力学 第三章刚体的转动
- 格式:ppt
- 大小:3.72 MB
- 文档页数:80
第三章 刚体的转动出发点:牛顿质点运动定律刚体的运动分为:平动,定轴转动,定点转动,平面平行运动,一般运动。
§3-1 刚体的平动,转动和定轴转动一 刚体的定义:在无论多大力作用下物体形状和大小均保持不变。
(理想模型)二 平动:在运动过程中,若刚体上任意一条直线在各个时刻的位置始终彼此平行,则这种运动叫做平动。
特征:1 平动时刚体中各质点的位移,速度,加速度相等。
2 动力学特征:将刚体看成是一个各质点间距离保持不变的质点组。
受力:内力和外力对每一个质元:满足牛顿运动定律+=Mi i 对刚体而言:∑(+fi )=∑Mi i⇒∑+∑=∑Mi i显然∑=0 ⇒∑=∑Mi I=∑Mi故:∑F ==M a即:刚体做平动时,其运动规律和一质点相当,该质点的质量与刚体的质量相等,所受的力等于刚体所受外力的矢量和。
三 转动和定轴转动定轴转动的运动学特征:用角位移、角速度、角加速度加以描述,且刚体中各质点的角位移 、角速度、角加速度相等。
ω=dt d θ, α=dtd ω对匀速、匀变速转动可参阅P210表4-2 角量与线量的关系:v=R ωa t=R αa n=ω2R更一般的形式:角速度矢量的定义:=ωγ⨯ , =dtd 显然,定轴转动的运动学问题与质点的圆周运动相同。
例:一飞轮在时间t 内转过角度θ=t b at 3+-c t 4,式中abc 都是常量。
求它的角加速度。
解: 飞轮上某点的角位置可用θ表示为θ=t b at 3+-c t 4,将此式对t 求导数,即得飞轮角速度的表达式为ω=(dtdt b at 3+-c t 4)=a+3b t 2-4c t 3角加速度是角速度对t 导数,因此得α =dt d ω=d td ( a+3b t 2-4c t 3)=6bt-12c t 2由此可见,飞轮作的是变加速转动。
§3-2 力距 刚体定轴转动定律一 力矩:设在转动平面内,=⨯是矢量,对绕固定轴转动,只有两种可能的方向,用正负即可表示,按代数求和(对多个力)。
第三章 刚体定轴转动前面几章主要介绍了质点力学的基本概念和原理,以牛顿定律为基础,建立了质点和质点系的动量定理、动能定理和相应的守恒定律。
对于机械运动的研究,只限于质点和质点系的情况是非常不够的。
质点的运动规律事实上仅代表物体的平动。
当我们考虑了物体的形状、大小后,物体可以作平动、转动,甚至更复杂的运动,而且在运动过程中物体的形状也可能发生改变。
一般固体在外力的作用下,形状、大小都要发生变化,但变化并不显著。
所以,研究物体运动的初步方法是把物体看成在外力的作用下保持其大小和形状都不变,这样的物体叫刚体。
刚体考虑了物体的形状和大小,但不考虑形变,仍是一个理想模型。
本章主要在质点力学的基础上讨论刚体的定轴的转动及其运动规律,为进一步研究更复杂的机械运动奠定基础。
3.1 刚体的定轴转动的描述3.1.1 刚体的基本运动形式刚体是一种特殊的质点系统,它可以看成是由许多质点组成,每一个质点叫做刚体的一个质元,刚体这个质点系的特点就在于无论它在多大外力的作用下,系统内任意两质元之间的相对位置始终保持不变。
既然是一个质点系,所以以前讲过的关于质点系的基本定理就都可以应用。
刚体的这个特点使刚体力学和一般质点系的力学相比,大为简化。
因此,对于一般质点系的力学问题,求解往往很困难,而对于刚体的力学问题却有不少是能够求解的。
刚体的运动可分为两种基本形式:平动和转动。
刚体的运动一般来说是比较复杂的,一般可分解为平动和绕瞬时轴的转动,比如行进中的自行车轮子,可以分解为车轮随着转轴的平动和整个车轮绕转轴的转动。
因此,研究刚体的平动和定轴转动是研究刚体复杂运动的基础。
下面分别介绍刚体的平动和刚体的定轴转动。
当刚体运动时,如果刚体内任何一条给定的直线,在运动中始终保持它的方向不变,这种运动就(b)(a)图3-1 刚体的平动和定轴转动是平动,如图3-1(a)所示。
在日常生活中,我们常见的升降机的运动就是平动。
平动的特点是,在任意一段时间内,刚体内所有质点的位移都是相同的,而且在任何时刻,各个质点的速度和加速度也都是相同的。