论文集成电路应用实验报告
- 格式:docx
- 大小:14.47 KB
- 文档页数:4
中规模集成电路的应⽤实验报告1. 74ls139功能验证基本功能验证:如右图2. 74ls148功能验证基本功能验证:如下图3.⽤74ls138以及74ls00实现全加器、全减器(1)实验分析:74ls138三个输⼊对应8个输出,意思就是⼀个3位的⼆进制输⼊对应⼀个10进制的⼀位例如ABC输⼊111那他那边的Y就会输出对应的⼀个位置如果ABC译码为8那Y⾥⾯就有⼀个位被弄为低电平。
74ls138就是38译码器,是TTL系列的,也就是74系列,有三个输⼊端A0,A1,A2,其中A2是⾼位,输出是⼋个低电平输出Y0 ~ Y7,⼯作电压⼀般的5V。
(2)⽤74ls138、74ls00实现全加器电路图如下:(4)全减器真值表:⽤74LS138、74LS00实现全减器电路图如下:74ls247验证如右图74ls248验证如下图74ls85验证如下图74ls283将8421码转为余3码(如右图)J1端为输⼊8421码端。
灯X1、X2、X3、X4分别代表余三循环码的四位⾼低电平,灯亮代表⾼电平1,灯灭代表低电平0.(如下图)输⼊为8421码制的0111时输出为相对应的余三码制的应为1111,结果如下图:1.74LS74加法器(左图)74LS74减法器(左图)74LS112加法器(下图) 74LS112减法器(下图)74ls160:1.⽤于快速计数的内部超前进位2.⽤于n 位级联的进位输出3.同步可编程序4.有置数控制线5.⼆极管箝位输⼊6.直接清零同步计数74ls160是⼗进制计数器,也就是说它只能记⼗个数从0000-1001(0-9)到9之后再来时钟就回到0,⾸先是clk,这是时钟。
之后是rco,这是输出,MR是复位低电频有效(图上接线前⾯花圈的都是低电平有效)load是置数信号,当他为低电平时,在始终作⽤下读⼊D0到D3。
为了使161正常⼯作ENP和ENT接1另外D0到D3是置数端Q0到Q3是输出端。
这种同步可预置⼗进计数器是由四个D型触发器和若⼲个门电路构成,内部有超前进位,具有计数、置数、禁⽌、直接(异步)清零等功能。
班级:XX姓名:XXX学号:XXXXXX指导老师:XXX实验日期:XXXX年XX月XX日一、实验目的1. 理解集成电路的基本组成和工作原理。
2. 掌握基本的集成电路设计方法,包括原理图设计、版图设计、仿真分析等。
3. 学习使用集成电路设计软件,如Cadence、LTspice等。
4. 通过实验加深对集成电路理论知识的理解,提高动手能力和问题解决能力。
二、实验内容本次实验主要包括以下内容:1. 原理图设计:使用Cadence软件绘制一个简单的CMOS反相器原理图。
2. 版图设计:根据原理图,使用Cadence软件进行版图设计,并生成GDSII文件。
3. 仿真分析:使用LTspice软件对设计的反相器进行仿真分析,测试其性能指标。
4. 版图与原理图匹配:使用Cadence软件进行版图与原理图的匹配,确保设计正确无误。
三、实验步骤1. 原理图设计:- 打开Cadence软件,选择原理图设计模块。
- 根据反相器原理,绘制相应的电路符号,包括NMOS和PMOS晶体管、电阻和电容等。
- 设置各个元件的参数,如晶体管的尺寸、电阻和电容的值等。
- 完成原理图设计后,保存文件。
2. 版图设计:- 打开Cadence软件,选择版图设计模块。
- 根据原理图,绘制晶体管、电阻和电容的版图。
- 设置版图规则,如最小线宽、最小间距等。
- 完成版图设计后,生成GDSII文件。
3. 仿真分析:- 打开LTspice软件,选择仿真模块。
- 将GDSII文件导入LTspice,生成对应的原理图。
- 设置仿真参数,如输入电压、仿真时间等。
- 运行仿真,观察反相器的输出波形、传输特性和功耗等性能指标。
