齿轮的概况
- 格式:doc
- 大小:15.50 KB
- 文档页数:2
齿轮知识面试1. 引言在工程领域中,齿轮是一种广泛应用的机械传动元件,它通过齿与齿的啮合来传递力和运动。
掌握齿轮知识对于从事机械设计、制造和维护的工程师来说至关重要。
本文将介绍一些常见的齿轮知识面试题,帮助读者加深对齿轮的理解和应用。
2. 齿轮基础知识2.1 齿轮的定义和分类齿轮是一种圆柱形或圆锥形的机械零件,由齿数相等的齿和齿槽组成。
根据齿轮轴的相对位置和传动方式,齿轮可分为并联轴齿轮和串联轴齿轮两大类。
2.2 齿轮的主要参数在齿轮设计和选择时,需要考虑以下几个主要参数: - 齿数:表示齿轮上的齿的数量,通常用Z表示。
- 模数:表示齿轮齿廓的尺寸,用m表示。
- 压力角:表示齿轮齿廓与齿轮轴线的夹角,用α表示。
- 齿宽:表示齿轮齿廓的宽度,用b 表示。
3. 齿轮面试题以下是一些常见的齿轮面试题,供读者参考: ### 3.1 齿轮传动的基本原理是什么?齿轮传动是通过齿与齿的啮合来传递力和运动的机械传动方式。
3.2 什么是齿轮的啮合?齿轮的啮合是指两个齿轮的齿与齿之间的接触和相互干涉。
3.3 齿轮传动有哪些优点?•传动效率高:齿轮传动的传动效率通常在95%以上。
•传动比稳定:齿轮传动的传动比稳定,不容易滑动和打滑。
•承载能力强:齿轮传动能够承受较大的转矩和负载。
3.4 齿轮的齿廓有哪些常见的形状?常见的齿轮齿廓形状有圆弧齿、直齿、渐开线齿等。
3.5 齿轮的轴向力是如何产生的?齿轮传动中,由于齿与齿之间的啮合,会产生轴向力,其大小与传动力和啮合角有关。
3.6 齿轮的轴向力是如何解决的?为了解决齿轮传动中产生的轴向力,可以采用对称布置齿轮、使用偏心轮、采用双侧啮合等方法。
3.7 齿轮传动中常见的故障有哪些?常见的齿轮传动故障有齿面磨损、齿面断裂、齿轮齿根断裂等。
4. 结论本文介绍了齿轮的基础知识和一些常见的面试题,希望能够帮助读者更好地理解和掌握齿轮的应用。
在面试过程中,熟悉齿轮知识将为您赢得更多机会。
齿轮基础必学知识点
以下是齿轮基础必学的知识点:
1. 齿轮的定义:齿轮是一种用于传递转动的机械元件,它由一组齿数相等、剖面相同的齿排列在轮轴上。
2. 齿轮的作用:齿轮主要用于传递转矩和旋转速度,通过齿轮传动可以改变输入轴和输出轴的转速和转矩。
3. 齿轮的分类:齿轮可以根据齿轮的齿数和齿形来分类,常见的分类包括直齿轮、斜齿轮、蜗杆齿轮等。
4. 齿轮的主要参数:齿轮的主要参数包括模数、齿数、齿宽、压力角等。
这些参数对齿轮的传动效果和强度有重要影响。
5. 齿轮的传动比:齿轮传动比是指输入轴和输出轴的转速比,可以通过齿轮的齿数比来计算。
6. 齿轮的啮合问题:齿轮的啮合是指两个齿轮齿面相互接触和传递转动的过程,啮合过程中需要考虑啮合角和啮合系数等问题。
7. 齿轮的设计原则:齿轮的设计需要考虑传动效率、噪音、强度等因素,通常需要满足一定的设计原则和标准。
8. 齿轮的制造工艺:齿轮的制造工艺包括锻造、车削、滚齿等,不同的工艺对齿轮的精度和强度有不同的要求。
9. 齿轮的润滑和维护:齿轮在运动过程中需要适当的润滑和维护,以
保持正常运转和延长使用寿命。
10. 齿轮的应用:齿轮广泛应用于机械传动领域,如汽车、工程机械、船舶等,也用于其他领域如机械工具、钟表等。
螺旋锥齿轮和伞齿轮现代加工方法概况螺旋锥齿轮和伞齿轮是机械传动中的重要零件,其在机械制造业中占有重要的地位,特别是在航空航天、汽车、船舶、工程机械等领域中更占有相当大的比重。
由于螺旋锥齿轮和伞齿轮具有传动平稳、承载能力高、重合度大、使用寿命长、在高速传动时的噪音和振动都比较小的特点,其应用领域正在不断扩大,在制造行业中有逐渐取代其他类型锥齿轮传动的趋势,因此对螺旋锥齿轮和伞齿轮的设计和研究具有十分重要的意义。
但螺旋锥齿轮和伞齿轮的几何特性与啮合过程及其机床结构和加工调整都非常复杂,同时加工刀具、机床参数设置、加载变形和装配误差等各种因素都会引起其啮合、承载及振动性能的改变,使得在设计和制造中控制其质量和性能十分困难t1~3]。
