初中数学总复习《与圆有关的计算》
- 格式:doc
- 大小:509.50 KB
- 文档页数:6
2024河南中考数学复习与圆有关的计算(含阴影部分面积)强化精练基础题1.(2023兰州)如图①是一段弯管,弯管的部分外轮廓线如图②所示是一条圆弧AB ︵,圆弧的半径OA =20cm ,圆心角∠AOB =90°,则AB ︵=()第1题图A.20πcmB.10πcmC.5πcmD.2πcm2.(2023新疆维吾尔自治区)如图,在⊙O 中,若∠ACB =30°,OA =6,则扇形OAB (阴影部分)的面积是()第2题图A.12πB.6πC.4πD.2π3.(2023鄂州)如图,在△ABC 中,∠ABC =90°,∠ACB =30°,AB =4,点O 为BC 的中点,以O 为圆心,OB 长为半径作半圆,交AC 于点D ,则图中阴影部分的面积是()第3题图A.53-33πB.53-4πC.53-2πD.103-2π4.(2023连云港)如图,矩形ABCD 内接于⊙O ,分别以AB 、BC 、CD 、AD 为直径向外作半圆.若AB =4,BC =5,则阴影部分的面积是()第4题图A.414π-20B.412π-20C.20πD.205.(2023金华)如图,在△ABC 中,AB =AC =6cm ,∠BAC =50°,以AB 为直径作半圆,交BC 于点D ,交AC 于点E ,则弧DE 的长为________cm.第5题图6.如图,在2×3的网格图中,每个小正方形的边长均为1,点A ,B ,C ,D 都在格点上,线段CD 与AC ︵交于点E ,则图中AE ︵的长度为________.第6题图7.(2023重庆A 卷)如图,⊙O 是矩形ABCD 的外接圆,若AB =4,AD =3,则图中阴影部分的面积为________.(结果保留π)第7题图8.(2023包头)如图,正方形ABCD的边长为2,对角线AC,BD相交于点O,以点B为圆心,对角线BD的长为半径画弧,交BC的延长线于点E,则图中阴影部分的面积为________.第8题图9.(万唯原创)如图,在Rt△ABC中,∠BAC=90°,∠B=30°,AC=2,以点A为圆心,AC 长为半径作弧,分别交AB,BC于点D,E,则图中阴影部分的周长为________.第9题图10.(2023新乡一模)如图,△ABC中,∠C=90°,AC=BC=2.将△ABC绕着点A顺时针旋转90度到△AB1C1的位置,则边BC扫过区域的面积为________.第10题图11.(2023驻马店二模)如图,将扇形OAB沿OA方向平移得到对应扇形CDE,线段CE交AB︵于点F,当OC=CF时平移停止.若∠O=60°,OB=3,则阴影部分的面积为________.第11题图拔高题12.(2023通辽)如图,在扇形AOB中,∠AOB=60°,OD平分∠AOB交AB︵于点D,点C是半径OB 上一动点,若OA =1,则阴影部分周长的最小值为()A.2+π6B.2+π3C.22+π6 D.22+π3第12题图13.如图,两个半径长均为2的直角扇形的圆心分别在对方的圆弧上,扇形CFD 的圆心C 是AB ︵的中点,且扇形CFD 绕着点C 旋转,半径AE ,CF 交于点G ,半径BE ,CD 交于点H ,则图中阴影部分面积等于()第13题图A.π2-1B.π2-2C.π-1D.π-214.如图,AB 为⊙O 的直径,将BC ︵沿BC 翻折,翻折后的弧交AB 于点D.若BC =45,sin ∠ABC =55,则图中阴影部分的面积为()第14题图A.25πB.25πC.8D.1015.如图,在矩形ABCD中,AD=2,AB=22,对角线AC,BD交于点O,以A为圆心,AB的长为半径画弧,交CD于点F,连接FO并延长交AB于点M,连接AF,则图中阴影部分的面积是______.(结果保留π)第15题图参考答案与解析1.B 【解析】∵圆弧的半径OA =20cm ,圆心角∠AOB =90°,∴ AB 的长=90π×20180=10π(cm).2.B 【解析】∵∠ACB =30°,∴∠AOB =2∠ACB =60°,∴S 扇形AOB =60×π×62360=6π.3.C【解析】如解图,连接OD ,BD ,在Rt △ABC 中,tan 30°=AB BC ,∴BC =AB tan 30°=43,∵OC =OD ,∴∠OCD =∠ODC =30°,∴∠BOD =60°,∵BO =DO ,∴△BOD 是等边三角形,∴BD =BO =12BC =23,∠BDO =60°,∴∠BDC =90°,AD =BD ·tan 30°=2.