华师大数学九年级下第5讲 圆中的计算问题
- 格式:doc
- 大小:182.00 KB
- 文档页数:5
华师大版数学九年级下册27.3《圆中的计算问题》教学设计一. 教材分析《圆中的计算问题》这一节内容,主要让学生掌握与圆有关的一些计算公式和方法。
在本节课中,学生需要学习圆的周长、圆的面积、弧长和扇形的面积等计算公式,并能灵活运用这些公式解决实际问题。
教材通过例题和练习题的形式,帮助学生理解和掌握这些计算方法。
二. 学情分析九年级的学生已经学习了平面几何的基础知识,对圆的概念和性质有一定的了解。
但是,对于圆的计算问题,部分学生可能还存在一定的困难。
因此,在教学过程中,教师需要关注学生的学习情况,针对学生的薄弱环节进行有针对性的讲解和辅导。
三. 教学目标1.理解圆的周长、圆的面积、弧长和扇形的面积等计算公式。
2.能够运用这些计算公式解决实际问题。
3.提高学生的计算能力和解决问题的能力。
四. 教学重难点1.圆的周长和面积的计算公式。
2.弧长和扇形的面积的计算公式。
3.如何运用这些公式解决实际问题。
五. 教学方法1.讲授法:教师通过讲解,让学生理解和掌握圆的计算公式和方法。
2.例题解析法:通过分析例题,让学生学会如何运用计算公式解决实际问题。
3.练习法:通过练习题,让学生巩固所学知识,提高计算能力。
六. 教学准备1.教学PPT:制作相关的教学PPT,展示圆的计算公式和例题。
2.练习题:准备一些相关的练习题,供学生课堂练习和课后巩固。
3.教学黑板:准备一块黑板,用于板书和展示解题过程。
七. 教学过程1.导入(5分钟)教师通过提问方式,引导学生回顾平面几何中与圆有关的知识,为新课的学习做好铺垫。
2.呈现(15分钟)教师通过PPT展示圆的周长、圆的面积、弧长和扇形的面积等计算公式,并简要讲解公式的推导过程。
3.操练(20分钟)教师给出一些例题,让学生运用所学知识解决问题。
学生在课堂上独立完成,教师进行讲解和辅导。
4.巩固(10分钟)教师给出一些练习题,让学生巩固所学知识。
学生在课堂上独立完成,教师进行讲解和辅导。
27.3 圆中的计算问题 - 九年级下册数学教案教学设计(华东师大版)一. 教学目标1.了解圆的基本概念和性质;2.掌握计算圆的周长和面积的方法;3.能够解决与圆相关的实际问题。
二. 教学重点1.计算圆的周长;2.计算圆的面积;3.运用所学知识解决实际问题。
三. 教学准备1.教师准备:教案、课件、网站资源;2.学生准备:课本、作业、计算器。
四. 教学过程第一步:导入新知识(10分钟)1.教师向学生提问:什么是圆?圆的特点是什么?2.学生回答后,教师简要介绍圆的基本概念和性质,并通过课件展示相关图形。
第二步:学习计算圆的周长(20分钟)1.教师给出一个半径为r的圆,向学生提问:如何计算这个圆的周长?2.学生思考后,教师引导学生想到圆的周长公式C=2πr,并解释公式中各个符号的含义。
3.教师通过示例演示如何计算圆的周长,并让学生跟随计算。
第三步:学习计算圆的面积(20分钟)1.教师给出一个半径为r的圆,向学生提问:如何计算这个圆的面积?2.学生思考后,教师引导学生想到圆的面积公式S=πr^2,并解释公式中各个符号的含义。
3.教师通过示例演示如何计算圆的面积,并让学生跟随计算。
第四步:运用所学知识解决实际问题(30分钟)1.教师给出一些与圆相关的实际问题,并将问题展示在课件上。
2.学生根据所学知识,分小组解决实际问题,并记录解题过程和结果。
3.学生展示解题过程和结果,教师进行点评和纠正。
第五步:课堂小结(10分钟)1.教师对本节课的重点内容进行总结,并强调重要知识点;2.学生回答问题,教师进行评价和指导。
五. 课后作业1.完成课本上相关练习题;2.根据课堂实际问题练习,完成相关作业。
六. 教学反思本节课通过引导学生思考和解决实际问题的方式,提高学生对圆的理解和应用能力。
教师在教学中注重激发学生的兴趣,并通过示例演示、分组讨论等方式培养学生的自主学习能力。
同时,教师适时进行点评和纠正,帮助学生更好地理解知识点。
《圆中的计算问题》教学设计本节课的教学内容是义务教育课程标准实验教科书,华师版九年级下册第27章《圆》中的“弧长和扇形的面积”,这节课是学生在前阶段学完了“圆的认识”、“与圆有关的位置关系”、“正多边形和圆”的基础上进行的拓展与延伸。