目前国外也只有美国格里森(GLEASON),瑞士奥利康(OERLIKON)和德国克林贝格(KLINGELNBERG)三家拥有该方面技术,各自保密互不公开,同时也形成了三种齿制:格里森齿制,奥利康齿制和克林贝格齿制,格墨森齿制主要为双曲面圆弧收缩齿,采用单齿分度法加工,后二者为延伸外摆线等高齿,采用连续分度法加工,所以也把这三大齿制合并为准双曲面齿制和延伸外摆线齿制两大齿制。
格里森(GLEASON)加工技术是以局部共轭原理为基础的。
首先切出大轮齿面,然后选取一计算参考点求出与大轮齿面做线接触的小轮齿面在参考点处的位置、法向量以及法曲率等一阶、二阶接触参数,然后根据要求修正小轮齿面在参考点处的法曲率,并以此为基础来确定小轮切齿调整参数【6.刀。
格里森(GLEASON)公司这种早期设计方法的明显不足是没有直接控制弧齿锥齿轮这种局部共轭齿轮齿面的二阶接触参数,使得选择齿面曲率修正量十分困难,可能要经过多次试切才能获得理想的啮合质量,对操作人员经验的依赖性较大。
克林贝格( KLINGELNBERG)公司生产的锥齿轮采用等高齿,连续分度加工,生产效率高,机床调整相对简单,可以实现鼓形齿接触,它的硬齿面刮削工艺,即用硬质合金刀具从淬火硬度达HRC58-62的齿面上切除很薄的一层金属,以获得消除热处理变形误差的方法,相对经济、高效8-10]。
标准圆柱齿轮
首先,标准圆柱齿轮的结构包括齿轮轴、齿轮齿、齿间隙等部分。
齿轮轴是齿轮的主体,它承载着齿轮的传动任务;齿轮齿是齿轮的传动部分,通过齿轮齿的啮合来实现传动功能;齿间隙是指相邻两个齿轮齿之间的间隙,它影响着齿轮的传动效果和噪音水平。
标准圆柱齿轮的结构设计合理,能够有效地实现传动功能。
其次,标准圆柱齿轮的工作原理是基于齿轮齿的啮合传动。
当两个齿轮啮合时,通过齿轮齿的啮合来实现动力的传递,从而实现机械设备的运转。
标准圆柱齿轮的传动比稳定,传动效率高,传动平稳,能够满足各种机械设备的传动需求。
此外,标准圆柱齿轮的制造工艺包括材料选用、齿轮加工、热处理等环节。
材料选用是制造标准圆柱齿轮的第一步,通常选用优质合金钢或碳素钢作为原材料;齿轮加工是指通过铣削、滚齿等工艺将齿轮齿加工成合适的形状;热处理是为了提高齿轮的硬度和耐磨性,常用的热处理工艺包括渗碳、淬火等。
标准圆柱齿轮的制造工艺严格,确保了齿轮的质量和性能。
最后,标准圆柱齿轮被广泛应用于各种机械设备中,如汽车、
船舶、飞机、工程机械等。
它在这些机械设备中起着传动作用,实现了机械设备的正常运转。
标准圆柱齿轮具有传动比稳定、传动效率高、传动平稳等优点,受到了广泛的认可和应用。
总之,标准圆柱齿轮作为一种常见的机械传动元件,具有重要的意义。
它的结构简单、工作原理稳定、制造工艺严格、应用领域广泛,为各种机械设备的正常运转提供了可靠的保障。
希望本文的介绍能够帮助大家更好地了解标准圆柱齿轮,为相关领域的工作者提供参考和借鉴。
机械原理作业齿轮1. 齿轮的基本原理齿轮是一种常用的机械传动装置,通过不同大小的齿轮间的啮合来实现动力的传递和转换。
齿轮传动具有传递能量高效、传递力矩稳定等优点,广泛应用于机械设备、车辆和工业生产中。
2. 齿轮的分类根据直径方向上的相对位置,齿轮可以分为平行轴齿轮和交叉轴齿轮。
平行轴齿轮是指两个齿轮的轴线平行,常用于平行轴传动;而交叉轴齿轮是指两个齿轮的轴线相交,常用于垂直轴传动。
3. 齿轮的主要参数齿轮的主要参数包括模数、齿数、齿宽和齿廓等。
模数决定了齿轮的尺寸和齿数,齿宽则决定了齿轮的强度和传动能力。
齿廓则根据不同的齿轮传动要求选择不同的曲线。
4. 齿轮的工作原理在齿轮传动中,驱动轮的转动将通过齿轮啮合将动力传递到被驱动轮上。
由于齿轮齿面的接触,驱动轮的转动会引起被驱动轮的转动,从而实现动力的传递。
这种传递过程中,驱动轮和被驱动轮的转速和转矩之间存在特定的关系,可以通过齿轮的齿数比来计算。
5. 齿轮的应用齿轮传动广泛应用于各种机械设备中,如汽车、机床、船舶、工程机械等。
它可以实现不同转速和转矩的转换,提高机械设备的工作效率和性能。
6. 齿轮传动的优缺点齿轮传动具有传动效率高、传动特性稳定、传动精度高等优点。
同时,齿轮传动也存在噪音大、啮合间隙、需润滑等缺点。