4. 版图与原理图匹配:- 打开Cadence软件,选择版图与原理图匹配模块。
- 将原理图和版图导入匹配模块。
- 进行版图与原理图的匹配,检查是否存在错误或不一致之处。
- 修正错误,确保版图与原理图完全一致。
四、实验结果与分析1. 原理图设计:- 成功绘制了一个简单的CMOS反相器原理图,包括NMOS和PMOS晶体管、电阻和电容等元件。
集成运算的线性应用实验报告篇一:集成运算放大器的线性应用--实验篇集成运算放大器的线性应用一、实验名称:集成运算放大器的线性应用二、实验任务及目的1.基本实验任务用运放设计运算电路。
2.扩展实验任务用运放构成振荡频率为500Hz的RC正弦波振荡器。
3.实验目的掌握运放线性应用电路的设计和测试方法三、实验原理及电路1.实验原理运算放大器的线性应用,即将运放接入深度负反馈时,在一定范围内输入输出满足线性关系。
2.实验电路图2.15.1 U0=5Ui1+Ui2(Rf=100k)电路(注意平衡电阻的取值!)图2.15.2 U0=5Ui2-Ui1(Rf=100k)电路(注意输入端电阻的匹配!)图2.15.3 uo??(Cf=0.01?F)电路?图2.15.4 可调恒压源电路(注意电位器的额定功率!)图2.15.5 恒流源电路(注意负载电阻的取值!)图2.15.6 RC正弦波振荡器四、实验仪器及器件1.实验仪器稳压电源1台,使用正常;数字万用表1台,使用正常;示波器1台,使用正常;函数信号发生器1台,使用正常。
2.实验器件DC信号源1个,使用正常;uA741运放2个,使用正常;1kΩ电阻1个,10kΩ电阻2个,15kΩ电阻1个,17kΩ电阻1个,20kΩ电阻2个,33kΩ电阻1个,51kΩ电阻1个,100kΩ电阻4个,0.01μF电容1个,10kΩ电位器1个,使用正常。
五、实验方案与步骤1.按照图2.15.1接好电路,将输入端接地(ui1=0,ui2=0),万用表监测输出电压,接通±15V电源后,调整调零电位器,尽量使Uo接近零,若不为零,则需记录该失调电压的数值。
将DC信号源接通电源,万用表监测DC信号源输出,按照表格中要求的参数调整旋钮,测量输出电压。
2.按照图2.15.2接好电路,记录该失调电压,将DC信号源接通电源,按照表格中要求的参数调整旋钮,测量输出电压。
3.按照图 2.15.3接好电路,调节函数信号发生器输出1kHz/4V的方波信号。
专用集成电路实验报告56
专用集成电路实验报告56
一、实验介绍
本次实验是关于专用集成电路的实验,通过搭建实际电路并进行测试,以加深对专用集成电路原理和应用的理解。
二、实验原理
三、实验过程
1.首先,根据实验要求,选择一个具体的应用场景并找到相关的专用
集成电路芯片。
本次实验选择了一个用于数码相机的图像传感器集成电路。
2.根据芯片手册,获取其引脚定义和使用方法。
了解芯片的输入输出
信号特性,并设计出相应的电路接线。
3.接下来,搭建实际电路。
根据设计图纸,将专用集成电路芯片与其
他电路元器件连接起来,确保连接正确、稳定。
4.完成电路搭建后,对电路进行电气测试。
通过调整电源电压和信号
输入,观察电路的输出波形和电流大小,验证电路的性能和功能。
5.在实验过程中,及时记录实验数据和观察结果。
根据需求,可以对
电路参数、性能和功能进行测试和分析。
四、实验结果
经实验验证,所搭建的专用集成电路电路运行正常,输入信号能够正
确地输出,符合芯片手册的规定。
实验数据和观察结果见附表1
五、实验总结
通过本次实验,我们深入了解了专用集成电路的原理和应用,学习了如何选择合适的芯片、设计电路接线和进行测试分析。
同时,本次实验也加深了我们对电路搭建和调试的理解,培养了我们的动手能力和团队合作意识。
在今后的学习和工作中,我们将更加注重专用集成电路的应用研究和创新,为电子科技的发展做出更大的贡献。
附表1:实验数据和观察结果
...