本课时在中考,占一定的分值,掌握本节也是中考取胜的一点法宝,针对知识的形成过程,本节创造性地使用教材,利用“动态”解释弧长和扇形的面积,让学生充分体验知识的形成过程,对学生以后用动态解决数学问题的学习起到铺垫作用。
【知识与能力目标】(1)理解弧长公式、扇形面积公式的推导;(2)会运用公式计算弧长、扇形及简单组合图形的面积。
【过程与方法目标】通过运用弧长公式、扇形面积公式,发展学生的应用意识。
【情感态度价值观目标】(1)通过计算,提高综合运用知识分析问题和解决问题的能力;(2)通过图形的转化,体会转化在数学解题中的妙用。
【教学重点】弧长公式、扇形面积公式的推导及公式的应用。
【教学难点】运用弧长和扇形面积公式计算组合图形的面积。
三角板、小黑板、PPT课件。
知识回顾圆的周长公式C=2πr圆的面积公式S=πr 2一、发现弧长和扇形的面积的公式1、弧长公式的推导。
如图23.3.1是圆弧形状的铁轨示意图,其中铁轨的半径为100米,圆心角为90°。
你能求出这段铁轨的长度吗?(取3.14) 我们容易看出这段铁轨是圆周长的41,所以铁轨的长度 l ≈410032⨯⨯=157.0(米)。
问题:上面求的是90︒的圆心角所对的弧长,若圆心角为n ︒,如何计算它所对的弧长呢?请同学们计算半径为3cm ,圆心角分别为180︒、90︒、45︒、1︒、n ︒所对的弧长。
等待同学们计算完毕,与同学们一起总结出弧长公式(这里关键是︒圆心角所对的弧长是多少,进而求出n ︒的圆心角所对的弧长。
)弧长的计算公式为1802360r n r n l ππ=⋅=练习:已知圆弧的半径为50厘米,圆心角为60°,求此圆弧的长度。
华师大版数学九年级下册27.3《圆中的计算问题》说课稿一. 教材分析华师大版数学九年级下册27.3《圆中的计算问题》这一节主要讲述了圆中的计算问题,包括弧长、扇形的面积等计算。
这部分内容是圆的基础知识的进一步拓展,对于学生来说,掌握这部分内容对于理解圆的性质和解决实际问题具有重要意义。
二. 学情分析九年级的学生已经学习了平面几何的基本知识,对圆的概念和性质有一定的了解。
但是,对于圆中的计算问题,他们可能还存在一定的困难。
因此,在教学过程中,我将以引导学生理解圆中的计算问题为主线,通过实例分析和练习,帮助学生掌握计算方法。
三. 说教学目标1.知识与技能目标:使学生掌握圆中的计算问题,如弧长、扇形的面积等计算方法。
2.过程与方法目标:通过实例分析和练习,培养学生解决实际问题的能力。
3.情感态度与价值观目标:激发学生学习圆的性质和计算问题的兴趣,培养学生的耐心和细心。
四. 说教学重难点1.教学重点:圆中的计算问题,如弧长、扇形的面积的计算方法。
2.教学难点:如何引导学生理解圆中的计算问题,并能够运用到实际问题中。
五. 说教学方法与手段1.教学方法:采用问题驱动法、实例分析法和练习法,引导学生主动探究圆中的计算问题。
2.教学手段:利用多媒体课件和板书,生动形象地展示圆中的计算问题。
六. 说教学过程1.导入:通过复习平面几何的基本知识,引导学生回顾圆的概念和性质,为新课的学习做好铺垫。
2.新课讲解:讲解圆中的计算问题,如弧长、扇形的面积的计算方法,并结合实例进行分析。
3.课堂练习:布置相关的练习题,让学生巩固所学知识,并能够运用到实际问题中。
4.总结与拓展:对本节课的内容进行总结,并提出一些拓展问题,激发学生的学习兴趣。
七. 说板书设计板书设计如下:1.圆中的计算问题–弧长计算公式:弧长 = 半径 × 圆心角–扇形面积计算公式:扇形面积 = 1/2 × 半径² × 圆心角2.实例分析–通过具体的实例,展示弧长和扇形面积的计算过程。