因此,在实际应用中需要根据需求综合考虑其优缺点。
7. 齿轮的维护保养为了保证齿轮传动的正常工作,需要进行定期的检查和保养。
主要包括清洁齿轮表面、检查齿轮齿面是否磨损、检查齿轮的润滑情况等。
定期的维护保养可以延长齿轮的使用寿命并保证其传动效果。
8. 齿轮传动的改进为了进一步提高齿轮传动的性能,研究人员在齿轮设计和制造方面进行了许多改进。
如采用先进的材料、精密制造工艺和优化的齿轮结构等,以提高齿轮传动的效率和可靠性。
9. 高精度齿轮的应用高精度齿轮具有传动精度高、传动效率高等优点,被广泛应用于精密机床、航天器械等领域。
高精度齿轮的制造要求更高,需要采用先进的加工技术和测量手段来确保其质量。
齿轮物理知识点总结一、齿轮的结构齿轮主要由齿轮轮齿、轴孔和齿轮轮毂组成。
齿轮轮齿是齿轮传递中传动力的部位,负责传递力、承受载荷;轴孔是齿轮的内孔,用于与轴连接以传递力矩;齿轮轮毂是齿轮的轮辐部分,用于支撑齿轮的外轮齿。
齿轮的直齿轮和斜齿轮两种类型,直齿轮齿面平行于齿轮轴线,齿轮间传递力矩更加稳定,适用于速度较高的传动系统;而斜齿轮齿面与齿轮轴线有一定夹角,使得齿轮的运动更加顺畅,适用于速度较低的传动系统。
二、齿轮的工作原理齿轮传动是指通过齿轮之间的啮合来传递力和运动。
齿轮传动主要包括两种传动方式:直线齿轮传动和螺旋齿轮传动。
直线齿轮传动是指齿轮轮齿呈直线形,齿轮轴线平行或交叉的传动方式。
当两个齿轮啮合时,通过齿轮齿数比和模数的关系来确定齿轮的速比,实现不同速度和扭矩的传递。
螺旋齿轮传动是指齿轮轮齿呈螺旋状,齿轮轴线交叉的传动方式。
螺旋齿轮传动由于螺旋齿的倾角和圈整等因素,其传动效率更高,运动更加平稳,适用于高速、大扭矩的传动领域。
三、齿轮的设计原则在进行齿轮设计时,需要考虑齿轮的强度、耐用性、传动效率和运动平稳性等因素。
齿轮设计的原则包括以下几点:1. 齿轮强度的设计原则:齿轮运行时受到的载荷是很大的,要保证齿轮的强度,齿轮的齿面、轮毂和齿根等部分都要进行合理设计,确保齿轮正常运行。
2. 齿轮传动效率的设计原则:齿轮传动的效率直接影响到整个传动系统的功耗和运行稳定性,要设计齿轮的传动效率要尽可能高,降低传动损失。
3. 齿轮运动平稳性的设计原则:齿轮的运动平稳性与齿轮的设计、材料、制造工艺等因素有关,应该尽可能避免齿轮的螺旋齿和断齿等缺陷,保证齿轮的稳定运行。
四、齿轮的应用领域齿轮广泛应用于各种机械设备中,如汽车、船舶、飞机、重型机械等领域。
在汽车领域,齿轮主要用于引擎、变速箱、差速器等传动系统中;在船舶领域,齿轮主要用于船舶的推进系统和舵机传动系统中;在飞机领域,齿轮主要用于飞机的起落架、发动机传动系统中;在重型机械领域,齿轮主要用于挖掘机、装载机、推土机等工程机械的传动系统中。
机械原理齿轮机械原理中的齿轮是一种常见且重要的机械传动元件,它通过齿轮的啮合来实现传动功能,广泛应用于各种机械设备中。
齿轮传动具有传递动力平稳、传动比恒定、传动效率高等特点,因此在工程领域中得到了广泛的应用。
本文将从齿轮的基本原理、结构特点、工作原理和应用领域等方面对齿轮进行深入探讨。
首先,我们来了解一下齿轮的基本原理。
齿轮是利用啮合齿轮的圆周上的齿来传递运动和动力的一种机械传动装置。
齿轮通常由两个或多个啮合的齿轮组成,其中一个为主动齿轮,另一个为从动齿轮。
当主动齿轮转动时,从动齿轮也随之转动,从而实现了动力的传递。
齿轮的传动比取决于齿轮的齿数和模数,通过不同齿轮的组合可以实现不同的传动比。
其次,我们来看一下齿轮的结构特点。
齿轮通常由齿轮轮毂、齿轮齿、齿顶圆、齿根圆等部分组成。
齿轮的齿数、模数、压力角等参数决定了齿轮的传动性能,不同的参数组合可以实现不同的传动效果。
齿轮的制造工艺一般包括铸造、锻造、车削、磨削等,以确保齿轮的精度和耐用性。
接下来,我们将探讨一下齿轮的工作原理。
齿轮传动是利用齿轮的啮合来传递运动和动力的一种机械传动方式。
当主动齿轮转动时,齿轮的齿与从动齿轮的齿进行啮合,从而使从动齿轮也跟随转动。
齿轮传动具有传递动力平稳、传动比恒定、传动效率高等特点,适用于各种机械设备的传动装置。
最后,我们来谈一下齿轮在实际应用中的领域。
