【金版学案】2018-2019学年高中物理必修二(人教版):模块综合检测卷(含详解)
- 格式:doc
- 大小:313.00 KB
- 文档页数:7
综合检测限时:90分钟 总分:100分一、选择题(1~6为单选,7~10为多选。
每小题4分,共40分)1.有一条两岸平直、河水均匀流动、流速恒为v 的大河.小明驾着小船渡河,去程时船头指向始终与河岸垂直,回程时行驶路线与河岸垂直.去程与回程所用时间的比值为k ,船在静水中的速度大小相同,则小船在静水中的速度大小为( )A.kv k 2-1 B.v 1-k 2C.kv 1-k2D.v k 2-12.如图所示,一倾斜的匀质圆盘绕垂直于盘面的固定对称轴以恒定角速度ω转动,盘面上离转轴距离2.5 m 处有一小物体与圆盘始终保持相对静止.物体与盘面间的动摩擦因数为32(设最大静摩擦力等于滑动摩擦力),盘面与水平面的夹角为30°,g 取10 m/s 2.则ω的最大值是( )A. 5 rad/sB. 3 rad/s C .1.0 rad/sD .0.5 rad/s3.假设在质量与地球质量相同、半径为地球半径两倍的某天体上进行运动比赛,那么与地球上的比赛成绩相比,下列说法正确的是( )①跳高运动员的成绩会更好②用弹簧秤称体重时,体重数值会变得更小 ③投掷铁饼的距离会更远④用手投出的篮球,水平方向的分速度会更大 A .①②③ B .②③④ C .①③④D .①②④4.人造卫星环绕地球运转的速率v =gR2r,其中g 为地面处的重力加速度,R 为地球半径,r 为卫星离地球中心的距离.下面说法正确的是( )A .从公式可见,环绕速度与轨道半径的平方根成反比B .从公式可见,把人造卫星发射到越远的地方越容易C .由第一宇宙速度公式v =gR 知卫星轨道半径越大,其运行速度越大D .以上答案都不对 5.一物体从某一高度自由落下,落在直立于地面的轻弹簧上,如图所示,在A 点,物体开始与弹簧接触,到B 点时,物体速度为零,然后被弹回.下列说法中正确的是( )A .物体从A 下降到B 的过程中,动能不断变小 B .物体从B 上升到A 的过程中,动能不断变小C .物体从A 下降到B ,以及从B 上升到A 的过程中,动能都是先增大,后减小D .物体从A 下降到B 的过程中,物体动能和重力势能的总和不变6.如图所示,物体从倾角为α,长为L 的斜面顶端自静止开始下滑,到达斜面底端时与挡板M 发生碰撞.设碰撞时无能量损失,碰撞后又沿斜面上升.如果物体到最后停止时总共滑过的路程为s ,则物体与斜面间的动摩擦因数为( )A.Lsin αs B.Lssin αC.Ltan αsD.Lscos α7.如图所示,一辆玩具小车静止在光滑的水平导轨上,一个小球用细绳悬挂在车上,由图中位置无初速度释放,则小球在下摆过程中,下列说法正确的是( )A.绳的拉力对小车做正功B.绳的拉力对小球做正功C.小球的合力不做功D.绳的拉力对小球做负功8.以下说法中正确的是( )A.在光滑的水平冰面上,汽车可以转弯B.火车转弯速率小于规定的数值时,内轨将会受压力作用C.飞机在空中沿半径为R的水平圆周盘旋时,飞机的两翼一定处于倾斜状态D.汽车转弯时需要的向心力是由司机转动方向盘所提供的答案1.B 去程时船头垂直河岸如图所示,由合运动与分运动具有等时性并设河宽为d ,则去程时间t 1=dv 1;回程时行驶路线垂直河岸,故回程时间t 2=dv 21-v2,由题意有t 1t 2=k ,则k =v 21-v2v 1,得v 1=v 21-k 2=v1-k2,选项B 正确. 2.C当物体转到圆盘的最低点恰好不滑动时,转盘的角速度最大,其受力如图所示(其中O 为对称轴位置) 由沿斜面的合力提供向心力,有 μmgcos30°-mgsin30°=m ω2R 得ω=g4R=1.0 rad/s ,选项C 正确. 3.A 根据万有引力定律可知人在该天体上受到的引力小于地球上的重力,即物体好像变“轻”了,所以①、②、③是正确的,选A.4.A 错选B 的同学将运行速度与发射速度混淆了.实际上,当r 增加时,v 减小,但要把卫星送上更高轨道需要克服地球引力做更多的功,发射应更困难,B 错.错选C 的同学误将第一宇宙速度公式当成了运行速度公式且把g 当常量而将R 当变量,而实际上当R 增加时,g 是减小的,故C 错.公式v =gR 2r 中,g 为地球表面的重力加速度,R 为地球半径,g 和R 均为常量,所以v ∝1r,A 正确.5.C 物体的动能先增大后减小,同理,物体从B 返回到A 的过程,动能先增大后减小,A 、B 错误,C 正确;物体运动过程中,物体和弹簧组成的系统机械能守恒,因弹簧的弹性势能变化,故动能和重力势能的和在变化,D 错误,故选C.6.C 由能量守恒定律知,物体在运动过程中将机械能全部转化为克服摩擦力做功产生的内能.设物体滑过的总路程为s,则mgLsinα=μmgscosα,所以μ=Lsinαscosα=Ltanαs,所以C项正确.7.AD 在小球向下摆动的过程中,小车向右运动,绳对小车做正功,小车的动能增加.小球和小车组成的系统机械能守恒,小车的机械能增加,则小球的机械能一定减少,所以绳对小球拉力做负功.8.BC 在水平面上汽车转弯需要的向心力是摩擦力提供的,所以在光滑的水平冰面上,汽车是无法转弯的.火车转弯处外轨高于内轨,如果按设计速率行驶,内外轨与轮缘均不挤压,如果行驶速率大于设计速率,则外轨与轮缘挤压,产生向内侧的弹力,辅助提供向心力,反之将由内轨挤压内侧车轮的轮缘.飞机转弯时,空气对飞机的升力应偏离竖直方向,使它与重力的合力沿水平方向提供向心力.9.质量为m 的物体始终固定在倾角为θ的斜面上,下列说法正确的是( ) A .若斜面水平向右匀速运动距离x ,斜面对物体不做功 B .若斜面向上匀速运动距离x ,斜面对物体做功mgxC .若斜面水平向左以加速度a 运动距离x ,斜面对物体做功maxD .若斜面向下以加速度a 运动距离x ,斜面对物体做功m(g +a)x 10.如图所示,M 为固定在桌面上的异形木块,abcd 为34圆周的光滑轨道,a 为轨道最高点,de 面水平且与圆心等高.今将质量为m 的小球在d 点的正上方高为h 处由静止释放,使其自由下落到d 处后,又切入圆轨道运动,则下列说法正确的是( )A .在h 一定的条件下,释放后小球的运动情况与小球的质量有关B .只要改变h 的大小,就能使小球在通过a 点之后既可能落回轨道之内,又可能落到de 面上C .无论怎样改变h 的大小,都不可能使小球在通过a 点之后,又落回轨道之内D .要使小球飞出de 面之外(即落在e 的右边)是可能的 二、填空题(每小题5分,共20分)11.以30°角斜向上抛出一物体,t s 后落在离抛出点30 3 m 远的与抛出点在同一水平面上的A 点,不考虑空气的阻力,g 取10 m/s 2,则该物体的初速度为__________m/s ,物体能上升的最大高度为__________m.12.汽车车轮的直径是1.2 m ,行驶速率是43.2 km/h ,在行驶中车轮的角速度是__________rad/s ,其转速是__________r/min.13.如图所示,一块均匀的正方形板的边长为a ,重为G ,可绕通过O 点的水平轴转动,从AO 呈水平位置开始将板释放,摆动一定时间后最后静止,静止时B 点在O 点的正下方,在这个过程中,其损失的机械能为________.14.一士兵乘飞机巡查,用一部自动照相机在空中摄影,他选好快门开启的时间间隔1 s,镜头放大率为1,将一苹果从飞机上自由落下开始到落地的拍摄照片如下图所示.100(1)该地的重力加速度为________ m/s2.(2)飞机离地面的高度________ m.(3)试根据此照片验证机械能守恒定律.______________________________________三、计算题(共40分)15.(8分)某地区遭受水灾,空军某部奉命赶赴灾区空投物资.空投物资离开飞机后在空中沿抛物线降落,如图所示.已知飞机在垂直高度AO=2 000 m的高空进行空投,物资恰好准确落在P处,此时飞机飞行的速度v =10 m/s.求飞机空投时距目的地的距离OP.答案9.ABC 物体受到平衡力作用而处于匀速直线运动状态,与重力相平衡的力是斜面给它的作用力,方向竖直向上.斜面沿水平方向匀速运动时,力与位移垂直,斜面对物体不做功.斜面向上匀速运动时,力与位移同向,W =F·x=mgx.斜面水平向左加速运动时,物体所受的合外力为ma ,恰等于斜面给它的作用力在位移方向的分量,W =F s ·x=max.斜面向下加速时,对物体有mg +F =ma ,W =F·x=m(a -g)·x,故选A 、B 、C.10.CD 只要小球能通过轨道的最高点a ,即有v a ≥gR.小球能否落回轨道之内,取决于小球离开a 点后做平抛运动的水平射程x ,由平抛运动公式x =v a t 及R =12gt 2得;x≥2R ,由此可知,小球在通过a 点之后,不可能落回轨道之内,但可能飞出de 面之外,C 、D 正确.11.10 6 7.5解析:设初速度为v 0.由题意得水平方向v 0cos30°·t=30 3 ①,竖直方向v 0sin30°=gt2 ②.由①②两式联立,解得v 0=10 6 m/s.由上抛过程公式(v 0sin30°)2=2gh ,得(56)2=2×10h.所以h =7.5 m.12.20600π解析:汽车的速度v =43.2 km/h =12 m/s ,所以ω=v R =120.6 rad/s =20 rad/s ,T =2πω=0.1π s .每分钟转的圈数n =60T =600πr/min.13.2-2解析:木板在摆动一段时间后停下来,说明要克服阻力做功,根据动能定理mgh =WF f ,而WF f 为损失的机械能,h 为方木板重心下降的高度,所以h =2-2,WF f =2-2.14.(1)9.8 (2)78.2 (3)见解析解析:(1)由底片和放大率可得连续相等时间内的位移x 1=4.9 m ,x 2=14.6 m ,x 3=24.5 m ,x 4=34.2 m ,由Δx =aT 2=gT 2和逐差法得g =x 4+x 3-x 2-x 14T2=9.8 m/s 2. (2)因飞机离地面的高度是底片上起点和终点间距离的100倍. 所以h =78.2×10-2×100 m=78.2 m.(3)取C 、O 两点研究 ΔE k =12mv 2=12m ⎣⎢⎡⎦⎥⎤102OD -OB 2T2≈430.7m J, |ΔE p |=mg·O C ×102=431.2m J. 在误差允许范围内ΔE k =|ΔE p |,所以在只有重力做功的条件下机械能守恒. 15.200 m解析:解法1:空投物资做平抛运动,轨迹是一条抛物线, 所以有轨迹方程y =g 2v 2x 2.由题意知:y =2 000 m ,g =10 m/s 2,v =10 m/s. 所以OP =x =200 m.解法2:由题意判断,空投物资做平抛运动,所以 ⎩⎪⎨⎪⎧AO =y =12gt 2,①OP =x =vt.②将g =10 m/s 2,y =2 000 m 代入①式得t =20 s ; 将v =10 m/s ,t =20 s 代入②式得OP =200 m.16.(10分)如图所示,位于竖直平面内的光滑轨道,由一段斜的直轨道和与之相切的圆形轨道连接而成,圆形轨道的半径为R.一质量为m 的小物块从斜轨道上某处由静止开始下滑,然后沿圆形轨道运动.要求物块能通过圆形轨道最高点,且在该最高点与轨道间的压力不能超过5mg(g 为重力加速度).求物块初始位置相对于圆形轨道底部的高度h 的取值范围.17.(10分)有一种叫“飞椅”的游乐项目,示意图如图所示.长为L 的钢绳一端系着座椅,另一端固定在半径为r 的水平转盘边缘,转盘可绕穿过其中心的竖直轴转动.当转盘以角速度ω匀速转动时,钢绳与转轴在同一竖直平面内,与竖直方向的夹角为θ.不计钢绳的重力,求转盘转动的角速度ω与夹角θ的关系.答案16.52R≤h≤5R 解析:设物块在圆形轨道最高点的速度为v ,由机械能守恒得mgh =2mgR +12mv 2,①物块在最高点受重力mg 、轨道的压力N.重力与压力的合力提供向心力,有 mg +N =m v2R,②物块能通过最高点的条件是N≥0,③ 由②③式得v≥gR ,④ 由①④式得h≥52R.⑤按题的要求,N≤5mg,由②式得v≤6gR ,⑥由①⑥式得h≤5R,h 的取值范围是52R≤h≤5R. 17.ω= gtan θr +Lsin θ解析:分析座椅的受力情况如图所示,则由牛顿第二定律得:mgtan θ=m ω2(r +Lsin θ),由此得:ω=gtan θr +Lsin θ.18.(12分)电机带动水平传送带以速度v匀速运动,一质量为m的小木块由静止轻放在传送带上,若小木块与传送带之间的动摩擦因数为μ,如图所示,当小木块与传送带相对静止时,求:(1)小木块的位移;(2)传送带转过的路程;(3)小木块获得的动能;(4)摩擦过程产生的内能;(5)电机因传送小物块多输出的能量.答案18.(1)v22μg(2)v2μg(3)12mv2(4)12mv2(5)mv2解析:对小木块,相对滑动时,由μmg=ma得,加速度a=μg,由v=at得,达到相对静止所用时间t=vμg.(1)小木块的位移s1=v2t=v22μg.(2)传送带始终匀速运动,转过的路程s2=vt=v2μg.(3)小木块获得的动能E k=12mv2.(4)摩擦产生的内能Q=μmg(s2-s1)=12mv2.(5)由能的转化与守恒定律知,电机多输出的能量转化为小木块的动能与摩擦产生的内能,所以E总=E k+Q=mv2.。
模块综合检测(二)(时间:90分钟分值:100分)一、单项选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项符合题目要求,选对的得3分,选错或不答的得0分)1.如图所示,该图是一正弦式交流电的电压随时间变化的图象,下列说法中不正确的是()A.它的频率是50 HzB.电压的有效值为311 VC.电压的周期是0.02 sD.电压的瞬时表达式是u=311sin 314t (V)解析:从图象中可以知道电压最大值为311 V,周期是0.02 s,所以有效值为220 V,频率为50 Hz,所以A、C、D对,答案为B.答案:B2.下述仪器或装置没有使用到传感器的有()A.自动报警器B.弹簧测力计C.电视遥控器D.红外线探测仪解析:自动报警器,通过光信号转换成电信号,因此使用传感器,故A不符合题意;弹簧测力计,也是运用受力平衡来测量力的大小,刻度尺是用来测量长度的工具,没有使用传感器,故B符合题意;电视遥控器是将红外线转换成电信号,因此C不符合题意,红外测温仪是通过将温度转换成电信号,从而显示温度的高低,因此D不符合题意;本题选择没有使用的,故选B.答案:B3.一台家用电冰箱的铭牌上标有“220 V100 W”,这表明所用交变电压的()A.峰值是380 V B.峰值是220 VC.有效值是220 V D.有效值是311 V解析:交流电表的示数,保险丝的熔断电流,铭牌上标有“220 V 100 W”,都是有效值,故C正确,ABD错误.答案:C4.如图所示,闭合线圈正上方有一竖直放置的条形磁铁,磁铁的N极朝下但未插入线圈内部.当磁铁向上运动时()A.线圈中感应电流的方向与图中箭头方向相同,磁铁与线圈相互吸引B.线圈中感应电流的方向与图中箭头方向相反,磁铁与线圈相互吸引C.线圈中感应电流的方向与图中箭头方向相同,磁铁与线圈相互排斥D.线圈中感应电流的方向与图中箭头方向相反,磁铁与线圈相互排斥解析:当磁铁向上运动时,穿过线圈的磁通量变小,原磁场方向向下,所以感应磁场方向向下,根据右手螺旋定则,拇指表示感应磁场的方向,四指弯曲的方向表示感应电流的方向,故可判断出产生了如图中箭头方向相反的的感应电流.根据楞次定律“来拒去留”可判断线圈对磁铁的作用是阻碍作用,故磁铁与线圈相互吸引.故选B.答案:B5.如图是一种焊接方法的原理示意图.将圆形待焊接金属工件放在线圈中,然后在线圈中通以某种电流,待焊接工件中会产生感应电流,感应电流在焊缝处产生大量的热量将焊缝两边的金属熔化,待焊工件就焊接在一起.我国生产的自行车轮圈就是用这种办法焊接的.下列说法中正确的是()A.线圈中的电流是很强的恒定电流B.线圈中的电流是交变电流,且频率很高C.待焊工件焊缝处的接触电阻比非焊接部分电阻小D.焊接工件中的感应电流方向与线圈中的电流方向总是相反解析:恒定电流不能在工件中产生感应电流,A错误;线圈中的电流是交变电流,且频率很高,磁通量变化快,产生的感应电动势较大,B正确;待焊工件焊缝处的接触电阻比非焊接部分电阻大,产生的热量多,C错误;若磁通量减少时,焊接工件中的感应电流方向与线圈中的电流方向相同,D错误.答案:B6.在磁感应强度为B、方向如图所示的匀强磁场中,金属杆PQ在宽为L的平行金属导轨上以速度v向右匀速滑动,PQ中产生的感应电动势为E1;若磁感应强度增为3B,其他条件不变,所产生的感应电动势大小变为E2,则E1与E2之比及通过电阻R的感应电流方向为()A.1∶3,a→b B.3∶1,b→aC.3∶1,a→b D.1∶3,b→a解析:PQ中产生的感应电动势为E=BL v,若磁感应强度增为2B,其他条件不变时,E与B成正比,则有E1∶E2=1∶3;由右手定则知通过电阻R的感应电流方向为a→b.答案:A7.电阻R、电容器C与一个线圈连成闭合回路,条形磁铁静止在线圈的正上方,N极朝下,如图所示.现使磁铁开始自由下落,在N 极接近线圈上端过程中,流过R的电流方向和电容器极板的带电情况是()A.从a到b,上极板带正电B.从a到b,下极板带正电C.从b到a,上极板带正电D.从b到a,下极板带正电解析:当磁铁下落时,穿过线圈的磁通量向下增加,在线圈中产生的感应电流的磁场阻碍其增加,则方向向上,由右手定则可知产生的感应电流为从b到a;电容器下极板电势高,故带正电,选项D正确.答案:D8.如图所示,理想变压器的原线圈接入u=11 0002sin 100πt (V)的交变电压,副线圈通过电阻r=6 Ω的导线对“220 V,880 W”的电器R L供电,该电器正常工作.由此可知()A.原、副线圈的匝数比为50∶1B.交变电压的频率为100 HzC.副线圈中电流的有效值为4 AD.变压器的输入功率为880 W解析:由P=UI可得I=P LU L=4 A,选项C正确;根据Ir=24 V得副线圈电压U2=U L+U r=244 V,再由n1n2=U1U2可得n1∶n2=2750∶61≈45∶1,选项A错误;由u=11 0002sin 100 πt (V)及f=ω2π可得f=50 Hz,选项B错误;因导线电阻消耗电能,故变压器输入功率为P=P L+I2r=976 W,选项D错误.答案:C9.如图所示,一个边长为a、电阻为R的等边三角形线框,在外力作用下,以速度v匀速穿过宽均为a的两个匀强磁场区.这两个磁场的磁感应强度大小相等,方向相反.线框的运动方向与底边平行且与磁场边缘垂直,取逆时针方向的电流为正.若从图示位置开始计时,关于线框中产生的感应电流i 与运动时间t 之间的函数图象,正确的是( )解析:线框向前移动a 2的过程中,由法拉第电磁感应定律有:E =Bl v ,而l =v t tan 60°=3v t ,可得E =3B v 2t ,可见E ∝t ,i =E R ,由楞次定律可得电流为逆时针方向,即感应电流正向增大,当向右移动到a 2处时最大,后l 减小,E 减小,i 减小,当向右移动到a 处时最小,方向不变,即感应电流先正向增大,后正向减小;向右移动距离由a 到2a 的过程中电流仍是先增大后减小,因两区域磁场方向相反,磁通量的变化率是前一过程的2倍,则最大值是前一过程的2倍,由楞次定律可得电流为顺时针方向,即感应电流先反向增大,后反向减小;向右移动距离由2a 到3a 的过程中电流变化与方向与第一阶段相同,即感应电流先正向增大,后正向减小.故选A.答案:A10.某种角速度计,其结构如图所示.当整个装置绕轴OO ′转动时,元件A 相对于转轴发生位移并通过滑动变阻器输出电压,电压传感器(传感器内阻无限大)接收相应的电压信号.已知A 的质量为m ,弹簧的劲度系数为k 、自然长度为l ,电源的电动势为E 、内阻不计.滑动变阻器总长也为l ,电阻分布均匀,装置静止时滑片P 在变阻器的最左端B 端,当系统以角速度ω转动时,不计摩擦,则( )A .电路中电流随角速度的增大而增大B .电路中电流随角速度的增大而减小C .弹簧的伸长量为x =m ωl k -mω2D .输出电压U 与ω的函数式为U =Em ω2k -mω2解析:系统在水平面内以角速度ω转动时,无论角速度增大还是减小,BC 的电阻不变,根据闭合电路欧姆定律得知,电路中电流保持不变,与角速度无关,故AB 错误;设系统在水平面内以角速度ω转动时,弹簧伸长的长度为x ,则对元件A ,根据牛顿第二定律得kx =mω2(L +x ),解得x =m ω2l k -mω2,又输出电压U =R BP R BC E =x L E ,联立两式得U =Em ω2k -mω2.故C 错误,D 正确. 答案:D二、多项选择题(本大题共4小题,每小题4分,共16分.在每小题给出的四个选项中,有多个选项符合题目要求,全部选对的得4分,选对但不全的得2分,有选错或不选的得0分)11.如图所示,在水平方向的匀强磁场中,一矩形闭合线圈绕OO ′轴匀速转动,若要使线圈中的电流峰值减半,下列可行的方法是()A.将线圈的转速减半B.将线圈的匝数减半C.将匀强磁场的磁感应强度减半D.将线圈的边长减半解析:由I m=E mR,E m=nBSω,ω=2πn,得I m=nBS·2πnR,故A、C正确;又电阻R与匝数有关,当匝数减半时,电阻R也随之减半,则I m不变,故B错误;当边长减半时,面积S减为原来的1 4,而电阻减为原来的12,故D正确.答案:ACD12.远距离输电线路的示意图如图所示,若发电机的输出电压不变,那么当用户用电的总功率增大时()A.升压变压器的原线圈中的电流保持不变B.降压变压器的输出电压升高C.降压变压器的输出电压降低D.输电线上损失的功率增大解析:由题意知输出的总功率增大时,输入功率也增大,由于发电机的输出电压不变,根据P=UI得升压变压器原线圈电流I1增大,副线圈电流I2也增大,A错误;输电线上的功率损失I22R线增大,D 正确;降压变压器原线圈两端电压U3=U2-U线,因为升压变压器的输入电压U1不变,U2不变,U线=I2R线,所以U3降低,降压变压器的输出电压也降低,B错误,C正确.答案:CD13.如图所示,电路中的变压器为理想变压器,S为单刀双掷开关,R为定值电阻,U1为加在原线圈两端的交变电压,I1、I2分别为原线圈和副线圈中的电流,下列说法正确的是()A.保持U1不变,S由b切换到a,则R上消耗的功率增大B.保持U1不变,S由b切换到a,则I1减小C.保持U1不变,S由b切换到a,则I1增大D.保持U1不变,S由b切换到a,则I2减小解析:理想变压器输入功率等于输出功率,原副线圈电压与匝数成正比.S由b切换到a,副线圈匝数变多,所以副线圈电压变大,电阻不变,副线圈中的电流I2增大,而根据P=I2R知,R上消耗的功率变大,进一步推知原线圈的输入功率变大,根据P=UI可知I1增大,故AC正确,BD错误.答案:AC14.如图所示,是某同学站在压力传感器上,做下蹲、起立的动作时记录的压力随时间变化的图线.由图线可知,该同学的体重约为650 N,在2~8 s时间内()A.该同学做了一次下蹲再起立的动作B.该同学做了两次下蹲再起立的动作C.下蹲过程中人一直处于失重状态D.下蹲过程中人先处于失重状态后处于超重状态解析:当物体对接触面的压力小于物体的真实重力时,物体处于失重状态,此时有向下的加速度;当物体对接触面的压力大于物体的真实重力时,物体处于超重状态,此时有向上的加速度.人下蹲动作分别有失重和超重两个过程,先是加速下降失重,到达一个最大速度后再减速下降超重对应先失重再超重,起立对应先超重再失重,对应图象可知,该同学做了一次下蹲起立的动作,故A正确,B错误;由图可知,下蹲过程既有失重又有超重,且先失重后超重,故C错误,D正确.答案:AD三、非选择题(本题共4小题,共54分.解答题应写出必要的文字说明、方程和重要演算步骤,答案中必须明确写出数值和单位) 15.(12分)如图所示,面积为0.2 m2的100匝线圈A处在磁场中,磁场方向垂直于线圈平面,磁感强度随时间变化的规律是B=(6-0.2t)(T).已知R1=4 Ω,R2=6 Ω,电容C=30 μF,线圈A的电阻不计.求:(1)闭合S后,通过R2的电流强度大小和方向.(2)闭合S一段时间后再断开S,S断开后通过R2的电荷量是多少?解析:(1)由题意B=(6-0.2t) T得磁感应强度的变化率为:ΔBΔt=0.2 T/s.由法拉第电磁感应定律知:A线圈内产生的感应电动势:E=NΔΦΔt=NΔBSΔt=100×0.2×0.2 V=4 V,S闭合后,电路中电流由闭合电路欧姆定律I=E(R1+R2)=4(4+6)A=0.4 A,方向由a→R2→b.(2)S闭合后R2的电压为U2=IR2=2.4 V,电容上充电电荷量为Q=CU2=CIR2=7.2×10-5 C,所以断开S后,电容器开始放电,通过R2的电荷量Q=7.2×10-5 C.答案:(1)0.4 A,电流方向由a→R2→b(2)7.2×10-5 C16.(13分)如图所示,线圈abcd的面积是0.05 m2,共100匝,线圈电阻为1 Ω,外接电阻R=9 Ω,匀强磁场的磁感应强度为B=1πT ,当线圈以角速度ω=4πrad/s的转速匀速转动时,求:(1) 电路中交流电压表的示数;(2) 线圈从图示位置转过90°的过程中通过电阻R 的电荷量.(3) 线圈从图示位置转过360°的过程中,外力做的功是多大? 解析:(1)线圈转动产生的最大感应电动势E m =nBSω,代入数据得: E m =20 V感应电动势有效值E =E m 2=10 2 V ,电路中电流有效值I =E r +R = 2 A ,交流电压表的示数U =IR ,解得: U =9 2 V ≈12.7 V(2) 线圈从图示位置转过90°的过程中,磁通量的变化ΔΦ=BS ,所用时间Δt =14T =π2ω ,感应电动势的平均值E =n ΔΦΔt,回路中感应电流的平均值I =E R +r,通过R 的电荷量q =I Δt ,联立解得: q =12πC ≈0.16 C (3) 线圈从图示位置转过360°的过程中,外力做的功W =Q ,回路中产生电热Q =I 2()R +r t ,转过360°的时间t =2πω,联立解得: W =10 J答案:(1) 9 2 V(或12.7 V) (2) 12πC(或0.16 C) (3)10 J 17.(13分)某发电站的输出功率为104 kW ,输出电压为4 kV ,通过理想变压器升压后向远处供电.已知输电导线的电阻为25.6 Ω,输电线路损失的功率为输出功率的4%,求:(1)输电线上的电流;(2)输电线路上的电压损失;(3)升压变压器的原副线圈匝数比.解析:(1)输电线路损失的功率为P 损=P 1×4%=107×4% W =4.0×105 W对输电线有P 损=I 22R ,解得I 2=1.25×102 A(2)U 线=I 2R =3.2 kV(3)P 1=P 2=U 2I 2=104 kW代入数据得U 2=80 kV升压变压器的原副线圈匝数比n 1n 2=U 1U 2=120答案:(1)1.25×102 A (2)3.2 kV (3)n 1n 2=12018.(16分)如图所示,光滑的定滑轮上绕有轻质柔软细线,线的一端系一质量为3m 的重物,另一端系一质量为m 、电阻为r 的金属杆.在竖直平面内有间距为L 的足够长的平行金属导轨PQ 、EF ,在QF 之间连接有阻值为R 的电阻,其余电阻不计,磁感应强度为B 0的匀强磁场与导轨平面垂直,开始时金属杆置于导轨下端QF 处,将重物由静止释放,当重物下降h 时恰好达到稳定速度而匀速下降.运动过程中金属杆始终与导轨垂直且接触良好(忽略所有摩擦,重力加速度为g ).求:(1)电阻R 中的感应电流方向;(2)重物匀速下降的速度大小v ;(3)重物从释放到下降h 的过程中,电阻R 中产生的焦耳热Q R ;(4)若将重物下降h 时的时刻记作t =0,速度记为v 0,从此时刻起,磁感应强度逐渐减小,若此后金属杆中恰好不产生感应电流,则磁感应强度B 怎样随时间t 变化(写出R 与t 的关系式).解析:(1)电阻R 中的感应电流方向为Q →R →F .(2)对系统由平衡关系得:3mg -mg -F =0,又F =B 0IL =B 20L 2vR +r ,解得:v =2mg (R +r )B 20L 2.(3)设电阻中产生的总焦耳热为Q ,则由能量守恒关系得:减少的重力势能等于增加的动能和焦耳热Q 即:3mgh -mgh =12(3m )v 2+12m v 2+Q ,所以电阻R 中产生的焦耳热Q R 为:Q R =R R +r Q =2mghR R +r -8m 3g 2(R +r )RB 40L 4.(4)金属杆中恰好不产生感应电流,即磁通量不变:hLB 0=(h +h ′)LB ,式中h =v 0t +12at 2,又a =3mg -mg 3m +m =12g .解得:B =B 0h h +v 0t +g 4t 2.答案:(1)Q →R →F (2)2mg (R +r )B 20L 2(3)2mghR R +r -8m 3g 2(R +r )RB 40L 4 (4)B =B 0hh +v 0t +g 4t 2。