(请根据实际情况填写实验数据和观察结果)。
集成电路实验报告本次实验主要介绍集成电路的基本概念和电路设计方法,通过设计和制作CMOS场效应晶体管(MOSFET)的放大器电路来实现对这些知识的应用。
本次实验的主要内容如下:一、实验器材和材料本次实验所使用的器材和材料:1、计算机2、激光打印机3、示波器4、信号源5、直流电源6、理想电感7、电容8、MOSFET二、实验原理本次实验涉及的知识点包括:1、MOSFET的基本概念和特性MOSFET是一种场效应管,在电子学中起到了很重要的作用。
它的主要特点是控制端的电压可以改变通道区中的电子密度,从而控制电流流过管子中的通道。
根据不同的控制方式,MOSFET可以分为N型和P型两种。
2、放大器电路的基本原理放大器电路是一种能够放大电信号的电路,可以将小电信号放大为相对较大的电信号。
根据不同的信号类型和放大器类型,可以设计不同种类的放大器电路。
三、实验内容和步骤本次实验的实验内容和步骤如下:1、设计MOSFET的放大器电路首先,我们需要根据实验所需放大器的需求,设计出一种合理的MOSFET放大器电路。
具体步骤如下:(1)根据输入信号和输出信号的大小,计算出所需放大器的放大倍数。
(2)根据放大倍数,选择合适的与MOSFET配合使用的电容和电阻。
(3)将MOSFET、电容和电阻按照电路图的样式和连接方式进行连接。
制作和测试MOSFET放大器电路,具体步骤如下:(2)使用万用表对焊接完成的电路进行测试,确保电路连接正常。
(3)将电路连接到直流电源和信号源上,调节电源和信号源的参数,测试电路的放大效果。
四、实验结果分析本次实验的主要结果包括设计和制作的MOSFET放大器电路以及测试结果。
通过测试结果的分析,我们可以对电路的性能进行评估,并确定是否满足所需放大倍数的要求。
五、实验总结通过本次实验,我们了解了集成电路的基本概念和电路设计方法,并掌握了MOSFET放大器电路的设计和制作方法。
通过实验结果的分析,我们也可以更好地理解和掌握集成电路的相关知识和应用。
接一个反相器还可级联扩展成32 线译码器。
若将选通端中的一个作为数据输入端时,74LS138 还可作数据分配器3.3 线-8 线译码器74LS138的逻辑图与功能表无论从逻辑图还是功能表我们都可以看到74LS138的八个输出引脚,任何时刻要么全为高电平1—芯片处于不工作状态,要么只有一个为低电平0,其余7 个输出引脚全为高电平1。
如果出现两个输出引脚同时为0 的情况,说明该芯片已经损坏。
当附加控制门的输出为高电平(S=1)时,可由逻辑图写出(2)74LS139基本功能当选通端(G1)为高电平,可将地址端(A、B)的二进制编码在一个对应的输出端以低电平译出。
若将选通端(G1)作为数据输入端时,139 还可作数据分配器。
管脚图内部逻辑引脚功能引出端符号:A、B:译码地址输入端G1、G2 :选通端(低电平有效)Y0~Y3:译码输出端(低电平有效)真值表(3)74LS148基本功能74LS148是8 线-3 线优先编码器,共有54/74148 和54/74LS148两种线路结构型式,将8 条数据线(0-7)进行3 线(4-2-1)二进制(八进制)优先编码,即对最高位数据线进行译码。
利用选通端(EI)和输出选通端(EO)可进行八进制扩展。
管脚图管脚介绍0-7 编码输入端(低电平有效)EI 选通输入端(低电平有效)A0、A1、A2 三位二进制编码输出信号即编码输出端(低电平有效)GS 片优先编码输出端即宽展端(低电平有效)EO 选通输出端,即使能输出端逻辑图真值表由74ls148真值表可列输出逻辑方程为:A2 = (I4+I5+I6+I7)IEA1 = (I2I4I5+I3I4I5+I6+7)·IEA0 = (I1I2I4I6+I3I4I6+I5I6+I7)·IE工作原理该编码器有8个信号输入端,3个二进制码输出端。
此外,电路还设置了输入使能端EI,输出使能端EO和优先编码工作状态标志GS。
集成电路实验报告第一篇:集成电路实验报告集成电路实验报告班级:姓名:学号:指导老师:实验一:反相器的设计及反相器环的分析一、实验目的1、学习及掌握cadence图形输入及仿真方法;2、掌握基本反相器的原理与设计方法;3、掌握反相器电压传输特性曲线VTC的测试方法;4、分析电压传输特性曲线,确定五个关键电压VOH、VOL、VIH、VIL、VTH。
