5-12 空位与位错
- 格式:ppt
- 大小:4.94 MB
- 文档页数:50
第七章金属及合金的回复和再结晶7-1 用冷拔铜丝线制作导线,冷拔之后应如何如理,为什么?答:应采取回复退火(去应力退火)处理:即将冷变形金属加热到再结晶温度以下某一温度,并保温足够时间,然后缓慢冷却到室温的热处理工艺。
原因:铜丝冷拔属于再结晶温度以下的冷变形加工,冷塑性变形会使铜丝产生加工硬化和残留内应力,该残留内应力的存在容易导致铜丝在使用过程中断裂。
因此,应当采用去应力退火使冷拔铜丝在基本上保持加工硬化的条件下降低其内应力(主要是第一类内应力),改善其塑性和韧性,提高其在使用过程的安全性。
7-2 一块厚纯金属板经冷弯并再结晶退火后,试画出截面上的显微组织示意图。
答:解答此题就是画出金属冷变形后晶粒回复、再结晶和晶粒长大过程示意图(可参考教材P195,图7-1)7-3 已知W、Fe、Cu的熔点分别为3399℃、1538℃和1083℃,试估算其再结晶温度。
答:再结晶温度:通常把经过严重冷变形(变形度在70%以上)的金属,在约1h的保温时间内能够完成超过95%再结晶转变量的温度作为再结晶温度。
1、金属的最低再结晶温度与其熔点之间存在一经验关系式:T再≈δTm,对于工业纯金属来说:δ值为0.35-0.4,取0.4计算。
2、应当指出,为了消除冷塑性变形加工硬化现象,再结晶退火温度通常要比其最低再结晶温度高出100-200℃。
如上所述取T再=0.4Tm,可得:W再=3399×0.4=1359.6℃Fe再=1538×0.4=615.2℃Cu再=1083×0.4=433.2℃7-4 说明以下概念的本质区别:1、一次再结晶和二次在结晶。
2、再结晶时晶核长大和再结晶后的晶粒长大。
答:1、一次再结晶和二次在结晶。
定义一次再结晶:冷变形后的金属加热到一定温度,保温足够时间后,在原来的变形组织中产生了无畸变的新的等轴晶粒,位错密度显著下降,性能发生显著变化恢复到冷变形前的水平,称为(一次)再结晶。
关于对位错几个问题的理解首先我谈一下关于位错之间的交互作用。
首先我所说的前三个相互作用(平行刃型、平行螺型、螺型与刃型)所讲的两位错位于同一滑移面,而交割所讲的位错处于不同的滑移面。
通过两个总结{A、关于位于同一滑移面的两位错之间的相互作用用可归纳为:(1)若两条位错线的柏氏矢量b1和b2间夹角呈锐角时,相互排斥。
(2)若两条位错线的柏氏矢量b1和b2间夹角呈钝角时,相互吸引。
(3)若两条位错线的柏氏矢量b1和b2间夹角呈直角时,作用力为零。
(4)两混合位错处于空间交叉位错时,相互作用力的计算可利用Peach-Koehler公式计算(参考相关书籍),也可以将混合位错进行螺型刃型分解再求解。
B、关于位错交截的情况我们可归纳为:(1)位错交截后产生“扭折”或“割阶”。
(2)带有“扭折”或“割阶”的位错。
其柏氏矢量与携带它们的位错相同。
(3)“扭折”可以是刃型、亦可是“螺型”,可随位错线一道运动,几乎不产生阻力,且它可因位错线张力而消失。
(4)“割阶”都是刃型位错,有滑移割阶和攀移割阶,割阶不会因位错线张力而消失。
}我们可以大致理解位错间的相互作用。
而综合来说众多位错之间既有吸引又有排斥,在某些位错段上互相吸引,而另一些位错段间又相互排斥,交互作用的结果都使体系处于较低的能量状态,或者说位错处于低能的排列状态。
这就是我对该课题的理解。
下面我谈一下我对其他几个课题的理解。
首先先谈一下关于螺型与刃型位错的判定:首先他们都是线缺陷的一种。
而他们存在不同:(1)刃型位错具有一个额外的半原子面,而螺型位错无;(2)刃型位错必须与滑移方向垂直,也垂直与滑移矢量;而螺型位错线与滑移矢量平行,且位错线的移动方向与晶体滑移方向互相垂直。
(3)刃型位错的滑移线不一定是直线,可以是折线或曲线;而螺位错的滑移线一定是直线。
(4)刃位错的滑移面只有一个,其不能在其他面上进行滑移;而螺位错的滑移面不是唯一的。
(5)刃位错周围的点阵发生弹性畸变,既有切应变,又有正应变;而螺位错只有切应变而无正应变。