∴S 阴影部分=S △ABD +S △BOD -S 扇形BOD =12×23×2+34×(23)2-60π×(23)2360=53-2π.第3题解图4.D 【解析】如解图,连接AC ,∵矩形ABCD 内接于⊙O ,AB =4,BC =5,∴AC 2=AB 2+BC 2,∴阴影部分的面积为S矩形ABCD +π×(AB 2)2+π×(BC 2)2-π×(AC 2)2=S 矩形ABCD +π×14(AB 2+BC 2-AC 2)=S 矩形ABCD =4×5=20.第4题解图5.56π【解析】如解图,连接OE ,OD ,∵OD =OB ,∴∠B =∠ODB ,∵AB =AC ,∴∠B =∠C ,∴∠C =∠ODB ,∴OD ∥AC ,∴∠EOD =∠AEO ,∵OE =OA ,∴∠OEA =∠BAC =50°,∴∠EOD =∠BAC =50°,∵OD =12AB =12×6=3(cm),∴ DE 的长为50π×3180=56π(cm).6.54π【解析】如解图,连接AC ,AD ,设AC 交网格线于点O ,连接OE .∵AD 2=22+12=5,AC 2=22+12=5,CD 2=12+32=10,∴AD =AC ,AD 2+AC 2=CD 2,∴△ACD 是等腰直角三角形,∴∠ACD =45°,∵∠ABC 是直角,∴AC 是⊙O 的直径,∴∠AOE =90°.∵AC =5,∴OE =OA =12AC =52,∴ AE 的长为90π×52180=54π.第6题解图7.254π-12【解析】如解图,连接BD ,由题知∠BAD =90°,∴BD 是⊙O 的直径,∵AB =4,AD =3,∴BD =AD 2+AB 2=32+42=5,∴S 阴影=S ⊙O -S 矩形ABCD =π×(52)2-3×4=254π-12.第7题解图8.π【解析】∵正方形ABCD 对角线相交于点O ,∴AO =BO ,CO =DO ,∠AOD =∠BOC ,∴△AOD ≌△BOC ,∴阴影部分的面积=扇形DBE 的面积,∵正方形的边长为2,∴由勾股定理得BD =22,∠DBC =45°,∴阴影部分的面积=45360×π·(22)2=π.9.π3+23【解析】如解图,连接AE ,∵在Rt △ABC 中,∠B =30°,∴BC =2AC =4,AB =23.∵ DE 是以点A 为圆心,AC 长为半径的弧,∴AD =AE =AC =2,∴BD =AB -AD=23-2,∠AEC =∠C =60°,∴△AEC 为等边三角形,∴AE =EC =2.,∴BE =2,∠BAE=∠B =30°,∴ DE 的长为30π×2180=π3,∴阴影部分的周长为2+π3+23-2=π3+23.10.π【解析】在△ABC 中,∠ACB =90°,AC =BC =2,由勾股定理得,AB =22+22=22,∵将△ABC 绕着点A 顺时针旋转90度到△AB 1C 1的位置,∴∠CAC 1=90°,∴阴影部分的面积S =S 扇形BAB 1+S △B 1AC 1-S △ACB -S 扇形CAC 1=S 扇形BAB 1-S 扇形CAC 1=90π×(22)2360-90π×22360=π.11.3π4-334【解析】如解图,连接OF ,过点C 作CH ⊥OF 于点H ,由平移性质知,CE ∥OB ,∴∠CFO =∠BOF ,∵CO =CF ,∴∠COF =∠CFO ,∴∠COF =∠BOF =12∠BOC =30°,在等腰△OCF 中,OH =12OF =12OB =32,∴CH =OH ·tan 30°=32×33=32,∴S 阴影=S 扇形AOF -S △COF =30·π×32360-12×3×32=3π4-334.第11题解图12.A 【解析】如解图,作D 点关于直线OB 的对称点E ,连接AE ,OE ,DE ,CE ,AE 与OB 的交点为C 点,则CD =CE ,OD =OE ,∠DOB =∠EOB ,∴AC +CD =AC +CE ≥AE ,当A ,C ,E 三点共线时,AC +CD 取得最小值,此时阴影部分周长最小,在扇形AOB 中,∠AOB =60°,OD 平分∠AOB 交 AB 于点D ,∴∠AOD =∠BOD =30°,由轴对称的性质,∠EOB =∠BOD =30°,OE =OD ,∴∠AOE =90°,∴△AOE 是等腰直角三角形,∵OA =1,∴AE =2, AD 的长=30π×1180=π6,∴阴影部分周长的最小值为2+π6.