模块综合检测(二)(时间:90分钟满分:100分)一、单项选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项符合题目要求)1.下列说法中正确的是()A.已知某物质的摩尔质量和分子质量,可以算出阿伏加德罗常数B.已知某物质的摩尔质量和分子体积,可以算出阿伏加德罗常数C.当两个分子之间的距离增大时,分子引力和斥力的合力一定减小D.当两个分子之间的距离增大时,分子势能一定减小解析:阿伏加德罗常数等于摩尔质量与分子质量的比值,A正确,B错误;两个分子之间的距离增大时,分子引力和斥力都要减小,但在r>r0区域,随着分子间距的增大,分子引力的斥力的合力表现为引力,是先变大到最大再减小,C错误;在r>r0区域,随着分子间距的增大,分子引力和斥力的合力表现为引力,且引力做负功,分子势能增加,D错误.答案:A2.关于内能的正确说法是()A.物体分子热运动的动能的总和就是物体的内能B.对于同一种物体,温度越高,分子平均动能越大C.同种物体,温度高、体积大的内能大D.温度相同,体积大的物体内能一定大解析:内能是物体内所有分子的动能和分子势能的总和,故A错;温度是分子平均动能的标志,温度高,分子平均动能大,B对;物体的内能是与物体的物质的量、温度、体积以及存在状态都有关的量,C、D中的描述都不完整.答案:B3.关于液体,下列说法正确的是()A.液体的性质介于气体和固体之间,更接近固体B.小液滴成球状,说明液体有一定形状和体积C.液面为凸形时表面张力使表面收缩,液面为凹形时表面张力使表面伸张D.硬币能浮在水面上是因为所受浮力大于重力解析:液体性质介于气体和固体之间,更接近于固体,具有不易被压缩,有一定体积,没有一定形状,扩散比固体快等特点,A对、B 错.无论液面为凸面还是凹面,表面张力总是使表面收缩,C错.硬币能浮在水面上是因为受到表面张力的缘故,而不是浮力作用的结果,D错.答案:A4.如图所示,在一个配有活塞的厚壁有机玻璃筒底放置一小团硝化棉,迅速向下压活塞,筒内气体被压缩后可点燃硝化棉.在筒内封闭的气体被活塞压缩的过程中()A.气体对外界做正功,气体内能增加B.外界对气体做正功,气体内能增加C.气体的温度升高,压强不变D.气体的体积减小,压强不变解析:压缩玻璃筒内的空气,气体的压强变大,机械能转化为筒内空气的内能,空气的内能增加,温度升高,当达到棉花的燃点后,棉花会燃烧;故B正确,A、C、D错误.答案:B5.(2015·福建卷)下列有关分子动理论和物质结构的认识,其中正确的是()A.分子间距离减小时分子势能一定减小B.温度越高,物体中分子无规则运动越剧烈C.物体内热运动速率大的分子数占总分子数比例与温度无关D.非晶体的物理性质各向同性而晶体的物理性质都是各向异性解析:当分子间距减小分子势能可能增大,也可能减小,故A错误;温度高平均动能一定大,物体中分子无规则运动越剧烈,故B正确;根据麦克斯韦统计规律可知,物体内热运动速率大的分子数占总分子数比例与温度有关,故C错误;单晶体的物理性质是各向异性,多晶体的物理性质各向同性,故D错误.答案:B6.下列说法中不正确的是()A.给轮胎打气的过程中,轮胎内气体内能不断增大B.洒水车在不断洒水的过程中,轮胎内气体的内能不断增大C.太阳下暴晒的轮胎爆破,轮胎内气体内能减小D.拔火罐过程中,火罐能吸附在身体上,说明火罐内气体内能减小解析:给轮胎打气的过程中,轮胎内气体质量增加,体积几乎不变,压强增加,温度升高,内能增加,选项A正确;洒水车内水逐渐减少,轮胎内气体压强逐渐减小,体积增大,对外做功,气体内能减小,选项B错误;轮胎爆破的过程中,气体膨胀对外做功,内能减小,选项C正确;火罐内气体温度逐渐降低时,内能减小,选项D正确.答案:B7.如图所示,一定质量的理想气体密封在绝热(即与外界不发生热交换)容器中,容器内装有一可以活动的绝热活塞.今对活塞施以一竖直向下的压力F,使活塞缓慢向下移动一段距离后,气体的体积减小.若忽略活塞与容器壁间的摩擦力,则被密封的气体()A.温度升高,压强增大,内能减少B.温度降低,压强增大,内能减少C.温度升高,压强增大,内能增加D.温度降低,压强减小,内能增加解析:向下压缩活塞,对气体做功,气体的内能增加,温度升高,对活塞受力分析可得出气体的压强增大,故C选项正确.答案:C8.带有活塞的气缸内封闭一定量的理想气体.气体开始处于状态a;然后经过过程ab到达状态b或经过过程ac到达状态c,b、c状态温度相同,V-T图如图所示.设气体在状态b和状态c的压强分别为p b和p c,在过程ab和ac中吸收的热量分别为Q ab和Q ac,则()A.p b>p c,Q ab>Q a B.p b>p c,Q ab<Q acC.p b<p c,Q ab>Q ac D.p b<p c,Q ab<Q ac解析:由V=Kp T可知V-T图线的斜率越大,压强p越小,故p b<p c.由热力学第一定律有:Q=ΔE-W,因T b=T c,所以ΔE ab=ΔE ac,而W ab<W ac,故Q ab>Q ac.综上C正确.答案:C9.一定质量的理想气体由状态A变化到状态B,气体的压强随热力学温度变化如图所示,则此过程()A.气体的密度减小B.外界对气体做功C.气体从外界吸收了热量D.气体分子的平均动能增大解析:由图线可知,在从A到B的过程中,气体温度不变,压强变大,由玻意耳定律可知,气体体积变小,V B<V A;气体质量不变,体积变小,由密度公式可知气体密度变大,故A错误;气体体积变小,外界对气体做功,故B正确;气体温度不变,内能不变,ΔU=0,外界对气体做功,W>0,由热力学第一定律ΔU=Q+W可知:Q<0,气体要放出热量,故C错误;气体温度不变,分子平均动能不变,故D错误.答案:B10.用一导热的可自由滑动的轻隔板把一圆柱形容器分隔成A、B 两部分,如图所示.A和B中分别封闭有质量相等的氮气和氧气,均可视为理想气体,则当两部分气体处于热平衡时()A.内能相等B.分子的平均动能相等C.分子的平均速率相等D.分子数相等解析:两种理想气体处于热平衡时,温度相同,所以分子的平均动能相同,但气体种类不同,其分子质量不同,所以分子的平均速率不同,故B正确,C错误;两种气体的质量相同,而摩尔质量不同,所以分子数不同,故D错误;两种气体的分子平均动能相同,但分子个数不同,故内能也不相同,A错误.答案:B二、多项选择题(本大题共4小题,每小题4分,共16分.在每小题给出的四个选项中,有多个选项符合题目要求)11.一般情况下,分子间同时存在分子引力和分子斥力.若在外力作用下两分子间的间距达到不能再靠近为止,且甲分子固定不动,乙分子可自由移动,则去掉外力后,当乙分子运动到相距很远时,速度为v,则在乙分子的运动过程中(乙分子的质量为m)()A.乙分子的动能变化量为12m v2B.分子力对乙分子做的功为12m v2C.分子引力比分子斥力多做了12m v2的功D.分子斥力比分子引力多做了12m v2的功解析:当甲、乙两分子间距离最小时,两者都静止,当乙分子运动到分子力的作用范围之外时,乙分子不再受力,此时速度为v ,故在此过程中乙分子的动能变化量为12m v 2;且在此过程中,分子斥力始终做正功,分子引力始终做负功,即W 合=W 斥+W 引,由动能定理得W 引+W 斥=12m v 2,故此分子斥力比分子引力多做了12m v 2的功. 答案:ABD12.关于空气湿度,下列说法正确的是( )A .当人们感到潮湿时,空气的绝对湿度一定较大B .当人们感到干燥时,空气的相对湿度一定较小C .空气的绝对湿度用空气中所含水蒸气的压强表示D .空气的相对湿度定义为水的饱和蒸汽与相同温度时空气中所含水蒸气的压强之比解析:相对湿度越大,人感觉越潮湿,相对湿度大时,绝对湿度不一定大,故A 错误;相对湿度较小时,使人感觉干燥,故B 正确.用空气中水蒸气的压强表示的温度叫作空气的绝对湿度,用空气中水蒸气的压强与同一温度时水的饱和汽压之比叫作相对湿度,故C 正确,D 错误.答案:BC13.关于永动机和热力学定律的讨论,下列叙述正确的是( )A .第二类永动机违反能量守恒定律B .如果物体从外界吸收了热量,则物体的内能一定增加C .保持气体的质量和体积不变,当温度升高时,每秒撞击单位面积器壁的气体分子数增多D .做功和热传递都可以改变物体的内能,但从能的转化或转移的观点来看这两种改变方式是有区别的解析:第二类永动机违反了热力学第二定律,但不违反能量守恒定律,所以A错误;做功和热传递都可以改变物体的内能,物体从外界吸收了热量,同时也对外做了功,则物体的内能有可能减少,所以B错误;保持气体的质量和体积不变,根据理想气体的状态方程pVT=C知,当温度升高时,气体的压强增大,故每秒撞击单位面积器壁的气体分子数增多,所以C正确;做功和热传递都可以改变物体的内能,但从能的转化或转移的观点来看这两种改变方式是有区别的,D正确.答案:CD14.一定质量的理想气体的状态变化过程表示在如图所示的p-V 图上,气体先由a状态沿双曲线经等温过程变化到b状态,再沿与横轴平行的直线变化到c状态,a、c两点位于与纵轴平行的直线上,以下说法中正确的是()A.由a状态至b状态的过程中,气体放出热量,内能不变B.由b状态至c状态的过程中,气体对外做功,内能增加,平均每个气体分子在单位时间内与器壁碰撞的次数不变C.c状态与a状态相比,c状态分子平均距离较大,分子平均动能较大D.b状态与a状态相比,b状态分子平均距离较小,分子平均动能相等解析:由a到b的过程是等温过程,所以内能不发生变化,气体体积减小,所以外界对气体做功,放出热量,分子平均距离减小,分子平均动能不变,A、D正确;由b到c的过程是等压过程,体积增大,温度升高,内能增加,所以气体对外界做功,应该吸收热量,因为压强不变,且气体分子热运动的平均动能增大,碰撞次数减少,B错误;由c到a的过程是等容过程,压强减小,温度降低,所以分子平均距离不变,分子平均动能减小,C错误.答案:AD三、非选择题(本题共6小题,共54分.把答案填在题中的横线上或按照题目要求作答.解答时应写出必要的文字说明、方程式和重要的演算步骤,只写出最后答案的不能得分.有数值计算的题,答案中必须明确写出数值和单位)15.(6分)为了将空气装入气瓶内,现将一定质量的空气等温压缩,空气可视为理想气体.下列图象能正确表示该过程中空气的压强p和体积V关系的是________.解析:根据理想气体状态方程,空气等温压缩,pV=C,p与1V成正比,所以该过程中空气的压强p和体积V关系的是图(B).答案:图(B)16.(10分)在将空气压缩装入气瓶的过程中,温度保持不变,外界做了24 kJ的功.现潜水员背着该气瓶缓慢地潜入海底,若在此过程中,瓶中空气的质量保持不变,且放出了5 kJ的热量.在上述两个过程中,空气的内能共减小________kJ,空气________(选填“吸收”或“放出”)的总能量为________kJ.解析:将空气压缩装入气瓶的过程中,温度保持不变,气体内能保持不变;外界做了24 kJ的功,空气放出24 kJ能量,气瓶缓慢地潜入海底的过程中,放出了5 kJ的热量,所以在上述两个过程中,空气的内能共减小5 kJ,空气放出的总能量为24 kJ+5 kJ=29 kJ.答案:5放出2917.(8分)已知金刚石密度为3.5×103 kg/m3,体积为4×10-8m3的一小块金刚石中含有多少碳原子?并估算碳原子的直径(取两位有效数字).解析:这一小块金刚石的质量m=ρV=3.5×103×4×10-8 kg=1.4×10-4kg,这一小块金刚石的物质的量n=mM=1.4×10-4kg0.012 kg=76×10-2mol,所含碳分子的个数N=n×6.02×1023=76×10-2×6.02×1023个=7×1021个.一个碳原子的体积为V′=VN=4×10-87×1021m3=47×10-29m3.碳原子的直径d=2r=2 33V′4π=2 33×47×10-294πm≈2.2×10-10m.答案:7.0×1021个 2.2×10-10m18.(10分)如图所示,一定质量的理想气体从状态A变化到状态B,再从状态B变化到状态C.已知状态A的温度为480 K.求:(1)气体在状态C时的温度;(2)试分析从状态A变化到状态B的整个过程中,气体是从外界吸收热量还是放出热量.解析:(1)A、C两状态体积相等,则有p AT A=p CT C.①得T C=p Cp A T A=0.5×4801.5K=160 K.②(2)由理想气体状态方程得p A V AT A=p B V BT B.③解得T B=p B V Bp A V A T A=0.5×3×4801.5×1K=480 K.由此可知A、B两状态温度相同,故A、B两状态内能相等.答案:(1)160 K(2)既不吸热也不放热19.(10分)如图,一粗细均匀的U形管竖直放置,A侧上端封闭,B侧上端与大气相通,下端开口处开关K关闭;A侧空气柱的长度为l=10.0 cm,B侧水银面比A侧的高h=3.0 cm.现将开关K打开,从U 形管中放出部分水银,当两侧水银面的高度差为h1=10.0 cm时将开关K关闭.已知大气压强p0=75.0 cmHg.(1)求放出部分水银后A侧空气柱的长度;(2)此后再向B侧注入水银,使A、B两侧的水银面达到同一高度,求注入的水银在管内的长度.解析:(1)以cmHg为压强单位.设A侧空气柱长度l=10.0 cm时的压强为p;当两侧水银面的高度差为h1=10.0 cm时,A侧空气柱的长度为l1,压强为p1.由玻意耳定律得pl=p1l1①由力学平衡条件得p=p0+h②打开开关K放出水银的过程中,B侧水银面处的压强始终为p 0,而A侧水银面处的压强随空气柱长度的增加逐渐减小,B、A两侧水银面的高度差也随之减小,直至B侧水银面低于A侧水银面h1为止.由力学平衡条件有p1=p0-h1③联立①②③式,并代入题给数据得l1=12.0 cm④(2)当A、B两侧的水银面达到同一高度时,设A侧空气柱的长度为l2,压强为p2.由玻意耳定律得pl=p2l2⑤由力学平衡条件有p2=p0⑥联立②⑤⑥式,并代入题给数据得l2=10.4 cm⑦设注入的水银在管内的长度为Δh,依题意得Δh=2(l1-l2)+h1⑧联立④⑦⑧式,并代入题给数据得Δh=13.2 cm答案:(1)12.0 cm(2)13.2 cm20.(10分)如图所示,两个充有空气的容器A、B,以装有活塞栓的细管相连通,容器A浸在温度为t1=-23 ℃的恒温箱中,而容器B 浸在t2=27 ℃的恒温箱中,彼此由活塞栓隔开.容器A的容积为V1=1 L,气体压强为p1=1 atm;容器B的容积为V2=2 L,气体压强为p2=3 atm,求活塞栓打开后,气体的稳定压强是多少.解析:设活塞栓打开前为初状态,打开后稳定的状态为末状态,活塞栓打开前后两个容器中的气体总质量没有变化,且是同种气体,只不过是两容器中的气体有所迁移流动,故可用分态式求解.将两容器中的气体看成整体,由分态式可得:p1V1 T1+p2V2T2=p1′V1′T1′+p2′V2′T2′.因末状态为两部分气体混合后的平衡态,设压强为p′,则p1′=p2′=p′,代入有关的数据得:p′=2.25 atm.因此,活塞栓打开后,气体的稳定压强为2.25 atm.答案:稳定压强为2.25 atm。
物理·必修2(人教版)章末过关检测卷(二)第六章万有引力与航天(考试时间:90分钟分值:100分)一、单项选择题(本题共8小题,每题4分,共32分.在每小题给出的四个选项中,只有一个选项正确.)1.下列说法中正确的是()A.经典力学能够说明微观粒子的规律性B.经典力学适用于宏观物体的低速运动问题,不适用于高速运动的问题C.相对论与量子力学的出现,表示经典力学已失去意义D.对于宏观物体的高速运动问题,经典力学仍能适用解析:经典力学适用于低速、宏观问题,不能说明微观粒子的规律性,不能用于宏观物体的高速运动问题,A、D错误,B正确.相对论与量子力学的出现,并不否定经典力学,只是说经典力学有其适用范围,C错误.答案:B2.要使两物体间万有引力减小到原来的18,可采取的方法是( )A .使两物体的质量各减少一半,距离保持不变B .使两物体间距离变为原来的2倍,其中一个物体质量减为原来的12C .使其中一个物体质量减为原来的14,距离不变D .使两物体质量及它们之间的距离都减为原来的14解析:由F =G Mmr 2可知两物体的质量各减少一半,距离保持不变,两物体间万有引力减小到原来的14,A 错误;两物体间距离变为原来的2倍,其中一个物体质量减为原来的12,两物体间万有引力减小到原来的18,B 正确;使其中一个物体质量减为原来的14,距离不变,两物体间万有引力减小到原来的14,C 错误;两物体质量及它们之间的距离都减为原来的14,两物体间万有引力保持不变,D 错误.答案:B3.星球上的物体脱离该星球引力所需要的最小速度称为第二宇宙速度.星球的第二宇宙速度v 2与第一宇宙速度v 1的关系是v 2=2v 1.已知某星球的半径为r ,它表面的重力加速度为地球表面重力加速度g 的16.不计其他星球的影响,则该星球的第二宇宙速度为( )A .gr 3B .gr 6C .gr3 D .gr解析:该星球的第一宇宙速度:G Mmr 2=m v 12r ,在该星球表面处万有引力等于重力:G Mm r 2=m g6,由以上两式得v 1=gr6,则第二宇宙速度v 2=2v 1=2×gr 6=gr3,故A 正确. 答案:A4.某人造卫星绕地球做匀速圆周运动,其轨道半径为月球轨道半径的13,则此卫星运行的周期大约是( )A .1天~4天B .4天~8天C .8天~16天D .16天~20天解析:根据G Mmr 2=m 4π2T2r 得,T =2πr 3GM ,即T 卫T 月=r 卫3r 月3=127,又T 月=30天,解得T 卫≈5.8天,B 正确.答案:B5.人造地球卫星与地面的距离为地球半径的1.5倍,卫星正以角速度ω做匀速圆周运动,地面的重力加速度为g ,R 、ω、g 这三个物理量之间的关系是( )A .ω=252g5RB .ω=2g5R C .ω=323g 2R D .ω=255g 2R解析:由G Mmr 2=mrω2得ω=GMr 3,其中r =2.5R ,再根据黄金代换g =GMR 2可得ω=252g5R,故A 正确. 答案:A6.有两个大小一样、由同种材料组成的均匀球体紧靠在一起,它们之间的万有引力为F ,若用上述材料制成两个半径更小的靠在一起的均匀球体,它们间的万有引力将( )A .等于FB .小于FC .大于FD .无法比较解析:均匀球体看成位于球心的质点,则两质点相距d =2r ,其中r 为球体半径,其万有引力F =G m 2(2r )2=G⎝ ⎛⎭⎪⎫ρ·43πr 324r 2=49ρ2G π2r 4,由此知当r 减小时,它们间的万有引力F 减小,B 正确.答案:B7.2011年11月3日,“神舟八号”飞船与“天宫一号”目标飞行器成功实施了首次交会对接.任务完成后“天宫一号”经变轨升到更高的轨道,等待与“神舟九号”交会对接.变轨前和变轨完成后“天宫一号”的运行轨道均可视为圆轨道,对应的轨道半径分别为R 1、R 2,线速度大小分别为v 1、v 2.则v 1:v 2等于( )A .V 1V 2=R 13R 23 B .V 1V 2=R 2R 1C .V 1V 2=R 22R 12D .V 1V 2=R 2R 1解析:“天宫一号”绕地球做匀速圆周运动,向心力由万有引力提供.设地球质量为M ,“天宫一号”质量为m ,则变轨前:G Mm R 12=m v 12R 1,变轨后:G MmR 22=m v 22R 2,联立以上两式解得:v 1v 2=R 2R 1,故选项B 正确.答案:B8.两颗行星绕某恒星做匀速圆周运动,从天文望远镜中观察到它们的运行周期之比是8∶1,两行星的公转速度之比为() A.1∶2 B.2∶1 C.1∶4 D.4∶1解析:由开普勒第三定律得r13r23=T12T22=641,故r1r2=41,两行星的公转速度之比v1v2=r1·2πT1r2·2πT2=r1r2·T2T1=12,A正确.答案:A二、双项选择题(本题共4小题,每题6分,共24分.在每小题给出的四个选项中有两个选项正确,全部选对得6分,漏选得3分,错选或不选得0分.)9.有一宇宙飞船到了某行星上(该行星没有自转运动),以速度v 接近行星表面匀速飞行,测出运动的周期为T,已知引力常量为G,则可得()A.该行星的半径为vT 2πB.该行星的平均密度为3πGT2 C.无法求出该行星的质量D.该行星表面的重力加速度为4π2v2 T2解析:由T=2πRv可得:R=v T2π,A正确;由GMmR2=mv2R可得:M=v3T2πG,C错误;由M=43πR3ρ得:ρ=3πGT2,B正确;由GMmR2=mg得:g=2πvT,D错误.答案:AB10.2012年6月,“神舟九号”与“天宫一号”完美“牵手”,成功实现交会对接.交会对接飞行过程分为远距离导引段、自主控制段、对接段、组合体飞行段和分离撤离段.则下列说法正确的是() A.在远距离导引段,“神舟九号”应在距“天宫一号”目标飞行器前下方某处B.在远距离导引段,“神舟九号”应在距“天宫一号”目标飞行器后下方某处C.在组合体飞行段,“神舟九号”与“天宫一号”绕地球做匀速圆周运动的速度小于7.9 km/sD.分离后,“天宫一号”变轨升高至飞行轨道运行时,其速度比在交会对接轨道时大解析:在远距离导引段,“神舟九号”位于“天宫一号”的后下方的低轨道上飞行,通过适当加速,“神舟九号”向高处跃升,并追上“天宫一号”与之完成对接,A错,B对.“神舟九号”与“天宫一号”组合体在地球上空数百公里的轨道上运动,线速度小于第一宇宙速度7.9 km/s ,C 对.分离后,“天宫一号”上升至较高轨道上运动,线速度变小,D 错.答案:BC11.关于“亚洲一号”地球同步通讯卫星,下述说法正确的是( )A .已知它的质量是1.24 t ,若将它的质量增加为2.84 t ,其同步轨道半径变为原来的2倍B .它的运行速度小于7.9 km /s ,它处于完全失重状态C .它可以绕过北京的正上方,所以我国能利用其进行电视转播D .它的周期是24 h ,其轨道平面与赤道平面重合且距地面高度一定解析:所有同步卫星的质量可能不同,但轨道半径一定相同,A 错.同步卫星在较高轨道上运行,速度小于7.9 km/s ,重力(万有引力)全部提供向心力,处于完全失重状态,B 对.同步卫星轨道处于赤道的正上方,不可能在北京正上方,C 错.同步卫星的周期与地球自转周期相同,由G Mm (R +h )2=m (R +h )4π2T 2知,高度h =3GMT 24π2-R ,即同步卫星的高度一定,D 对.答案:BD12.宇宙中两颗相距很近的恒星常常组成一个双星系统.它们以相互间的万有引力彼此提供向心力,从而使它们绕着某一共同的圆心做匀速圆周运动.若已知它们的运动周期为T ,两星到某一共同圆心的距离分别为R 1和R 2.那么,双星系统中两颗恒星的质量关系是( )A .这两颗恒星的质量必定相等B .这两颗恒星的质量之和为4π2(R 1+R 2)3GT 2C .这两颗恒星的质量之比为m 1∶m 2=R 1∶R 2D .必有一颗恒星的质量为4π2R 1(R 1+R 2)2GT 2解析:对于两星有共同的周期T ,由牛顿第二定律得G m 1m 2(R 1+R 2)2=m 14π2T 2R 1=m 24π2T 2R 2,所以两星的质量之比m 1∶m 2=R 2∶R 1,C 错;由上式可得m 1=4π2R 2(R 1+R 2)2GT 2,m 2=4π2R 1(R 1+R 2)2GT 2,D 正确,A 错误;m 1+m 2= 4π2(R 1+R 2)3GT 2,B 正确.故正确答案为B 、D.答案:BD三、计算题(本大题共4小题,共44分,要有必要的文字说明和解题步骤,有数值计算的要注明单位)13.(8分)“东方一号”人造卫星A 和“华卫二号”人造卫星B ,它们的质量之比为m A ∶m B =1∶2,它们的轨道半径之比为2∶1,则卫星A 与卫星B 的线速度大小之比为多少?解析:由万有引力定律和牛顿第二定律得G Mmr 2=m v 2r ,解得v=GMr ,故v A v B =r Br A=12=12. 答案:1∶214.(10分)某星球的质量约为地球质量的9倍,半径为地球半径的一半,若从地球表面高为h 处平抛一物体,水平射程为60 m ,则在该星球上从同样高度以同样的初速度平抛同一物体,水平射程为多少?解析:平抛运动水平位移x =v 0t ,竖直位移h =12gt 2,解以上两式得x =v 0·2h g ,由重力等于万有引力mg =G Mm R 2得g =GMR2,所以g 星g 地=M 星M 地⎝ ⎛⎭⎪⎫R 地R 星2=9×41=36,x 星x 地=g 地g 地=16,x 星=16x 地=10 m.答案:10 m15.(12分)发射地球同步卫星时,先将卫星发射到距地面高度为h 1的近地圆轨道上,在卫星经过A 点时点火实施变轨进入椭圆轨道,最后在椭圆轨道的远地点B 点再次点火将卫星送入同步轨道,如图所示.已知同步卫星的运动周期为T ,地球的半径为R ,地球表面重力加速度为g ,忽略地球自转的影响.求:(1)卫星在近地点A 的加速度大小;(2)远地点B 距地面的高度.解析:(1)设地球质量为M ,卫星质量为m ,万有引力常量为G ,卫星在A 点的加速度为a ,由牛顿第二定律得:G Mm (R +h 1)2=ma ,物体在地球赤道表面上受到的万有引力等于重力,则G Mm R 2=mg ,解以上两式得a =R 2g (R +h 1)2. (2)设远地点B 距地面高度为h 2,卫星受到的万有引力提供向心力得GMm (R +h 2)2=m 4π2T 2(R +h 2),解得h 2=3gR 2T 24π2-R . 答案:(1)R 2g (R +h 1)2 (2)3gR 2T 24π2-R16.(14分)天文学家将相距较近、仅在彼此的引力作用下运行的两颗恒星称为双星.双星系统在银河系中很普遍.利用双星系统中两颗恒星的运动特征可推算出它们的总质量.已知某双星系统中两颗恒星围绕它们连线上的某一固定点分别做匀速圆周运动,周期均为T ,两颗恒星之间的距离为r ,试推算这个双星系统的总质量.(引力常量为G)解析:设两颗恒星的质量分别为m 1、m 2,做圆周运动的半径分别为r 1、r 2,角速度分别是ω1、ω2.根据题意有ω1=ω2①r 1+r 2=r ②根据万有引力定律和牛顿第二定律,有G m 1m 2r 2=m 1ω12r 1③ G m 1m 2r 2=m 2ω22r 2④ 联立①②③④式解得r 1=m 2r m 1+m 2⑤ 根据角速度与周期的关系知ω1=ω2=2πT⑥ 联立③⑤⑥式解得m 1+m 2=4π2r 3T 2G. 答案:4π2r 3T 2G。