二、实验内容本次实验主要是利用 cadence 软件来设计一基本反相器(inverter),并利用仿真工具Analog Artist(Spectre)来测试反相器的电压传输特性曲线(VTC,Voltage transfer characteristic curves),并分析其五个关键电压:输出高电平VOH、输出低电平VOL、输入高电平VIH、输入低电平VIL、阈值电压 VTH。
三、实验步骤1.在cadence环境中绘制的反相器原理图如图所示。
2.在Analog Environment中,对反相器进行瞬态分析(tran),仿真时间设置为4ns。
其输入输出波形如图所示。
分开查看:分析:反相器的输出波形在由低跳变到高和由高跳变到底时都会出现尖脉冲,而不是直接跳变。
其主要原因是由于MOS管栅极和漏极上存在覆盖电容,在输出信号变化时,由于电容储存的电荷不能发生突变,所以在信号跳变时覆盖电容仍会发生充放电现象,进而产生了如图所示的尖脉冲。
3.测试反相器的电压传输特性曲线,采用的是直流分析(DC),我们把输入信号修改为5V直流电源,如图所示。
4.然后对该直流电源从0V到5V进行线性扫描,进而得到电压传输特性曲线如图所示。
5.为反相器创建symbol,并调用连成反相器环,如图。
6.测量延时,对环形振荡器进行瞬态分析,仿真时间为4ns,bcd 节点的输出波形如图所示。
7.测量上升延时和下降延时。
(1)测量上升延时:可以利用计算器(calculator)delay函数来计算信号c与信号b间的上升延时和下降延时如图所示。
集成电路导论实验报告实验一:集成电路的基本参数测量方法实验目的:1. 了解集成电路的基本参数。
2. 学习集成电路的测量方法。
3. 掌握集成电路测量所需的仪器和设备的使用方法。
实验器材:1. 集成电路:选取常见的几种逻辑门电路芯片。
2. 集成电路测试台:包括电源、波形发生器、示波器等。
3. 测试电缆和测量仪器。
实验步骤:1. 准备集成电路和测试台,并将电源、波形发生器和示波器连接好。
2. 将集成电路插入测试台相应插槽,并按照测试仪器的要求连接电路。
3. 打开电源并设置合适的电压和频率。
4. 使用示波器观察集成电路的输入输出电压波形,并记录相应数据。
5. 根据所测数据计算集成电路的基本参数,如电压增益、功耗等。
6. 对不同类型的集成电路重复上述步骤,进行不同参数的测量。
实验结果:以74LS00为例,通过测量得到的数据如下:输入电压:2V输出电压:4V功耗:20mW增益:2实验讨论:根据测得的数据,可以看出74LS00逻辑门电路芯片在2V的输入电压下,产生4V的输出电压,且功耗为20mW。
通过计算得到的增益为2,即输出电压是输入电压的2倍。
这些参数的测量结果可以用来评估集成电路的性能和设计电路时的参考。
实验总结:通过本次实验,我们学习了集成电路的基本参数测量方法,掌握了集成电路测量所需的仪器和设备的使用方法。
实验中我们选取了几种常见的逻辑门电路芯片进行了测量,通过观察波形、记录数据和计算参数,获得了它们的基本参数。
这些参数的测量对于电路设计和性能评估都具有重要的参考价值。
《现代集成电路及应用》实验报告学院:班级:学号:姓名:专业:指导教师:实验日期:2012/6/12二○一四年六月十二日实验一Multisim 基本操作1.1放置基本元件(1)放置500欧姆、10K 、1M 电阻 (2)放置20pF 、0.1uF 、10uF 电容 (3)放置二极管(4)放置一个直流5V 电源和地 (5)放置一个5V ,1kHz 的信号源C120pF C2100nFC310uFR11MΩR210kΩR3500ΩDIODE_VIRTUALV15 VV25 Vrms 1kHz0°图一放置基本元器件2.2使用基本测试设备函数发生器和示波器将信号发生器和示波器连接在一起。
a.调节信号发生器的信号频率为1kHz。
b. 调节信号发生器的信号分别为正弦波、三角波,方波。
观察波形c. 调节示波器的时间轴,清楚显示一个周期完整波形。
2.3万用表按照下图连接,分析万用表显示结果是否正确。
万用表使用(1). 二极管仿真电路实验目的:1. 掌握multisim元件的查找,放置,参数调整。
2. 掌握信号源和示波器的设置,连接与结果显示。
(2). 稳压管仿真电路稳压二极管测试电路(3). RC 高通电路XBP1使用波特图仪观察幅频特性(5).共射放大电路实验一Multisim基本操作实验二集成运放的线性应用2.1 在图2.1反相比例运算电路中,R1=10KΩ RF=500KΩ,问R2的阻值应为多大。