齿轮广泛应用于各种机械设备中,如汽车、船舶、飞机、工程机械、农业机械等。
在这些设备中,齿轮传动起着至关重要的作用,它们可以实现不同转速、不同转矩的传动,满足机械设备的不同工作要求。
总之,齿轮作为一种重要的机械传动元件,在机械原理中具有重要的地位和作用。
通过对齿轮的基本原理、结构特点、工作原理和应用领域的深入了解,我们可以更好地应用齿轮传动技术,提高机械设备的传动效率和可靠性,推动机械工程技术的发展和进步。
齿轮参数总汇一、齿轮的定义和分类齿轮是一种重要的机械传动元件,广泛应用于各个领域。
它主要由齿片组成,可实现两个或多个轴之间的转动传递。
齿轮根据其不同的特性和用途可以分为多种类型,包括直齿轮、斜齿轮、渐开线齿轮等。
每种类型的齿轮有着不同的参数要求和设计准则。
二、齿轮参数的基本概念1. 齿轮的模数(或分度圆模数)模数表示齿轮齿数与其分度圆直径的比值,常用符号为m。
模数的大小直接影响到齿轮的尺寸和传动性能。
2. 齿轮的齿数齿数是指齿轮上齿的数量,常用符号为z。
齿数的大小决定了齿轮的传动比和工作特性。
3. 齿轮的螺旋角度(斜齿轮)螺旋角度是指斜齿轮齿面与轴线的夹角,常用符号为β。
它影响着齿轮的噪音和传动效率。
4. 齿轮的齿宽齿宽是指齿轮齿面宽度的大小,常用符号为b。
齿宽的选择需考虑到齿轮受力和传动功率等因素。
5. 齿轮的公法线长度公法线长度是指在齿轮传动时两齿轮接触点的轨迹长度。
它与齿轮的模数和齿数有关,对齿轮的接触性能和耐磨性能具有重要影响。
三、不同类型齿轮的参数要求1. 直齿轮直齿轮是最基本的齿轮类型,其参数设计需考虑到齿数、模数、齿宽等因素。
根据具体使用条件和传动性能要求,可选择合适的齿轮材料和热处理工艺。
2. 斜齿轮斜齿轮与直齿轮相比,具有更好的传动性能和噪音特性。
在设计斜齿轮时,需要确定螺旋角度、齿数、齿宽等参数,并进行强度校核和噪声计算。
3. 渐开线齿轮渐开线齿轮是一种常用的高效率齿轮传动形式。
其参数设计主要包括模数、齿数、螺旋角度和齿宽等。
同时,还需考虑到齿轮的啮合性能和运动平稳性。
四、齿轮参数的计算方法齿轮参数的计算涉及到复杂的几何和力学问题,需要依据具体的设计要求和计算方法进行。
常用的计算方法有几何法、强度校核法和噪声计算法等。
结论齿轮参数是齿轮设计的基础,合理选取和优化各个参数对于齿轮传动性能和工作可靠性具有重要影响。
在设计过程中,要充分考虑齿轮的材料、热处理工艺以及传动功率等因素,以确保齿轮能够满足实际工作条件和使用要求。
齿轮加工制造过程引言齿轮是机械传动装置中的重要组成部分,主要传递力矩,承受弯曲和冲击等载荷。
为了确保传动系统的寿命和运转稳定性,齿轮需具有以下几个要求:1.具有较硬的表面层,能够抵抗运转过程中的磨损;2.对于承受交变载荷和冲击载荷的齿轮,基体需有足够的抗弯曲强度和韧性,以免发生变形或断裂;3.需要有良好的工艺性,既要易于切削加工又具有良好的热处理性能。
齿轮制造技术是获得优质质齿轮的关键。
齿轮加工的工艺,因齿轮结构形状、精度等级、生产条件可采用不同的方案,概括起来有齿坯加工、齿形加工、热处理和热处理后精加工四个阶段。
齿坯加工必须保证加工基准面精度。
热处理直接决定轮齿的内在质量,齿形加工和热处理后的精加工是制造的关键,也反映着齿轮制造的水平。
一、齿轮加工方法目前齿轮的加工工艺过程包括以下过程:齿轮毛坯加工、齿面加工、热处理工艺及齿面的精加工。
齿轮的毛坯件主要是锻件、棒料或铸件,其中锻件使用最多。
对毛坯件首先进行正火处理,改善其切削加工型,便于切削;然后进行粗加工,按照齿轮设计要求,先将毛坯加工成大致形状,保留较多余量;再进行半精加工,车、滚、插齿,使齿轮基本成型;之后对齿轮进行热处理,改善齿轮的力学性能,按照使用要求和所用材料的不同,有调质、渗碳淬火、齿面高频感应加热淬火等;最后对齿轮进行精加工,精修基准、精加工齿形。
(一)、齿轮毛坯加工齿轮的毛坯加工在整个齿轮加工过程中占有很重要的地位。
齿面加工和检测所用的基准必须在齿轮毛坯加工阶段加工出来,同时齿坯加工所占工时比例较大,对生产效率和齿轮加工质量都具有很大影响,余量过多将导致后续半精加工和精加工所需加工的量增多,耗时增加,降低生产效率;若余量过少,则后续加工需特别谨慎,否则将超出齿轮设计精度尺寸使得产品不合格。