27.3 圆中的计算问题 第1课时 弧长和扇形面积教学目标一、基本目标探索弧长公式和扇形面积公式推导过程,并会应用公式解决问题. 二、重难点目标 【教学重点】弧长及扇形面积计算公式. 【教学难点】弧长及扇形面积计算公式的推导过程.教学过程环节1 自学提纲,生成问题 【5 min 阅读】阅读教材P58~P61的内容,完成下面练习. 【3 min 反馈】1.在半径为R 的圆中,1°的圆心角所对的弧长是πR 180,n °的圆心角所对的弧长是nπR180.2.在半径为R 的圆中,1°的圆心角所对应的扇形面积是πR 2360,n °的圆心角所对应的扇形面积是nπR 2360.3.半径为R ,弧长为l 的扇形面积S =12lR .4.已知⊙O 的半径OA =6,∠AOB =90°,则∠AOB 所对的弧长AB 的长是3π. 5.一个扇形所在圆的半径为3 cm ,扇形的圆心角为120°,则扇形的面积为3π cm 2. 6.在一个圆中,如果60°的圆心角所对的弧长是6π cm ,那么这个圆的半径r =18 cm. 环节2 合作探究,解决问题 活动1 小组讨论(师生互学)【例1】制作弯形管道时,需要先按中心线计算“展直长度”再下料,试计算如图所示的管道的展直长度,即AB ︵的长(结果精确到0.1 mm).【互动探索】(引发学生思考)直接运用弧长公式求解. 【解答】∵R =40 mm ,n =110,∴AB ︵ 的长=nπR 180=110×40π180≈76.8(mm).∴管道的展直长度约为76.8 mm.【互动总结】(学生总结,老师点评)运用弧长公式解决问题时,一定要找准弧所对的圆心角与半径.【例2】扇形AOB 的半径为12 cm ,∠AOB =120°,求AB ︵的长(结果精确到0.1 cm)和扇形AOB 的面积(结果精确到0.1 cm 2).【互动探索】(引发学生思考)直接运用弧长公式求出AB ︵ 的长,再直接运用扇形公式求解. 【解答】AB ︵ 的长=120180π×12≈25.1(cm).S 扇形=120360π×122≈150.7(cm 2). 【互动总结】(学生总结,老师点评)此题求扇形的面积也可利用公式S =12lR 解决.活动2 巩固练习(学生独学)1.已知半径为2的扇形,面积为43π,则它的圆心角的度数=120°.2.已知半径为2 cm 的扇形,其弧长为43π cm ,则这个扇形的面积S =43π cm 2.3.已知半径为2的扇形,面积为43π,则这个扇形的弧长=43π.4.已知扇形的半径为5 cm ,面积为20 cm 2,则扇形弧长为8 cm. 5.已知扇形的圆心角为210°,弧长是28π,则扇形的面积为336π. 活动3 拓展延伸(学生对学)【例3】如图,两个同心圆被两条半径截得的AB ︵ 的长为6π cm ,CD ︵的长为10π cm ,又AC =12 cm ,求阴影部分的面积.【互动探索】图中的阴影部分是圆环的一部分,要求阴影部分的面积,需求扇形COD 的面积与扇形AOB 的面积之差.根据扇形面积S =12lR ,l 已知,则需要求两个半径OC 与OA ,因为OC =OA +AC ,AC 已知,所以只要能求出OA 即可.【解答】设OA =R cm ,OC =(R +12) cm ,∠O =n °.根据已知条件有⎩⎨⎧6π=n180πR ,①10π=n 180π(R +12),②①②得,35=R R +12,∴R =18.∴OC =18+12=30,∴S =S 扇形COD -S 扇形AOB =12×10π×30-12×6π×18=96π cm 2.∴阴影部分的面积为96π cm 2.【互动总结】(学生总结,老师点评)利用我们所学的知识,不能直接求出阴影部分的面积,需要将它转化为两个扇形的面积之差.在求不规则图形的面积时,需要将其转化为规则图形面积的和(差)形式,从而解决问题.环节3 课堂小结,当堂达标 (学生总结,老师点评)弧长和扇形面积⎩⎪⎨⎪⎧半径为R ,n °的圆心角所对的弧长l =nπR180半径为R ,n °的圆心角所对的扇形面积S =nπR2360半径为R ,弧长为l 的扇形面积S =12lR练习设计请完成本课时对应训练!第2课时 圆锥的侧面积和全面积教学目标一、基本目标1.了解圆锥母线和高的概念,理解圆锥侧面积计算公式. 2.理解圆锥全面积的计算公式,并会应用公式解决问题. 二、重难点目标 【教学重点】圆锥侧面积和全面积的计算. 【教学难点】探索圆锥侧面积计算公式.教学过程环节1 自学提纲,生成问题 【5 min 阅读】阅读教材P62~P63的内容,完成下面练习. 【3 min 反馈】1.圆锥是由一个底面和一个侧面围成的.把圆锥底面圆周上任意一点与圆锥顶点的线段叫做圆锥的母线,连结顶点与底面圆心的线段叫做圆锥的高.2.沿着圆锥的母线,把圆锥的侧面展开,得到一个扇形,这个扇形的弧长等于圆锥底面的周长,而扇形的半径等于圆锥的母线长.3.