若输入信号为10mV,用示波器测出输出信号的大小。
图2.1这是个标准的反相比例运算放大器Rif=R1//Rf Avf=-Rf/R1 平衡电阻为R22.2在Multisim仿真平台上设计一个同相比例运算电路,若输入信号为10mV,放大倍数为100倍,用示波器观察输入、输出信号波形的相位,并测出输出电压。
2.3已知ui1=1V,ui2=2V,ui3=3V,ui4=4V,R1= R2=2 KΩ,R3= R4=RF=1 KΩ,试测出uo。
三墩职业技术学院实验报告课程名称:电子电路设计实验指导老师: 成绩:__________________实验名称:集成运算放大器应用电路研究 实验类型:设计 同组学生:__________ 一、实验目的 二、实验任务与要求 三、实验方案设计与实验参数计算(3.1 总体设计、3.2 各功能电路设计与计算、3.3完整的实验电路……)四、主要仪器设备 五、实验步骤与过程 六、实验调试、实验数据记录 七、实验结果和分析处理 八、讨论、心得一、实验目的1、研究由集成运放构成的比例、加法、减法等基本运算电路的组成与功能,加深对集成运放线性应用电路结构和性能特点的理解,掌握其设计方法。
2、研究放大电路增益带宽积与单位增益带宽的关系。
3、了解运算放大器构成的基本运算电路在实际应用时的局限性和应考虑的问题。
二、实验任务与要求 总体要求:(1)实验电路的选择和外围元件参数的确定要有依据和计算过程。
(2)运放电源电压 ±(12~15)V 。
(3)原始数据记录要详尽。
1、反相放大器的设计研究(1)设计一反相放大电路,要求10||,10=Ω=v i A k R 。
(2)安装该电路,加1kHz 正弦信号,研究输入、输出信号的幅度、相位关系。
2、设计并安装一个算术运算电路,要现:)5.0(21i i o V V V +-=1i V 用直流、2i V 用正弦信号在合适的幅度和频率围,进行验证并记录波形及参数。
3、增益带宽积研究在合适的幅度和1kHz的频率下,测出输出信号的峰峰值,然后逐渐加大频率,直至输出信号峰峰值变为原来的0.707倍,测下此时的电压。
比较不同的反馈电阻(即不同增益)对上限截止频率的影响。
三、实验方案设计与实验参数计算1、理论基础(1)集成运放高电压增益、高输入电阻、低输出电阻、直接耦合的多级放大集成电路。
在运放输出端与输入端之间接不同的反馈网络,可实现不同用途的电路:信号放大、信号运算、信号处理(滤波、调制)、波形产生和变换等。
集成运放的线性应用实验报告实验目的,通过实验,掌握集成运放的线性应用原理,加深对运放的理解,并学会运用运放进行线性应用。
实验仪器,集成运放实验箱、示波器、信号发生器、电压表、电阻、电容等。
实验原理,集成运放是一种集成电路,具有高输入阻抗、低输出阻抗、大增益等特点,可用于信号放大、滤波、积分、微分等线性应用。
在本实验中,我们将通过实验验证运放的线性应用原理。
实验步骤:1. 搭建基本的运放放大电路,连接电源并调节电压至适当数值。
2. 使用信号发生器输入正弦波信号,观察输出信号波形,并测量输入输出电压。
3. 更改输入信号频率,观察输出信号波形的变化。
4. 接入电容和电阻,组成低通滤波电路,观察输出信号波形的变化。
5. 接入电容和电阻,组成高通滤波电路,观察输出信号波形的变化。
6. 接入电容和电阻,组成积分电路,观察输出信号波形的变化。
7. 接入电容和电阻,组成微分电路,观察输出信号波形的变化。
实验结果:通过实验我们发现,在不同的线性应用中,集成运放都能够有效地进行信号处理。
在放大电路中,输入信号经过运放放大后输出;在滤波电路中,输入信号经过运放滤波后输出;在积分、微分电路中,输入信号经过运放积分、微分后输出。
同时,我们也观察到当输入信号频率变化时,输出信号波形也会相应变化,这说明运放对不同频率的信号都有良好的处理能力。
实验结论:通过本次实验,我们深入了解了集成运放的线性应用原理,并通过实验验证了其在不同线性应用中的有效性。
集成运放在电子电路中具有广泛的应用前景,能够满足不同场合对信号处理的需求。
掌握了集成运放的线性应用原理,我们可以更灵活地设计和应用电子电路,为工程实践提供了有力支持。
实验结束。
以上就是本次集成运放的线性应用实验报告,希望对大家有所帮助。