因此需要对齿轮毛坯加工阶段予以特别重视。
(二)、齿面加工针对齿面加工的方法很多,主要有滚齿、插齿、剃齿、磨齿、铣齿、刨齿、梳齿、挤齿、研齿和珩齿等,其中使用最多的是前四种方法:滚齿、插齿、剃齿和磨齿。
齿轮啮合传动组成-回复齿轮啮合传动是一种常见的机械传动方式,它通过齿轮之间的啮合来传递动力和扭矩。
在各种机械设备和机械系统中都可以看到齿轮传动的身影,比如汽车变速器、工业机械、机床等。
本文将从齿轮的基本结构、齿轮啮合的原理以及传动的特点等方面逐步探讨齿轮啮合传动的组成。
一、齿轮的基本结构齿轮由齿轮轮毂和齿轮齿等组成。
齿轮轮毂是齿轮的主要部分,通常由金属材料加工而成,其外部形状与齿轮相对应。
齿轮齿是齿轮的关键部分,齿轮齿的形状一般为棱形或圆弧形。
根据齿轮齿的形状和齿轮轮毂的结构,齿轮可以分为直齿轮、斜齿轮、蜗杆齿轮等多种类型。
齿轮的基本结构决定了其在传动过程中的特性。
二、齿轮啮合的原理齿轮啮合是指两个或多个齿轮的齿与齿之间互相啮合,完成动力传递的过程。
在齿轮啮合传动中,两个齿轮分别为驱动齿轮和从动齿轮。
当驱动齿轮旋转时,通过齿轮之间的啮合,从动齿轮也开始旋转。
齿轮啮合的原理主要包括啮合传递原理和啮合几何原理。
啮合传递原理是指齿轮齿与齿轮齿之间的相互啮合可以传递动力和扭矩。
啮合几何原理是指齿轮齿的形状和几何参数决定了齿轮啮合的特性,如齿数、模数、齿廓等。
三、齿轮传动的特点齿轮传动具有许多独特的特点,使其在各种机械传动中得到广泛应用。
1. 高效率:齿轮传动的传动效率通常在95以上,高于其他传动方式。
2. 精确传动比:通过改变齿轮齿的数量和规格,可以实现精确的传动比。
3. 转矩传递平稳:齿轮传动的转矩传递平稳,使其在对转矩要求较高的场合有优势。
4. 可靠性高:齿轮传动的结构简单,组装容易,且寿命较长。
5. 传动功率大:齿轮传动的耐磨损性好,可以传递较大功率。
四、齿轮啮合传动的组成齿轮啮合传动由驱动轴、从动轴、齿轮轮毂、齿轮齿等组成。
具体组成如下:1. 驱动轴:驱动轴通常是驱动齿轮所在的轴,它通过外部动力源(如电机、发动机)提供动力。
2. 从动轴:从动轴通常是从动齿轮所在的轴,它通过齿轮啮合传递驱动轴传递过来的动力。
齿轮行业简介一、齿轮行业概述齿轮及其齿轮产品是机械装备的重要基础件,绝大部分机械成套设备的主要传动部件都是齿轮传动,齿轮行业是机械业的基础。
相对机械装配业而言,齿轮工业属于技术最密集、资金最密集以及规模相对最大的行业。
我国齿轮行业基本由三部分组成,即工业齿轮、车辆齿轮和齿轮装备。
●车辆齿轮传动制造:包括车辆齿轮和车辆变速总成,主要为汽车、工程机械、农机、摩托车变速传动的配套。
车辆齿轮占到齿轮行业60%。
●工业齿轮传动制造:包括了工业通用、专用、重载齿轮传动,用于冶金、矿山、水泥、船用等等领域的专用齿轮箱;其市场份额分别为18%、12%和8%;●齿轮装备制造业:包括齿轮机床、刀具、量具、实验设备、齿轮润滑和密封的领域。
齿轮装备占市场份额的2%。
就市场需求与生产规模而言,中国齿轮行业在全球排名已超过意大利,居世界第四位。
二、齿轮传动各细分行业发展概况1.汽车自动变速箱,绝大多数依靠进口。
2.工业通用变速箱。
美、德等跨国公司居多,德国SEW已在中国建立了3个生产基地,销售收入愈10亿元。
国内民营居多,代表企业为万杰公司,行业内产品差距逐渐缩短,竞争较为激烈。
3.工业专用变速箱领域,中国企业目前占据着70%-80%的市场份额,行业内以国企为主,大部分有几十年的技术、资源的积淀。
4.高速重载齿轮传动制造行业,目前国内有南京高精齿轮股份有限公司(南京高速齿轮箱厂)、重庆齿轮箱厂、杭州前进齿轮箱集团、郑州机械研究所、洛阳中重减速机公司、沈阳矿山减速机公司灯,在大型成套装备配套及船舶工业中占有较大份额。
5.减速机是重大装备制造业应用广泛的传动与调速设备,现阶段我国具有一定规模的减速机制造企业尚有数百家,但产品多处于中低端领域,高端市场由德国SEW公司、佛兰德公司、日本住友公司等掌握。