模块综合试卷(一)(时间:90分钟 满分:100分)一、选择题(本题共12小题,共40分.1~8题为单选题,每小题3分,9~12题为多选题,全部选对得4分,有选对但不全的得2分,有选错的得0分)1.(2018·山东德州市高一下期末)比值定义法,就是在定义一个物理量的时候采取比值的形式定义.用比值法定义的物理概念在物理学中占有相当大的比例.下列不属于比值定义法的是( ) A.φ=E p qB.E =F qC.C =Q UD.I =U R答案 D2.点电荷A 和B ,分别带正电和负电,电荷量分别为+4Q 和-Q ,如图1所示,在AB 连线上,电场强度为零的地方在( )图1A.B 左侧B.A 右侧C.A 和B 之间D.A 的右侧及B 的左侧答案 A解析 在B 点左侧有一点,+4Q 的电荷在该点产生的电场向左,-Q 的电荷在该点产生的电场向右,二者场强大小相等,合场强为零,故选A.3.A 、B 是某电场中一条电场线上的两点,一正电荷仅在静电力作用下,沿电场线从A 点运动到B 点,速度-时间图象如图2所示,则( )图2A.E A >E BB.E A <E BC.φA =φBD.φA >φB答案 A解析 根据v -t 图象,速度减小且加速度越来越小,说明正电荷逆着电场线运动,由电势低的点移向电势高的点,且静电力越来越小,即电场变弱,故选项A 正确,B 、C 、D 错误.4.(2018·山东济宁市高一下期末)如图3所示的电路中,U=90V,滑动变阻器R2的最大值为200Ω,R1=100Ω.当滑片P滑至R2的中点时,a、b两端的电压为( )图3A.30VB.45VC.60VD.75V答案 A解析P位于中点时R并=50Ω,干路中电流I=UR22+R并=90100+50A=0.6A,U ab=IR并=0.6×50V=30V,选项A正确.5.(2018·山东菏泽市高一下期末)如图4所示为“探究影响平行板电容器电容的因素”的实验装置,下列说法正确的是( )图4A.保持开关S闭合,将A、B两极板分开些,指针张角增大B.先闭合再断开开关S后,将A、B两极板靠近些,指针张角减小C.先闭合再断开开关S后,减小A、B两极板的正对面积,指针张角减小D.保持开关S闭合,将变阻器滑动触头向右移动,指针张角增大答案 B6.在温控电路中,通过热敏电阻阻值随温度的变化可实现对电路相关物理量的控制作用,如图5所示电路,R1为定值电阻,R2为半导体热敏电阻(温度越高电阻越小),C为电容器,当环境温度降低时( )图5A.电压表的读数减小B.电容器C的带电荷量增大C.电容器C 两板间的电场强度减小D.R 1消耗的功率增大 答案 B解析 当环境温度降低时,R 2的阻值增大,则总电阻增大,总电流减小,则内电压减小,路端电压变大,电压表的读数增大,选项A 错误;R 1两端的电压减小,R 2两端的电压增大,即电容器两端的电压增大,由Q =CU 知,电容器C 的带电荷量增大,选项B 正确;由E =U d,知电容器C 两板间的电场强度增大,选项C 错误;总电流减小,所以R 1消耗的功率减小,选项D 错误.7.如图6所示,从F 处释放一个无初速度的电子(重力不计)向B 板方向运动,下列说法错误的是(设电源电动势为U )( )图6A.电子到达B 板时的动能是UeB.电子从B 板到达C 板动能变化量为零C.电子到达D 板时动能是3UeD.电子在A 板和D 板之间做往复运动 答案 C解析 电子在AB 之间做匀加速运动,且eU =ΔE k ,选项A 正确;电子在BC 之间做匀速运动,选项B 正确;在CD 之间做匀减速运动,到达D 板时,速度减为零,然后电子反向运动,在A 板与D 板之间做往复运动,选项C 错误,选项D 正确.8.在光滑绝缘水平面的P 点正上方O 点固定了一电荷量为+Q 的正点电荷,在水平面上的N 点,由静止释放质量为m 、电荷量为-q 的负检验电荷,该检验电荷经过P 点时速度为v ,图7中θ=60°,规定电场中P 点的电势为零,则在+Q 形成的电场中( )图7A.N 点电势高于P 点电势B.P 点电场强度大小是N 点的2倍C.N 点电势为-mv 22qD.检验电荷在N 点具有的电势能为-12mv 2答案 C解析 根据顺着电场线方向电势降低可知,M 点的电势高于N 点的电势,而M 、P 两点的电势相等,则N 点电势低于P 点电势,故A 错误.P 点电场强度大小是E P =k Qr P 2,N 点电场强度大小是E N =kQ r N2,则E P ∶E N =r N 2,∶r P 2,=(2r P )2∶r P 2=4∶1,故B 错误.根据动能定理得:检验电荷由N 到P 的过程:-q (φN -φP )=12mv 2,由题,P 点的电势为零,即φP =0,解得,N 点的电势φN =-mv 22q ,故C 正确.检验电荷在N 点具有的电势能为E p =-q φN =12mv 2,故D 错误.9.如图8所示,真空中固定两个等量异号点电荷+Q 、-Q ,图中O 是两电荷连线的中点,a 、b 两点与+Q 的距离相等,c 、d 是两电荷连线垂直平分线上的两点,bcd 构成一个等腰三角形.则下列说法正确的是( )图8A.a 、b 两点的电场强度相同B.c 、d 两点的电势相同C.将电子由b 移到c 的过程中电场力做正功D.质子在b 点的电势能比在O 点的电势能大 答案 BD解析 根据等量异种点电荷的电场分布可知:c 、O 、d 三点等电势,故B 正确;a 、b 两点场强大小、方向均不同,故A 错误;由于φb >φc ,电子从b 到c 电场力做负功,故C 错误;φb >φO ,质子从b 到O 电场力做正功,电势能减小,故质子在b 点的电势能较大,故D 正确.10.把一个电荷量为1C 的正电荷从电势为零的O 点移到电场内的M 点,外力克服电场力做功5J ,若把这个电荷从N 点移到O 点,电场力做功则为6J ,那么( ) A.M 点的电势是-5V B.N 点的电势是6VC.M 、N 两点的电势差为+11VD.M 、N 两点的电势差为-1V 答案 BD解析 外力克服电场力做功5J ,即电场力做功-5J ,由公式U =W q ,求出U OM =-51V =-5V ,U OM =φO -φM ,则M 点的电势φM =5V ,同理求出N 点电势φN =6V ,M 、N 两点的电势差U MN =φM -φN =-1V ,故B 、D 正确,A 、C 错误.11.(2018·山东德州市高一下期末)在如图9所示的电路中,E 为电源,其内阻为r ,R 1为定值电阻(R 1>r ),R 2为电阻箱,R 3为光敏电阻,其阻值大小随所受照射光强度的增大而减小,V 为理想电压表,A 为理想电流表,闭合开关后,下列说法正确的是( )图9A.用光照射R 3,电流表示数变大B.用光照射R 3,电压表示数变小C.将变阻箱R 2阻值变大,电流表示数变大D.将变阻箱R 2阻值变大,电压表示数变小 答案 ACD12.如图10所示,直线①表示某电源的路端电压与电流的关系图象,曲线②表示该电源的输出功率与电流的关系图象,则下列说法正确的是( )图10A.电源电动势约为50VB.电源的内阻约为253ΩC.电流为2.5A 时,外电路的电阻约为15ΩD.输出功率为120W 时,输出电压约为30V 答案 ACD解析 根据闭合电路欧姆定律,电源的输出电压U =E -Ir ,对照U -I 图象,当I =0时,E =U =50V ,故A 正确;U -I 图象斜率的绝对值表示内阻,故r =⎪⎪⎪⎪⎪⎪ΔU ΔI =50-206Ω=5Ω,故B 不正确;电流为2.5A 时,外电阻R =E I-r =15Ω,故C 正确;输出功率为120W 时,对照P -I 图象,电流约为4A ,再对照U -I 图象,输出电压约为30V ,故D 正确.二、实验题(本题3小题,共18分)13.(4分)(2018·山东滨州市高一下期末)如图11所示为多用电表示意图,其中A 、B 、C 为三个可调节的部件.该同学在实验室中用它测量一阻值约3k Ω的电阻.他测量的操作步骤如下:图11(1)调节可调部件A ,使电表指针指向(选填“电阻”或“电流”)为零的位置,此过程为机械调零.(2)调节可调部件B ,使它的尖端指向倍率的欧姆挡.(3)将红、黑表笔分别插入正、负插孔中,两表笔短接,调节可动部件C ,使电表指针指向欧姆零刻度位置,此过程为欧姆调零.(4)若电表读数如图所示,则该待测电阻的阻值是. 答案 (1)电流 (2)×100 (4)2700Ω或2.7k Ω 14.(6分)某同学测定一个圆柱体的电阻. (1)按如图12连接电路后,实验操作如下:a.将滑动变阻器R 1的阻值置于最(填“大”或“小”);将S 2拨向接点1,闭合S 1,调节R 1,使电流表示数为I 0;b.将电阻箱R 2的阻值调至最(填“大”或“小”),S 2拨向接点2;保持R 1不变,调节R 2,使电流表示数仍为I 0,此时R 2阻值为1280Ω; (2)由此可知,圆柱体的电阻为Ω.图12答案(1)a.大 b.大(2)128015.(8分)某同学用如图13所示的电路测量欧姆表的内阻和电源电动势(把欧姆表看成一个电源,且已选定倍率并进行了欧姆调零).实验器材的规格如下:电流表A1(量程200μA,内阻R1=300Ω);电流表A2(量程30mA,内阻R2=5Ω);定值电阻R0=9700Ω;滑动变阻器R(阻值范围0~500Ω).闭合开关S,移动滑动变阻器的滑动触头至某一位置,读出电流表A1和A2的示数分别为I1和I2.多次改变滑动触头的位置,得到的数据见下表:图13(1)依据表中数据,作出I1-I2图线如图14所示;据图可得,欧姆表内电源的电动势为E=V,欧姆表内阻为r=Ω.(结果保留3位有效数字)图14(2)若某次电流表A1的示数是114μA,则此时欧姆表的示数约为Ω.(结果保留3位有效数字) 答案(1)1.50(1.48~1.52) 15.2(15.0~15.4)(2)48.1(47.5~48.5)解析 (1)根据闭合电路欧姆定律有:E =I 1(R 1+R 0)+(I 1+I 2)r所以I 1=-r R 1+R 0+r I 2+ER 1+R 0+r由题图可知斜率k =ΔI 1ΔI 2=-1.52×10-3,截距b =1.5×10-4A 即r R 1+R 0+r=1.52×10-3,E R 1+R 0+r=1.5×10-4A解得E ≈1.50V,r ≈15.2Ω.(2)由题图可知当I 1=114μA 时,I 2=23.7mA 所以R 外=I 1(R 0+R 1)I 2≈48.1Ω, 则此时欧姆表示数约为48.1Ω. 三、计算题(本题4小题,共42分)16.(8分)如图15所示,电源的电动势是6V ,内阻是0.5Ω,小电动机M 的线圈电阻为0.5Ω,限流电阻R 0为3Ω,若理想电压表的示数为3V ,试求:图15(1)电源的功率和电源的输出功率;(2)电动机消耗的功率和电动机输出的机械功率. 答案 (1)6W 5.5W (2)2.5W 2W 解析 (1)电路中电流I =IR 0=UR 0R 0=1 A ; 电源的功率P E =IE =6 W ;内电路消耗的功率P r =I 2r =0.5 W ; 电源的输出功率P 出=P E -P r =5.5 W. (2)电动机分压U M =E -Ir -UR 0=2.5 V ; 电动机消耗的功率P M =IU M =2.5 W ; 热功率P 热=I 2r M =0.5 W ;电动机输出的机械功率P 机=P M -P 热=2 W.17.(10分)(2018·山师附中高一下期末)如图16所示的电路中,两平行金属板A 、B 水平放置,两板间距离d =40cm ,电源电动势E =10V ,内电阻r =1Ω,定值电阻R =8Ω.闭合开关S ,待电路稳定后,将一带负电的小球从B 板小孔以初速度v 0=3m/s 竖直向上射入板间.已知小球带电荷量q =1×10-2C ,质量m =2×10-2kg ,不考虑空气阻力.(g 取10 m/s 2)图16(1)要使小球在A 、B 板间向上匀速运动,则滑动变阻器接入电路的阻值为多大?(2)若小球带正电,只改变滑动变阻器滑片位置,其他量不变,那么,A 、B 板间电压为多大时,小球恰能到达A 板?此时电源输出功率是多大? 答案 (1)36Ω (2)1V 9W 解析 (1)由平衡条件得mg =qU ABd解得:U AB =8VU 滑=U AB =8V I =E -U 滑R +r =29A滑动变阻器电阻:R 滑=U 滑I=36Ω. (2)由动能定理:-mgd -qU AB ′=0-12mv 02得U AB ′=1VI ′=E -U AB ′R +r=1A电源输出功率:P =EI ′-I 2′r =9W.18.(12分)(2018·山东淄博市高一下期末)如图17所示,一根光滑绝缘细杆与水平面成α=30°角倾斜固定.细杆的一部分处在场强方向水平向右的匀强电场中,场强E =2×104N/C.在细杆上套有一个带电荷量为q =-3×10-5C 、质量为m =3×10-2kg 的小球.现使小球从细杆的顶端A 由静止开始沿杆滑下,并从B 点进入电场,小球在电场中滑至最远处的C 点.已知AB 间距离x 1=0.4m ,g =10m/s 2.求:图17(1)小球在B 点的速度v B 的大小; (2)小球进入电场后滑行的最大距离x 2;(3)试画出小球从A 点运动到C 点过程的v -t 图象. 答案 (1)2m/s (2)0.4m (3)见解析解析 (1)小球在AB 段滑动过程中做匀加速运动.由机械能守恒得mgx 1sin α=12mv B 2,可得v B =2m/s.(2)小球进入匀强电场后,在电场力和重力的作用下做匀减速运动,由牛顿第二定律qE cos α-mg sin α=ma 2,得a 2=5m/s 2,小球进入电场后还能滑行到最远处C 点,v B 2=2a 2x 2,得:x 2=0.4m.(3)小球从A 到B 和从B 到C 的两段位移的平均速度分别为v AB =0+v B 2,v BC =v B +02,则小球从A 到C 的平均速度为v B2x 1+x 2=v B2t ,可得t =0.8s ,v -t 图象如图所示,19.(12分)(2018·山东济南市高一下期末)如图18甲所示,在真空中足够大的绝缘水平地面上,一个质量为m =0.2kg 、带电荷量为q =+2.0×10-6C 的小物块处于静止状态,小物块与地面间的动摩擦因数μ=0.1.从t =0时刻开始,空间加上一个如图乙所示的场强大小和方向呈周期性变化的电场(取水平向右为正方向,g 取10m/s 2),求:图18(1)0~2s 与2~4s 内的加速度大小; (2)9s 末小物块的速度大小; (3)9s 内小物块的位移大小.答案 (1)2m/s 22 m/s 2(2)2m/s (3)17m 解析 (1)设0~2s 内小物块的加速度为a 1由牛顿第二定律得E 1q -μmg =ma 1即a 1=E 1q -μmg m=2m/s 2 2~4s 内小物块的加速度为a 2,由牛顿第二定律得 E 2q -μmg =ma 2即a 2=E 2q -μmg m=-2m/s 2 (2)2s 末的速度为v 2=a 1t 1=4m/s4s 末的速度为v 4=0小物块做周期为4s 的加速和减速运动,第9s 末的速度为v 9=2m/s(3)0~2s 内物块的位移x 1=12a 1t 12=4m 2~4s 内位移x 2=x 1=4m9s 内小物块的位移大小,可以看做是上述2个周期加上 x ′=12a 1t ′2=1m所求位移为x =2(x 1+x 2)+x ′解得x =17m.。
【2019统编版】人教版高中物理必修第二册第五章《抛体运动》全章节备课教案教学设计+课后练习及答案5.1《曲线运动》教学设计教学目标:知识与技能1通过观察,了解曲线运动,知道曲线运动的方向:2掌握物体做曲线运动的条件,明确曲线运动是一种变速运动:3知道速度方向、合力方向及轨迹弯曲情况之间的关系;过程与方法1.体验曲线运动与直线运动的区别2体验曲线运动是变速运动及它的速度方向的变化。
情感态度与价值观1.能领略曲线运动的奇妙与和谐,发展对科学的好奇心与求知欲:2.通过探究的过程,让学生体会得出结论的科学方法-归纳法:3.理解物体做曲线运动的条件,能运用牛顿运动定律分析曲线运动的条件,掌握速度和合外力方向与曲线弯曲情况之间的关系,形成曲线运动的物理观念教学重难点:教学重点:1.什么是曲线运动?物体做曲线运动的方向的确定。
2.物体做曲线运动的条件。
教学难点:1.理解曲线运动的变速运动;2.用牛顿第二定律分析物体做曲线运动的条件,能运用曲线运动相关知识解决实际问题。
课前准备:实验用具;PPT课件教学过程:一、自学导入1.曲线运动的速度方向(1)□01曲线的运动称为曲线运动。
(2)做曲线运动的物体,速度的方向在□02不断变化。
(3)如图所示,过曲线上的A、B两点作直线,这条直线叫作曲线的割线。
设想B点逐渐沿曲线向A点移动,这条割线的位置也就不断变化。
当B点非常非常接近A点时,这条割线就叫作曲线在A点的□03切线。
(4)做曲线运动时,质点在某一点的速度方向,沿曲线在这一点的□04切线方向。
(5)曲线运动是变速运动①速度是矢量,它既有大小,又有□05方向。
不论速度的大小是否改变,只要速度的□06方向发生改变,就表示速度发生了变化,也就具有了□07加速度。
②在曲线运动中,速度的方向是变化的,所以曲线运动是□08变速运动。
2.物体做曲线运动的条件(1)动力学角度:当物体所受合力的方向与它的速度方向□09不在同一直线上时,物体做曲线运动。
模块综合测评(用时:60分钟 满分:100分)(教师用书独具)一、选择题(本题共8小题,每小题6分.在每小题给出的四个选项中,第1~5题只有一项符合题目要求,第6~8题有多项符合题目要求.全部选对的得6分,选对但不全的得3分,有选错的得0分)1.下列关于曲线运动的说法中正确的是 ( )A .所有曲线运动一定是变速运动B .物体在一恒力作用下不可能做曲线运动C .做曲线运动的物体,速度方向时刻变化,故曲线运动不可能是匀变速运动D .物体只有受到方向时刻变化的力作用时才可能做曲线运动【解析】 做曲线运动的物体,速度方向沿曲线的切线方向,时刻变化,曲线运动一定是变速运动,A 对.做曲线运动的条件是合力方向与速度方向不在同一条直线上,如果合力是恒力,物体做匀变速曲线运动,B 、C 、D 均错.【答案】 A2.甲沿着半径为R 的圆周跑道匀速跑步,乙沿着半径为2R 的圆周跑道匀速跑步,在相同的时间内,甲、乙各自跑了一圈,他们的角速度和线速度的大小分别为ω1、ω2和v 1、v 2,则( )A .ω1>ω2,v 1>v 2B .ω1<ω2,v 1<v 2C .ω1=ω2,v 1<v 2D .ω1=ω2,v 1=v 2【解析】 由于甲、乙在相同时间内各自跑了一圈,v 1=2πR t ,v 2=4πR t ,v 1<v 2,由v =rω,得ω=v r ,ω1=v 1R =2πt ,ω2=2πt ,ω1=ω2,故C 正确.【答案】 C3.如图1所示,运动员跳伞将经历加速下降和减速下降两个过程,将人和伞看成一个系统,在这两个过程中,下列说法正确的是( )图1A.阻力对系统始终做负功B.系统受到的合外力始终向下C.加速下降时,重力做功大于系统重力势能的减小量D.任意相等的时间内重力做的功相等【解析】下降过程中,阻力始终与运动方向相反,做负功,A对;加速下降时合力向下,减速下降时合力向上,B错;下降时重力做功等于重力势能减少量,C错;由于任意相等的时间内下落的位移不等,所以,任意相等时间内重力做的功不等,D错.【答案】 A4.如图2所示,球网高出桌面H,网到桌边的距离为L.某人在乒乓球训练中,从左侧L/2处,将球沿垂直于网的方向水平击出,球恰好通过网的上沿落到右侧桌边缘.设乒乓球运动为平抛运动.则()【导学号:45732174】图2A.击球点的高度与网高度之比为2∶1B.乒乓球在网左、右两侧运动时间之比为2∶1C.乒乓球过网时与落到桌边缘时速率之比为1∶2D.乒乓球在左、右两侧运动速度变化量之比为1∶2【解析】根据平抛运动规律,乒乓球在左、右两侧运动时间之比为1∶2,由Δv=gΔt可得,乒乓球在左、右两侧运动速度变化量之比为1∶2,选项D正确,B错误.由y=12gt2可得击球点的高度与网高度之比为9∶8,乒乓球过网时与落到桌边缘时竖直方向速度之比为1∶3,选项A、C错误.【答案】 D5.雨天在野外骑车时,自行车的后轮胎上常会黏附一些泥巴,行驶时感觉很“沉重”.如果将自行车后轮撑起,使后轮离开地面而悬空,然后用手匀速摇脚踏板,使后轮飞速转动,泥巴就会被甩下来.如图3所示,图中a、b、c、d 为后轮轮胎边缘上的四个特殊位置,则()图3A.泥巴在图中的a、c位置的向心加速度大于b、d位置的向心加速度B.泥巴在图中的b、d位置时最容易被甩下来C.泥巴在图中的c位置时最容易被甩下来D.泥巴在图中的a位置时最容易被甩下来【解析】当后轮匀速转动时,由a=Rω2知a、b、c、d四个位置的向心加速度大小相等,A错误.在角速度ω相同的情况下,泥巴在a点有F a+mg=mω2R,在b、d两点有F b、d=mω2R,在c点有F c-mg=mω2R.所以泥巴不脱离轮胎在c 位置所需要的相互作用力最大,泥巴最容易被甩下来.故B、D错误,C正确.【答案】 C6.人造地球卫星可在高度不同的轨道上运转,已知地球质量为M、半径为R、表面重力加速度为g,万有引力常量为G,则下述关于人造地球卫星的判断正确的是()【导学号:45732175】A.各国发射的所有人造地球卫星的运行速度都不超过GM RB.各国发射的所有人造地球卫星的运行周期都应小于2πR gC.若卫星轨道为圆形,则该圆形的圆心必定与地心重合D.地球同步卫星可相对地面静止在广州的正上空【解析】由GMmr2=mv2r,得v=GMr,当r=R时,卫星的运行速度最大,v max =GM R ,选项A 正确;此时对应的周期最小,T min =2πR v max,且GM =gR 2,解得T min =2πRg ,选项B 错误;由万有引力完全用来充当向心力可知,选项C 正确;同步卫星只能定位于赤道上空固定的高度,选项D 错误.【答案】 AC7.如图4所示,小滑块从一个固定的光滑斜槽轨道顶端无初速开始下滑,用v 、t 和h 分别表示小球沿轨道下滑的速率、时间和距轨道顶端的高度.如图所示的v -t 图象和v 2-h 图象中可能正确的是( )图4【解析】 小滑块下滑过程中,小滑块的重力沿斜轨道切向的分力逐渐变小,故小滑块的加速度逐渐变小,故A 错误,B 正确;由机械能守恒得:mgh =12m v 2,故v 2=2gh ,所以v 2与h 成正比,C 错误,D 正确.【答案】 BD8.如图5所示,重10 N 的滑块在倾角为30°的斜面上,从a 点由静止下滑,到b 点接触到一个轻弹簧.