第六章空位与位错一、名词解释空位平衡浓度,位错,柏氏回路,P-N力,扩展位错,堆垛层错,弗兰克-瑞德位错源,奥罗万机制,科垂耳气团,面角位错,铃木气团,多边形化空位平衡浓度:金属晶体中,空位是热力学稳定的晶体缺陷,在一定的空位下对应一定的空位浓度,通常用金属晶体中空位总数与结点总数的比值来表示。
位错:晶体中的一种原子排列不规则的缺陷,它在某一个方向上的尺寸很大,另两个方向上尺寸很小。
柏氏回路:确定柏氏族矢量的过程中围绕位错线作的一个闭合回路,回路的每一步均移动一个原子间距,使起点与终点重合。
P-N力:周期点阵中移动单个位错时,克服位错移动阻力所需的临界切应力扩展位错:两个不全位错之间夹有层错的位错组态堆垛层错:密排晶体结构中整层密排面上原子发生滑移错排而形成的一种晶体缺陷。
弗兰克-瑞德位错源:两个结点被钉扎的位错线段在外力的作用下不断弯曲弓出后,互相邻近的位错线抵消后产生新位错,原被钉扎错位线段恢复到原状,不断重复产生新位错的,这个不断产生新位错、被钉扎的位错线即为弗兰克-瑞德位错源。
Orowan机制:合金相中与基体非共格的较硬第二相粒子与位错线作用时不变形,位错绕过粒子,在粒子周围留下一个位错环使材料得到强化的机制。
科垂尔气团:围绕刃型位错形成的溶质原子聚集物,通常阻碍位错运动,产生固溶强化效果。
铃木气团:溶质原子在层错区偏聚,由于形成化学交互作用使金属强度升高。
面角位错:在fcc晶体中形成于两个{111}面的夹角上,由三个不全位错和两个层错构成的不能运动的位错组态。
多边形化:连续弯曲的单晶体中由于在加热中通过位错的滑移和攀移运动,形成规律的位错壁,成为小角度倾斜晶界,单晶体因而变成多边形的过程。
二、问答1 fcc晶体中,层错能的高低对层错的形成、扩展位错的宽度和扩展位错运动有何影响?层错能对金属材料冷、热加工行为的影响如何?解答:层错能高,难于形成层错和扩展位错,形成的扩展位错宽度窄,易于发生束集,容易发生交滑移,冷变形中线性硬化阶段短,甚至被掩盖,而抛物线硬化阶段开始早,热变形中主要发生动态恢复软化;层错能低则反之,易于形成层错和扩展位错,形成的扩展位错宽度较宽,难于发生束集和交滑移,冷变形中线性硬化阶段明显,热变形中主要发生动态再结晶软化。
位错规律总结位错是晶体中原子或离子的位置偏离其理想的坐标位置,可以导致晶体的畸变和性质的变化。
位错规律是研究位错形成和运动的基本原理和关系的科学,对于理解晶体缺陷行为、晶体生长、相变及其它相关现象具有重要意义。
下文将详细介绍位错规律及其总结。
1.位错分类根据晶体中原子位移方向和位移面的不同,位错可以分为线位错、面位错和体位错。
线位错是晶体中一维的位错,描述了某一面或平行于某一方向面的原子位置发生偏移。
常见的线位错有边位错和螺旋位错。
面位错是晶体中二维的位错,描述了某一层面或平行于某一层面的原子位置发生偏移。
常见的面位错包括错配位错、平移位错和层错。
体位错是晶体中三维的位错,描述了晶体中原子整体发生平移的情况。
体位错可以看作是线位错或面位错的堆叠。
2.位错的形成和移动位错的形成通常由外界应力或温度变化引起。
当晶体中的原子或离子受到应力作用时,原子可能发生位移以消除或缓解应力。
这种位移会导致新的晶体结构缺陷形成,即位错的形成。
位错的移动可以通过原子的滑移或旋转来实现。
滑移是指位错沿晶体晶面发生平行位移,而旋转则是指位错沿某一方向发生转动。
位错的移动过程中,原子之间发生相互切变、滑动和扩散,从而引起位错的传播和畸变。
3.位错的影响位错对晶体的性质和行为具有重要影响。
首先,位错会引起晶体的畸变。
位错形成后,晶体中的原子排列发生变化,导致晶体形状和结构的变化。
这种畸变可以通过适当的外界条件下进行修正,如加热退火或应力释放。
其次,位错会影响晶体的力学性能。
位错会引起晶体中应力场的存在,导致力学性能如强度、韧性、硬度等发生变化。
一些金属的加工硬化、回复等性质变化都与位错的运动和积累有关。
此外,位错还会影响晶体的电学和输运性能。
位错附近的原子排列不规则,会导致晶体中电荷的扩散障碍、介质常数的变化和电导率的变化,从而影响晶体的电学性质和输运行为。
4.位错和晶体缺陷位错是晶体中最常见的缺陷之一。
晶体中的其他缺陷如点缺陷、面缺陷等也与位错有密切关系。