触发器一、实验器材(设备、元器件):1,数字、模拟实验装置(1台); 2,数字电路实验板(1块);3,74LS10、74LS00、74LS153、74LS74、74LS76芯片; 4,双踪示波器(1台); 5,函数信号发生器(1台)。
二、实验内容及目的:1,学习触发器逻辑功能的测试方法; 2,掌握集成触发器的逻辑功能;3,学习J —K 触发器和D 触发器的功能测试。
三、实验步骤:1、设计一个三人表决器(用74LS10和74LS00实现)74LS00是集成了四个单元的三输入端、一个输出端口的与非门,74LS10是集成了三个单元的三输入端、一个输出端口的与非门。
由三人表决器真值表得出其输出表达式为:CA BC AB ∙∙。
故右用74LS10和74LS00实现三人表决器连接。
2,设计一个三人表决器(用74LS153实现)74LS153是集成了两个单元的四选一数据选择器。
对三人表决器的表达式为ABC C AB C B A BC A F +++=,分析表达式知该逻辑函数含有三个逻辑变量,可选其中的两个(A ,B )作为数据选择器的地址输入变量,一个(C )作为数据输出变量。
则3210ABD D B A BD A D B A Y +++=,将逻辑函数F 整理后与Y 比较可得:1,,,03210====D C D C D D 。
故可实现用74LS153完成三人表决器。
3,基本R —S 触发器功能测试基本R —S 触发器是由两个与非门交叉耦合组成,当1==D D S R 时,两个与非门的工作都尤如非门,Q 接至与非门2G 的输入,使2G 输出为Q ;Q 接至与非门1G 的输入,使1G 输出为Q 。
故实验时用74LS00搭出R —S 触发器电路,R 、S 分别接逻辑开关,Q 、Q 分别接LED 灯,按其功能真值表验证R —S 触发器的功能。
4,用74LS10实现三人抢答器的设计根据三个抢答器的原理及R —S 触发器原理,及74LS10是集合了三个单元的三输入与非门,故可将三个与非门的一个输入作为三人抢答器的输入,三个与非门的其余两个输入端连接另外两个与非门的输出端,三个与非门输出端作为三个抢答器的输出。
集成门电路实验报告集成门电路实验报告一、引言集成门电路作为数字电路中的基本组成部分,广泛应用于计算机、通信、控制等领域。
本实验旨在通过实际操作,了解集成门电路的基本原理和应用。
二、实验目的1. 掌握集成门电路的基本原理;2. 学习使用实验仪器和器件,进行电路的搭建和测试;3. 熟悉集成门电路的应用场景。
三、实验器材和器件1. 集成门电路芯片;2. 面包板;3. 电路连接线;4. 示波器。
四、实验步骤1. 搭建与门电路:首先将集成门电路芯片插入面包板中,然后根据电路原理图连接电路连接线,将输入端与输出端连接起来。
确保电路连接正确无误。
2. 测试与门电路:将示波器连接到输入端和输出端,输入不同的高低电平信号,观察输出端的波形变化。
记录不同输入信号对输出信号的影响。
3. 搭建或门电路:重复步骤1的操作,搭建或门电路。
同样进行测试,记录结果。
4. 搭建非门电路:重复步骤1的操作,搭建非门电路。
同样进行测试,记录结果。
五、实验结果与分析1. 与门电路测试结果:输入信号为高电平时,输出信号为高电平;输入信号为低电平时,输出信号为低电平。
说明与门电路只有在两个输入信号都为高电平时,输出信号才为高电平。
2. 或门电路测试结果:输入信号为高电平时,输出信号为高电平;输入信号为低电平时,输出信号为低电平。
说明或门电路只有在两个输入信号都为低电平时,输出信号才为低电平。
3. 非门电路测试结果:输入信号为高电平时,输出信号为低电平;输入信号为低电平时,输出信号为高电平。
说明非门电路是对输入信号进行取反的操作。
六、实验总结通过本次实验,我们深入了解了集成门电路的原理和应用。
与门、或门和非门是数字电路中最基本的逻辑门,它们在计算机和通信系统中起着至关重要的作用。
掌握了集成门电路的搭建和测试方法,我们能够更好地理解数字电路的工作原理,并能够应用于实际工程中。
七、实验感想本次实验让我深刻认识到了数字电路的重要性和广泛应用。
数字电路是现代科技的基石,它为计算机、通信、控制等领域的发展提供了坚实的支撑。
集成运算放大电路集成运算放大器应用实验报告范文23721一、实验目的1.了解运算放大器的特性和基本运算电路的组成;2.掌握运算电路的参数计算和性能测试方法。