圆锥的母线为l ,圆锥的高为h ,底面圆的半径为r ,存在关系式:l 2=h 2+r 2,圆锥的侧面积S =πlr ;圆锥的全面积S 全=S 底+S 侧=πr 2+πlr .4.已知圆锥的底面直径为4,母线长为6,则它的侧面积为12π.5.圆锥的底面半径为3 cm ,母线长为6 cm ,则这个圆锥侧面展开图扇形的圆心角是180°. 6.如果圆锥的高为3 cm ,母线长为5 cm ,则圆锥的全面积是36π cm 2. 环节2 合作探究,解决问题 活动1 小组讨论(师生对学)【例1】圣诞节将近,某家商店正在制作圣诞节的圆锥形纸帽.已知纸帽的底面周长为58 cm ,高为20 cm ,要制作20顶这样的纸帽至少要用多少平方厘米的纸?(结果精确到0.1 cm 2)【互动探索】(引发学生思考)“圆锥形纸帽”的侧面展开图是什么?要求纸帽的面积,即求圆锥的侧面积,需要哪些条件?【解答】设纸帽的底面半径为r cm ,母线长为l cm.则r =582π,l =⎝⎛⎭⎫582π2+202≈22.03(cm),S圆锥侧=12lR ≈12×58×22.03=638.87(cm 2).638.87×20=12 777.4(cm 2).即至少需要12 777.4 cm 2的纸.【互动总结】(学生总结,老师点评)在解决实际问题时,首先要考虑求的是圆锥的侧面积还是全面积,确定好以后,找到需要的数据,代入公式计算即可.活动2 巩固练习(学生独学)1.圆锥的侧面积是底面积的2倍,这个圆锥的侧面展开图扇形的圆心角是180°. 2.一个扇形,半径为30 cm ,圆心角为120°,用它做成一个圆锥的侧面,那么这个圆锥的底面半径为10 cm.3.如图所示,已知扇形AOB 的半径为6 cm ,圆心角为120°,现要将此扇形围成一个圆锥.(1)求围成的圆锥的侧面积; (2)求该圆锥的底面半径;解:(1)圆锥的侧面积=120π×62360=12π(cm 2).(2)该圆锥的底面半径为r .根据题意,得2πr =120π×6180,解得r =2.即圆锥的底面半径为2 cm. 活动3 拓展延伸(学生对学)【例2】如图,已知Rt △ABC 的斜边AB =13 cm ,一条直角边AC =5 cm ,以直线AB 为轴旋转一周得一个几何体.求这个几何体的表面积.【互动探索】观察图形,几何体由两个圆锥组成,且共用圆锥底面,要求其表面积,只需求出两个圆锥的侧面积之和即可.【解答】在Rt △ABC 中,AB =13 cm ,AC =5 cm , ∴BC =12 cm. ∵OC ·AB =BC ·AC ,∴r =OC =BC ·AC AB =5×1213=6013,∴S 表=πr (BC +AC )=π×6013×(12+5)=102013π(cm 2).【互动总结】(学生总结,老师点评)在计算组合体的表面积时,需要将其拆分成简单的几何体,分别计算各几何体的表面积,注意重叠的部分不需要计算.环节3 课堂小结,当堂达标 (学生总结,老师点评)圆锥的相关计算⎩⎪⎨⎪⎧圆锥的侧面展开图是一个扇形圆锥的侧面积S =πlr圆锥的全面积S 全=S 底+S 侧=πr 2+πlr练习设计请完成本课时对应训练!。
九年级数学 圆中的计算问题华东师大版【本讲教育信息】一. 教学内容:§28.3 圆中的计算问题二. 重点、难点: 1. 重点:⑴弧长和扇形的面积; ⑵圆锥的侧面积和全面积 2. 难点:弧长和扇形面积公式的推导三. 知识梳理:(一)弧长和扇形的面积 1. 弧长的计算公式如果弧长为l ,圆心角度数为n ,圆的半径为r ,那么,弧长的计算公式为:2360180n n rl r ππ=⋅=. 2. 扇形的面积公式如果设圆心角是n °的扇形面积为S ,圆的半径为r ,那么扇形面积为213602n r S S lr π==或 说明:⑴对于弧长公式和扇形面积公式,无须死记硬背,应在明确其“来历”的基础上理解掌握.⑵在应用弧长公式180n rl π=或扇形面积公式2360n r S π=进行计算时,要注意公式中的n的意义,n 表示1°的圆心角的倍数,因此不带单位.⑶扇形的另一个面积公式12S lr =与三角形的面积公式有些类似.形式基本一样,可以联系起来记忆.(二)圆锥的侧面积和全面积如图,我们把圆锥底面圆周上任意一点与圆锥顶点的连线叫做圆锥的母线.连结顶点与底面圆心的线段叫做圆锥的高.