目前,我国高端减速机产品的市场份额已占到市场总额的1/4-1/3并以每年5%左右的速度递增,泰隆布雷维尼公司等中外合资公司在此领域发展迅速。
弗兰德, 6.3SEW, 5.6 伦茨, 1.6布雷维尼, 1.5邦飞利, 1.5福克, 1.3住友, 1.0 诺德, 0.9 汉森, 0.8其他, 79.5世界主要齿轮制造商的市场占有率弗兰德SEW 伦茨布雷维尼邦飞利福克住友诺德汉森其他日本, 44.5德国, 16.9韩国, 8.3美国, 6.8法国, 4.2其他, 19.32011年中国齿轮产品主要进口国及比例日本德国韩国美国法国其他美国齿轮产业的发展历程和特点美国虽然建国只有200多年,但是齿轮产业有100多年历史。
代表性厂商:费城齿轮公司(Philadelphia Gear Corporation)福克齿轮公司(FALK,现被莱克斯诺公司Rexnord收购)豪斯伯.斯科特公司(Horsburgh&Scott)柯蒂斯莱特(Curtiss Wright)但是20世纪后几十年,受美国产业发展规划和经济衰退影响,美国制造业经历低迷期。
德国齿轮产业的发展历程和特点德国是最早进行工业革命的国家之一,齿轮技术处于世界领先地位。
代表性厂商:采埃孚(ZF)弗兰德(Flender)SEW 伦茨(Lenze)伦克(Renk)注重科学实验、理论和实践相结合一般来说德国齿轮精度标准DIN比国际标准ISO各项指标要严格,而各企业又指定了比德国标准DIN更严格的企业标准。
而德国慕尼黑工业大学齿轮研究所(FZG)一直承接政府和企业的大量科研项目,一旦试验得到可靠数据会马上进行技术转化,变成社会生产力。
日本齿轮产业的发展历程和特点日本在1868年明治时期开始进入工业革命代表性厂商:住友协育(KG)小原(KHK)由日本机械学会组织,企业出资,分专题进行系统研究,这种产学研有机分离,相互促进的发展模式与德国十分相似。
世界齿轮产业技术和产品特点呈现六高、三化、二低的特点六高——高承载能力、高齿面硬度、高精度、高速度、高可靠性和高传动效率。
优质低碳合金钢深层渗碳渗碳淬火钢承载能力是调质齿轮2-3倍精度普遍达到5-6级,部分3级线速度150m/s以上,转速30000rpm以上设计寿命为无限寿命95-97%世界齿轮产业技术和产品特点呈现六高、三化、二低的特点三化——模块化、多样化、小型化。
齿轮行业市场分析第一节齿轮行业概述一、什么是齿轮齿轮是指轮缘上有齿轮连续啮合传递运动和动力的机械元件,应用在国民经济各个领域,是机械装备的重要基础件,绝大部分机械成套设备的主要传动部件就是齿轮传动。
齿轮作为工业机械的基础零件,其应用广泛。
按照产品用途,齿轮可以细分为车辆齿轮、工业齿轮及齿轮专用装备。
车辆齿轮产品主要应用于各类汽车、摩托车、工程机械、农机和军用车辆等,约占市场份额62%;工业齿轮产品应用的领域包括船用、矿山、冶金、航空、电力等;齿轮专用装备主要为齿轮专用机床、刀具等齿轮制造配套设备。
二、行业发展概况齿轮行业历经数十年的发展,业内企业结合自身的发展状况和行业趋势安排产品的研发和生产,细分出非常多的行业。
根据公开资料显示,目前从事齿轮制造企业约有5,000家,规模以上企业1,000多家,骨干企业300多家。
规模以上的齿轮制造企业都有自身较为专注的细分领域。
随着机械行业的迅速发展,我国齿轮行业发展主要表现在以下几个方面:一是生产规模不断扩大。
齿轮工业已成为中国机械基础件中规模最大的行业,约占机械通用零部件总销售额的61%,年产值居世界前列。
根据中商产业研究院统计数据,2021年国内齿轮行业市场规模达到3,143亿元。
从行业发展态势来看,齿轮行业发展与国民经济发展态势基本一致。
纵观2011-2021年,我国齿轮行业总产值稳步上涨,但行业增速逐步放缓,由高速增长阶段转向高质量发展阶段,促使齿轮行业转变经济发展方式,优化产业结构,转换增长动力。
图表1:2011-2021年中国齿轮行业产值及增长率二是创新能力明显加强。
一些工程实验室、研究中心、国家认定的企业技术中心、博士后科研工作站等创新平台陆续建成运行;科技成果取得重大突破,2013年到2018年期间,齿轮行业获得8项国家科技进步奖和发明奖;授权专利量多质优,从我国齿轮行业专利申请数量和专利公开数量来看,近年来,我国齿轮行业专利量实现了快速增长。