滑块压缩弹簧到c 点开始弹回,返回b 点离开弹簧,最后又回到a 点,已知ab =0.8 m ,bc =0.4 m ,那么在整个过程中下列说法正确的( )【导学号:45732176】图5A .滑块动能的最大值是6 JB .弹簧弹性势能的最大值是6 JC.从c到b弹簧的弹力对滑块做的功是6 JD.滑块和弹簧组成的系统整个过程机械能守恒【解析】滑块能回到原出发点,所以机械能守恒,D正确;以c点为参考点,则a点的机械能为6 J,c点时的速度为0,重力势能也为0,所以弹性势能的最大值为6 J,从c到b弹簧的弹力对滑块做的功等于弹性势能的减少量,故为6 J,所以B、C正确;由a→c时,因重力势能不能全部转变为动能,故A错.【答案】BCD二、实验题(共2小题,共18分)9.(8分)某实验小组利用如图6甲所示的实验装置来验证机械能守恒定律.重锤的质量为m,已知当地的重力加速度g=9.80 m/s2.实验小组选出一条纸带如图乙所示,其中O点为打点计时器打下的第一个点,A、B、C为三个计数点,在计数点A和B、B和C之间还各有一个点,测得h1=12.01 cm,h2=19.15 cm,h3=27.86 cm.打点计时器通以50 Hz的交流电.根据以上数据算出:当打点计时器打到B点时重锤的重力势能比开始下落时减少了________J,此时重锤的动能比开始下落时增加了________J.根据计算结果可以知道该实验小组在做实验时出现的问题是________.(重锤质量m已知)图6【解析】打点计时器打B点时重锤减小的重力势能为ΔE p=mgh2=1.88mJ.因为重锤做的是匀加速直线运动,所以v B=h3-h14T=1.98 m/s,打B点时重锤增加的动能为:ΔE k=12m v2B=1.96m J.由于ΔE k>ΔE p,所以可能是先释放纸带后接通电源开关.【答案】 1.88m 1.96m该实验小组做实验时先释放了纸带,然后再合上打点计时器的开关或者释放纸带时手抖动了(其他答案只要合理均可) 10.(10分)在“探究功与速度变化的关系”的实验中,某实验研究小组的实验装置如图7甲所示.木块从A点静止释放后,在一根弹簧作用下弹出,沿足够长的木板运动到B1点停下,记录此过程中弹簧对木块做的功为W1.O点为弹簧原长时所处的位置,测得OB1的距离为L1.再用完全相同的2根、3根…弹簧并在一起进行第2次、第3次…实验并记录2W1,3W1…及相应的L2、L3…数据,用W-L图象处理数据,回答下列问题:图7(1)如图乙是根据实验数据描绘的W-L图象,图线不过原点的原因是________;(2)由图线得木块从A到O过程中摩擦力做的功是________W1;(3)W-L图象斜率的物理意义是________.【解析】(1)从A到B根据能量守恒可得:W-W f=fL,所以图象不过原点的原因是在AO段还有摩擦力做功;(2)由图知图象两点坐标为(0.06,1)、(0.42,5)代入W-W f=fL解得木块从A到O过程中摩擦力做的功为13W1;(3)由W-W f=fL知图象的斜率为摩擦力.【答案】(1)未计算AO间的摩擦力做功(2)13(3)摩擦力三、计算题(共2小题,共34分)11.(16分)用一台额定功率为P 0=60 kW 的起重机,将一质量为m =500 kg 的工件由地面竖直向上吊起,不计摩擦等阻力,g 取10 m/s 2.求:(1)工件在被吊起的过程中所能达到的最大速度v m ;(2)若使工件以a =2 m/s 2的加速度从静止开始匀加速向上吊起,则匀加速过程能维持多长时间?(3)若起重机在始终保持额定功率的情况下从静止开始吊起工件,经过t =1.14 s 工件的速度v t =10 m/s ,则此时工件离地面的高度h 为多少?【导学号:45732177】【解析】 (1)当工件达到最大速度时,F =mg ,P =P 0=60 kW故v m =P 0mg =60×103500×10m/s =12 m/s. (2)工件被匀加速向上吊起时,a 不变,v 变大,P 也变大,当P =P 0时匀加速过程结束,根据牛顿第二定律得F ′-mg =ma ,解得F ′=m (a +g )=500×(2+10)N =6 000 N匀加速过程结束时工件的速度为v =P 0F ′=60×1036 000 m/s =10 m/s 匀加速过程持续的时间为t 0=v a =102 s =5 s.(3)根据动能定理,有P 0t -mgh =12m v 2t -0代入数据,解得h =8.68 m.【答案】 (1)12 m/s (2)5 s (3)8.68 m12.(18分)如图8甲所示,质量为m =0.1 kg 的小球,用长l =0.4 m 的细线与固定在圆心处的力传感器相连,小球和传感器的大小均忽略不计.当在A 处给小球6 m/s 的初速度时,恰能运动至最高点B ,设空气阻力大小恒定,g 取10 m/s 2.求:图8(1)小球在A 处时传感器的示数;(2)小球从A 点运动至B 点过程中克服空气阻力做的功;(3)小球在A 点以不同的初速度v 0开始运动,当运动至B 点时传感器会显示出相应的读数F ,试通过计算在图乙坐标系中作出F -v 20图象.【解析】 (1)在A 点,由F -mg =m v 2A l ,解得:F =10 N.(2)由mg =m v 2B l 得:v B =2 m/s小球从A 到B 过程中,根据动能定理:W f -2mgl =12m v 2B -12m v 2A得到:W f =-0.8 J所以克服空气阻力做功0.8 J.(3)小球从A 到B 过程中,根据动能定理:W f -2mgl =12m v 2B -12m v 20小球在最高点F +mg =m v 2B l两式联立得:F =14v 20-9图象如图所示【答案】(1)10 N(2)0.8 J(3)如解析图所示。
物理·必修2(人教版)第七章机械能守恒定律章末总结机械能及其守恒定律专题一功的理解和计算1.功的正负的判断方法(1)利用公式W =Flcos α计算确定,此法常用于恒力做功情况.(2)利用力F 与运动速度v 的方向夹角α来判断:0≤α<90°时力F 做正功,α=90°时F 不做功,90°<α≤180°时F 做负功.(3)利用功能关系来判断,利用重力的功与重力势能变化,弹力的功与弹性势能变化、合力的功与动能变化,除重力以外的其他力的功与机械能变化等各关系根据能量的变化来确定功的正负.2.功的正负的理解(1)功为标量,其正负不表示方向,也不表示大小.(2)某个力做正功,表明这个力为动力,力做负功表示此力为阻力. 3.功的求法(1)利用定义式来求.若恒力做功,可用定义式W =Flcos α求恒力的功,其中F 、l 为力的大小和位移的大小,α为力F 与位移l 方向上的夹角,且0≤α≤180°(2)利用功率求功.若某力做功或发动机的功率P 一定,则在时间t 内做的功可用W =Pt 来求. (3)利用功能关系来求.常见的功能关系为重力做功与重力势能变化的关系,弹力做功与弹性势能变化的关系,合力做的功与物体动能变化关系,除重力和系统内弹力外其他力的功与机械能的关系.根据以上功能关系,若能求出某种能量的变化,就可以求出相应功的数值.如图所示,质量m =1.0 kg 的物体从半径R =5 m 的圆弧的A 端,在拉力F 作用下从静止沿圆弧运动到顶点B.圆弧AB 在竖直平面内,拉力F 的大小为15 N ,方向始终与物体的运动方向一致.若物体到达B 点时的速度v =5 m/s ,圆弧AB 所对应的圆心角θ=60°,BO 边在竖直方向上,取g =10 m/s 2.在这一过程中,求:(1)重力mg 做的功; (2)拉力F 做的功;(3)圆弧面对物体的支持力F N 做的功; (4)圆弧面对物体的摩擦力F f 做的功.解析:(1)重力mg 做的功: W G =-mgR(1-cos θ)=-25 J.(2)因拉力F 大小不变,方向始终与物体的运动方向相同,所以W F =Fs =F×π3R ≈78.5 J.(3)支持力F N 始终与物体的运动方向垂直,所以WF N =0. (4)由动能定理知W F +W G +W f =12mv 2-0,得摩擦力F f 做的功WF f =12mv 2-W F -W G=12×1.0×52J -78.5 J -(-25)J =-41 J.答案:(1)-25 J (2)78.5 J (3)0 (4)-41 J名师归纳:在变力做功的过程中,当有重力势能、弹性势能以及其他形式的能参与转化时,可以考虑用功能关系求解.因为做功的过程就是能量转化的过程,并且转化过程中能量守恒.专题训练1.用铁锤将一铁钉钉入木块,设木块对铁钉的阻力与铁钉进入木块内的深度成正比.在铁锤击第一次后,能把铁钉击入木块内1 cm.问击第二次后,能击入多深?(设铁锤每次做功相等)解析:(图象法)因为阻力F =kx ,以F 为纵坐标,F 方向上的位移x 为横坐标,作出F -x 图象(如图).图线与横坐标所围面积的值等于F 对铁钉做的功.由于两次做功相等,故有S 1=S 2(面积) 即12kx 12=12k(x 2+x 1)(x 2-x 1) 所以Δx =x 2-x 1=0.41 cm. 答案:0.41 cm2.磨杆长为l ,在杆端施以与杆垂直且大小不变的力F ,如图所示,求杆绕轴转动一周过程中力F 所做的功.解析:磨杆绕轴转动过程中,力的方向不断变化,不能直接用公式W =Fscos α进行计算.这时,必须把整个圆周分成许多小弧段,使每一小段弧都可以看作是这段弧的切线,即可以看成是这段的位移.这样,由于F的大小不变,加之与位移的方向相同,因而对于每一小段圆弧均可视为恒力做功.杆绕轴转动一周所做的功的总和为W =W 1+W 2+…+W n =F·Δs 1+F·Δs 2+…+F ·Δs n 因为Δs 1+Δs 2+…+Δs n =2πl. 所以W =F·2πl. 答案:2πFl[:专题二 含有功率的计算问题功率有平均功率和瞬时功率,平均功率对应的是一段时间或一个过程,瞬时功率对应的是某一时刻或某一位置.(1)公式:P =Wt ,P 为时间t 内的平均功率;P =Fvcos α,若v 为平均速度,则P 为平均功率,若v 为瞬时速度,则P 为瞬时功率.[:(2)在机车的功率P =Fv 中,F 是指机车的牵引力,而不是车所受的合力.在分析汽车启动问题时,首先要分清是以恒定功率启动还是以恒定加速度启动,以恒定加速度启动时要分析清楚发动机的功率是否达到额定功率,达到额定功率后,汽车再以恒定功率运动,牵引力随速度的增大而减小,不能再用匀变速直线运动的规律求解,要结合动能定理分析.质量为2 t 的汽车在平直公路上由静止开始运动,若保持牵引力恒定,则在30 s 内速度增大到15 m/s.这时汽车刚好达到额定功率,然后保持额定输出功率不变,又运动15 s 达到最大速度20 m/s.求:(1)汽车的额定功率;(2)汽车运动过程中受到的阻力; (3)汽车在45 s 共前进多少路程.解析:(1)(2)设汽车的额定功率为P ,运动中所受的阻力为F f ,前30 s 内的牵引力为F ,则前30 s 内,加速度a =v 1t 1=0.5 m/s 2,由牛顿第二定律知F -F f =ma ,又P =Fv 1, 在45 s 末有P =F f v 2,由以上各式得P =60 kW ,F f =3 000 N.(3)汽车在前30 s 内运动的路程为s 1=v 12t 1=225 m ,后15 s 内的位移s 2满足Pt 2-F f s 2=12m(v 22-v 12),解得s 2=241.7 m ,总路程s =s 1+s 2=466.7 m.答案:(1)60 kW (2)3 000 N (3)466.7 m名师归纳:解决机车启动问题,首先要弄清是哪种启动方式,然后采用分段处理法.在匀加速阶段,常用牛顿第二定律和运动学公式结合分析;在非匀加速阶段,一般用动能定理求解时间或位移.专题训练3.质量为m 的汽车行驶在平直公路上,在运动中所受阻力不变,当汽车的加速度为a 、速度为v 时发动机功率为P 1;当功率为P 2时,汽车行驶的最大速度为( )A.P 2v P 1B.P 2vP 1-mav [: C.P 1v P 2 D.P 1v P 2-mav答案:B4.节能混合动力车是一种可以利用汽油及所储存电能作为动力的汽车.有一质量m =1 000 kg 的混合动力轿车,在平直公路上以v 1=90 km/h 匀速行驶,发动机的输出功率为P =50 kW.当驾驶员看到前方有80 km/h 的限速标志时,保持发动机功率不变,立即启动利用电磁阻尼带动的发电机工作给电池充电,使轿车做减速运动,运动L =72 m 后,速度变为v 2=72 km/h.此过程中发动机功率的15用于轿车的牵引,45用于供给发电机工作,发动机输送给发电机的能量最后有50%转化为电池的电能.假设轿车在上述运动过程中所受阻力保持不变.求:(1)轿车以90 km/h 在平直公路上匀速行驶时,所受阻力F 阻的大小; (2)轿车从90 km/h 减速到72 km/h 过程中,获得的电能E 电;(3)轿车仅用其在上述减速过程中获得的电能E 电维持72 km/h 匀速运动的距离L′.解析:(1)轿车牵引力与输出功率的关系为P =F 牵v 将P =50 kW ,v 1=90 km/h =25 m/s 代入得 F 牵=P v 1=2×103N当轿车匀速行驶时,牵引力与阻力大小相等,有 F 阻=2×103N.(2)在减速过程中,注意到发动机只有15P 用于汽车的牵引.根据动能定理有15Pt -F 阻L =12mv 22-12mv 12代入数据得Pt =1.575×105J电池获得的电能为E 电=0.5×45Pt =6.3×104J.(3)根据题设,轿车在平直公路上匀速行驶时受到的阻力仍为F 阻=2×103N .在此过程中,由功能关系可知,仅有电能用于克服阻力做功,有E 电=F 阻L ′代入数据得L′=31.5 m.答案:(1)2×103 N (2)6.3×104 J (3)31.5 m专题三动能定理及其应用1.对动能定理的理解(1)W总=W1+W2+W3+…,是包含重力在内的所有力做功的代数和,若合外力为恒力,也可这样计算:W总=F合lcos α.(2)动能定理是计算物体位移或速率的简捷公式,当题目中涉及位移时可优先考虑动能定理.(3)做功的过程是能量转化的过程,动能定理表达式中的“=”的意义是一种因果联系的数值上相等的符号,它并不意味着“功就是动能增量”,也不意味着“功转变成了动能”,而是意味着“功引起物体动能的变化”.(4)动能定理公式两边每一项都是标量,因此动能定理是一个标量方程.2.应用动能定理的注意事项(1)明确研究对象和研究过程,找出始、末状态的速度.(2)对物体进行正确的受力分析(包括重力、弹力等),明确各力的做功大小及正、负情况.(3)有些力在运动过程中不是始终存在,若物体运动过程中包含几个物理过程,物体运动状态、受力等情况均发生变化,则在考虑外力做功时,必须根据不同情况,分别对待.(4)若物体运动过程中包含几个不同的物理过程,解题时,可以分段考虑,也可视为一个整体过程,列出动能定理求解.如图所示,质量为m的小物块在粗糙水平桌面上做直线运动,经距离l后以速度v飞离桌面,最终落在水平地面上.已知l=1.4 m,v=3.0 m/s,m=0.10 kg,物块与桌面间的动摩擦因数μ=0.25,桌面高h=0.45 m.不计空气阻力,重力加速度g取10 m/s2.求:(1)小物块落地点距飞出点的水平距离s;(2)小物块落地时的动能E k;(3)小物块的初速度大小v0.分析:解答本题时应把握以下两点:(1)小物块飞离桌面后做平抛运动,机械能守恒,根据平抛运动规律和机械能守恒定律求解小物块的水平距离和落地时的动能.[:(2)小物块在桌面上运动时摩擦力做负功,根据动能定理求解小物块的初速度.解析: (1)小物块飞离桌面后做平抛运动,根据平抛运动规律,有竖直方向:h=12gt2水平方向:s=vt解得水平距离s=v 2hg=0.90 m.(2)小物块从飞离桌面到落地的过程中机械能守恒,根据机械能守恒定律可得小物块落地时的动能为E k=12 mv2+mgh=0.90 J.(3)小物块在桌面上运动的过程中,根据动能定理,有-μmgl=12mv2-12mv02解得小物块的初速度大小v0=2μmgl+v2=4.0 m/s.答案:(1)0.90 m (2)0.90 J (3)4.0 m/s[:数理化]专题训练5.如图所示,质量m=1 kg的木块静止在高h=1.2 m的平台上,木块与平台间的动摩擦因素μ=0.2,用水平推力F=20 N,使木块产生位移l1=3 m时撤去,木块又滑行l2=1 m时飞出平台,求木块落地时速度的大小?解析:解法一取木块为研究对象,其运动分三个过程,先匀加速运动l1,后匀减速运动l2,再做平抛运动,对每一个过程,分别列动能定理得:Fl1-μmgl1=12 mv12-μmgl2=mv222-mv122;mgh=mv322-mv222;解得v3=8 2 m/s.解法二对全过程由动能定理得Fl1-μmg(l1+l2)+mgh=mv22-0;代入数据得v=8 2 m/s.答案:8 2 m/s6.如图所示,质量为m的物块从高为h的斜面上滑下,又在同样材料的水平面上滑行l后静止.已知斜面倾角为θ,物块由斜面到水平面时圆滑过渡,求物块与接触面间的动摩擦因数.解析:物块在斜面上下滑时,摩擦力做负功,重力做正功.在水平面上滑行时,只有摩擦力做负功,最后减速至零.全过程动能变化为零.在全过程应用动能定理,有mgh-(μmgcos θ·hsin θ+μmgl)=0解得μ=hhcot θ+l=tan α,其中α为物块初、末位置A、B连线为水平面的夹角.答案:hhcot θ+l专题四机械能守恒定律的应用1.机械能守恒定律的研究对象机械能守恒定律的研究对象可以针对一个物体,也可以更普遍地针对一个系统,所谓系统,简单地说就是将相互作用的物体组合在一起,在分析时,可根据要求人为“隔离”出某几个相互作用的物体,把它们视为一个研究对象,如图中的三个装置,(甲)、(乙)图中都可以把小车、小球和地球或小球、弹簧和地球分别看成一个系统,(丙)图中可将整个装置(含球、轻杆及轴O)和地球一起作为一个系统来研究.其实在用于一个物体时,已经隐含了地球在内,不再明讲是有利于简化解题过程.2.机械能守恒定律的适用条件严格地讲,机械能守恒定律的条件应该是对一个系统而言,外力对系统不做功(表明系统与外界之间无能量交换),系统内除了重力和系统内的弹力以外,无其他力(如:摩擦力、介质阻力等)做功(表明系统内不存在机械能与其他形式的能之间的转化),则系统的机械能守恒.如图所示,长度为l的轻绳上端固定在O点,下端系一质量为m的小球(小球的大小可以忽略).(1)在水平拉力F的作用下,轻绳与竖直方向的夹角为α,小球保持静止.画出此时小球的受力图,并求力F的大小;(2)由图示位置无初速释放小球,求当小球通过最低点时的速度大小及轻绳对小球的拉力.不计空气阻力.解析:(1)受力如右图所示,根据平衡条件,拉力大小F =mgtan α. (2)运动中只有重力做功,系统机械能守恒mgl(1-cos α)=12mv 2则通过最低点时,小球的速度大小 v =2gl (1-cos α) 根据牛顿第二定律T′-mg =m v2l解得轻绳对小球的拉力T ′=mg +m v2l =mg(3-2cos α),方向竖直向上.答案:(1)受力图见解析 mgtan α (2)mg(3-2cos α)专题训练7.如图所示,让摆球从图中的C 位置由静止开始下摆,正好摆到悬点正下方D 处时,线被拉断,紧接着,摆球恰好能沿竖直放置的光滑半圆形轨道内侧做圆周运动.已知摆线长l =2.0 m ,轨道半径R =2.0 m ,摆球质量m =0.5 kg.不计空气阻力.(g 取10 m/s 2)(1)求摆球在C 点时与竖直方向的夹角θ和摆球落到D 点时的速度大小;(2)若仅在半圆形内侧轨道上E 点下方错误!圆弧有摩擦,摆球到达最低点F 时的速度为6 m/s ,求摩擦力做的功.解析:(1)在D 点刚好不脱离半圆轨道,有:mg =m v D2R 得v D =2 5 m/s ,从C 点到D 点机械能守恒,有:mgl(1-cos θ)=12mv D 2得θ=π3.(2)从D 点到最低点,由动能定理得2mgR +W 摩=12mv 2-12mv D 2得W 摩=-16 J.答案:(1)π3 2 5 m/s (2)-16 J。
模块综合测评(用时:60分钟 满分:100分)一、选择题(本题共8小题,每小题6分,共48分.在每小题给出的四个选项中,1~5小题只有一项符合题目要求,6~8题有多项符合题目要求.全部选对的得6分,选对但不全的得3分,有选错的得0分)1.下列关于力和运动的说法中,正确的是( )A .物体在变力作用下不可能做直线运动B .物体做曲线运动,其所受的外力不可能是恒力C .不管外力是恒力还是变力,物体都有可能做直线运动D .不管外力是恒力还是变力,物体都有可能做匀速圆周运动【解析】 物体做曲线运动的条件是合力与速度不在同一条直线上,若受到的变力和速度方向相同,则做直线运动,A 错误;平抛运动是曲线运动,过程中受到的合力恒定,等于重力大小,B 错误;匀速圆周运动过程中,物体受到的加速度时时刻刻指向圆心,根据牛顿第二定律可知受到的合力时时刻刻指向圆心,为变力,D 错误.【答案】 C2.在飞船进入圆形轨道环绕地球飞行时,它的线速度大小( )A .等于7.9 km/sB .介于7.9 km/s 和11.2 km/s 之间C .小于7.9 km/sD .介于7.9 km/s 和16.7 km/s 之间【解析】 卫星在圆形轨道上运动的速度v =G M r .由于r >R ,所以v <G M R =7.9 km/s ,C 正确.【答案】 C3.韩晓鹏是我国首位在冬奥会雪上项目夺冠的运动员.他在一次自由式滑雪空中技巧比赛中沿“助滑区”保持同一姿态下滑了一段距离,重力对他做功1 900 J ,他克服阻力做功100 J .韩晓鹏在此过程中( )A .动能增加了1 900 JB .动能增加了2 000 JC .重力势能减小了1 900 JD .重力势能减小了2 000 J【解析】 根据动能定理得韩晓鹏动能的变化ΔE =W G +W f =1 900 J -100 J =1 800 J>0,故其动能增加了1 800 J ,选项A 、B 错误;根据重力做功与重力势能变化的关系W G =-ΔE p ,所以ΔE p =-W G =-1 900 J<0,故韩晓鹏的重力势能减小了1 900 J ,选项C 正确,选项D 错误.【答案】 C4.如图1所示,一个电影替身演员准备跑过一个屋顶,然后水平跳跃并离开屋顶,在下一个建筑物的屋顶上着地.如果他在屋顶跑动的最大速度是4.5 m/s ,那么下列关于他能否安全跳过去的说法错误的是(g 取9.8 m/s 2)( )图1A .他安全跳过去是可能的B .他安全跳过去是不可能的C .如果要安全跳过去,他在屋顶跑动的最小速度应大于6.2 m/sD .如果要安全跳过去,他在空中的飞行时间需要1 s【解析】 根据y =12gt 2,当他降落在下一个屋顶时,下落的高度y =4.9 m ,所用时间t =2yg =2×4.99.8 s =1.0 s ,最大水平位移:x =v m t =4.5×1.0 m =4.5 m <6.2 m ,所以他不能安全到达下一个屋顶.要想安全跳过去,他的跑动速度至少要大于6.21.0m/s ,即6.2 m/s.故B 、C 、D 正确,A 错误.【答案】 A5.如图2所示,站在水平面上杂技演员在表演水流星节目时,盛水的杯子在竖直平面内做圆周运动,当杯子经过最高点时,里面的水恰好不会流出来.已知杂技演员质量为M ,杯子质量为m 1,里面水的质量为m 2,则当杯子通过与手等高的A 点时,地面对杂技演员的摩擦力大小和方向分别为(杯子运动时,人和手都始终静止不动)( )图2A .2(m 1+m 2)g ,向左B .3(m 1+m 2)g ,向左C .2(m 1+m 2)g ,向右D .3(m 1+m 2)g ,向右【解析】 设杯子做圆周运动的半径为r ,当杯子经过最高点时,里面的水恰好不会流出来,所以杯子通过最高点时,有(m 1+m 2)g =(m 1+m 2)v 2r,杯子由最高点到A 点的过程,根据机械能守恒定律得:(m 1+m 2)gr +12(m 1+m 2)v 2=12(m 1+m 2)v 2A ,联立得:v A =3gr ,设杯子在A 点时,细绳对杯子的弹力为F ,则有:F =(m 1+m 2)v 2A r=3(m 1+m 2)g ,方向向右.此时绳子对人的拉力也是3(m 1+m 2)g ,方向向左.对人受力分析可知,地面对人的摩擦力与绳子的拉力大小相等,方向相反,即地面对人的摩擦力大小为3(m 1+m 2)g ,方向向右,故D 正确,A 、B 、C 错误.【答案】 D6.美国科学家在2016年2月11日宣布,他们利用激光干涉引力波天文台(LIGO)“探测到两个黑洞合并时产生的引力波”,爱因斯坦在100年前的预测终被证实.两个黑洞在合并的过程中,某段时间内会围绕空间某一位置以相同周期做圆周运动,形成“双星”系统.设其中一个黑洞的线速度大小为v ,加速度大小为a ,周期为T ,两黑洞的总机械能为E ,它们之间的距离为r ,不计其他天体的影响,两黑洞的质量不变.下列各图可能正确的是( )A B C D【解析】 根据万有引力定律可得:Gm 1m 2r 2=m 1ω2r 1=m 2ω2r 2,则m 1r 1=m 2r 2,因为r 1+r 2=r ,则r 1=m 2m 1+m 2r ,r 2=m 1m 1+m 2r ;根据Gm 1m 2r 2=m 1v 2r 1,则v =Gm 22r (m 1+m 2),故v -r 图象不是线性关系,A 错误;根据Gm 1m 2r 2=m 1a ,解得a =Gm 2r 2,故a -r -2是过原点的直线,B 正确;根据Gm 1m 2r 2=m 1⎝ ⎛⎭⎪⎫2πT 2r 1,解得T =4π2r 3G (m 1+m 2),C 错误;根据Gm 1m 2r 2=m 1v 2r 1及Gm 1m 2r 2=m 2v 2r 2,解得两黑洞的总机械能为E =12m 1v 21+12m 2v 22=Gm 1m 2r ,D 正确.【答案】 BD7.如图3所示,一个小环套在竖直放置的光滑圆形轨道上做圆周运动.