如图,沿着圆锥的母线,把一个圆锥的侧面展开,得到一个扇形,这个扇形的弧长等于圆锥底面的周长,而扇形的半径等于圆锥的母线的长.圆锥的侧面积就是弧长为圆锥底面的周长、半径为圆锥的一条母线的长的扇形面积,而圆锥的全面积就是它的侧面积与它的底面积的和.说明:⑴研究圆锥的侧面积和全面积,必须先将其展开.圆锥的侧面展开图是扇形,这个扇形的半径是圆锥的母线长,弧长是圆锥底面圆的周长.⑵若设圆锥的母线长为l ,底面半径为r ,则圆锥的侧面积就是其展开图——扇形的面积,122r l rl ππ⋅⋅=S=;圆锥的全面积是侧面积与底面积的和,是2rl r ππ+.另外,知道扇形的半径和弧长,还可以求得扇形的圆心角.【典型例题】例1. 如图,一块长为8的正方形木板ABCD ,在水平桌面上绕点A 按逆时针方向旋转到ADEF 的位置,则顶点C 从开始到结束所经过的路径长为( )A. 16 ;B. 162 ;C. 8π ;D. 42π分析:在旋转过程中,AC 的长度保持不变,所以顶点C 从开始到结束所经过的路径长是以A 为圆心,AC 长为半径的90°的弧长,因为AC =82,所以,ππ241802890=⋅⋅=l ,故选D .例2. 如图,⊙A 、⊙B 、⊙C 、⊙D 互相外离,它们的半径都是1,顺次连结四个圆心得到四边形ABCD ,则图中四边形内的四个扇形面积之和为( )A. 2π;B.π;C.32π ; D. 21π分析:根据题中的条件无法求出四个扇形的圆心角的度数,因而从整体考虑,可以发现四个扇形的圆心角分别是四边形的四个内角,所以四个扇形的圆心角的度数之和为360°,故选B .例3. 如图,如果圆锥的底面圆的半径是8,母线长是15,那么这个圆锥侧面展开图的扇形的圆心角的度数是 .分析:由圆锥的底面圆的半径是8,可以求出底面圆的周长,也就是扇形CAB 的弧长,再利用弧长公式2360180n n rl r ππ=⋅=即可求扇形的圆心角的度数. 解:∵圆锥底面圆的半径是8,∴BC l r C ==⋅=ππ162 ∵母线长为15∵180Rn l BC ⌒π=∴1801516⋅=ππn 192=n∴圆心角的度数为192°.例4. 如图,一把纸扇完全打开后,外侧两竹条AB 和AC 的夹角为120°,AB 长为25cm ,贴纸部分的宽BD 为17cm ,则贴纸部分的面积为_______.(结果保留π)分析:扇形面积公式有两个,一是2360n r S π=,另一个是12S lr =,贴纸部分的面积实际是由两个扇形的面积相减所得.由解意很容易列出关于所求贴纸部分的面积:2212025120(2517)360360ππ⋅⋅⋅⋅--=187π(cm 2).例5. 如图1,在正方形铁皮上剪下一个圆形和扇形,使之恰好围成图2所示的一个圆锥模型.设圆的半径为r ,扇形半径为R ,则圆的半径与扇形半径之间的关系为A. R =2rB. R =94r C. R =3r D. R =4r分析:注意题中的“底面圆的半径”与“扇形的半径”是两个不同的概念.要找到圆的半径与扇形半径之间的关系,需要得到一个等量关系,由圆锥的有关概念,根据圆锥底面圆的周长等于扇形的弧长,可得2πr =90180πR∴R =4r ∴答案选D例6. 如图所示,半径是10cm 的圆纸片,剪去一个圆心角是120°的扇形(图中阴影部分),用剩下部分围成一圆锥,求圆锥的高和底面圆的半径.分析:首先,根据题意画出圆锥体的示意图,从图中可知,要求圆锥的底面圆的半径需求出其所在圆的周长,而底面圆的周长为左图中剩下扇形的弧长,这样转化到求弧长的问题;关于圆锥的高,只要由底面半径与圆锥的母线长构造直角三角形即可.解:如答图中的甲、乙图,∵n =360°-120°=240°,R =10cm ,如图(甲)所示,24010401801803OAmB n r l πππ⨯===扇形(cm ) 如图乙中连结O ′P ,则O ′P ⊥CD ,设⊙O ′半径为r , ∵'',2OAmB O O C l C r π==扇形,∴4023r ππ=,∴r =203(cm ) ∴ O ′P =22'22201010533PD O D ⎛⎫-=-=⎪⎝⎭(cm )例7. 已知矩形ABCD 中,AB =1cm ,BC =2cm ,以B 为圆心,BC 长为半径作41圆弧交AD 于F ,交BA 的延长线于E ,求阴影部分面积.