齿轮五大基本参数
齿轮的五大基本参数包括:
1. 模数(M):模数是决定齿轮尺寸的基本参数,它等于齿距除以圆周率π。
当齿轮的齿数相同时,模数越大,齿轮的尺寸也越大。
模数的单位是毫米(mm)。
2. 齿数(z):齿数是齿轮整个圆周上轮齿的数量,它取决于直径和模数等
因素。
3. 分度圆压力角(a):分度圆压力角是齿轮齿廓曲线和分度圆交点处的速
度方向与该点的法线方向之间的夹角。
通常采用的压力角是20°。
4. 齿顶高系数(ha):齿顶高系数是计算齿顶高的重要参数,其标准值为1或。
齿顶高是齿轮圆到分度圆的距离。
为了使车辆的齿形匀称,齿顶高和齿根高与模数成正比。
对于标准齿轮,规定ha=ham。
5. 顶隙系数(C):顶隙系数是计算齿根高和全齿高的重要参数,其标准值为或。
在齿轮啮合时,为了防止一个齿轮的齿顶面与另一个齿轮的齿槽底面相抵触,需要留有一定的径向间隙(顶隙C)。
对于标准齿轮,规定C=Cm。
以上是齿轮的五大基本参数,这些参数决定了齿轮的尺寸、形状和功能。
据史料记载,远在公元前400~200年的中国古代就巳开始使用齿轮,在我国山西出土的青铜齿轮是迄今巳发现的最古老齿轮,作为反映古代科学技术成就的指南车就是以齿轮机构为核心的机械装置。
17世纪末,人们才开始研究,能正确传递运动的轮齿形状。
18世纪,欧洲工业革命以后,齿轮传动的应用日益广泛;先是发展摆线齿轮,而后是渐开线齿轮,一直到20世纪初,渐开线齿轮已在应用中占了优势。
早在1694年,法国学者Philippe De La Hire首先提出渐开线可作为齿形曲线。
1733年,法国人M.Camus提出轮齿接触点的公法线必须通过中心连线上的节点。
一条辅助瞬心线分别沿大轮和小轮的瞬心线(节圆)纯滚动时,与辅助瞬心线固联的辅助齿形在大轮和小轮上所包络形成的两齿廓曲线是彼此共轭的,这就是Camus定理。
它考虑了两齿面的啮合状态;明确建立了现代关于接触点轨迹的概念。
1765年,瑞士的L.Euler提出渐开线齿形解析研究的数学基础,阐明了相啮合的一对齿轮,其齿形曲线的曲率半径和曲率中心位置的关系。
后来,Savary进一步完成这一方法,成为现在的Eu-let-Savary方程。
对渐开线齿形应用作出贡献的是Roteft WUlls,他提出中心距变化时,渐开线齿轮具有角速比不变的优点。
1873年,德国工程师Hoppe提出,对不同齿数的齿轮在压力角改变时的渐开线齿形,从而奠定了现代变位齿轮的思想基础。
19世纪末,展成切齿法的原理及利用此原理切齿的专用机床与刀具的相继出现,使齿轮加工具军较完备的手段后,渐开线齿形更显示出巨大的优走性。
切齿时只要将切齿工具从正常的啮合位置稍加移动,就能用标准刀具在机床上切出相应的变位齿轮。
1908年,瑞士MAAG研究了变位方法并制造出展成加工插齿机,后来,英国BSS、美国AGMA、德国DIN相继对齿轮变位提出了多种计算方法。
为了提高动力传动齿轮的使用寿命并减小其尺寸,除从材料,热处理及结构等方面改进外,圆弧齿形的齿轮获得了发展。
1907年,英国人Frank Humphris 最早发表了圆弧齿形。
1926年,瑞土人Eruest Wildhaber取得法面圆弧齿形斜齿轮的专利权。
1955年,苏联的M.L.Novikov完成了圆弧齿形齿轮的实用研究并获得列宁勋章。
1970年,英国Rolh—Royce公司工程师R.M.Studer取得了双圆弧齿轮的美国专利。
这种齿轮现已日益为人们所重视,在生产中发挥了显著效益。
齿轮是能互相啮合的有齿的机械零件,它在机械传动及整个机械领域中的应用极其广泛。
现代齿轮技术已达到:齿轮模数O.004~100毫米;齿轮直径由1毫米~150米;传递功率可达上十万千瓦;转速可达几十万转/分;最高的圆周速度达300米/秒。
齿轮在传动中的应用很早就出现了。
公元前三百多年,古希腊哲学家亚里士多德在《机械问题》中,就阐述了用青铜或铸铁齿轮传递旋转运动的问题。
中国古代发明的指南车中已应用了整套的轮系。