二、实验仪器及器件1.数字示波器;2.直流稳压电源;3.函数信号发生器;4.数字电路实验箱或实验电路板;5.数字万用表;6.集成电路芯片uA7412块、电容0.01uF2个,各个阻值的电阻若干个。
三、实验内容1、在面包板上搭接μA741的电路。
首先将+12V和-12V直流电压正确接入μA741的Vcc+(7脚)和Vcc-(4脚)。
2、用μA741组成反比例放大电路,放大倍数自定,用示波器观察输入和输出波形,测量放大器的电压放大倍数。
3、用μA741组成积分电路,用示波器观察输入和输出波形,并做好记录。
四、实验原理(1)集成运放简介123412345678调零V-V+-VEE调零+VccNCVOuA741电路符号及引脚图任何一个集成运放都有两个输入端,一个输出端以及正、负电源端,有的品种还有补偿端和调零端等。
(a)电源端:通常由正、负双电源供电,典型电源电压为±15V、±12V等。
如:uA741的7脚和4脚。
(b)输出端:只有一个输出端。
在输出端和地(正、负电源公共端)之间获得输出电压。
如:uA741的6脚。
最大输出电压受运放所接电源的电压大小限制,一般比电源电压低1~2V;输出电压的正负也受电源极性的限制;在允许输出电流条件下,负载变化时输出电压几乎不变。
这表明集成运放的输出电阻很小,带负载能力较强。
(c)输入端:分别为同相输入端和反相输入端。
如:uA741的3脚和2脚。
输入端有两个参数需要注意:最大差模输入电压Vidma某和最大共模输入电压Vicma某两输入端电位差称为“差模输入电压”Vid:两输入端电位的平均值,称为“共模输入电压”Vic:任何一个集成运放,允许承受的Vidma某和Vicma某都有一定限制。
两输入端的输入电流i+和i-很小,通常小于1m(2)集成运放的主要参数集成运放的主要参数有:输入失调电压、输入失调电流、开环差模电压放大倍数、共模抑制比、输入电阻、输出电阻、增益-带宽积、转换速率和最大共模输入电压。
集成运放及应用实验报告集成运放及应用实验报告引言:集成运放(Operational Amplifier,简称Op-Amp)是一种重要的电子元件,广泛应用于各种电路中。
本实验旨在通过实际操作,深入了解集成运放的基本原理、特性以及在电路中的应用。
一、实验目的本实验的目的是通过实际操作,掌握集成运放的基本原理、特性以及在电路中的应用。
同时,通过实验验证集成运放的放大倍数、输入阻抗、输出阻抗等特性,并了解集成运放在反相放大器、比例放大器和积分器等电路中的应用。
二、实验原理集成运放是一种高增益、差模输入、差模输出的放大器,具有很高的输入阻抗和很低的输出阻抗。
它的基本原理是利用负反馈来实现放大器的稳定性和精确性。
在实验中,我们将使用集成运放的基本电路模型,通过接入不同的电阻和电容,实现不同的功能。
三、实验步骤1. 搭建反相放大器电路将集成运放的正极接地,负极接入输入信号源和输入电阻,输出端接入负载电阻。
根据实验要求,选择合适的电阻值,并连接电源。
通过示波器观察输出波形,记录放大倍数。
2. 搭建比例放大器电路在反相放大器的基础上,将输入电阻和负载电阻分别替换为不同的阻值,保持输入信号源不变。
通过示波器观察输出波形,记录放大倍数。
3. 搭建积分器电路将输入电阻和负载电阻分别替换为电容,保持输入信号源不变。
通过示波器观察输出波形,记录积分效果。
四、实验结果与分析1. 反相放大器电路在实验中,我们选择了合适的电阻值,搭建了反相放大器电路。
通过示波器观察到输入信号经过放大后,输出信号与输入信号相反,且放大倍数符合预期。
这验证了反相放大器的基本原理和特性。
2. 比例放大器电路在实验中,我们将输入电阻和负载电阻分别替换为不同的阻值,保持输入信号源不变。
通过示波器观察到输出信号的放大倍数与输入电阻和负载电阻的比例成正比。
这说明比例放大器可以根据电阻值的选择,实现不同程度的信号放大。
3. 积分器电路在实验中,我们将输入电阻和负载电阻分别替换为电容,保持输入信号源不变。
一、实验目的1. 理解并验证集成门电路的基本逻辑功能。
2. 熟悉TTL集成电路的特性、使用规则及方法。
3. 掌握逻辑门电路的连接方式及其在数字电路中的应用。
二、实验原理集成门电路是数字电路的基本组成单元,其功能是将输入信号按照特定的逻辑关系转换为输出信号。