分析:要求阴影部分面积,只须将它转化为求规则图形的面积的和差,故需连结BF ,ABF BFE S S S △扇形阴-=解:连结BF∵BC =2,F 点在以B 为圆心,BC 为半径的圆上 ∴BF =2∵矩形ABCD ,AB =1,BF =2 ∴∠ABF =60° ∴ππ323602602=⋅⋅=BFES 扇形3BA BF AF ,BAF Rt 22=-=∆中231321=⨯⨯=ABF S △∴ABF BFE S S S △扇形阴-= =2cm )2332(-π 答:阴影部分面积为2cm )2332(-π.例8. 如图已知圆锥的底面半径r =10cm ,母线长为40cm .⑴求它的侧面展开图的圆心角和表面积;⑵若一只甲虫从A 点出发沿着圆锥侧面绕行到母线SA 的中点B ,它所走的最短路程是多少?SAB分析:⑴把圆锥的侧面沿母线SA 展开,如图 则⋂'AA 的长为2πr =20π,SA =40 所以20π=40180n π⋅所以n =90°所以圆锥的侧面展开图的圆心角是90°S 表面=S 侧+S 底=29040360π⋅+π·102=500π(cm 2)⑵由圆锥的侧面展开图可见,甲虫从A 点出发沿着圆锥侧面绕行到母线SA 的中点B 所走的最短路程是线段AB 的长在Rt △ASB 中,∠ASB =90°,SA =40,SB =20所以AB =22SA +SB =205cm答:圆锥的侧面展开图的圆心角是90°,圆锥的表面积是500π2cm ,甲虫所走的最短路程长205cm .例9. 如图,扇形OAB 的圆心角为90°,分别以OA 、OB 为直径在扇形内作半圆,P 和Q 分别表示两个封闭图形的面积,那么P 和Q 的大小关系是( )A. P =Q ;B. P >Q ;C. P <Q ;D. 无法确定.分析:本题中两个封闭图形的面积不易直接求,可用代数方法来求,根据图形的对称性,另两个封闭图形的面积相等,不妨设为M ,再设OA =2r ,由图形可得M +Q =221r ⋅π,2M +P +Q =2r ⋅π,解得P =Q ,故选A .[方法探究]在一个问题不能直接解决的情况下,就要善于从另一个角度来寻找其它的途径.本题是通过设未知数,把几何问题转化为代数问题,即通过方程思想,使问题迎刃而解.例10. 如图,秋千拉绳长AB 为3米,静止时踩板离地面0.5米,某小朋友荡该秋千时,秋千在最高处时踩板离地面2米(左右对称),请计算该秋千所荡过的圆弧长(精确到0.1米)?解析:由题意要求圆弧BF 的长,只要求得圆心角∠BAF 的度数即可,根据左右对称,所以将∠BAC 置于一个直角三角形中来计算其度数.过点B 作BE ⊥地面于点E ,作BG ⊥AD 于点G ,则有GD =BE =2,又AD =AC +CD =3.5,所以AG =1.5,则在Rt ΔABG 中,AB =3,AG =1.5,所以∠BAC =60°,所以∠BAF =120°.则弧BF 的长=1203180π⋅⋅=2π≈6.3(米).例11. 如图是某学校田径体育场一部分的示意图,第一条跑道每圈为400米,跑道分直道和弯道,直道为长相等的平行线段,弯道为同心的半圆型,弯道与同心的半圆型,弯道与直道相连接.已知直道BC 的长为86.96米,跑道的宽为1米(π=3.14,结果精确到0.01米) ⑴求第一条跑道的弯道部分⋂AB 的半径;⑵求一圈中第二条跑道比第一条跑道长多少米?⑶若进行200米比赛,求第六道的起点F 与圆心O 的连线FO 与OA 的夹角∠FOA 的度数.解析:⑴弯道的半圆周长为400286.962-⨯=113.04(米),由圆周长L =2πr ,所以半圆弧线长'l r π=,则第一道弯道部分的半径r ='113.043.14l π==36.00(米)⑵第二道与第一道的直跑道长相等,第二道与第一道的弯跑道的半径之差为1米,第二道与第一道的弯跑道长的差即为两圆周长之差,即2π(r +1)-2πr =2π=6.28(米).⑶从第一道200米,是以A 点为始点,第六道上的运动员需要跑86.96米的直道和113.04米的弯道,即弧长为113.04米,又第六道弯道半圆的半径为41米, 由弧长与半圆、圆心角的关系得n =,所以∠FOA =180°°°.【模拟试题】(答题时间:30分钟)1. 