不过,古代的齿轮是用木料制造或用金属铸成的,只能传递轴间的回转运动,不能保证传动的平稳性,齿轮的承载能力也很小。
随着生产的发展,齿轮运转的平稳性受到重视。
1674年丹麦天文学家罗默首次提出用外摆线作齿廓曲线,以得到运转平稳的齿轮。
18世纪工业革命时期,齿轮技术得到高速发展,人们对齿轮进行了大量的研究。
1733年法国数学家卡米发表了齿廓啮合基本定律;1765年瑞士数学家欧拉建议采用渐开线作齿廓曲线。
19世纪出现的滚齿机和插齿机,解决了大量生产高精度齿轮的问题。
1900年,普福特为滚齿机装上差动装置,能在滚齿机上加工出斜齿轮,从此滚齿机滚切齿轮得到普及,展成法加工齿轮占了压倒优势,渐开线齿轮成为应用最广的齿轮。
1899年,拉舍最先实施了变位齿轮的方案。
变位齿轮不仅能避免轮齿根切,还可以凑配中心距和提高齿轮的承载能力。
1923年美国怀尔德哈伯最先提出圆弧齿廓的齿轮,1955年苏诺维科夫对圆弧齿轮进行了深入的研究,圆弧齿轮遂得以应用于生产。
这种齿轮的承载能力和效率都较高,但尚不及渐开线齿轮那样易于制造,还有待进一步改进。
齿轮的组成结构一般有轮齿、齿槽、端面、法面、齿顶圆、齿根圆、基圆、分度圆。
轮齿简称齿,是齿轮上每一个用于啮合的凸起部分,这些凸起部分一般呈辐射状排列,配对齿轮上的轮齿互相接触,可使齿轮持续啮合运转;齿槽是齿轮上两相邻轮齿之间的空间;端面是圆柱齿轮或圆柱蜗杆上,垂直于齿轮或蜗杆轴线的平面;法面指的是垂直于轮齿齿线
的平面;齿顶圆是指齿顶端所在的圆;齿根圆是指槽底所在的圆;基圆是形成渐开线的发生线作纯滚动的圆;分度圆是在端面内计算齿轮几何尺寸的基准圆。
齿轮可按齿形、齿轮外形、齿线形状、轮齿所在的表面和制造方法等分类。
齿轮的齿形包括齿廓曲线、压力角、齿高和变位。
渐开线齿轮比较容易制造,因此现代使用的齿轮中,渐开线齿轮占绝对多数,而摆线齿轮和圆弧齿轮应用较少。
在压力角方面,小压力角齿轮的承载能力较小;而大压力角齿轮,虽然承载能力较高,但在传递转矩相同的情况下轴承的负荷增大,因此仅用于特殊情况。
而齿轮的齿高已标准化,一般均采用标准齿高。
变位齿轮的优点较多,已遍及各类机械设备中。
另外,齿轮还可按其外形分为圆柱齿轮、锥齿轮、非圆齿轮、齿条、蜗杆蜗轮;按齿线形状分为直齿轮、斜齿轮、人字齿轮、曲线齿轮;按轮齿所在的表面分为外齿轮、内齿轮;按制造方法可分为铸造齿轮、切制齿轮、轧制齿轮、烧结齿轮等。
齿轮的制造材料和热处理过程对齿轮的承载能力和尺寸重量有很大的影响。
20世纪50年代前,齿轮多用碳钢,60年代改用合金钢,而70年代多用表面硬化钢。
按硬度,齿面可区分为软齿面和硬齿面两种。
软齿面的齿轮承载能力较低,但制造比较容易,跑合性好,多用于传动尺寸和重量无严格限制,以及小量生产的一般机械中。
因为配对的齿轮中,小轮负担较重,因此为使大小齿轮工作寿命大致相等,小轮齿面硬度一般要比大轮的高。
硬齿面齿轮的承载能力高,它是在齿轮精切之后,再进行淬火、表面淬火或渗碳淬火处理,以提高硬度。
但在热处理中,齿轮不可避免地会产生变形,因此在热处理之后须进行磨削、研磨或精切,以消除因变形产生的误差,提高齿轮的精度。
制造齿轮常用的钢有调质钢、淬火钢、渗碳淬火钢和渗氮钢。
铸钢的强度比锻钢稍低,常用于尺寸较大的齿轮;灰铸铁的机械性能较差,可用于轻载的开式齿轮传动中;球墨铸铁可部分地代替钢制造齿轮;塑料齿轮多用于轻载和要求噪声低的地方,与其配对的齿轮一般用导热性好的钢齿轮。
未来齿轮正向重载、高速、高精度和高效率等方向发展,并力求尺寸小、重量轻、寿命长和经济可靠。
而齿轮理论和制造工艺的发展将是进一步研究轮齿损伤的机理,这是建立可靠的强度计算方法的依据,是提高齿轮承载能力,延长齿轮寿命的理论基础;发展以圆弧齿廓为代表的新齿形;研究新型的齿轮材料和制造齿轮的新工艺;研究齿轮的弹性变形、制造和安装误差以及温度场的分布,进行轮齿修形,以改善齿轮运转的平稳性,并在满载时增大轮齿的接触面积,从而提高齿轮的承载能力。
摩擦、润滑理论和润滑技术是齿轮研究中的基础性工作,研究弹性流体动压润滑理论,推广采用合成润滑油和在油中适当地加入极压添加剂,不仅可提高齿面的承载能力,而且也能提高传动效率。