小环从最高点A 滑到最低点B 的过程中,其线速度大小的平方v 2随下落高度h 变化的图象可能是( )图3【解析】 设小环在A 点的速度为v 0,由机械能守恒定律得-mgh +12m v 2=12m v 20得v 2=v 20+2gh ,可见v 2与h 是线性关系,若v 0=0,B 正确;若v 0≠0,A 正确,故正确选项是AB.【答案】 AB8.某节能运输系统装置的简化示意图4如图所示.小车在轨道顶端时,自动将货物装入车中,然后小车载着货物沿不光滑的轨道无初速度下滑,并压缩弹簧.当弹簧被压缩至最短时,立即锁定并自动将货物卸下.卸完货物后随即解锁,小车恰好被弹回到轨道顶端,此后重复上述过程.则下列说法中正确的是()图4A.小车上滑的加速度小于下滑的加速度B.小车每次运载货物的质量必须是确定的C.小车上滑过程中克服摩擦阻力做的功不等于小车下滑过程中克服摩擦阻力做的功D.小车与货物从顶端滑到最低点的过程中,减少的重力势能全部转化为弹簧的弹性势能【解析】设下滑时加速度为a1,弹起离开弹簧后加速度为a2,则根据牛顿第二定律,有下滑过程:(M+m)g sin 30°-μ(M+m)g cos 30°=(M+m)a1上滑过程:Mg sin 30°+μMg cos 30°=Ma2故a1<a2,故A错误;小车每次下滑过程系统减小的重力势能转化为弹簧的弹性势能和内能,必须保证每次弹簧的压缩量相同,故小车每次运载货物的质量必须是确定的,故B正确;上滑过程和下滑过程中的摩擦力大小不同,故小车上滑过程中克服摩擦阻力做的功不等于小车下滑过程中克服摩擦阻力做的功,故C正确;小车与货物从顶端滑到最低点的过程中,减少的重力势能全部转化为弹簧的弹性势能和内能,故D错误.【答案】BC二、非选择题(共4小题,共52分,按题目要求作答)9.(8分)某同学利用如图5所示的装置探究功与速度变化的关系.图5(ⅰ)小物块在橡皮筋的作用下弹出,沿水平桌面滑行,之后平抛落至水平地面上,落点记为M1;(ⅱ)在钉子上分别套上2条、3条、4条……同样的橡皮筋,使每次橡皮筋拉伸的长度都保持一致,重复步骤(ⅰ),小物块落点分别记为M2、M3、M4……;(ⅲ)测量相关数据,进行数据处理.(1)为求出小物块抛出时的动能,不需要测量下列物理量中的________(填正确答案标号).A.小物块的质量mB.橡皮筋的原长xC.橡皮筋的伸长量ΔxD.桌面到地面的高度hE.小物块抛出点到落地点的水平距离L(2)将几次实验中橡皮筋对小物块做功分别记为W1、W2、W3、……,小物块抛出点到落地点的水平距离分别记为L1、L2、L3、…….若功与速度的平方成正比,则应以W为纵坐标、________为横坐标作图,才能得到一条直线.(3)由于小物块与桌面之间的摩擦不能忽略,则由此引起的误差属于________(填“偶然误差”或“系统误差”).【解析】(1)小球离开桌面后做平抛运动,根据桌面到地面的高度h=12gt2,可计算出平抛运动的时间,再根据小物块抛出点到落地点的水平距离L=v0t,可计算出小球离开桌面时的速度,根据动能的表达式E k=12m v2,还需要知道小球的质量,B、C正确.(2)根据h=12gt2,和L=vt,可得v20=L2t2=L22hg=g2h L2,因为功与速度的平方成正比,所以功与L2成正比,故应以W为纵坐标、L2为横坐标作图,才能得到一条直线.(3)一般来说,从多次测量揭示出的实验误差称为偶然误差,不能从多次测量揭示出的实验误差称为系统误差.由于小物块与桌面之间的摩擦不能忽略,则由此引起的误差属于系统误差.【答案】(1)BC(2)L2(3)系统误差10.(10分)在“验证机械能守恒定律”的实验中:(1)供实验选择的重物有以下四个,应选择:() A.质量为10 g的砝码B.质量为200 g的木球C.质量为50 g的塑料球D.质量为200 g的铁球(2)下列叙述正确的是()A.实验中应用秒表测出重物下落的时间B.可用自由落体运动的规律计算重物的瞬时速度C.因为是通过比较m v22和mgh是否相等来验证机械能是否守恒,故不需要测量重物的质量D.释放重物前应手提纸带的上端,使纸带竖直通过限位孔(3)质量m=1 kg的物体自由下落,得到如图6所示的纸带,相邻计数点间的时间间隔为0.04 s,那么从打点计时器打下起点O到打下B点的过程中,物体重力势能的减少量E p=________ J,此过程中物体动能的增加量E k=________J.(g取9.8 m/s2,保留三位有效数字)图6【解析】(1)为减小实验误差应选用铁球.(3)ΔE p=mg OB=2.28 Jv B=AC2T=2.125 m/sΔE k=12m v2B=2.26 J.【答案】(1)D(2)CD(3)2.28 2.2611.(16分)如图7所示,四分之一圆弧轨道的圆心O1和半圆轨道的圆心O2,与斜面体ABC 的竖直面AB 在同一竖直面上,两圆弧轨道衔接处的距离忽略不计,斜面体ABC 的底面BC 是水平面,一个视为质点质量m =0.2 kg 的小球从P 点静止释放,先后沿两个圆弧轨道运动,最后落在斜面体上(不会弹起),不计一切摩擦,已知AB =9 m ,BC =12 m ,O 2A =1.1 m ,四分之一圆弧的半径和半圆的半径都是R =0.6 m ,g 取10 m/s 2.求:(1)小球在半圆最低点Q 对轨道的压力;(2)小球落在斜面上的位置到A 点的距离.图7【解析】 (1)小球从P 点运动到Q 点的过程中,机械能守恒,由机械能守恒定律得:mg (3R )=12m v 2解得:v =6 m/s由向心力公式得:F N -mg =m v 2R解得:F N =14 N由牛顿第三定律得:小球在半圆最低点Q 对轨道的压力大小是14 N ,方向竖直向下.(2)小球离开半圆轨道后做平抛运动由几何关系可知:tan θ=34;QA 两点间的距离h =O 2A -R =0.5 m由平抛运动规律得:x =L cos θ=v t ;y =h +L sin θ=12gt 2解得:L =7.5 m.【答案】 (1)14 N ,方向向下 (2)7.5 m12.(18分)如图8甲所示,四分之一光滑圆弧轨道与平台在B 点处相切,圆弧半径R=1 m,一质量为1 kg的物块置于A点,A、B间距离为2 m,物块与平台间的动摩擦因数为μ=0.2.现用水平恒力F拉物块由静止开始向右运动,到B 点时撤去拉力,结果物块刚好能滑到四分之一圆弧轨道的最高点,已知重力加速度g=10 m/s2.甲乙图8(1)求F的大小及物块刚滑上四分之一圆弧轨道时对轨道的压力大小;(2)若将四分之一圆弧轨道竖直向下平移到圆心与B点重合,如图乙所示,仍用水平恒力F拉物块由静止开始向右运动,并在B点撤去拉力,求物块在圆弧轨道上的落点与平台的高度差.(结果可用根式表示)【解析】(1)滑块从A点到圆弧轨道最高点,由动能定理有Fx-μmgx-mgR=0解得F=7 N从B点到圆弧轨道最高点,根据机械能守恒定律有12m v2B=mgR解得v B=2 5 m/s在圆弧轨道的最低点,根据牛顿第二定律有F N-mg=m v2B R解得F N=3mg=30 N根据牛顿第三定律,物块对圆弧轨道的压力大小为30 N.(2)物块从B点做平抛运动,设下落的高度为y,水平位移为x,则有x=v B ty=12gt2x2+y2=R2解得物块在圆弧轨道上的落点与平台间的高度差为y=(5-2)m.【答案】(1)7 N30 N(2)(5-2)m。
姓名,年级:时间:模块综合检测(一)(时间:90分钟分值:100分)一、选择题(本题共12小题,每题4分,共48分.其中1~8题为单选,9~12题为多选,漏选得2分,错选、多选不得分.)1.跳水是一项优美的水上运动,图中是在双人跳台跳水比赛中,小将陈若琳和王鑫在跳台上腾空而起的英姿.她们站在离水面10 m高的跳台上跳下,若只研究运动员入水前的下落过程,下列说法中正确的是( )A.为了运动员的技术动作,可将正在比赛中的运动员视为质点B.运动员在下落过程中,感觉水面在加速上升C.以陈若琳为参考系,王鑫做竖直上抛运动D.跳水过程中陈若琳和王鑫的重心位置相对她们自己是不变的答案:B2.一小球沿斜面匀加速滑下,依次经过A、B、C三点.已知AB=6 m,BC=10 m,小球经过AB和BC两段所用的时间均为2 s,则小球经过A、B、C三点时的速度大小分别是( )A.2 m/s,3 m/s,4 m/s B.2 m/s,4 m/s,6 m/sC.3 m/s,4 m/s,5 m/s D.3 m/s,5 m/s,7 m/s解析:由题意可知B点是AC段的中间时刻,AB、BC是相邻的等时间段,所以v B=错误!=4 m/s,又根据Δx=x BC-x AB=aT2可得a=1 m/s2,进一步可得v A=2 m/s、v C=6 m/s,选项B正确.答案:B3.某军事试验场正在平地上试验地对空导弹,若某次竖直向上发射导弹时发生故障,导弹的v-t图象如图所示,则下述说法正确的是()A.在0~1 s内导弹匀速上升B.在1~2 s内导弹静止不动C.3 s末导弹的加速度方向改变D.5 s末导弹恰好回到出发点解析:由题图可知,0~1 s内导弹的速度随时间均匀增加,故导弹做匀加速直线运动,故A错误;1~2 s内物体的速度一直不变,故导弹是匀速上升,故B错误;3 s末图线的斜率没发生改变,故加速度方向没变,故C 错误;前3 s内物体在向上运动,上升的高度为错误! m=60 m;3到5 s内导弹下落,下落高度为错误!×2×60 m=60 m,故说明导弹5 s末的位移为零,回到出发点,故D正确;故选D.答案:D4。
模块综合检测(二)(时间:90分钟分值:100分)一、单项选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项符合题目要求)1.如图所示,一个矩形线圈abcd放在垂直纸面向里的匀强磁场中,在进行下列操作时,整个线圈始终处于磁场之内,线圈中能产生感应电流的是()A.线圈沿纸面向右移动B.线圈沿纸面向下移动C.线圈垂直纸面向外移动D.线圈以ab边为轴转动解析:产生感应电流的条件是:穿过闭合回路的磁通量发生变化.因此无论线圈如何运动,关键是看其磁通量是否变化,从而判断出是否有感应电流产生.由于磁场是匀强磁场,把线圈向右拉动,或向上拉动,或垂直纸面向外运动,其磁通量均不变化,均无感应电流产生,故A、B、C错误;当线圈绕ab边转动时,其磁通量发生变化,有感应电流产生,故D正确.答案:D2.一矩形线圈在匀强磁场中转动,产生交变电流的电动势为e=2202sin 100πt V,关于这个交变电流的说法正确的是() A.交流电的频率为100 Hz,周期为0.01 sB.此交变电流电动势的有效值为220 VC.此交变电流电动势的峰值约为380 VD.t=0时,线圈平面与中性面垂直,此时磁通量为零解析:由交流电的瞬时值表达式知最大值为220 2 V,故C错误;角速度ω=100πrad/s,由频率f=ω2π=100π2πHz=50 Hz,故A错误;t=0时瞬时值e=0知此时线圈与中性面重合,磁通量最大,故D错误.答案:B3.如图所示,理想变压器的原线圈接u=11 0002sin 100πt(V)的交变电压,副线圈通过电阻r=6Ω的导线对“220 V,880 W”的电器R L供电,该电器正常工作.由此可知()A.原、副线圈的匝数比为50∶1B.交变电压的频率为100 HzC.副线圈中电流的有效值为4 AD.变压器的输入功率为880 W解析:输入电压的有效值为11 000 V,用电器的额定电压为220 V,所以变压器的输出电压大于220 V,原、副线圈的匝数比小于50∶1,故A错误;由输入电压的表达式知,f=100π2π=50 Hz,故B错误;副线圈中的电流与用电器中的电流相同,I=4 A,故C正确;变压器的输出功率为用电器的功率和导线电阻损耗的功率之和,大于880 W,所以变压器的输入功率大于880 W,故D错误.答案:C4.如图所示,甲是闭合铜线框,乙是有缺口的铜线框,丙是闭合的塑料线框,它们的正下方都放置一薄强磁铁,现将甲、乙、丙拿至相同高度H处同时释放(各线框下落过程中不翻转),则以下说法正确的是()A.三者同时落地B.甲、乙同时落地,丙后落地C.甲、丙同时落地,乙后落地D.乙、丙同时落地,甲后落地解析:甲是闭合铜线框,在下落过程中产生感应电流,所受的安培力阻碍它的下落,故所需的时间长;乙没有闭合回路,丙是塑料线框,故都不会产生感应电流,它们做自由落体运动,故D正确.答案:D5.如图所示,在铁芯上、下分别绕有匝数n1=800和n2=200的两个线圈,上线圈两端与u=51sin 314t(V)的交流电源相连,将下线圈两端接交流电压表,则交流电压表的读数可能是()A .2.0 VB .9.0 VC .12.7 VD .144.0 V解析:根据u =51sin 314t (V)可知交流电的最大值为U m =51 V ,则其有效值U 1=512V =512 2 V ;由图可知线圈n 1是原线圈,线圈n 2是副线圈,如果变压器是理想变压器,那么输入电压和输出电压的关系有U 1U 2=n 1n 2可得U 2=n 2n 1U 1=200800×512V =518 2 V ≈9 V ,因为交流电压表指示的是有效值,故如果是理想变压器则B 正确.但实际变压器存在漏磁现象,故通过原线圈的磁通量大于通过副线圈的磁通量,故实际副线圈的输出电压小于9 V ,故A 正确.答案:A6.如图所示,金属棒AB 原来处于静止状态(悬挂).由于CD 棒的运动,导致AB 棒向右摆动,则CD 棒( )A .向右平动B .向左平动C .向里平动D .向外平动解析:AB 棒向右摆动,说明它受到的安培力方向向右,根据左手定则判断出AB 中的电流方向为B →A .这说明CD 棒的电流方向为D →C ,再根据右手定则判断出CD 棒的切割方向是向外,选项D 正确.答案:D7.如图所示甲、乙两电路中,当a 、b 两端与e 、f 两端分别加上220 V 的交流电压时,测得c 、d 间与g 、h 间的电压均为110 V .若分别在c 、d 两端与g 、h 两端加上110 V 的交流电压,则a 、b 间与e、f间的电压分别为()A.220 V,220 V B.220 V,110 VC.110 V,110 V D.220 V,0 V解析:首先要搞清楚变压器和分压器在改变电压原理上的本质不同.对于变压器,a、b间与c、d间的电压比总是等于它们间线圈的匝数比,与哪一个是原线圈无关,故a、b间接220 V的交流电压,c、d间的电压为110 V,c、d间改接110 V的交流电压,则a、b间应输出电压为220 V;而对于分压器,当e、f间接220 V的电压时,电阻的e、g与f、g部分串联,g、h间电压仅是f、g部分电阻的电压,当g、h间接110 V的电压时,由于e、g部分无电流,e、g两点等电势,故e、f间的电压等于g、h间的电压,故只有选项B正确.答案:B8.交变电流电压的有效值为6 V,它和电阻R1、R2及电容器C、电压表一起连接成如图所示的电路,图中电压表的读数为U1,为了保证电容器C不被击穿,电容器的耐压值为U2,电容器在电路中正常工作,则()A.U1=6 2 V U2=6 VB.U1=6 V U2=3 2 VC.U1=6 2 V U2≥6 VD.U1=6 V U2≥6 2 V解析:电压表读数为交流电压的有效值,所以电压表读数U 1=6 V ,电容器耐压值应大于交流电压的最大值, U 2≥6 2 V .答案:D9.如图所示,垂直纸面向里的匀强磁场的区域宽度为2a ,磁感应强度的大小为B .一边长为a 、电阻为4R 的正方形均匀导线框ABCD 从图示位置开始沿水平向右方向以速度v 匀速穿过磁场区域,在图乙中线框A 、B 两端电压U AB 与线框移动距离的关系图象正确的是( )解析:进入磁场时,注意U AB 是路端电压,应该是电动势的四分之三,此时E =Ba v ,所以U AB =3Ba v 4;完全进入后,没有感应电流,但有感应电动势,大小为Ba v ,穿出磁场时电压应该是电动势的四分之一,U AB =Ba v 4,电势差方向始终相同,即ΦA >ΦB ,由以上分析可知选D.答案:D10.如图所示,甲、乙两图是两个与匀强磁场垂直放置的金属框架,乙图中除了一个电阻极小、自感系数为L的线圈外,两图其他条件均相同.如果两图中AB杆均以相同初速度、相同加速度向右运动相同的距离,外力对AB杆做功的情况是()A.甲图中外力做功多B.两图中外力做功相等C.乙图中外力做功多D.无法比较解析:两图中AB杆均做加速运动,电流将增大,图乙中由于线圈自感的阻碍作用,感应电流较甲图小,安培阻力也较小,又加速度相同,则外力较甲图小,甲图中外力做功多,A正确.答案:A二、多项选择题(本题共4小题,每小题5分,共20分.在每小题给出的四个选项中有多项符合题目要求,全部选对得5分,漏选得3分,错选或不选得0分)11.自然界的电、热和磁等现象都是相互联系的,很多物理学家为寻找它们之间的联系做出了贡献.下列说法正确的是() A.奥斯特发现了电流的磁效应,揭示了电现象和磁现象之间的联系B.欧姆发现了欧姆定律,说明了热现象和电现象之间存在联系C.法拉第发现了电磁感应现象,揭示了磁现象和电现象之间的联系D.焦耳发现了电流的热效应,定量给出了电能和热能之间的转换关系解析:奥斯特发现的电流的磁效应表明了电能生磁,A正确.欧姆定律描述了电流与电阻、电压与电动势之间的关系,焦耳定律才揭示了热现象与电现象间的联系,B错误,D正确.法拉第发现的电磁感应现象表明了磁能生电,C正确.答案:ACD12.如图所示,光滑固定导轨M、N水平放置,两根导体棒P、Q平行放于导轨上,形成一个闭合回路.当一条形磁铁从高处下落接近回路时()A.P、Q将互相靠拢B.P、Q将互相远离C.磁铁的加速度仍为g D.磁铁的加速度小于g解析:方法一设磁铁下端为N极,如图所示,根据楞次定律可判断出P、Q中的感应电流方向,根据左手定则可判断P、Q所受安培力的方向.可见,P、Q将互相靠拢.由于回路所受安培力的合力向下,由牛顿第三定律,磁铁将受到向上的反作用力,从而加速度小于g.当磁铁下端为S极时,根据类似的分析可得到相同的结果.所以,本题应选AD方法二根据楞次定律的另一表述——感应电流的效果,总要反抗产生感应电流的原因,本题中“原因”是回路中磁通量的增加,归根结底是磁铁靠近回路,“效果”便是阻碍磁通量的增加和磁铁的靠近,所以,P、Q将互相靠近且磁铁的加速度小于g.答案:AD13.图甲是小型交流发电机的示意图,两磁极N 、S 间的磁场可视为水平方向的匀强磁场,A 为交流电流表.线圈绕垂直于磁场方向的水平轴OO ′沿逆时针方向匀速转动.从图示位置开始计时,产生的交变电流随时间变化的图象如图乙所示.以下判断正确的是( )A .电流表的示数为10 AB .线圈转动的角速度为100π rad/sC .0.01 s 时线圈平面与磁场方向平行D .0.02 s 时电阻R 中电流的方向自右向左解析:由题图乙可知交流电电流的最大值是I m =10 2 A ,周期T =0.02 s ,由于电流表的示数为有效值,故示数I =I m 2=10 A ,选项A 正确;角速度ω=2πT=100π rad/s ,选项B 正确;0.01 s 时线圈中的感应电流达到最大,感应电动势最大,则穿过线圈的磁通量变化最快,磁通量为0,故线圈平面与磁场方向平行,选项C 正确;由楞次定律可判断出0.02 s 时流过电阻的电流方向自左向右,选项D 错误.答案:ABC14.(多选)如图所示,内壁光滑、水平放置的玻璃圆环内,有一直径略小于圆环直径的带正电的小球,以速率v0沿逆时针方向匀速转动(俯视),若在此空间突然加上方向竖直向上、磁感应强度B随时间成正比例增加的变化磁场.设运动过程中小球带电荷量不变,那么()A.小球对玻璃圆环的压力一定不断增大B.小球所受的磁场力一定不断增大C.小球先沿逆时针方向减速运动,过一段时间后沿顺时针方向加速运动D.磁场力对小球一直不做功解析:变化的磁场将产生感生电场,这种感生电场由于其电场线是闭合的,也称为涡旋电场,其电场强度方向可借助电磁感应现象中感应电流方向的判定方法,使用楞次定律判断.当磁场增强时,会产生顺时针方向的涡旋电场,电场力先对小球做负功使其速度减为零,后对小球做正功使其沿顺时针方向做加速运动,所以C正确;磁场力始终与小球运动方向垂直,因此始终对小球不做功,D正确;小球在水平面内沿半径方向受两个力作用:环的压力F N和磁场的洛伦兹力f,这两个力的合力充当小球做圆周运动的向心力,其中f=Bq v,磁场在增强,球速先减小,后增大,所以洛伦兹力不一定总在增大;向心力F向=m v2r,其大小随速度先减小后增大,因此压力F N也不一定始终增大.故正确答案为C、D.答案:CD三、实验题(本题共2小题,共15分)15.(6分)在探究产生感应电流条件的实验中,实验室提供了下列器材:电源、开关、电流表、大小螺线管、铁芯、滑动变阻器、导线若干,如图所示.请按照实验的要求连好实验电路.解析:大螺线管和电流表组成闭合电路;带铁芯的小螺线管、滑动变阻器、电源、开关组成闭合回路.如图所示.16.(9分)如图所示,先后以速度v1和v2(v1=2v2),匀速地把同一线圈从同一位置拉出有界匀强磁场的过程中,在先后两种情况下:(1)线圈中的感应电流之比I1∶I2=________.(2)线圈中产生的热量之比Q1∶Q2=________.(3)拉力做功的功率之比P1∶P2=________.答案:(1)2∶1(2)2∶1(3)4∶1四、计算题(本题共3小题,共35分,解答时应写出必要的文字说明、方程式和重要的演算步骤,只写出最后答案的不能得分,有数值计算的题,答案中必须明确写出数值和单位)17.(8分)如图甲所示,在周期性变化的匀强磁场区域内有垂直于磁场的半径为r =1 m 、电阻为R =3.14Ω的金属圆形线框,当磁场按图乙所示规律变化时,线框中有感应电流产生.(1)在图丙中画出感应电流随时间变化的i -t 图象(以逆时针方向为正);(2)求出线框中感应电流的有效值.解析:(1)如图所示.(2)设电流的有效值为I ,则有:I 2RT =I 21R ·T 3+I 22R ·2T 3, 得I = 2 A.18.(12分)如图所示,一小型发电机内有N =100 匝的矩形线圈,线圈面积S =0.10 m 2,线圈电阻可忽略不计.在外力作用下矩形线圈在B =0.10 T 的匀强磁场中,以恒定的角速度ω=100π rad/s 绕垂直于磁场方向的固定轴OO ′匀速转动,发电机线圈两端与R =100 Ω的电阻构成闭合回路.求:(1)线圈转动时产生感应电动势的最大值;(2)从线圈平面通过中性面时开始,线圈转为90°角的过程中通过电阻R 的电荷量;(3)线圈匀速转动10 s ,电流通过电阻R 产生的焦耳热.解析:(1)线圈中感应电动势的最大值E m =NBSω=3.14×102 V(314 V ,100π V 也同样得分).(2)设从线圈平面通过中性面时开始,线圈转过90°角所用时间为Δt ,线圈中的平均感应电动势E —=n BS Δt , 通过电阻R 的平均电流I —=E R =nBS R Δt , 在Δt 时间内通过电阻的电荷量Q =I —Δt =nBS R=1.0×10-2 C. (3)矩形线圈在匀强磁场中匀速转动产生正弦式交变电流,电阻两端电压的有效值U =22E m , 经过t =10 s ,电流通过电阻产生的焦耳热Q 热=U 2Rt , 解得Q 热=4.9×103 J.19.(13分)如图(a)所示,平行长直金属导轨水平放置,间距L =0.4 m .导轨右端接有阻值R =1 Ω的电阻,导体棒垂直放置在导轨上,且接触良好,导体棒及导轨的电阻均不计,导轨间正方形区域abcd 内有方向竖直向下的匀强磁场,bd 连线与导轨垂直,长度也为L .从0时刻开始,磁感应强度B 的大小随时间t 变化,规律如图(b)所示;同一时刻,棒从导轨左端开始向右匀速运动,1 s 后刚好进入磁场,若使棒在导轨上始终以速度v =1 m/s 做直线运动,求:(a) (b)(1)棒进入磁场前,回路中的电动势E ;(2)棒在运动过程中受到的最大安培力F ,以及棒通过三角形abd 区域时电流i 与时间t 的关系式.解析:(1)正方形磁场的面积为S ,则S =L 22=0.08 m 2.在棒进入磁场前,回路中的感应电动势是由于磁场的变化而产生的.由B-t 图象可知ΔB Δt =0.5 T/s ,根据E =n ΔΦΔt ,得回路中的感应电动势E =ΔB ΔtS =0.5×0.08 V =0.04 V .(2)当导体棒通过bd 位置时感应电动势、感应电流最大,导体棒受到的安培力最大.此时感应电动势E ′=BL v =0.5×0.4×1 V =0.2 V ;回路中感应电流I ′=E ′R =0.21A =0.2 A 导体棒受到的安培力F =BI ′L =0.5×0.2×0.4 N =0.04 N当导体棒通过三角形abd 区域时,导体棒切割磁感线的有效长度l =2v (t -1) (1 s ≤t ≤1.2 s)感应电动势e =Bl v =2B v 2(t -1)=(t -1) V感应电流i =e R=(t -1) A(1 s ≤t ≤1.2 s)。