第12题解图13.D 【解析】两扇形的面积和为180π·(2)2360=π,如解图,过点C 作CM ⊥AE 于点M ,CN ⊥BE 于点N ,连接CE ,则四边形EMCN 是矩形,∵点C 是 AB 的中点,∴EC 平分∠AEB ,∴CM =CN ,∴矩形EMCN 是正方形,∵∠MCG +∠FCN =90°,∠NCH +∠FCN =90°,∴∠MCG =∠NCH ,在△CMG 与△CNH 中,MCG =∠NCH ,=CN ,CMG =∠CNH ,∴△CMG ≌△CNH (ASA),∴中间空白区域面积相当于对角线是2的正方形面积,∴空白区域的面积为12×2×2=1,∴图中阴影部分的面积=π-2.第13题解图14.C 【解析】如解图,连接AC ,CD ,过点C 作CH ⊥AB 于点H ,∵∠ABC =∠DBC ,∴ AC = CD,∴AC =CD ,∵CH ⊥AD ,∴AH =HD ,∵BC =45,sin ∠ABC =55,∴CH =BC ·sin ∠ABC =4,∵AB 为⊙O 的直径,∴∠ACB =90°,∵sin ∠ABC =AC AB =55,∴设AC =5m ,AB =5m ,根据勾股定理,AC 2+BC 2=AB 2,∴5m 2+80=25m 2,∴m =2(负值已舍去),∴AC =CD =25,∴AH =AC 2-CH 2=(25)2-42=2,∴AD =2AH =4,∴S 阴影=S △ACD =12AD ·CH =12×4×4=8.第14题解图15.π-22+2【解析】在矩形ABCD 中,AD =2,AB =22,∴∠ADC =90°,AB ∥CD ,OB =OD ,∴∠ABD =∠CDB ,∵AF =AB =22,AF 2=AD 2+DF 2,∴(22)2=22+DF 2,∴DF =2,∴AD =DF ,∴∠DAF =∠DFA =45°,∴∠BAF =45°,在△BOM 和△DOF 中,MBO =∠FDO=ODBOM =∠DOF ,∴△BOM ≌△DOF (ASA),∴BM =DF =2,∴AM =22-2,∴图中45π×(22)2360-12×(22-2)×2=π-22+2.阴影部分的面积为:。
初中数学中考复习正多边形与圆的有关的证明和计算正多边形与圆的关系是初中数学中重要的内容。
在中考复习中,我们需要掌握正多边形与圆的有关知识,并能够进行证明和计算。
一、正多边形的性质与计算:1.正多边形的定义:正多边形是指所有边相等,所有角也相等的多边形。
2.正多边形的计算:正n边形的内角和为180°(n-2),每个内角为(180°(n-2))/n。
正n边形的外角和为360°,每个外角为360°/n。
正n边形的中心角为360°/n。
例题1:求正六边形的内角和。
解:内角和为180°(6-2)=720°。
例题2:求正五边形的每个内角大小。
解:每个内角为(180°(5-2))/5=108°。
二、正多边形与圆的关系:1.圆的定义:圆是平面上一组到一个固定点(圆心)距离相等的点的集合。
2.正多边形与圆的关系:正多边形的顶点均在圆上,且正多边形的外接圆和内切圆都满足以下性质:①外接圆:正多边形的外接圆的圆心与正多边形的中心重合。
②内切圆:正多边形的内切圆的圆心与正多边形的中心重合,且内接圆的半径等于正多边形的边长的一半。
3.正多边形与圆的证明:①外接圆的证明:由正多边形的定义可知,正多边形的每个顶点到圆心的距离都相等,即正多边形的顶点在圆上。
而圆心与正多边形的中心重合,所以正多边形的外接圆的圆心与正多边形的中心重合。
②内切圆的证明:首先,通过正多边形的定义,可以证明正多边形的每个顶点到圆心的距离都相等,即正多边形的顶点在圆上。
其次,由于正多边形的边长相等,所以正多边形的中心到各个顶点的距离也相等。
而内切圆的半径等于正多边形中心到任意一个顶点的距离,所以正多边形的内切圆的圆心与正多边形的中心重合,且内切圆的半径等于正多边形的边长的一半。
例题3:如图,正六边形ABCD中,O为外接圆的圆心,求AB的长。
解:由于正六边形的外接圆的圆心与正多边形的中心重合,所以O即为正六边形的中心。
《与圆有关的计算》复习课(教案)一、三年中考命题分析及2016年命题趋势
二、学习目标:
1、理解圆的弧长和扇形的面积公式。
2、能运用弧长公式解决一些路径问题,和运用扇形面积公式等解决一些阴影部分面积的问题。
三、知识要点归纳 知识点一:弧长的相关计算
【注意】(1)题目中没有明确给出精确度,可用含“π”的数表示弧长;(2)应区分弧,弧长这两个概念,弧长相等的弧不一定是等弧. 知识点二: 扇形面积的相关计算
知识点三: 特殊图形面积的计算
扇形面积:S =n πr 2360=1
2
lr
1、弓形
2.特殊图形面积的常用计算方法
(1)整体做差法:将阴影图形看成是一些基本图形覆盖而成的重叠部分,用整体作差法求解.