一个扇形的弧长是20πcm ,面积是240π2cm ,则扇形的半径是( )A. 6cmB. 21cmC. 24 cmD. 62 cm2. 一个圆锥的侧面积是底面积的3倍,这个圆锥的侧面展开图的圆心角是( ) A. 60° B. 90° C. 120° D. 180°3. 底面圆半径为3cm ,高为4cm 的圆锥侧面积是( )A. 7. 5π2cmB. 12π2cmC. 15π2cmD. 24π2cm4. 扇形的半径OA =20cm ,∠AOB =135 ,用它做成一个圆锥的侧面,此圆锥底面的半径是( )A. B. C. 15cm D. 30cm5. 如图,⊙A ,⊙B ,⊙C 两两不相交,且半径都是,则圆中的三个扇形即(三个阴影部分)的面积之和为( )A.12π2cm B.8π2cm C. 6π2cm D.4π2cm6. 一个圆锥的底面积是25π2cm ,母线长13cm ,则这个圆锥的侧面积是 .7. 一个圆锥的侧面展开图是一个面积为8π的半圆,则这个圆锥的全面积是________. 8. 如图所示,已知⊙1O 内切于扇形AOB ,切点为C 、D 、E ,⊙1O 的面积为16π,∠AOB =60°,求扇形AOB 的周长和面积.9. 如图所示是一管道的横截面示意图,某工厂想测量管道横截面的面积,工人师傅使钢尺与管道内圆相切并交外圆于A 、B 两点,测量结果为AB =30cm , 求管道阴影部分的面积为多少?【试题答案】1. C2. C3. C4. B5. B6. 65π2cm7.12π8. 24π提示:连结O 1C ,OO 1并延长OO 1,则必过切点E ,设⊙O 1的半径为r ∴1O S 圆21,16r S O ππ==圆,∴216r ππ=,r =4, ∴O 1C =4, ∵OA ,OB 切圆1O 于C ,D ,∠AOB =60°, ∴∠AOE =30° ∵∠COO 1=30°,O 1C =4,∴O 1O =8, ∴R =OE =OO 1+O 1E =8+4=12 ∴24412242,41801260+=⨯+=+==⨯=⋂⋂ππππr l l lAOB OAB AOB扇形∴224360OABn R S ππ==扇形. 9. 解:设钢尺AB 与管道内圆相切于C 点,连结OC 、OA ,则OC ⊥AB ,设OC =r ,OA =R ,∵AB =30cm ,OC ⊥AB ,∴AC =152AB=, ∴222222()15225S OA OC R r AC ππππππ=⋅-⋅=-=⨯=⨯=阴影(cm 2)。
第5讲圆的计算问题
一.选择题(共5小题)
1.如图,点D为AC上一点,点O为边AB上一点,AD=DO.以O为圆心,OD长为半径作圆,交AC 于另一点E,交AB于点F,G,连接EF.若∠BAC=22°,则∠EFG=()
A.55°B.44°C.38°D.33°
2.如图,在△ABC中,AB=5,AC=3,BC=4,将△ABC绕点A逆时针旋转30°后得到△ADE,点B经过的路径为,则图中阴影部分的面积为()
A.πB.πC.πD.π
3.如图,从一块直径是8m的圆形铁皮上剪出一个圆心角为90°的扇形,将剪下的扇形围成一个圆锥,圆锥的高是()m.
A.4B.5 C.D.2
4.如图,AB是半圆O的直径,且AB=12,点C为半圆上的一点.将此半圆沿BC所在的直线折叠,若圆弧BC恰好过圆心O,则图中阴影部分的面积是()
A.4πB.5πC.6πD.8π
5.如图,小方格都是边长为的正方形,则以格点为圆心,半径为2的两种弧围成的“叶状”阴影图案的面积为()
A.4π﹣2 B.2π﹣2 C.4π﹣4 D.2π﹣4
6.如图,在Rt△AOB中,∠AOB=90°,OA=3,OB=2,将Rt△AOB绕点O顺时针旋转90°后得Rt△FOE,将线段EF绕点E逆时针旋转90°后得线段ED,分别以O,E为圆心,OA、ED长为半径画弧AF和弧DF,连接AD,则图中阴影部分面积是()
A.πB. C.3+πD.8﹣π
7.如图,已知A、B两点的坐标分别为(8,0)、(0,﹣6),⊙C的圆
心坐标为(0,7),半径为5.若P是⊙C上的一个动点,线段PB与x轴
交于点D,则△ABD面积的最大值是()
A.63 B.31C.32 D.30
二、填空题
8.如图,CD为⊙O的弦,直径AB为4,AB⊥CD于E,∠A=30°,则
的长为(结果保留π).