TTL(Transistor-Transistor Logic)集成电路因其工作速度快、输出幅度大、种类多且不易损坏等优点而被广泛应用于数字电路中。
本实验采用74LS系列TTL集成电路,其电源电压为5V±10%,逻辑高电平为1,逻辑低电平为0。
实验中使用的集成电路均为双列直插式封装,管脚识别方法为:将集成块正面对着使用者,标识凹口左下角第一脚为1脚,按逆时针方向顺序排布其管脚。
三、实验内容及步骤1. 与门电路实验(1)连接电路:按照实验电路图连接74LS11三输入与门电路。
(2)测试输入信号:使用开关改变输入端A、B、C的状态,观察输出端F的指示灯。
(3)记录实验数据:记录不同输入状态下输出端F的指示灯状态。
2. 或门电路实验(1)连接电路:按照实验电路图连接74LS32四2输入或门电路。
(2)测试输入信号:使用开关改变输入端A、B的状态,观察输出端Y的指示灯。
(3)记录实验数据:记录不同输入状态下输出端Y的指示灯状态。
3. 非门电路实验(1)连接电路:按照实验电路图连接74LS04六反相器电路。
(2)测试输入信号:使用开关改变输入端A的状态,观察输出端Y的指示灯。
(3)记录实验数据:记录不同输入状态下输出端Y的指示灯状态。
4. 异或门电路实验(1)连接电路:按照实验电路图连接74LS86四2输入异或门电路。
(2)测试输入信号:使用开关改变输入端A、B的状态,观察输出端Y的指示灯。
(3)记录实验数据:记录不同输入状态下输出端Y的指示灯状态。
四、实验结果与分析1. 与门电路实验结果表明,当所有输入端均为高电平时,输出端才为高电平;否则输出端为低电平。
论文集成电路应用实验报告
一、设计和制作任务 (4)
二、任务要求 (4)
三、确定电路设计方案 (4)
四、方案设计 (5)
振荡源的设计 (5)
N分频的设计··························5 标准信号源设计·6
五、锁相环参数设计 (7)
六、整体电路设计 (8)
七、电路调试 (10)
七、心得体会 (12)
八、参考文献·····································14 附
录 (14)
频率合成是以一个或少量的高准确度和高稳定度的标准频率作为参考频率,由此导出多个或大量的输出频率,这些输出的准确度与稳定度与参考频率是一致的。
在通信、雷达、测控、仪器表等电子系统中有广泛的应用,
频率合成器有直接式频率合成器、直接数字式频率合成器及锁相频率合成器三种基本模式,前两种属于开环系统,因此是有频率转换时间短,分辨率较高等优点,而锁相频率合成器是一种闭环系统,其频率转换时间和分辨率均不如前两种好,但其结构简单,成本低。
并且输出频率的准确度不逊色与前两种,因此采用锁相频率合成。
频率合成器 CD4046 锁相环
一、设计和制作任务
1、确定电路形式,画出电路图。
2、计算电路元件参数并选取元件。
3、制作PCB板并焊接电路。
4、调试并测量电路性能。
5、写出课程设计报告书。
二、主要技术指标
1.频率步进 100Hz
2.频率范围:400kHz—1MHZ
3.电源电压 Vcc=6V
三、确定电路设计方案
原理框图如上,锁相
环路对稳定度的参考振
动器锁定,环内串接可编
程的分频器,通过改变分
频器的分配比N,从而就得到N倍参考频率的稳定输出。
晶体振荡器输出的信号频率f1,经固定分频后得到基准频率f1?,输入锁相环的相位比较器。
锁相环的VCO输出信号经可编程分频器后输入到PC的另一端,这两个信号进行相位比较,当锁相环路锁定后得到:
f1f1?? 故 f2?N*f?1 (f1?为基准频率) MN
当N变化时,就可以得到一系列的输出频率f2。
四、方案设计
、振荡源的设计
采用2M无源晶体与CMOS非门组成2MHz振荡器,R1为反馈电阻使F1工作于线性放大区,F2、F3提供增益放大及波形整形。
晶体等效电感,C1、C2构成谐振回路。
C1、C2可利用器件的分布电容不另接。
、N分频的设计
N分频器主要是利用芯片CD40103来分频,将F2接到CD40103的1脚,控制4,5,6,7,10,11,12,13脚来控制分频,控制用拨码开关,接个上拉电阻来控制高低电平。
当高电平
的时候,即二进制是1,当开关1断开时,4脚为高电平,其他开关接通,相应的电平为低电平,此时相当于二进制00000001,此时是二分频,依次类推,要产生100分频,则要设置二进制为01100011,相当于十进制的99。
理论上可以产生2到256分频。