(2)等面积变换法(割补法):利用图形在平移、旋转、对称变换前后面积不变的性质,可将阴影部分的面积转化为规则图形的面积进行计算. 四、中考讲练
考点1:弧长的相关计算
【例1】 (2014·南充)如图,矩形ABCD 中,AB =5,AD =12,将矩形ABCD 按如图所示的方式在直线l 上进行两次旋转,则点B 在两次旋转过程中经过的路径的长是( ) A .25
2π B .13π C .25π D .25 2
变式训练:(2013•遵义)如图,将边长为1cm 的等边三角形ABC 沿直线l 向右翻动(不滑动),点B 从开始到结束,所经过路径的长度为( )
思维点拨:本题考查了弧长的计算,以及勾股定理的应用.连接BD ,B ′D ,首先根据勾股定理计算出BD 的长,再根据弧长计算公式计算出
,
对应劣弧的弓形 对应优弧的弓形
对应半圆弓形
S 弓形=S 扇形-S 三角形 S 弓形=S 扇形+S 三角形 S 弓形=1
2
πR 2=S 扇形
B /
B //
的长,然后再求和计算出点B在两次旋转过程中经过的路径的长即可。
考点2:扇形面积的相关计算(热频考点)
方法1、整体做差法
【例2】(2015·遵义)如图,在圆心角为90°的扇形OAB中,半径OA =2 cm,C为弧AB的中点,D,E分别是OA,OB的中点,则图中阴影部分的面积为_______________.
变式训练:如图:在边长为4的正方形ABCD中,先以点A为圆心,AD的长为半径画弧,再以AB边的中心为圆心,AB长的一半为半径画弧,则两弧之间的阴影部分面积是( )
方法2、等面积变换法
【例3】如图,AB为半圆的直径,且AB=4,半圆绕点B顺时针旋转45°,点A旋转到A′的位置,则图中阴影部分的面积为()
变式训练:如图,A 是半径为2的⊙O 外一点,OA=4,AB 是⊙O 的切线,B 为切点,弦BC ∥0A ,连接AC ,求阴影部分的面积.
课堂检测:
1、如图,⊙O 的半径为2,C1是函数 y=21x2的图象,C2是函数y=-2
1x2的图象,则阴影部分的面积是( )。
2、如图,⊙A 和⊙B 都与x 轴和y 轴相切,圆心A 和圆心B 都在反比例函数y=x
1的图象上,则图中阴影部分的面积等于 (结果保留π).
3、如图,AB是半圆O的直径,以O为圆心,OE长为半径的半圆交AB于E、F两点,弦AC是小半圆的切线,D为切点,已知AO=4,EO=2,那么阴影部分的面积是 .
方法指导:
转化思想是常用的数学思想之一.转化思想是分析问题和解决问题的一个重要的基本思想,不少数学思想都是转化思想的体现.在求与圆有关的不规则阴影部分的面积时,通常是将阴影部分的面积转化为圆、扇形、三角形面积的和或差,采用“割补法”、“等积变形法”、“拼凑法”、“构建方程法”,将不规则图形的阴影部分的面积转化为规则图形的面积进行求解.。