9.如图,已知圆锥的高为,高所在直线与母线的夹角为30°,圆锥的侧面积为.
10.如图,AB是半圆O的直径,点C、D是半圆O的三等分点,若弦CD=2,则图中阴影部分的面积为.11.如图,在边长为4的正方形ABCD中,先以点A为圆心,AD的长为半径画弧,再以AB边的中点为圆心,AB长的一半为半径画弧,则阴影部分面积是(结果保留π).
12.如图,AC是汽车挡风玻璃前的雨刷器,如果AO=45cm,CO=5cm,当AC绕点O顺时针旋转90°时,则雨刷器AC扫过的面积为cm2(结果保留π).
13.如图,在Rt△ABC中,∠ACB=90°,AC=2,以点C为圆心,CB的长为半径画弧,与AB边交于点D,将绕点D旋转180°后点B与点A恰好重合,则图中阴影部分的面积为.
14.如图,△ABC是正三角形,曲线CDEF叫做正三角形的渐开线,其中弧CD、弧DE、弧EF的圆心依次是A、B、C,如果AB=1,那么曲线CDEF的长是.
15.如图,半径为5的半圆的初始状态是直径平行于桌面上的直线b,然后把半圆沿直线b进行无滑动滚动,
使半圆的直径与直线b重合为止,则圆心O运动路径的长度等于.
16.如图,矩形ABCD中,BC=4,AB=3,将它绕C顺时针旋转90°,得到矩形A′B′CD′,求旋转过程中线
段AD扫过的面积(即阴影部分面积).
17.如图,直线y=﹣与x轴、y轴分别交于点A、B;点Q是以C(0,﹣1)为圆心、1为半径的圆上一动点,过Q点的切线交线段AB于点P,则线段PQ的最小值是.
18.如图,AB是⊙O的直径,且经过弦CD的中点H,过CD延长线上一点E作⊙O的切线,切点为F.若∠ACF=65°,则∠E=.
19.如图,在矩形ABCD中,AB=8,AD=12,过A,D两点的⊙O与BC边相切于点E,则⊙O的半径为.
20.如图,⊙O是△ABC的外接圆,AD是⊙O的直径,若⊙O的半径为,AC=2,sinB的值是.
21.如图,△ABC是等腰直角三角形,∠ACB=90°,BC=AC,把△ABC绕点A按顺时针方向旋转45°后得
到△AB′C′,若AB=2,则线段BC在上述旋转过程中所扫过部分(阴影部分)的面积是(结果保留π).22.如图,已知A(2,2)、B(2,1),将△AOB绕着点O逆时针旋转90°,到达△A′B′O的位置,则图中图形ABB′A′的周长为.
三.解答题
23.如图,点E在以AB为直径的⊙O上,点C是的中点,过点C作CD垂直于AE,交AE的延长线于点D,连接BE交AC于点F.
(1)求证:CD是⊙O的切线;
(2)若cos∠CAD=,BF=15,求AC的长.
24.如图,在△ABC中,AB=AC,以AB为直径的⊙O与边BC、AC分别交于D、E两点,过点D作DF ⊥AC,垂足为点F.
(1)求证:DF是⊙O的切线;
(2)若AE=4,cosA=,求DF的长.
25.如图,在△ABC中,AB=AC,以AC边为直径作⊙O交BC边于点D,过点D作DE⊥AB于点E,ED、AC的延长线交于点F.
(1)求证:EF是⊙O的切线;
(2)若EB=,且sin∠CFD=,求⊙O的半径与线段AE的长.
26.如图,以AB边为直径的⊙O经过点P,C是⊙O上一点,连结PC交AB于点E,且∠ACP=60°,PA=PD.(1)试判断PD与⊙O的位置关系,并说明理由;
(2)若点C是弧AB的中点,已知AB=4,求CE•CP的值.
27.如图,已知△ABC内接于⊙O,AB是⊙O的直径,点F在⊙O上,且满足=,过点C作⊙O的切线交AB的延长线于D点,交AF的延长线于E点.
(1)求证:AE⊥DE;
(2)若tan∠CBA=,AE=3,求AF的长.
28.已知Rt△ABC中,AB是⊙O的弦,斜边AC交⊙O于点D,且AD=DC,延长CB交⊙O于点E.(1)图1的A、B、C、D、E五个点中,是否存在某两点间的距离等于线段CE的长?请说明理由;
(2)如图2,过点E作⊙O的切线,交AC的延长线于点F.
①若CF=CD时,求sin∠CAB的值;
②若CF=aCD(a>0)时,试猜想sin∠CAB的值.(用含a的代数式表示,直接写出结果)。