2018-2019教科版高中物理必修二:模块综合测评一、单选题1. 自行车的大齿轮.小齿轮.后轮是相互关联的三个转动部分,如图所示.在自行车行驶过程中()A.大齿轮边缘点比小齿轮边缘点的线速度大B.后轮边缘点比小齿轮边缘点的角速度大C.后轮边缘点与小齿轮边缘点的向心加速度与它们的半径成正比D.大齿轮边缘点与小齿轮边缘点的向心加速度与它们的半径成正比2. “嫦娥一号”绕月卫星成功发射之后,我国又成功发射了“嫦娥二号”,其飞行高度距月球表面100 km,所探测到的有关月球的数据比飞行高度)为200 km的“嫦娥一号”更加详实.若两颗卫星环月的运行均可视为匀速圆周运动,运行轨道如图所示,则有(A.“嫦娥二号”线速度比“嫦娥一号”小B.“嫦娥二号”周期比“嫦娥一号”小C.“嫦娥二号”角速度比“嫦娥一号”小D.“嫦娥二号”加速度比“嫦娥一号”小3. 有一水平恒力F先后两次作用在同一物体上,使物体由静止开始沿水平面前进s,第一次是沿光滑水平面运动,第二次是沿粗糙水平面运动,设第一次力对物体做的功为W1,平均功率为P1;第二次力对物体做的功为W2,平均功率为P2,则有( )A.W1=W2,P1=P2B.W1=W2,P1>P2C.W1<W2,P1=P2D.W1<W2,P1<P24. 如图所示,一个电影替身演员准备跑过一个屋顶,然后水平跳跃并离开屋顶,在下一个建筑物的屋顶上着地.如果他在屋顶跑动的最大速度是4.5m/s,那么下列关于他能否安全跳过去的说法错误的是(g取9.8m/s2)()A.他安全跳过去是可能的B.他安全跳过去是不可能的C.如果要安全跳过去,他在屋顶跑动的最小速度应大于6.2m/sD.如果要安全跳过去,他在空中的飞行时间需要1s5. 如图所示,小球以初速v0从A点沿不光滑的轨道运动到高为h的B点后自动返回,其返回途中仍经过A点,则经过A点的速度大小为()A.B.C.D.6. 如图所示,一个小环沿竖直放置的光滑圆环形轨道做圆周运动.小环从最高点A滑到最低点B的过程中,小环线速度大小的平方v2随下落高度h 的变化图象可能是( )二、多选题三、填空题A .B .C .D .7. 三颗人造地球卫星A 、B 、C 绕地球做匀速圆周运动,如图5所示,已知m A =m B <m C ,则对于三颗卫星,正确的是()A .运行线速度关系为v A >vB =v CB .运行周期关系为T A <T B =T CC .向心力大小关系为F A =F B <F CD .半径与周期关系为8. 如图所示,MNP为竖直面内一固定轨道,其 圆弧段MN 与水平段NP 相切于N ,P 端固定一竖直挡板,NP 长度为2 m ,圆弧半径为1 m .一个可视为质点的物块自M 端从静止开始沿轨道下滑,与挡板发生碰撞(机械能不损失)后,最终停止在水平轨道上某处.已知物块在MN 段的摩擦可忽略不计,与NP 段轨道间的滑动摩擦因数为0.2.则物块()A .运动过程中与挡板发生1次碰撞B .返回圆弧轨道的最大高度为0.6 mC .在NP 间往返一次克服摩擦力做功8 JD .第一次与第二次经过圆弧轨道上N 点时对轨道的压力之比为15∶7四、实验题9. 用如图8所示的装置测量弹簧的弹性势能.将弹簧放置在水平气垫导轨上,左端固定,右端在O 点;在O 点右侧的B 、C 位置各安装一个光电门,计时器(图中未画出)与两个光电门相连.先用米尺测得B 、C 两点间距离s ,再用带有遮光片的滑块压缩弹簧到某位置A ,静止释放,计时器显示遮光片从B 到C 所用的时间t ,用米尺测量A 、O 之间的距离x.(1)计算滑块离开弹簧时速度大小的表达式是________.(2)为求出弹簧的弹性势能,还需要测量________.A .弹簧原长B .当地重力加速度C .滑块(含遮光片)的质量(3)增大A 、O 之间的距离x ,计时器显示时间t 将________.A .增大B .减小C .不变10. 在“验证机械能守恒定律”的实验中:(1)供实验选择的重物有以下四个,应选择(____)A.质量为10g 的砝码B.质量为200g 的木球C.质量为50g 的塑料球D.质量为200g 的铁球(2)下列叙述正确的是(____)A.实验中应用秒表测出重物下落的时间B.可用自由落体运动的规律计算重物的瞬时速度C.因为是通过比较和mgh 是否相等来验证机械能是否守恒,故不需要测量重物的质量D.释放重物前应手提纸带的上端,使纸带竖直通过限位孔(3)质量m =1kg 的物体自由下落,得到如图所示的纸带,相邻计数点间的时间间隔为0.04 s ,那么从打点计时器打下起点O 到打下B 点的过程中,五、解答题物体重力势能的减少量E p =_____ J ,此过程中物体动能的增加量E k =_______J 。
2019年(人教版)高中物理必修二:模块综合检测卷(含答案)物理·必修2(人教版)模块综合检测卷(考试时间:90分钟分值:100分)一、单项选择题(本题共10小题,每题3分,共30分.在每小题给出的四个选项中,只有一个选项正确.)1.发现万有引力定律的科学家是()A.开普勒 B.牛顿C.卡文迪许 D.爱因斯坦答案:B2.经典力学适用于解决( )A.宏观高速问题 B.微观低速问题C.宏观低速问题 D.微观高速问题答案:C3.关于向心加速度的物理意义,下列说法中正确的是( )A.描述线速度的大小变化的快慢B.描述线速度的方向变化的快慢C.描述角速度变化的快慢D.描述向心力变化的快慢答案:B4.当质点做匀速圆周运动时,如果外界提供的合力小于质点需要的向心力了,则( )A.质点一定在圆周轨道上运动B.质点一定向心运动,离圆心越来越近C.质点一定做匀速直线运动D.质点一定离心运动,离圆心越来越远答案:D5.忽略空气阻力,下列几种运动中满足机械能守恒的是( )A.物体沿斜面匀速下滑 B.物体自由下落的运动C.电梯匀速下降 D.子弹射穿木块的运动答案:B6.人造地球卫星中的物体处于失重状态是指物体( )A.不受地球引力作用B.受到的合力为零C.对支持物没有压力D.不受地球引力,也不受卫星对它的引力答案:C7.物体做竖直上抛运动时,下列说法中正确的是( )A.将物体以一定初速度竖直向上抛出,且不计空气阻力,则其运动为竖直上抛运动B.做竖直上抛运动的物体,其加速度与物体重力有关,重力越大的物体,加速度越小C.竖直上抛运动的物体达到最高点时速度为零,加速度为零,处于平衡状态D.竖直上抛运动过程中,其速度和加速度的方向都可改变答案:A8.已知地球的第一宇宙速度为7.9 km/s,第二宇宙速度为11.2 km/s, 则沿圆轨道绕地球运行的人造卫星的运动速度( )A.只需满足大于7.9 km/sC.大于等于7.9 km/s,而小于11.2 km/sD.一定等于7.9 km/s答案:B9.如图甲、乙、丙三种情形表示某物体在恒力F作用下在水平面上发生一段大小相同的位移,则力对物体做功相同的是( )A.甲和乙 B.甲、乙、丙 C.乙和丙 D.甲和丙答案:D10.如图所示,物体P以一定的初速度沿光滑水平面向右运动,与一个右端固定的轻质弹簧相撞,并被弹簧反向弹回.若弹簧在被压缩过程中始终遵守胡克定律,那么在P与弹簧发生相互作用的整个过程中( )A.P做匀变速直线运动B.P的加速度大小不变,但方向改变一次C.P的加速度大小不断改变,当加速度数值最大时,速度最小D.有一段过程,P的加速度逐渐增大,速度也逐渐增大答案:C二、双项选择题(本题共6小题,每题5分,共30分.在每小题给出的四个选项中有两个选项正确,全部选对得6分,漏选得3分,错选或不选得0分.)11.关于质点做匀速圆周运动,下列说法中正确的是( )A.质点的速度不变 B.质点的周期不变C.质点的角速度不变 D.质点的向心加速度不变答案:BC12.对下列四幅图的描述正确的是( )A.图A可能是匀速圆周运动的速度大小与时间变化的关系图象B.图B可能是竖直上抛运动的上升阶段速度随时间变化的关系图象C.图C可能是平抛运动的竖直方向加速度随时间变化的关系图象D.图D可能是匀速圆周运动的向心力大小随时间变化的关系图象答案:BD13.关于同步地球卫星,下列说法中正确的是( )A.同步地球卫星可以在北京上空B.同步地球卫星到地心的距离为一定的C.同步地球卫星的周期等于地球的自转周期D.同步地球卫星的线速度不变答案:BC14.三颗人造地球卫星A、B、C在地球的大气层外沿如图所示的轨道做匀速圆周运动,已知m A=m B>m C,则三个卫星( )A.线速度大小的关系是v A>v B=v CB.周期关系是T A<T B=T CC.向心力大小的关系是F A>F B=F CD.向心加速度大小的关系是a A>a B>a C答案:AB15.如右图所示,一轻弹簧一端固定于O点,另一端系一重物,将重物从与悬点O在同一水平面且弹簧保持原长的A点无初速度释放,让它自由摆下.不计空气阻力,则在重物由A点摆向最低点B的过程中( ) A.弹簧与重物的总机械能守恒 B.弹簧的弹性势能增加C.重物的机械能不变 D.重物的机械能增加答案:AB三、非选择题(本大题3小题,共40分.按题目要求作答.解答题应写出必要的文字说明、方程式和重要演算步骤.只写出最后答案的不能得分.有数值计算的题,答案中必须明确写出数值和单位.) 16.(11分)在“验证机械能守恒定律”的实验中,打点计时器所用电源频率为50 Hz,当地重力加速度的值为9.80 m/s2,测得所用重物的质量为1.00 kg.若按实验要求正确地选出纸带进行测量,量得连续三点A、B、C到第一个点的距离如图所示(相邻计数点时间间隔为0.02 s),那么:(1)纸带的______端与重物相连;(2)打点计时器打下计数点B时,物体的速度v B=________;(3)从起点O到打下计数点B的过程中重力势能减少量是ΔE p=________,此过程中物体动能的增加量ΔE k=________(取g=9.8 m/s2);(4)通过计算,数值上ΔE p____ΔE k(填“>”“=”或“<”),这是因为________________________________________________________________________;(5)实验的结论是______________________________________________________.解析:(1)重物在开始下落时速度较慢,在纸带上打的点较密,越往后,物体下落得越快,纸带上的点越稀.所以,纸带上靠近重物的一端的点较密,因此纸带的左端与重物相连.(2)v B =OC -OA2T=0.98 m/s.(3)ΔE p =mg×OB =0.49 J ,ΔE k =12mv B 2=0.48 J.(4)ΔE p >ΔE k ,这是因为实验中有阻力. (5)在实验误差允许范围内,机械能守恒.答案:(1)左 (2)0.98 m/s (3)0.49 J 0.48 J (4)> 这是因为实验中有阻力 (5)在实验误差允许范围内,机械能守恒17.(4分)如图所示,将轻弹簧放在光滑的水平轨道上,一端与轨道的A 端固定在一起,另一端正好在轨道的B 端处,轨道固定在水平桌面的边缘上,桌边悬一重锤.利用该装置可以找出弹簧压缩时具有的弹性势能与压缩量之间的关系.(1)为完成实验,还需下列那些器材_ _______.A .秒表B .刻度尺C .白纸D .复写纸E .小球F .天平(2)某同学在上述探究弹簧弹性势能与弹簧压缩量的关系的实验中,得到弹簧压缩量x 和对应的小球离开桌面后的水平位移s的一些数据如下表,则由此可以得到的实验结论是________________________________________________________________________.实验次序 1 2 3 4 x/cm 2.00 3.00 4.00 5.00 s/cm10.2015.1420.1025.30答案:(1)BCDE (2)弹簧的弹性势能与弹簧压缩量的平方成正比18.(8分)如图一辆质量为500 kg的汽车静止在一座半径为50 m的圆弧形拱桥顶部.(取g=10 m/s2)(1)此时汽车对圆弧形拱桥的压力是多大?(2)如果汽车以6 m/s的速度经过拱桥的顶部,则汽车对圆弧形拱桥的压力是多大?(3)汽车以多大速度通过拱桥的顶部时,汽车对圆弧形拱桥的压力恰好为零?解析:(1)汽车受重力G和拱桥的支持力F,二力平衡,故F=G=5 000 N根据牛顿第三定律,汽车对拱桥的压力为5 000 N.(2)汽车受重力G和拱桥的支持力F,根据牛顿第二定律有G-F=m v2r故F=G-mv2r=4 000 N根据牛顿第三定律,汽车对拱桥的压力为4 000 N.(3)汽车只受重力GG=m v2 rv=gr=10 5 m/s.答案:见解析19.(8分)要求摩托车由静止开始在尽量短的时间内走完一段直道,然后驶入一段半圆形的弯道,但在弯道上行驶时车速不能太快,以免因离心作用而偏出车道.求摩托车在直道上行驶所用的最短时间.有关数据见表格.某同学是这样解的:要使摩托车所用时间最短,应先由静止加速到最大速度 v1=40 m/s,然后再减速到v2=20 m/s,t1=v1a1;t2=(v1-v2)a2;t=t1+t2.你认为这位同学的解法是否合理?若合理,请完成计算;若不合理,请说明理由,并用你自己的方法算出正确结果.启动加速度a1 4 m/s2制动加速度a28 m/s2直道最大速度v140 m/s弯道最大速度v220 m/s直道长度s 218 m解析:①不合理②理由:因为按这位同学的解法可得t 1=v 1a 1=10s ,t 2=(v 1-v 2)a 2=2.5s总位移x =v 12t 1+v 1+v 22t 2=275m>s.③由上可知摩托车不能达到最大速度v 2,设满足条件的最大速度为v ,则v 22a 1+v 2-v 222a 2=218.解得v =36m/s ,这样加速时间t 1=v a 1=9 s ,减速时间t 2=(v 1-v 2)a 2=2 s ,因此所用的最短时间t =t 1+t 2=11 s.答案:见解析20.(9分)如下图所示,质量m =60 kg 的高山滑雪运动员,从A 点由静止开始沿雪道滑下,从B 点水平飞出后又落在与水平面成倾角θ=37°的斜坡上C 点.已知AB 两点间的高度差为h =25 m ,B 、C 两点间的距离为s =75 m ,(g 取10 m/s 2,cos 37°=0.8,sin 37°=0.6),求:(1)运动员从B 点飞出时的速度v B 的大小. (2)运动员从A 到B 过程中克服摩擦力所做的功.解析:(1)设由B 到C 平抛运动的时间为t 竖直方向: h BC =ssin 37° h BC =12gt 2水平方向: scos 37°=v B t 代入数据,解得: v B =20 m/s.(2)A 到B 过程由动能定理有 mgh AB +W f =12mv B 2-0代入数据,解得W f =-3 000 J所以运动员克服摩擦力所做的功为3 000 J. 答案:见解析。
模块综合检测(二)(测试时间:60分钟 分值100分)一、单项选择题(本题共7小题,每小题4分,共28分.在每小题给出的四个选项中,只有一个选项符合题目要求)1.下列情况中所研究的物体(题中加点的)可看成质点的是( )A .天文学家研究地球的自转B .用GPS 确定远洋海轮在大海中的位置C .教练员对短跑运动员的起跑动作进行指导D .在国际大赛中,乒乓球运动员王浩准备接对手发出的旋转球解析:物体的大小、形状对所研究问题的影响可以忽略不计时,可视物体为质点.如地球虽然很大,但地球绕太阳公转时,地球的大小就变成次要因素;我们完全可以把地球当作质点看待.当然,在研究地球的自转时,就不能把地球看成质点了.同样,准备接对手发出的旋转球时也不能把旋转的乒乓球看成质点.又如看一个同学的跑动速度时,可以把人看成质点,但对他的起跑动作进行指导时,就不能看成质点.答案:B2.下列说法中正确的是( )A .伽利略认为重的物体下落比较快B .牛顿发现并总结了弹簧弹力与伸长量的关系C .牛顿第一定律也称为惯性定律D .速度表达式v =表示的是t 时刻的瞬时速度s t答案:C3.张明同学双手握住竖直竹竿匀速攀上和匀速滑下的过程中,张明受到的摩擦力分别为f1和f2,那么( )A.f1和f2都是静摩擦力B.f1和f2都是滑动摩擦力C.f1方向竖直向下,f2方向竖直向上,且f1=f2D.f1方向竖直向上,f2方向竖直向上,且f1=f2解析:匀速向上攀时,双手受向上的静摩擦力,匀速下滑时,双手受向上的滑动摩擦力,它们都等于重力.选D.答案:D4.如图所示,有两条质量相等的有蓬小船,用绳子连接(绳子质量忽略不计),其中一条船内有人在拉绳子,如果水的阻力不计,下列判断中正确的是( )A.绳子两端的拉力不等,跟有人的船连接的一端拉力大B.根据两船运动的快慢,运动快的船里肯定有人,因为是他用力,船才运动的C.运动慢的船里肯定有人,因为绳子对两条船的拉力是相等的,但有人的船连同人的总质量大,所以加速度小D.无法判断解析:注意物体处于静止状态或运动状态及物体运动快还是运动慢,牛顿第三定律均成立.根据牛顿第二定律可知,在作用力相等时加速度与质量成反比.故选项C正确.答案:C5.如图所示,在探究摩擦力的实验中,测力计与水平桌面平行,拉力从零逐渐增大,拉力为8 N时,木块不动;拉力为12 N时,木块恰好被拉动;木块匀速运动时拉力为10 N.木块与桌面间的滑动摩擦力和最大静摩擦力分别是( )A.12 N,8 N B.12 N,10 NC.10 N,12 N D.10 N,8 N答案:C6.随着居民生活水平的提高,家庭轿车越来越多,行车安全就越显得重要.在行车过程中规定必须要使用安全带.假设某次急刹车时,由于安全带的作用,使质量为70 kg的乘员具有的加速度大小约为6 m/s2,此时安全带对乘员的作用力最接近( ) A.100 N B.400 NC.800 N D.1 000 N解析:刹车过程安全带对乘员的作用力F可近似看作合外力,根据牛顿第二定律F=ma=70×6 N=420 N,选择B.答案:B7.某时刻,物体甲受到的合力是10 N,加速度为2 m/s2,速度是10 m/s;物体乙受到的合力是8 N,加速度也是2 m/s2,但速度是20 m/s,则( )A.甲比乙的惯性小B.甲比乙的惯性大C.甲和乙的惯性一样大D.无法判定哪个物体惯性大解析:由牛顿第二定律F =ma ,得m 甲==kg =5 F 甲a 甲102kg ,m 乙== kg =4 kg ,物体的惯性只与其质量有关,与速度F 乙a 乙82无关,m 甲>m 乙,所以B 正确.答案:B二、多项选择题(本题共5小题,每小题4分,共20分.在每小题给出的四个选项中有多项符合题目要求,全部选对得4分,漏选得3分,错选或不选得0分)8.跳高运动员从地面起跳的瞬间,下列说法中正确的是( )A .运动员对地面的压力大于运动员受到的重力B .地面对运动员的支持力大于运动员受到的重力C .地面对运动员的支持力大于运动员对地面的压力D .运动员对地面的压力大小等于运动员受到的重力解析:运动员起跳时,所受的重力和支持力的合力向上,支持力大于重力;支持力和压力是作用力和反作用力的关系,等大反向.答案:AB9.升降机地板上水平放置一完好的盘秤,现往盘秤上放一质量为m 的物体,当秤的示数为0.8mg 时,升降机可能做的运动是( )A .加速上升B .减速下降C .减速上升D .加速下降解析:超重、失重现象是由于物体做竖直方向的变速运动时产生的“视重”发生变化,当物体具有向下的加速度,处于失重状态,所以升降机减速上升或加速下降过程,盘秤的计数会减小.答案:CD10.一物体做竖直上抛运动(不计空气阻力),初速度为30 m/s ,当它位移大小为25 m 时,经历时间为(g 取10 m/s 2)( )A .1 sB .2 sC .5 sD .3 s解析:由s =v 0t +at 2知:当s =25 m 时,t 1=5 s ,t 2=1 s ,当12s =-25 m 时,t 3=6.7 s ,A 、C 正确.答案:AC11.如图所示,车内绳AB 与绳BC 拴住一小球,BC 水平,车由原来的静止状态变为向右加速直线运动,小球仍处于图中所示的位置,则( )A .AB 绳拉力F T1不变,BC 绳拉力F T2变大B .AB 绳拉力F T1变大,BC 绳拉力F T2变小C .AB 绳拉力F T1变大,BC 绳拉力F T2不变D .AB 绳拉力F T1不变,BC 绳拉力F T2的大小为(F T1sin θ+ma )解析:受力分析如图所示,由F T1cos θ=mg 可知F T1不变;由F T2-F T1sin θ=ma 可知F T2=F T1sin θ+ma.答案:AD12.在光滑水平面上有一物块受水平恒力F 的作用而运动,在其正前方固定一个足够长的轻质弹簧,如图所示,在物块与弹簧接触后,将弹簧压缩到最短的过程中,下列说法正确的是( )A.物块接触弹簧后立即做减速运动B.物块接触弹簧后先加速后减速C.当弹簧处于压缩量最大时,物块的加速度不等于零D.当弹簧的弹力等于F时,物块速度最大解析:设物块压缩弹簧后某瞬间的弹力为f,根据牛顿定律得,F-f=ma,开始时F比f大,a与运动方向相同,做加速运动,当F与f相等时,加速度为零,物块有初速度,继续向右运动而压缩弹簧,弹力增大,合力增大,加速度也增大,但加速度方向与运动方向相反,做减速运动,当弹簧的弹力等于F时,速度最大.答案:BCD三、非选择题(本大题5小题,共52分.按题目要求作答.解答题应写出必要的文字说明、方程式和重要演算步骤.只写出最后答案的不能得分.有数值计算的题,答案中必须明确写出数值和单位)13.(6分)在“验证力的平行四边形定则”的实验中的三个实验步骤如下:(1)在水平放置的木板上固定一张白纸,把橡皮筋的一端固定在木板上,另一端拴两根细绳套,通过细绳套同时用两个弹簧测力计互成角度地拉橡皮筋,使它与细绳套的结点到达某一位置O点,在白纸上记下O点的位置和两个弹簧测力计的示数F1和F2.(2)在白纸上根据F1和F2的大小,应用平行四边形定则作图求出合力F.(3)只用一个弹簧测力计通过细绳套拉橡皮筋,使它的伸长量与用两个弹簧测力计拉时相同,记下此时弹簧测力计的示数F ′和细绳套的方向.以上三个步骤中均有错误或疏漏,请指出错在哪里.(1)中________________________________________________.(2)中________________________________________________.(3)中________________________________________________.答案:(1)中还应记下两细绳套的方向(2)中根据F 1和F 2的大小及方向(3)中用一个弹簧测力计通过细绳套拉橡皮筋,使它的结点也到O 点14.(8分)用斜面、小车、砝码等器材探究a 、m 、F 三者关系的实验中,如图所示为实验中一条打点的纸带,相邻计数点的时间间隔为T ,且间距s 1、s 2、s 3、……、s 6已量出.(1)写出几种加速度的表达式.(2)图甲是A 同学根据测量数据画出的aF 图线,试简析实验中存在的问题;(3)B 、C 同学用同一实验装置进行探究实验,画出了各自得到的a-F 图象,如图乙所示.说明两位同学做实验时的哪一个物理量取值不同,并比较其大小.答案:(1)a =;a =,s 2-s 1T 2s 4-s 13T 2a =.(s 6+s 5+s 4)-(s 3+s 2+s 1)9T 2(2)由图象可以看出,当F ≤F 0时,小车的加速度a =0,可能是没有平衡摩擦力或平衡摩擦力不够,当托盘及砝码的总质量比较小时,小车不动.(3)由图象可知,小车的质量不同,当F 相同时,a B >a C ,说明C 车的质量大于B 车的质量.15.(10分)飞机着陆后以6 m/s 2的加速度做匀减速直线运动,若其着陆时速度为60 m/s ,求它着陆后12 s 内滑行的距离.解析:飞机着陆后做匀减速运动,飞机最终会停下,此时速度为零,由加速度定义式可知,t == s =10 s.v 0a 606由位移公式得:s =v 0t -at 2=60×10 m -×6×102 m =300 m ;飞机运动10 s 1212已停下,所以12 s 的位移等于10 s 的位移,因此飞机12 s 的位移等于300 m.答案:300 m16. (14分)如图所示,升降机中的斜面和竖直墙壁之间放一个质量为10 kg 的光滑小球,斜面倾角θ=30°,当升降机以a =5 m/s 2的加速度加速竖直上升时(g =10 m/s 2),求:(1)小球对斜面的压力大小;(2)小球对竖直墙壁的压力大小.解析:小球受力如图所示:水平方向上:F2sin θ=F1,竖直方向上:F2cos θ-mg=ma,将数据代入以上两式求得:33F 1=50 N;F2=100 N.由牛顿第三定律知,小球对斜面和竖直墙的压力大小分别为33100 N,50 N.33答案:(1)100 N (2)50 N17.(14分)在研究摩擦力特点的实验中,将木块放在水平长木板上,如图甲所示,用力沿水平方向拉木块,拉力从0开始逐渐增大.分别用力传感器采集拉力和木块所受到的摩擦力,并用计算机绘制出摩擦力f随拉力F的变化图象,如图乙所示.已知木块质量为0.78 kg(g取10 m/s2,sin 37°=0.6,cos 37°=0.8).图甲 图乙 图丙(1)求木块与长木板间的动摩擦因数;(2)若木块在与水平方向成37°角斜向右上方的恒定拉力F作用下,以a=2.0 m/s2的加速度从静止开始在长木板上做匀变速直线运动,如图丙所示,拉力大小应为多大?解析:(1)由题图乙可知,木块所受的滑动摩擦力f=3.12 N.由f =μF N =μmg ,得μ===0.4.f mg 3.12 N0.78×10 N (2)物体受重力mg 、支持力F N 、摩擦力f 、拉力F 作用,如图所示,将F 沿水平和竖直两个方向分解,根据牛顿第二定律,得F cos θ-f =ma ,F N +F sin θ=mg ,又f =μF N ,联立各式,解得F =4.5 N.答案:(1)0.4 (2)4.5 N。
