0 1 01 1. 1 1 0 1 0 0 (1)规格化处理: 1.010010 阶码11100-4 -4x-y0 0. 0 1 0 0 1 0 (1) + 0 0. 0 1 1 1 1 00 0 1 1 0 0 0 0 (1) 规格化处理:0.110000阶码11110x-y=2-2*0.110001(2) x = 2-101*(-0.010110), y = 2-100*0.010110[x]浮= 11011,-0.010110 [y]浮= 11100,0.0101109Ex-Ey = 11011+00100 = 11111 [x]浮= 11100,1.110101(0) x+y 1 1. 1 1 0 1 0 1+ 0 0. 0 1 0 1 1 00 0. 0 0 1 0 1 1规格化处理: 0.101100 x+y= 0.101100*2阶码-611010x-y1 1.1 1 0 1 0 1 + 1 1.1 0 1 0 1 01 1.0 1 1 1 1 1规格化处理: 1.011111 阶码11100x-y=-0.100001*2-410.(1) Ex = 0011, Mx = 0.110100Ey = 0100, My = 0.100100 Ez = Ex+Ey = 0111 Mx*My 0. 1 1 0 1* 0.1 0 0 101101 00000 00000 01101 00000 001110101规格化:26*0.111011(2) Ex = 1110, Mx = 0.011010Ey = 0011, My = 0.111100 Ez = Ex-Ey = 1110+1101 = 1011 [Mx]补 = 00.011010[My]补 = 00.111100, [-My]补 = 11.00010010计算机组成原理第五版习题答案00011010 +[-My]11000100 11011110 10111100+[My]00111100 11111000 111100000.0 +[My]00111100 00101100 010110000.01 +[-My]11000100 00011100 001110000.011 +[-My]11000100 11111100 111110000.0110 +[My]00111100 00110100 011010000.01101 +[-My]1 1 0 00 1 0 0 0 0 1 0 1 10 00.01101 商 = 0.110110*2-6, 11.4 位加法器如上图,C i = A i B i + A i C i 1 + B i C i 1 = A i B i + ( A i + B i )C i 1 = A i B i + ( A i B i )C i 1(1)串行进位方式余数=0.101100*2-6C 1 = G 1+P 1C 0 C 2 = G 2+P 2C 1 C 3 = G 3+P 3C 2 C 4 = G 4+P 4C 3 其中:G 1 = A 1B 1G 2 = A 2B 2G 3 = A 3B 3 G 4 = A 4B 4P1 = A 1⊕B 1(A 1+B 1 也对) P 2 = A 2⊕B 2 P 3 = A 3⊕B 3 P 4 = A 4⊕B 4(2)并行进位方式 C 1 = G 1+P 1C 0C 2 = G 2+P 2G 1+P 2P 1C 0C 3 = G 3+P 3G 2+P 3P 2G 1+P 3P 2P 1C 0C 4 = G 4+P 4G 3+P 4P 3G 2+P 4P 3P 2G 1+P 4P 3P 2P 1C 0“计算机组成原理第五版习题答案12.(1)组成最低四位的74181 进位输出为:C4 = C n+4 = G+PC n = G+PC0,C0为向第0 位进位其中,G = y3+y2x3+y1x2x3+y0x1x2x3,P = x0x1x2x3,所以C5 = y4+x4C4C6 = y5+x5C5 = y5+x5y4+x5x4C4(2)设标准门延迟时间为T,与或非”门延迟时间为1.5T,则进位信号C0,由最低位传送至C6需经一个反相器、两级“与或非”门,故产生C0的最长延迟时间为T+2*1.5T = 4T(3)最长求和时间应从施加操作数到ALU 算起:第一片74181 有3 级“与或非”门(产生控制参数x0, y0, C n+4),第二、三片74181 共 2 级反相器和 2 级“与或非”门(进位链),第四片74181 求和逻辑(1 级与或非门和 1 级半加器,设其延迟时间为3T),故总的加法时间为:t0 = 3*1.5T+2T+2*1.5T+1.5T+3T = 14T13.设余三码编码的两个运算数为X i和Y i,第一次用二进制加法求和运算的和数为S i’,进位为C i+1’,校正后所得的余三码和数为S i,进位为C i+1,则有:X i = X i3X i2X i1X i0Y i = Y i3Y i2Y i1Y i0S i’ = S i3’S i2’S i1’S i0’s i3 s i2 s i1 s i0Ci+1FA FA FA FA十进校正+3VFA s i3'FAs i2'FAs i1'FAs i0'二进加法X i3 Y i3 X i2 Y i2 X i1 Y i1 X i0 Y i0当C i+1’ = 1时,S i = S i’+0011并产生C i+1当C i+1’ = 0时,S i = S i’+1101根据以上分析,可画出余三码编码的十进制加法器单元电路如图所示。
加减交替阵列除法器的设计与仿真实现一、引言随着数字电路的发展,除法器在计算机和通信系统中的应用越来越广泛。
加减交替阵列除法器是一种高效的除法器,具有运算速度快、面积小等优点。
本文将详细介绍加减交替阵列除法器的设计与仿真实现。
二、加减交替阵列除法器原理加减交替阵列除法器是一种基于移位和加减运算的快速除法器。
其主要原理如下:1. 将被除数左移n位,得到一个n+1位的数(其中最高位为0)。
2. 对于每个n+1位的数,采用加减交替的方式进行运算。
3. 在第n步时,判断商是否已经求出。
4. 如果商未求出,则返回第1步。
三、加减交替阵列除法器设计1. 系统框图加减交替阵列除法器由以下模块组成:被除数寄存器、商寄存器、余数寄存器、控制单元、计算单元和状态机。
系统框图如下所示:2. 系统模块设计(1)被除数寄存器被除数寄存器用于存储待处理的被除数。
它由一个n位的寄存器和一个移位器组成,可以将被除数左移n位。
(2)商寄存器商寄存器用于存储计算得到的商。
它由一个n位的寄存器和一个移位器组成,可以将商左移1位。
(3)余数寄存器余数寄存器用于存储计算得到的余数。
它由一个n+1位的寄存器和一个移位器组成,可以将余数左移1位。
(4)控制单元控制单元用于控制整个系统的运行。
它根据状态机的输出信号来控制各个模块之间的数据传输和运算。
(5)计算单元计算单元是加减交替阵列除法器最核心的部分,用于进行加减运算。
它由若干个加法器和减法器组成,每个加法器或减法器都能够进行一次加或减运算。
(6)状态机状态机用于控制控制单元的工作状态,并输出相应的信号。
它有以下三种状态:a. 初始化状态:在这个状态下,被除数、商、余数等变量都被初始化。
b. 运行状态:在这个状态下,加减交替阵列除法器按照原理进行运算。
c. 结束状态:在这个状态下,商已经求出,整个系统停止工作。
四、加减交替阵列除法器仿真实现1. 系统仿真为了验证加减交替阵列除法器的正确性,需要对其进行仿真。