物理·必修2(人教版)模块综合检测卷( 考试时间:90 分钟分值:100 分)一、单项选择题( 本题共10 小题,每题 3 分,共30 分.在每小题给出的四个选项中,只有一个选项正确.) 1.发现万有引力定律的科学家是( )A.开普勒 B .牛顿C.卡文迪许 D .爱因斯坦答案:B2.经典力学适用于解决( )A.宏观高速问题 B .微观低速问题C.宏观低速问题 D .微观高速问题答案:C3.关于向心加速度的物理意义,下列说法中正确的是( )A.描述线速度的大小变化的快慢B.描述线速度的方向变化的快慢C.描述角速度变化的快慢D.描述向心力变化的快慢答案:B4.当质点做匀速圆周运动时,如果外界提供的合力小于质点需要的向心力了,则( )A.质点一定在圆周轨道上运动B.质点一定向心运动,离圆心越来越近C.质点一定做匀速直线运动D.质点一定离心运动,离圆心越来越远答案:D5.忽略空气阻力,下列几种运动中满足机械能守恒的是( )A.物体沿斜面匀速下滑 B .物体自由下落的运动C.电梯匀速下降 D .子弹射穿木块的运动答案:B6.人造地球卫星中的物体处于失重状态是指物体( )A.不受地球引力作用B.受到的合力为零C.对支持物没有压力D.不受地球引力,也不受卫星对它的引力答案:C7.物体做竖直上抛运动时,下列说法中正确的是( )A.将物体以一定初速度竖直向上抛出,且不计空气阻力,则其运动为竖直上抛运动B.做竖直上抛运动的物体,其加速度与物体重力有关,重力越大的物体,加速度越小C.竖直上抛运动的物体达到最高点时速度为零,加速度为零,处于平衡状态D.竖直上抛运动过程中,其速度和加速度的方向都可改变答案:A8.已知地球的第一宇宙速度为7.9 km/s ,第二宇宙速度为11.2 km/s, 则沿圆轨道绕地球运行的人造卫星的运动速度( )A.只需满足大于7.9 km/sB.小于等于7.9 km/sC.大于等于7.9 km/s ,而小于11.2 km/sD.一定等于7.9 km/s答案:B9.如图甲、乙、丙三种情形表示某物体在恒力 F 作用下在水平面上发生一段大小相同的位移,则力对物体做功相同的是( )A.甲和乙 B .甲、乙、丙 C .乙和丙 D .甲和丙答案:D10.如图所示,物体P 以一定的初速度沿光滑水平面向右运动,与一个右端固定的轻质弹簧相撞,并被弹簧反向弹回.若弹簧在被压缩过程中始终遵守胡克定律,那么在P 与弹簧发生相互作用的整个过程中( )A.P 做匀变速直线运动B.P 的加速度大小不变,但方向改变一次C.P 的加速度大小不断改变,当加速度数值最大时,速度最小D.有一段过程,P 的加速度逐渐增大,速度也逐渐增大答案:C二、双项选择题( 本题共 6 小题,每题 5 分,共30 分.在每小题给出的四个选项中有两个选项正确,全部选对得 6 分,漏选得 3 分,错选或不选得0 分.)11.关于质点做匀速圆周运动,下列说法中正确的是( )A.质点的速度不变 B .质点的周期不变[:C.质点的角速度不变 D .质点的向心加速度不变答案:BC12.对下列四幅图的描述正确的是( )A.图A可能是匀速圆周运动的速度大小与时间变化的关系图象B.图B可能是竖直上抛运动的上升阶段速度随时间变化的关系图象C.图C可能是平抛运动的竖直方向加速度随时间变化的关系图象D.图D可能是匀速圆周运动的向心力大小随时间变化的关系图象答案:BD13.关于同步地球卫星,下列说法中正确的是( )A.同步地球卫星可以在北京上空B.同步地球卫星到地心的距离为一定的C.同步地球卫星的周期等于地球的自转周期[:D.同步地球卫星的线速度不变答案:BC14.三颗人造地球卫星A、B、C 在地球的大气层外沿如图所示的轨道做匀速圆周运动,已知m A=m B>m C,则三个卫星( )A.线速度大小的关系是v A>v B=v CB.周期关系是T A<T B=T CC.向心力大小的关系是F A>F B=F CD.向心加速度大小的关系是a A>a B>a C答案:AB15.如右图所示,一轻弹簧一端固定于O点,另一端系一重物,将重物从与悬点O 在同一水平面且弹簧保持原长的 A 点无初速度释放,让它自由摆下.不计空气阻力,则在重物由 A 点摆向最低点 B 的过程中( ) A.弹簧与重物的总机械能守恒 B .弹簧的弹性势能增加C.重物的机械能不变 D .重物的机械能增加答案:AB三、非选择题( 本大题 3 小题,共40 分.按题目要求作答.解答题应写出必要的文字说明、方程式和重要演算步骤.只写出最后答案的不能得分.有数值计算的题,答案中必须明确写出数值和单位.) 16.(11 分) 在“验证机械能守恒定律”的实验中,打点计时器所用电源频率为50 Hz,当地重力加速度的值为9.80 m/s 2 ,测得所用重物的质量为 1.00 kg.若按实验要求正确地选出纸带进行测量,量得连续三点A、B、C到第一个点的距离如图所示( 相邻计数点时间间隔为0.02 s) ,那么:(1) 纸带的______端与重物相连;(2) 打点计时器打下计数点 B 时,物体的速度v B=________;(3) 从起点O到打下计数点 B 的过程中重力势能减少量是ΔE p=________,此过程中物体动能的增加量ΔE k =________( 取g=9.8 m/s 2) ;(4) 通过计算,数值上ΔE p____ΔE k( 填“>”“=”或“<”) ,这是因为________________________________________________________________________ ;(5) 实验的结论是________________________ ______________________________ .解析:(1) 重物在开始下落时速度较慢,在纸带上打的点较密,越往后,物体下落得越快,纸带上的点越稀.所以,纸带上靠近重物的一端的点较密,因此纸带的左端与重物相连.OC-OA(2)v B==0.98 m/s.2T(3) ΔE p=mg×OB=0.49 J ,ΔE k =122mv B =0.48 J.(4) ΔE p>ΔE k,这是因为实验中有阻力.(5) 在实验误差允许范围内,机械能守恒.答案:(1) 左(2)0.98 m/s (3)0.49 J 0.48 J (4) >这是因为实验中有阻力(5) 在实验误差允许范围内,机械能守恒17.(4 分) 如图所示,将轻弹簧放在光滑的水平轨道上,一端与轨道的 A 端固定在一起,另一端正好在轨道的 B 端处,轨道固定在水平桌面的边缘上,桌边悬一重锤.利用该装置可以找出弹簧压缩时具有的弹性势能与压缩量之间的关系.(1) 为完成实验,还需下列那些器材?________.A.秒表B.刻度尺C.白纸D.复写纸E.小球F.天平(2) 某同学在上述探究弹簧弹性势能与弹簧压缩量的关系的实验中,得到弹簧压缩量x 和对应的小球离开桌面后的水平位移s 的一些数据如下表,则由此可以得到的实验结论是________________________________________________________________________.实验次序 1 2 3 4x/cm 2.00 3.00 4.00 5.00s/cm 10.20 15.14 20.10 25.30答案:(1)BCDE (2) 弹簧的弹性势能与弹簧压缩量的平方成正比16.(8 分) 如图一辆质量为500 kg 的汽车静止在一座半径为50 m 的圆弧形拱桥顶部.( 取g=10 m/s 2)(1) 此时汽车对圆弧形拱桥的压力是多大?(2) 如果汽车以 6 m/s 的速度经过拱桥的顶部,则汽车对圆弧形拱桥的压力是多大?(3) 汽车以多大速度通过拱桥的顶部时,汽车对圆弧形拱桥的压力恰好为零?解析:(1) 汽车受重力G和拱桥的支持力F,二力平衡,故F=G=5 000 N根据牛顿第三定律,汽车对拱桥的压力为 5 000 N.[:(2) 汽车受重力G和拱桥的支持力F,根据牛顿第二定律有2v G-F=mr2v故F=G-m =4 000 Nr根据牛顿第三定律,汽车对拱桥的压力为 4 000 N.(3) 汽车只受重力G2vG=mrv=gr =10 5 m/s.答案:见解析19.(8 分) 要求摩托车由静止开始在尽量短的时间内走完一段直道,然后驶入一段半圆形的弯道,但在弯道上行驶时车速不能太快,以免因离心作用而偏出车道.求摩托车在直道上行驶所用的最短时间.有关数据见表格.某同学是这样解的:要使摩托车所用时间最短,应先由静止加速到最大速度v 1=40 m/s ,然后再减速到v 2=20 m/s ,t 1=v1a1;t 2=(v1-v2);t =t 1+t 2. 你认为这位同学的解法是否合理?若合理,请完成计算;若不合a2理,请说明理由,并用你自己的方法算出正确结果.2 启动加速度a1 4 m/s2制动加速度a2 8 m/s直道最大速度v1 40 m/s弯道最大速度v2 20 m/s直道长度s 218 m 解析:①不合理②理由:因为按这位同学的解法可得t 1=v1a1=10s,t 2=(v1-v2)=2.5sa2总位移x=v12t 1+v1+v2t 2=275m>s.22v③由上可知摩托车不能达到最大速度v2,设满足条件的最大速度为v,则+2a12 2v -v 2=218. 解得v=36 m/s,2a2这样加速时间t 1=v=9 s ,减速时间t 2=a1(v1-v2)=2 s ,因此所用的最短时间t =t 1+t 2=11 s.a2答案:见解析20.(9 分) 如下图所示,质量m=60 kg 的高山滑雪运动员,从 A 点由静止开始沿雪道滑下,从 B 点水平飞出后又落在与水平面成倾角θ=37°的斜坡上C点.已知AB两点间的高度差为h=25 m,B、C两点间的距离为s=75 m,(g 取10 m/s 2 ,cos 37 °=0.8 ,sin 37 °=0.6) ,求:[:(1) 运动员从 B 点飞出时的速度v B的大小.(2) 运动员从 A 到B 过程中克服摩擦力所做的功.解析:(1) 设由 B 到C平抛运动的时间为t竖直方向:h BC=ssin 37 °1h BC=gt22水平方向:scos 37 °=v B t代入数据,解得:v B=20 m/s.(2)A 到B 过程由动能定理有mgh AB+W f =122mv B -0代入数据,解得W f =-3 000 J所以运动员克服摩擦力所做的功为 3 000 J. 答案:见解析。
第四章 电磁感应6互感和自感A 级 抓基础1.关于线圈中的自感电动势的大小,下列说法正确的是( )A .跟通过线圈的电流大小有关B .跟线圈中的电流变化大小有关C .跟线圈中的磁通量大小有关D .跟线圈中的电流变化快慢有关解析:自感电动势也是电磁感应定律的一种特殊情况,磁通量通过自身时,也要产生阻碍其变化的感应电流.根据自感电动势E =n 可知,选项D 正确.ΔIΔt 答案:D2.(多选)关于自感现象,下列说法中正确的是( )A .感应电流不—定和原电流方向相反B .线圈中产生的自感电动势较大,则其自感系数一定较大C .对于同一线圈,当电流变化较快时,线圈中的自感系数也较大D .对于同一线圈,当电流变化较快时,线圈中的自感电动势较大解析:自感电流总是阻碍原电流的变化.当线圈中的电流减小时,自感电动势方向与原电流方向相同;当线圈中的电流增大时,自感电动势方向与原电流方向相反,故A 正确.线圈的自感系数由线圈本身的因素决定,故B 错误.自感电动势的大小跟导体中电流变化的快慢有关,即:E =L ,故C 错误,D 正确.ΔIΔt 答案:AD3.(多选)如图所示的电路中,A 1和A 2是完全相同的灯泡,线圈L 的电阻可以忽略不计,下列说法中正确的是( )A .合上开关S 接通电路时,A 2先亮A 1后亮,最后一样亮B .合上开关S 接通电路时,A 1和A 2始终一样亮C .断开开关S 切断电路时,A 2立即熄灭,A 1过一会熄灭D .断开开关S 切断电路时,A 1和A 2都要过一会才熄灭解析:S 闭合接通电路时,A 2支路中的电流立即达到最大,A 2先亮;由于线圈的自感作用,A 1支路电流增加的慢,A 1后亮.A 1中的电流稳定后,线圈的阻碍作用消失,A 1与A 2并联,亮度一样,故A 正确,B 不正确;S 断开时,L 和A 1、A 2组成串联的闭合回路,A 1和A 2亮度一样,由于L 中产生自感电动势阻碍L 中原电流的消失,使A 1和A 2过一会才熄灭,故D 选项正确.答案:AD4.(多选)如图所示,闭合电路中的螺线管可自由伸缩,螺线管有一定的长度,这时灯泡具有一定的亮度,若将一软铁棒从螺线管左边迅速插入螺线管内,则将看到( )A.灯泡变暗 B.灯泡变亮C.螺线管缩短D.螺线管伸长解析:当软铁棒插入螺线管中,穿过螺线管的磁通量增加,故产生反向的自感电动势,这样电流减小,灯泡变暗,每匝线圈间同向电流作用力减小,故螺线管伸长.答案:AD5.如图所示,L为自感系数较大的线圈,电路稳定后小灯泡正常发光,当断开电路的瞬间会有( )A.灯泡立刻熄灭B.灯泡慢慢熄灭C.闪亮一下后再慢慢熄灭D.闪亮一下后突然熄灭解析:当电路断开时,由于通过线圈的电流从有到无,线圈将产生自感电动势,但由于线圈与灯泡不能构成闭合回路,因此灯泡立刻熄灭.答案:A6.如图所示是测定自感系数很大的线圈L直流电阻的电路,L 两端并联一只电压表,用来测量自感线圈的直流电压,在测量完毕后,将电路解体时应( )A.先断开S1 B.先断开S2C.先拆除电流表D.先拆除电阻R解析:S1断开瞬间,L中产生很大的自感电动势,若此时S2闭合,则可能将电压表烧坏,故应先断开S2.答案:BB级 提能力7.在制作精密电阻时,为了消除使用过程中由于电流变化而引起的自感现象,采用双线并绕的方法,如图所示.其道理是( )A.当电路中的电流变化时,两股导线产生的自感电动势相互抵消B.当电路中的电流变化时,两股导线产生的感应电流相互抵消C.当电路中的电流变化时,两股导线中原电流的磁通量相互抵消D.以上说法都不对解析:由于采用双线并绕的方法,当电流通过时,两股导线中的电流方向是相反的,不管电流怎样变化,任何时刻两股电流总是等大反向的,所产生的磁通量也是等大反向的,故总磁通量等于零,在该线圈中不会产生电磁感应现象,因此消除了自感,选项A、B错误,只有C正确.答案:C8.图中电感线圈L的直流电阻为R L,小灯泡的电阻为R,小量程电流表G1、G2的内阻不计,当开关S闭合且稳定后,电流表G1、G2的指针均偏向右侧(电流表的零刻度在表盘的中央),则当开关S断开时,下列说法中正确的是( )A.G1、G2的指针都立即回到零点B.G1缓慢回到零点,G2立即左偏,然后缓慢回到零点C.G1立即回到零点,G2缓慢回到零点D.G1立即回到零点,G2缓慢回到零点解析:S闭合且稳定时,通过电流表G1、G2两条支路的电流均由左向右.断开S,L中产生自感电动势,由“增反减同”可知,自感电动势E自的方向一定与原电流方向相同,等效电路如图所示.显然,断开S后,在E自的作用下,回路中将继续形成沿顺时针方向的电流,这时流经电流表G2支路的电流方向变为由右向左.由于这段时间内E自是逐渐减小的,故电流也是逐渐减小的.答案:B9.(多选)如图所示的电路中,灯泡L A、L B电阻相同,自感线圈L的电阻跟灯泡相差不大.先接通S,使电路达到稳定,再断开S.对于电流随时间变化的图象,下列正确的是( )解析:S接通时,流过线圈的电流发生变化,线圈中会产生自感电动势,阻碍电流的变化,经过一段时间后,自感作用消失,电路达到稳定,流过灯泡L A的电流如选项B所示;S接通且电路稳定时,流过灯泡L B的电流大于流过灯泡L A的电流,方向是从左到右,当S断开时,线圈L产生自感电动势,并与灯泡L B组成回路,产生自感电流,使流过灯泡L B的电流反向,并突然减小,从断开前流过线圈的电流大小开始逐渐减小到零,选项D正确.答案:BD10.如图所示的电路,线圈L的电阻不计,则( )A.S闭合瞬间,A板带正电,B板带负电B.S保持闭合,A板带正电,B板带负电C.S断开瞬间,A板带正电,B板带负电D.由于线圈电阻不计.电容器被短路,上述三种情况下两板都不带电解析:S闭合瞬间,由于通过电感线圈的电流为零,电容器被充电,A板带正电,B板带负电;S保持闭合,电容器被短路,不带电;S断开瞬间,线圈产生自感电动势,给电容器充电.根据电流方向判断,A板带负电,B板带正电.答案:A11.如图所示,设电源的电动势为E =10 V ,内阻不计,L 与R 的电阻值均为5 Ω,两灯泡的电阻值为R S =10 Ω.(1)求断开S 的瞬间,灯泡L 1两端的电压;(2)画出断开S 前后一段时间内通过L 1的电流随时间的变化规律.解析:(1)电路稳定工作时,由于a 、b 两点的电势相等.导线ab 上无电流通过,因此通过L 的电流为:I L == A =1 A ,E 2R 1010流过L 1的电流为I S == A =0.5 A ,E 2R S 1020断开S 的瞬间,由于线圈要想维持I L 不变,而与L 1组成闭合回路,因此通过L 1的最大电流为1A ,所以此时L 1两端的电压U =I L ·R S =10 V(正常工作时为5 V).(2)断开S 前,流过L 1的电流为0.5 A 不变,而断开S 的瞬间,通过L 1的电流突变为1 A ,而方向也发生变化,然后渐渐减小到零,所以它的图象如图所示(t 0为断开S 的时刻).注:从t 0开始,电流持续的时间实际上一般是很短的.。
物理·必修2(人教版)章末过关检测卷(三)第七章机械能守恒定律(考试时间:90分钟分值:100分)一、单项选择题(本题共6小题,每题4分,共24分.在每小题给出的四个选项中,只有一个选项正确.)1.若物体在运动过程中受到的合外力不为零,则( )A.物体的动能不可能总是不变的B.物体的加速度一定变化C.物体的速度方向一定变化D.物体所受合外力做的功可能为零解析:物体做匀速圆周运动时合外力不为零,但合外力做的功为零,动能不变,A错,D对;合外力不为零,物体的加速度一定不为零,是否变化不能断定,B错;合外力不为零,物体的速度方向可能变化,也可能不变,C错.答案:D2.关于做功和物体动能变化的关系,不正确的是( )A.只有动力对物体做功,物体的动能增加B.只有物体克服阻力做功,它的动能减少C.外力对物体做功的代数和等于物体的末动能与初动能之差D.动力和阻力都对物体做功,物体的动能一定变化解析:只有动力对物体做功,则合力做正功,物体的动能增加,A对,同理B对.外力对物体做功的代数和等于合力对物体做的功,等于物体的动能变化量,C对.动力和阻力都对物体做功时,若做的总功为正值,物体的动能增加;若做的总功为负值,物体的动能减少,D错.故选D.答案:D3.一小石子从高为10 m处自由下落,不计空气阻力,经一段时间后小石子的动能恰等于它的重力势能(以地面为参考平面),g=10 m/s2,则该时刻小石子的速度大小为( )A.5 m/s B.10 m/s C.15 m/s D.20 m/s解析:设小石子的动能等于它的重力势能时速度为v,根据机械能守恒定律得mgh=mgh′+12mv2,由题意知mgh′=12mv 2,所以mgh =mv 2,故v =gh =10 m/s ,B 正确.答案:B4.运动员跳伞将经历加速下降和减速下降两个过程.将人和伞看成一个系统,在这两个过程中,下列说法正确的是( )A .阻力对系统始终做负功B .系统受到的合外力始终向下C .重力做功使系统的重力势能增加D .任意相等的时间内重力做的功相等解析:无论什么情况下,阻力一定做负功,A 对;加速下降时,合力向下,减速下降时,合力向上,B 错;系统下降,重力做正功,所以重力势能减少,C 错;由于系统做变速运动,系统在相等的时间内下落的高度不同,所以在任意相等时间内重力做的功不同,D 错.答案:A5.物体沿直线运动的vt 关系如图所示,已知在第1秒内合外力对物体做的功为W ,则( )A .从第1秒末到第3秒末合外力做功为4 WB .从第3秒末到第5秒末合外力做功为-2 WC .从第5秒末到第7秒末合外力做功为WD .从第3秒末到第4秒末合外力做功为0.75 W解析:由题图知,第1秒末速度、第3秒末速度、第7秒速度大小关系:v 1=v 3=v 7,由题知W =12mv 12-0,则由动能定理知第1秒末到第3秒末合外力做功W 2=12mv 32-12mv 12=0,故A 错.第3秒末到第5秒末合外力做功W 3=0-12mv 32=-W ,故B 错.第5秒末到第7秒末合外力做功W 4=12mv 72-0=W ,故C 正确.第3秒末到第4秒末合外力做功W 5=12mv 42-12mv 32;因v 4=12v 3,所以W 5=-0.75 W .故D 错误.答案:C 6.如图所示,将小球a 从地面以初速度v 0竖直上抛的同时,将另一相同质量的小球b 从距地面h 处由静止释放,两球恰在12h 处相遇(不计空气阻力).则( )A .两球同时落地B .相遇时两球速度大小相等C .从开始运动到相遇,球a 动能的减少量等于球b 动能的增加量D .相遇后的任意时刻,重力对球a 做功的功率和对球b 做功的功率相等解析:相遇时满足12gt 2+v 0t -12gt 2=h ,12gt 2=h 2,所以v 02=gh ,小球b 落地时间t b =2hg,球a 落地时间t a =2v 0g=2hg,故A 错误;相遇时,v b =2g h 2=gh ,v a 2-v 02=-2g h 2,v a =0,所以B 错误;因为两球恰在h 2处相遇,说明重力做功的数值相等,根据动能定理,球a 动能的减少量等于球b 动能的增加量,C 正确;相遇后的任意时刻,球a 的速度始终小于球b 的速度,因此重力对球a 做功的功率小于对球b 做功的功率,D 错误.答案:C二、双项选择题(本题共4小题,每题6分,共24分.在每小题给出的四个选项中有两个选项正确,全部选对得6分,漏选得3分,错选或不选得0分.)7.人们设计出磁悬浮列车,列车能以很大速度行驶.列车的速度很大,是采取了下列哪些可能的措施( ) A .减小列车的质量 B .增大列车的牵引力 C .减小列车所受的阻力 D .增大列车的功率解析:当列车以最大速度行驶时,牵引力与阻力大小相等,有P =F f v ,故v =PF f,要增大速度,一方面增大列车的功率,另一方面减小列车所受的阻力,故C 、D 正确.答案:CD 8.[:质量为m 1、m 2的两物体,静止在光滑的水平面上,质量为m 的人站在m 1上用恒力F 拉绳子,经过一段时间后,两物体的速度大小分别为v 1和v 2,位移分别为s 1和s 2,如图所示.则这段时间内此人所做的功的大小等于( )A .Fs 2B .F(s 1+s 2) C.12m 2v 22+12(m +m 1)v 12 D.12m 2v 22解析:人做的功等于绳子对m 1、m 2做的功之和,即W =Fs 1+Fs 2=F(s 1+s 2),A 错,B 对.根据动能定理知,人做的功等于m 1、m 2动能的增加量,所以W =12(m 1+m)v 12+12m 2v 22,C 对,D 错.答案:BC9.一质量为1 kg 的质点静止于光滑水平面上,从t =0时起,第1 s 内受到2 N 的水平外力作用,第2 s 内受到同方向的1 N 的外力作用.下列判断正确的是( )A .0~2 s 内外力的平均功率是94 WB .第2 s 内外力所做的功是54 JC .第2 s 末外力的瞬时功率最大D .第1 s 内与第2 s 内质点动能增加量的比值是45解析:第1 s 内质点的加速度a 1=2 m/s 2,1 s 末的速度v 1=2×1 m/s =2 m/s ,第2 s 内的加速度a 2=1 m/s 2,第2 s 末的速度v 2=2 m/s +1×1 m/s =3 m/s ,所以第2 s 内外力做的功W 2=12mv 22-12mv 12=2.5 J ,故B 错误;第1 s 末的功率为P 1=2×2 W =4 W ,第2 s 末的功率为P 2=1×3 W =3 W ,故C 错误;0~2 s 内外力的平均功率P -=W t =12mv 22t =94 W ,故A 正确;第1 s 内与第2 s 内质点动能增加量的比值ΔE 1ΔE 2=12mv 12W 2=45,故D 正确.答案:AD10.甲、乙两球的质量相等,悬线一长一短,将两球由图示位置的同一水平面无初速度释放,不计阻力,则对小球过最低点时的正确说法是()A .甲球的动能与乙球的动能相等B .两球受到线的拉力大小相等C .两球的向心加速度大小相等D .两球的机械能不相等解析:由机械能守恒知,相对同一参考面,两球开始的机械能相等,由于运动过程中每个小球的机械能都守恒,所以任意时刻两球相对同一参考平面的机械能相等,D 错.设线长为l ,小球的质量为m ,小球到达最低点时的速度为v ,则mgl =12mv 2①两球经最低点时的动能不同,A 错. F -mg =m v2l②由①②得球过最低点时的拉力大小F =mg +m v 2l =3mg ,B 对.球过最低点时的向心加速度大小a =F -mgm =2g ,C 对.答案:BC三、非选择题(本大题5小题,共52分.按题目要求作答.解答题应写出必要的文字说明、方程式和重要演算步骤.只写出最后答案的不能得分.有数值计算的题,答案中必须明确写出数值和单位.)11.(6分)在“验证机械能守恒定律”的实验中,若重物质量为0.50 kg ,选择好的纸带如图所示,O 、A 之间有几个点未画出.已知相邻两点时间间隔为0.02 s ,长度单位是cm ,g 取9.8 m/s 2.则打点计时器打下点B 时,重物的速度v B =________m/s ;从起点O 到打下点B 的过程中,重物重力势能的减少量ΔE p =________J ,动能的增加量ΔE k =________J .(结果保留三位有效数字)解析:v B =(7.02-3.13)×10-22×0.02 m/s ≈0.973 m/s ,动能的增量ΔE k =12mv B 2=12×0.5×0.9732≈0.237 J重力势能的减少量ΔE p =mgh B =0.5×9.8×4.86×10-2J ≈0.238 J. 答案:0.973 0.238 0.23712.(12分)用如图所示的实验装置验证机械能守恒定律.实验所用的电源为学生电源,输出电压为6 V 的交流电和直流电两种.重物从高处由静止开始下落,重物拖着纸带打出一系列的点,对纸带上的点痕进行测量,即可验证机械能守恒定律.(1)下面列举了该实验的几个操作步骤:A .按照图示的装置安装器件;B .将打点计时器接到电源的“直流输出”上;C .用天平测量出重物的质量;D .释放悬挂纸带的夹子,同时接通电源开关打出一条纸带;E .测量打出的纸带上某些点间的距离;F .根据测量的结果计算重物下落过程中减少的重力势能是否等于增加的动能.其中没有必要进行的或者操作不恰当的步骤是________.(将其选项对应的字母填在横线处)(2)利用这个装置也可以测量重物下落的加速度a 的数值.如图所示,根据打出的纸带,选取纸带上连续的五个点A 、B 、C 、D 、E ,测出A 点距起始点O 的距离为x 0,点A 、C 间的距离为x 1,点C 、E 间的距离为x 2,使用交流电的频率为f ,根据这些条件计算重物下落的加速度a =__________.(3)在上述验证机械能守恒定律的实验中发现,重物减小的重力势能总是大于重物增加的动能,其原因主要是重物下落的过程中存在阻力作用,可以通过该实验装置测定该阻力的大小.若已知当地重力加速度公认的较准确的值是g ,还需要测量的物理量是:____________.试用这些物理量和上图纸带上的数据符号表示出重物在下落的过程中受到的平均阻力为F=________________________________________________________________________.解析:(1)因本实验中是通过比较重物的重力势能减小量mgh n 和动能12mv n 2增加量的大小来达到验证的目的,对于同一个研究对象(重物)来说,质量是一定的,故只需比较gh n 和12v n 2就能达到目的,选项C 是没必要的.选项B 、D 是错误的,应将打点计时器接到电源的“交流输出”上;释放悬挂纸带的夹子,先接通电源开关再释放一条纸带.(2)因Δx =aT 2,所以a =Δx (2T )2=(x 2-x 1)f24. (3)由牛顿第二定律得平均阻力F =mg -ma ,所以应测量重物的质量m ,代入加速度得F =m ⎣⎢⎡⎦⎥⎤g -(x 2-x 1)f 24或由动能定理得:mg(x 0+x 1)-F(x 0+x 1)=12mv C 2又因为v C =x 1+x 24T ,由以上两式得F =m ⎣⎢⎡⎦⎥⎤g -(x 1+x 2)2f 232(x 0+x 1).答案:(1)BCD (2)(x 2-x 1)f24(3)重物的质量mm ⎣⎢⎡⎦⎥⎤g -(x 2-x 1)f 24或m ⎣⎢⎡⎦⎥⎤g -(x 1+x 2)2f 232(x 0+x 1) 点评:解答实验题时,首先应弄清实验原理和误差,然后针对具体题目进行全面分析.只有从原理上着手,问题的解答才有依据,绝不能死记实验步骤和注意事项.[:13.(10分)一列车的质量是5.0×105kg ,在平直的轨道上以额定功率3 000 kW 加速行驶,当速度由10 m/s 加速到所能达到的最大速率30 m/s 时,共用了2 min ,则在这段时间内列车前进的距离是多少?解析:设列车在2 mi n 内前进的距离为l ,已知m =5.0×105kg ,P =3 000 kW ,v =10 m/s ,v ′=30 m/s ,t =2 min ,由于P =Fv ,列车速度最大时,a =0,所以阻力F f =F ,则F f =P v ′=3×10630 N =1.0×105N ,牵引力做功W =Pt =3×106×60×2 J =3.6×108 J ,由动能定理知W -F f l =12mv ′2-12mv 2,代入数据求得l =1.6 km.答案:1.6 km14.(12分)某校物理兴趣小组决定举行遥控赛车比赛.比赛路径如图所示,赛车从起点A 出发,沿水平直线轨道运动L 后,由B 点进入半径为R 的光滑竖直圆轨道,离开竖直圆轨道后继续在光滑平直轨道上运动到C 点,并能越过壕沟.已知赛车质量m =0.1 kg ,通电后以额定功率P =1.5 W 工作,进入竖直轨道前受到阻力恒为0.3 N ,随后在运动中受到的阻力均可不计.图中L =10.00 m ,R =0.32 m ,h =1.25 m ,x =1.50 m .问:要使赛车完成比赛,电动机至少工作多长时间?(取g =10 m/s 2)解析:设赛车越过壕沟需要的最小速度为v 1,由平抛运动的规律x =v 1t ,h =12gt 2,解得v 1=xg2h=3 m/s ,设赛车恰好通过圆轨道,对应圆轨道最高点的速度为v 2,最低点的速度为v 3,由牛顿第二定律及机械能守恒定律mg =m v 22R,①12mv 32=12mv 22+mg(2R),② 联立①②解得v 3=5gR =4 m/s ,通过分析比较,赛车要完成比赛,在进入圆轨道前的速度最小应该是v min=v 3=v 1=4 m/s ,设电动机工作时间至少为t ,根据功能关系Pt -F f L =12mv min 2由此可得t =2.53 s. 答案:2.53 s15.(12分)如图所示,光滑斜轨和光滑圆轨相连,固定在同一竖直面内,圆轨的半径为R ,一个小球(可视为质点),从离水平面高h 处由静止自由下滑,由斜轨进入圆轨.求:(1)为了使小球在圆轨内运动的过程中始终不脱离圆轨,h 应至少多高?(2)若小球到达圆轨最高点时圆轨对小球的压力大小恰好等于它自身重力大小,那么小球开始下滑时的h 是多大?解析:(1)小球刚好不脱离圆轨,在最高点由牛顿第二定律得mg =m v2R ①小球由斜轨运动至圆轨最高点过程,由动能定理得mg(h -2R)=12mv 2②联立①②解得h =52R故小球在圆轨内运动的过程中始终不脱离圆轨,h 至少为52R.(2)在最高点对小球由牛顿第二定律得F N +mg =m v 12R ③又有F N =mg④小球由斜轨至圆轨最高点过程,由动能定理得 mg(h -2R)=12mv 12⑤联立③④⑤解得h =3R 答案:(1)52R (2)3R。
模块综合检测(一)(测试时间:60分钟分值100分)一、单项选择题(本题共7小题,每小题4分,共28分.在每小题给出的四个选项中,只有一个选项符合题目要求)1.下列说法中正确的是()A.选为参考系的物体一定静止B.质量大、体积大的物体不可以看作质点C.我们早上第一节课是7时30分开始,这个“7时30分”表示一段时间D.力学中的三个基本物理量是:长度、质量、时间解析:参考系可以是运动的物体,也可以是静止的物体,选项A 错误;质量大、体积大的物体同样可以看作质点,例如在研究地球绕太阳公转时可把地球看作质点,选项B错误;我们早上第一节课是7时30分开始,这个“7时30分”表示时刻,选项C错误;力学中的三个基本物理量是:长度、质量、时间,选项D正确.故选D.答案:D2.如图所示,一台电视机在水平桌面上静止,则以下说法中正确的是()A.桌面对电视机支持力的大小等于电视机所受的重力,这两个力是一对平衡力B.电视机所受的重力和桌面对它的支持力是一对作用力与反作用力C.电视机对桌面的压力就是它所受的重力,这两个力是同一种性质的力D.电视机对桌面的压力和桌面对它的支持力是一对平衡力解析:电视机处于静止状态,桌面对它的支持力和它所受的重力的合力为零,是一对平衡力,故A正确,B错误;电视机对桌面的压力和桌面对它的支持力是作用力和反作用力,故D错误;电视机对桌面的压力作用在桌面上,电视机受到的重力作用在电视机上,故不能说它对桌面的压力就是它所受的重力,C错误.答案:A3.下列各图分别表示的是某物体的运动情况或其所受合外力的情况.其中甲图是某物体的位移—时间图象;乙图是某物体的速度—时间图象;丙图表示某物体的加速度—时间图象;丁图表示某物体所受合外力随时间变化的图象.四幅图中的图线都是直线,从这些图象中可判断出一定质量物体的某些运动特征.下列有关说法中不正确的是()甲乙丙丁A.甲物体受合外力为零B.乙物体受到的合外力不变C.丙物体的速度一定越来越大D.丁物体的加速度越来越大解析:由题图象可知,甲是匀速运动,合外力为零,选项A正确;乙、丙都是匀变速运动,则合外力不变,对丙:如果a与v方向反向,速度会越来越小,选项B正确,C错误;丁受的合外力越来越大,则加速度越来越大,选项D正确.此题选择错误的选项,故选C.答案:C4.下面关于速度与加速度关系的描述中,正确的是()A.匀速行驶的磁悬浮列车,由于其速度很大,所以加速度也很大B.加速度是描述物体速度变化快慢的物理量C.加速度不变(且不为零)时,速度也有可能保持不变D.加速度大小逐渐增加时,物体的速度一定增加解析:判断物体速度大小的变化情况,应从物体的加速度方向与速度方向的关系来判断,若加速度与速度同向,速度一定增加,若加速度与速度反向,速度一定减少,C、D错;加速度是描述速度改变快慢的物理量,A错,B对.答案:B5.汽车在水平公路上运动时速度为36 km/h,司机突然以2 m/s2的加速度刹车,则刹车后8 s汽车滑行的距离为()A.16 m B.25 mC.50 m D.144 m解析:汽车刹车的时间t=v0a=102s=5 s,即汽车5 s已停下,所以,刹车距离s=v0t-12at2=⎝⎛⎭⎪⎫10×5-12×2×52m=25 m.答案:B6.如图所示,弹簧秤和细线的重力及一切摩擦不计,物重G=5 N,则弹簧秤A和B的示数分别为()A.5 N,0 B.0,5 NC.10 N,5 N D.5 N,5N解析:根据物体的平衡条件可知,弹簧秤的示数等于一根绳子的拉力大小,即等于物体的重力5 N.答案:D7.如图所示,将质量为m的滑块放在倾角为θ的固定斜面上.滑块与斜面之间的动摩擦因数为μ.若滑块与斜面之间的最大静摩擦力和滑动摩擦力大小相等,重力加速度为g,则()A.将滑块由静止释放,如果μ>tan θ,滑块将下滑B.给滑块沿斜面向下的初速度,如果μ<tan θ,滑块将减速下滑C.用平行于斜面向上的力拉滑块向上匀速滑动,如果μ=tan θ,拉力大小应是2mg sin θD.用平行于斜面向下的力拉滑块向下匀速滑动,如果μ=tan θ,拉力大小应是mg sin θ解析:由μ=tan θ条件可知μmg cos θ=mg sin θ,即滑动摩擦力等于重力沿斜面向下的分力.在沿斜面向上的拉力作用下滑块匀速上滑时,滑块沿斜面方向合力为零,即拉力F拉=mg sin θ+μmg cos θ=2mg sin θ.在沿斜面向下的拉力作用下滑块匀速下滑时,滑块沿斜面方向合力为零,即F拉+mg sin θ=μmg cos θ,所以F拉=0.答案:C二、多项选择题(本题共5小题,每小题5分,共25分.在每小题给出的四个选项中有多项符合题目要求,全部选对得5分,漏选得3分,错选或不选得0分)8.如图所示,竖直放置的轻弹簧一端固定在地面上,另一端与斜面体P连接,P与斜放的固定挡板MN接触且处于静止状态,则斜面体P此刻所受到的外力个数有可能为()A.2个B.3个C.4个D.5个解析:若弹簧弹力与重力恰好平衡,则物体虽然与挡板接触也没有作用力,此时只有2个力作用;若弹力大于重力,则物体必受斜向下的弹力作用,此时物体要平衡则必定有摩擦力作用,物体受到4个力作用,选项A、C正确.答案:AC9.甲、乙两车在同一水平道路上,一前一后相距x=4 m,乙车在前,甲车在后,某时刻两车同时开始运动,两车运动的st图象如图所示,则下列表述正确的是()A.乙车做曲线运动,甲车做直线运动B.甲车先做匀减速运动,后做匀速运动C.乙车的速度不断增大D.两车相遇两次解析:由题图可知,两车的运动方向与规定的正方向相反,甲车在前6 s内做匀速运动,以后处于静止状态,B错误;乙车的st图象虽为曲线,但这不是运动轨迹,且图象只能表示正反两个方向的运动,A错误;由于乙车图象的倾斜程度逐渐增大,即其速度逐渐增大,C 正确;在st图象中图线的交点表示两车相遇,故两车相遇两次,D 正确.答案:CD10.a、b两物体从同一位置沿同一直线运动,它们的位移—时间图象如图所示,下列说法正确的是()A.a、b加速时,物体a的加速度大于物体b的加速度B.20秒时,a、b两物体相距最远C.60秒时,物体a在物体b的前方D.40秒时,a、b两物体速度相等,相距900 m答案:CD11.一辆小车在水平面上运动,悬挂的摆球相对小车静止并与竖直方向成θ角,如下图所示,下列说法正确的是()A .小车一定向左做匀加速直线运动B .小车的加速度大小为g tan θ,方向向左C .悬绳的拉力一定大于小球的重力D .小球所受合外力方向一定向左解析:小球只受重力与绳子的拉力作用,其合力水平向左,所以其加速度一定向左,其大小为a =mg tan θm=g tan θ,小球随小车运动,所以小车加速度与小球一样,小车可能向左加速运动或向右减速运动.答案:BCD12.在某地地震发生后的几天,通向灾区的公路非常难行,一辆救灾汽车由静止开始做匀变速直线运动,刚运动了8 s ,由于前方突然有巨石滚在路中央,所以又紧急刹车,经4 s 停在巨石前.则关于汽车的运动情况,下列说法正确的是( )A .加速、减速中的加速度大小之比a 1∶a 2=1∶2B .加速、减速中的加速度大小之比a 1∶a 2=2∶1C .加速、减速中的平均速度之比v 1∶v 2=1∶1D .加速、减速中的位移之比s 1∶s 2=1∶1解析:由a =v -v 0t,可得a 1∶a 2=1∶2,A 正确,B 错误.由v —=v 0+v 2,可得v —1∶v —2=1∶1,C 正确.由s =v — t 知,D 错误. 答案:AC三、非选择题(本大题4小题,共47分.按题目要求作答.解答题应写出必要的文字说明、方程式和重要演算步骤.只写出最后答案的不能得分.有数值计算的题,答案中必须明确写出数值和单位)13.(12分)(1)(多选)如图所示是“探究加速度与力、质量的关系”的实验方案之一,通过位移的测量来代替加速度的测量,即a1 a2=s1s2,用这种替代成立的操作要求是()A.实验前必须先平衡摩擦力B.必须保证两小车的运动时间相等C.两小车都必须从静止开始做匀加速直线运动D.小车所受的水平拉力大小可以认为是砝码(包括小盘)的重力大小(2)某同学在做“探究弹力与弹簧伸长量的关系”的实验.①弹簧自然悬挂,待弹簧________时,长度记为L0;弹簧下端挂上砝码盘时,长度记为L x;在砝码盘中每次增加10 g砝码,弹簧长度依次记为L1至L6,数据如下表所示.是弹簧长度与________(填“L0”或“L x”)的差值.③由图可知弹簧的劲度系数为________ N/m(结果保留两位有效数字,重力加速度取9.8 m/s 2).解析:(1)对于初速度为零的匀加速直线运动,s =12at 2,所以a =2s t 2;当两个初速度为零的匀变速直线运动的物体的运动时间t 相同时,a 1a 2=s 1s 2,故选项B 、C 正确;当桌面对小车有摩擦力时,小车在重物牵引下的运动也是匀变速直线运动,故实验前不需要先平衡摩擦力,A 错;当小车所受的水平拉力大小不等于砝码(包括小盘)的重力大小时,小车也做初速度为零的匀变速直线运动,故选项D 错.(2)①静止 ②L x③k =mg x =50×10-3×9.810×10-2N/m =4.9 N/m. 答案:(1)BC (2)见解析14.(11分)某架飞机起飞滑行时,从静止开始做匀加速直线运动,加速度大小为 4 m/s 2,飞机的滑行速度达到80 m/s 时离开地面升空.如果在飞机达到起飞速度时,突然接到指挥塔的停止起飞的命令,飞行员立即制动飞机,飞机做匀减速直线运动,加速度的大小为 5 m/s 2.求:(1)在匀加速运动阶段,飞机滑行的位移大小;(2)在飞机做匀减速运动直到最后静止阶段,飞机滑行的位移大小;(3)此飞机从起飞到停止共用了多少时间.解析:(1)匀加速运动阶段有:s =v 2t -v 202a; 所以滑行的位移大小为:s 1=802-02×4m =800 m. (2)飞机匀减速到停止的过程,可看作反方向的匀加速运动:s =v 2t -v 202a; 所以滑行的位移大小为:s 2=0-8022×(-5)m =640 m. (3)飞机加速运动时有:t =v t -v 0a; 所以飞机加速运动的时间为:t 1=80-04s =20 s. 飞机减速运动时由逆向思维可得:t =v t -v 0a; 所以飞机减速运动的时间为:t 2=0-80-5s =16 s. 共用时间为:t =t 1+t 2=(20+16)s =36 s.答案:(1)800 m (2)640 m (3)36 s15.(12分)如图所示为小朋友在冰面上用绳子拉着冰车玩耍的情景.已知冰车与冰车上小朋友的总质量为30 kg ,细绳受到的拉力为100 N ,拉力与水平方向的夹角为37°,冰车做匀速直线运动.求(sin 37°=0.6,cos 37°=0.8,g 取10 m/s 2):(1)冰车对地面的压力大小;(2)冰车与地面间的动摩擦因数.解析:(1)研究冰车及小朋友整体F N =mg -F sin 37°,得F N =240 N ;冰车对地面的压力F N ′=F N =240 N.(2)冰车匀速滑动F f =μF N ′,F f =F cos 37°得μ=F f F N ′=80240=13. 答案:(1)240 N (2)1316.(12分)如图所示,小木块在沿斜面向上的恒定外力F作用下,从A点由静止开始做匀加速运动,前进了0.45 m抵达B点时,立即撤去外力.此后小木块又前进0.15 m到达C点,速度为零.已知木块与斜面间的动摩擦因数μ=36,木块质量m=1 kg.(1)木块向上经过B点时速度为多大?(2)木块在AB段所受的外力F多大?(g取10 m/s2)解析:(1)撤去外力后,小木块从B到C做匀减速直线运动,受力分析如右图所示,根据牛顿第二定律,得f+mg sin 30°=ma,F N-mg cos 30°=0,又f=μF N,解得a=g sin 30°+μg cos 30°=7.5 m/s2;由运动学公式,得v2C-v2B=-2as,代入数据,解得v B=2as=2×7.5×0.15 m/s=1.5 m/s.(2)设外加恒力为F,受力分析如下图所示,由牛顿第二定律,得F-mg sin 30°-μF N=ma1,F N=mg cos 30°,则刚开始从A运动到B的加速度a1=Fm-(g sin 30°+μg cos 30°),刚开始是匀加速直线运动,故有v2B=2a1s1,代入数据可求得F=10 N.答案:(1)1.5 m/s(2)10 N。
物理·必修2(人教版)模块综合检测卷(考试时间:90分钟分值:100分)一、单项选择题(本题共10小题,每题3分,共30分.在每小题给出的四个选项中,只有一个选项正确.) 1.发现万有引力定律的科学家是( )A.开普勒 B.牛顿C.卡文迪许 D.爱因斯坦答案:B2.经典力学适用于解决( )A.宏观高速问题 B.微观低速问题C.宏观低速问题 D.微观高速问题答案:C3.关于向心加速度的物理意义,下列说法中正确的是( )A.描述线速度的大小变化的快慢B.描述线速度的方向变化的快慢C.描述角速度变化的快慢D.描述向心力变化的快慢答案:B4.当质点做匀速圆周运动时,如果外界提供的合力小于质点需要的向心力了,则( )A.质点一定在圆周轨道上运动B.质点一定向心运动,离圆心越来越近C.质点一定做匀速直线运动D.质点一定离心运动,离圆心越来越远答案:D5.忽略空气阻力,下列几种运动中满足机械能守恒的是( )A.物体沿斜面匀速下滑 B.物体自由下落的运动C.电梯匀速下降 D.子弹射穿木块的运动答案:B6.人造地球卫星中的物体处于失重状态是指物体( )A.不受地球引力作用B.受到的合力为零C.对支持物没有压力D.不受地球引力,也不受卫星对它的引力答案:C7.物体做竖直上抛运动时,下列说法中正确的是( )A.将物体以一定初速度竖直向上抛出,且不计空气阻力,则其运动为竖直上抛运动B.做竖直上抛运动的物体,其加速度与物体重力有关,重力越大的物体,加速度越小C.竖直上抛运动的物体达到最高点时速度为零,加速度为零,处于平衡状态D.竖直上抛运动过程中,其速度和加速度的方向都可改变答案:A8.已知地球的第一宇宙速度为7.9 km/s,第二宇宙速度为11.2 km/s, 则沿圆轨道绕地球运行的人造卫星的运动速度( )A.只需满足大于7.9 km/sB.小于等于7.9 km/sC.大于等于7.9 km/s,而小于11.2 km/sD.一定等于7.9 km/s答案:B9.如图甲、乙、丙三种情形表示某物体在恒力F作用下在水平面上发生一段大小相同的位移,则力对物体做功相同的是( )A.甲和乙 B.甲、乙、丙 C.乙和丙 D.甲和丙答案:D10.如图所示,物体P以一定的初速度沿光滑水平面向右运动,与一个右端固定的轻质弹簧相撞,并被弹簧反向弹回.若弹簧在被压缩过程中始终遵守胡克定律,那么在P与弹簧发生相互作用的整个过程中( )A.P做匀变速直线运动B.P的加速度大小不变,但方向改变一次C.P的加速度大小不断改变,当加速度数值最大时,速度最小D.有一段过程,P的加速度逐渐增大,速度也逐渐增大答案:C二、双项选择题(本题共6小题,每题5分,共30分.在每小题给出的四个选项中有两个选项正确,全部选对得6分,漏选得3分,错选或不选得0分.)11.关于质点做匀速圆周运动,下列说法中正确的是( )A.质点的速度不变 B.质点的周期不变[:C.质点的角速度不变 D.质点的向心加速度不变答案:BC12.对下列四幅图的描述正确的是( )A.图A可能是匀速圆周运动的速度大小与时间变化的关系图象B.图B可能是竖直上抛运动的上升阶段速度随时间变化的关系图象C.图C可能是平抛运动的竖直方向加速度随时间变化的关系图象D.图D可能是匀速圆周运动的向心力大小随时间变化的关系图象答案:BD13.关于同步地球卫星,下列说法中正确的是( )A.同步地球卫星可以在北京上空B.同步地球卫星到地心的距离为一定的C.同步地球卫星的周期等于地球的自转周期[:D.同步地球卫星的线速度不变答案:BC14.三颗人造地球卫星A、B、C在地球的大气层外沿如图所示的轨道做匀速圆周运动,已知m A=m B>m C,则三个卫星( )A.线速度大小的关系是v A>v B=v CB.周期关系是T A<T B=T CC.向心力大小的关系是F A>F B=F CD.向心加速度大小的关系是a A>a B>a C答案:AB15.如右图所示,一轻弹簧一端固定于O点,另一端系一重物,将重物从与悬点O在同一水平面且弹簧保持原长的A点无初速度释放,让它自由摆下.不计空气阻力,则在重物由A点摆向最低点B的过程中( ) A.弹簧与重物的总机械能守恒 B.弹簧的弹性势能增加C.重物的机械能不变 D.重物的机械能增加答案:AB三、非选择题(本大题3小题,共40分.按题目要求作答.解答题应写出必要的文字说明、方程式和重要演算步骤.只写出最后答案的不能得分.有数值计算的题,答案中必须明确写出数值和单位.) 16.(11分)在“验证机械能守恒定律”的实验中,打点计时器所用电源频率为50 Hz,当地重力加速度的值为9.80 m/s2,测得所用重物的质量为1.00 kg.若按实验要求正确地选出纸带进行测量,量得连续三点A、B、C到第一个点的距离如图所示(相邻计数点时间间隔为0.02 s),那么:(1)纸带的______端与重物相连;(2)打点计时器打下计数点B时,物体的速度v B=________;(3)从起点O到打下计数点B的过程中重力势能减少量是ΔE p=________,此过程中物体动能的增加量ΔE k =________(取g=9.8 m/s2);(4)通过计算,数值上ΔE p____ΔE k(填“>”“=”或“<”),这是因为________________________________________________________________________;(5)实验的结论是______________________________________________________.解析:(1)重物在开始下落时速度较慢,在纸带上打的点较密,越往后,物体下落得越快,纸带上的点越稀.所以,纸带上靠近重物的一端的点较密,因此纸带的左端与重物相连.(2)v B=OC-OA2T=0.98 m/s.(3)ΔE p=mg×OB=0.49 J,ΔE k=12mv B2=0.48 J.(4)ΔE p>ΔE k,这是因为实验中有阻力.(5)在实验误差允许范围内,机械能守恒.答案:(1)左(2)0.98 m/s (3)0.49 J 0.48 J (4)>这是因为实验中有阻力(5)在实验误差允许范围内,机械能守恒17.(4分)如图所示,将轻弹簧放在光滑的水平轨道上,一端与轨道的A端固定在一起,另一端正好在轨道的B 端处,轨道固定在水平桌面的边缘上,桌边悬一重锤.利用该装置可以找出弹簧压缩时具有的弹性势能与压缩量之间的关系.(1)为完成实验,还需下列那些器材?________.A.秒表B.刻度尺C.白纸D.复写纸E.小球F.天平(2)某同学在上述探究弹簧弹性势能与弹簧压缩量的关系的实验中,得到弹簧压缩量x和对应的小球离开桌面后的水平位移s的一些数据如下表,则由此可以得到的实验结论是________________________________________________________________________.答案:(1)BCDE (2)弹簧的弹性势能与弹簧压缩量的平方成正比18.(8分)如图一辆质量为500 kg 的汽车静止在一座半径为50 m 的圆弧形拱桥顶部.(取g =10 m/s 2)(1)此时汽车对圆弧形拱桥的压力是多大?(2)如果汽车以6 m/s 的速度经过拱桥的顶部,则汽车对圆弧形拱桥的压力是多大? (3)汽车以多大速度通过拱桥的顶部时,汽车对圆弧形拱桥的压力恰好为零?解析:(1)汽车受重力G 和拱桥的支持力F ,二力平衡,故F =G =5 000 N 根据牛顿第三定律,汽车对拱桥的压力为5 000 N.[: (2)汽车受重力G 和拱桥的支持力F ,根据牛顿第二定律有 G -F =m v 2r 故F =G -m v2r=4 000 N根据牛顿第三定律,汽车对拱桥的压力为4 000 N. (3)汽车只受重力G G =m v2rv =gr =10 5 m/s. 答案:见解析19.(8分)要求摩托车由静止开始在尽量短的时间内走完一段直道,然后驶入一段半圆形的弯道,但在弯道上行驶时车速不能太快,以免因离心作用而偏出车道.求摩托车在直道上行驶所用的最短时间.有关数据见表格.某同学是这样解的:要使摩托车所用时间最短,应先由静止加速到最大速度 v 1=40 m/s ,然后再减速到v 2=20 m/s ,t 1=v 1a 1;t 2=(v 1-v 2)a 2;t =t 1+t 2.你认为这位同学的解法是否合理?若合理,请完成计算;若不合理,请说明理由,并用你自己的方法算出正确结果.解析:①不合理②理由:因为按这位同学的解法可得t 1=v 1a 1=10s ,t 2=(v 1-v 2)a 2=2.5s总位移x =v 12t 1+v 1+v 22t 2=275m>s.③由上可知摩托车不能达到最大速度v 2,设满足条件的最大速度为v ,则v 22a 1+v 2-v 222a 2=218.解得v =36 m/s ,这样加速时间t 1=v a 1=9 s ,减速时间t 2=(v 1-v 2)a 2=2 s ,因此所用的最短时间t =t 1+t 2=11 s.答案:见解析20.(9分)如下图所示,质量m =60 kg 的高山滑雪运动员,从A 点由静止开始沿雪道滑下,从B 点水平飞出后又落在与水平面成倾角θ=37°的斜坡上C 点.已知AB 两点间的高度差为h =25 m ,B 、C 两点间的距离为s =75 m ,(g 取10 m/s 2,cos 37°=0.8,sin 37°=0.6),求:[:(1)运动员从B 点飞出时的速度v B 的大小. (2)运动员从A 到B 过程中克服摩擦力所做的功.解析:(1)设由B 到C 平抛运动的时间为t 竖直方向: h BC =ssin 37° h BC =12gt 2水平方向: scos 37°=v B t 代入数据,解得: v B =20 m/s.(2)A 到B 过程由动能定理有 mgh AB +W f =12mv B 2-0代入数据,解得W f =-3 000 J所以运动员克服摩擦力所做的功为3 000 J. 答案:见解析。