趋势外推预测法
- 格式:pptx
- 大小:2.20 MB
- 文档页数:62
人力需要预测之趋势外推预测法将人力资源需求量的历史数据按时间顺序排列,即可形成一个时间数列。
时间数列分为绝对数时间数列、相对数时间数列和平均数时间数列三种,人力资源需求量是绝对数,因而其数列是绝对数时间数列。
按数列反映的现象性质不同,又可分为时期数列和时点数列,人力资源需求量是期末时点上的数据,因而其数列是时点数列。
在明确人力资源需求时点数列的性质后,考虑采用恰当的预测方法。
针对时点数列,一般可选用三种方法:方法一,当时点数列不存在长期趋势和季节变动时,宜采用平滑方法预测;方法二,当时点数列存在长期趋势但不含季节变动时,宜采用趋势外推方法预测;方法三,当时点数列存在长期趋势和季节变化时,宜采用趋势季节模型方法预测。
当人力资源需求时点数列不存在长期趋势,但中短期内有一定规律可循时,可采用方法一。
但是当随时间变化的趋势不明显时,一般最好不要采用该类数量方法预测,所以方法一在人力资源需求预测方面运用较少。
当人力资源需求呈现长期发展趋势,又随季节变化时,采用方法三。
在组织中,一般人员是较为固定的,不会轻易随季节变化而变动,否则会严重地影响员工的忠诚度,甚至有些企业提倡经济萧条时也不裁员,因随便增减人员对企业危害巨大。
也有符合该要求的人力资源需求数列,比如有淡旺季之分的产品促销员,这些促销员是临时招聘,而非正式员工,市场上供给充分,不需要过早预测,所以方法三更少运用。
事实上,当正式员工需求呈现长期发展趋势时,不会考虑季节变动,一般选用方法二,所以趋势外推预测法(trend analysis)是人力资源需求预测中运用最广泛的时点数列预测方法。
趋势外推预测法中,最重要的是找出趋势线。
找出趋势线的方法有多种,一般有绘图法、分段平均法、最小二乘法、指数平滑法等。
最简单、最直观的方法是绘图法。
以人力资源需求量为纵轴,以时间为横轴,在坐标图上描出各年的历史数据。
观察这些点是否有一定的发展规律,如果有,尝试在图上画出一条直线或曲线,使得大多数点尽可能地与这条线重合或接近。
趋势外推法的预测原理是趋势外推法是一种预测未来趋势的方法。
它基于观察过去的数据,找出规律和趋势,然后将这些规律和趋势延伸到未来,预测未来的发展方向。
预测原理:趋势外推法的预测原理是基于以下假设:1. 历史数据具有一定的稳定性和连续性:趋势外推法认为,历史数据所揭示的趋势在未来一定程度上会继续存在。
因此,通过对过去数据进行分析和模式识别,可以将这些趋势推广到未来。
2. 变化的规律性:趋势外推法认为,某些趋势是由特定的规律所驱动的。
这些规律可能是内在的经济、社会或技术因素,因此它们可以预测未来的变化趋势。
3. 外部因素的影响:趋势外推法还考虑到外部因素对未来趋势的影响。
这些因素可能包括市场需求、政策变化、科技进步等。
通过考虑这些因素的影响,可以更准确地预测未来的趋势。
预测过程:趋势外推法的预测过程包括以下几个步骤:1. 收集数据:首先,需要收集相关的历史数据。
这些数据可以是过去几年或几十年的统计数据,可以是市场调研数据,也可以是其他相关数据。
2. 分析数据:接下来,对收集到的数据进行分析。
通过对数据的统计分析、可视化和趋势分析,可以找到数据中的规律和趋势。
3. 拟合模型:将找到的规律和趋势进行数学建模。
可以使用各种预测模型,如线性回归、指数平滑、时间序列等,来拟合数据的趋势。
4. 外推预测:利用拟合的模型,对未来的趋势进行外推预测。
通过将模型应用到未来的时间段,可以得到未来的趋势预测结果。
5. 结果评估:最后,需要对预测结果进行评估。
通过与实际观测结果的比较,可以评估模型的准确性和可靠性。
优缺点:趋势外推法的优点是简单易懂、容易实施。
它利用历史数据中的规律,可以对未来进行预测。
此外,趋势外推法也可以预测较长时间的趋势,适用于较长周期的预测。
然而,趋势外推法也存在一些缺点。
首先,它只能预测呈现连续性和稳定性的趋势,对于突发事件和不可预测的变化无法有效预测。
其次,趋势外推法依赖于过去的数据,在历史数据不足或数据质量差的情况下,预测结果可能不准确。
第四节 趋势外推法趋势外推法,也称趋势延伸法,是根据预测目标的历史时间序列所揭示的变动趋势外推到未来以确定预测值的时序预测法。
可分为随手作图法,拟合直线方程法、拟合曲线方程法。
一、随手作图法这种方法是选定时间作为横轴,预测目标量作为纵轴,先按时间序列数据作出散点图。
然后根据备散在点所显示的趋势走向图形(直线或某种曲线),运用直尺或曲线板随手画出一条沿各个点拟合度最佳的直线或曲线,并加以延伸,得出待预测时间对应的预测值。
该方法简便易行,不用建立数学模型,预测效果良好。
但这种方法全凭预测者的观察力和作图技巧,它直接影响到预测的精度。
二、拟合直线方程法这种方法是根据呈线性变动趋势的时间序列,拟合出直线方程bx a Y +=∧,再利用方程进行预测外推,得出预测结果。
直线方程bx a Y +=中,x 为按整数序编号的时间序列,Y 为预测目标量,a 、b 为参数。
设时刻为i x 时,对应的观察值为i Y ,n i ,,2,1 =。
根据这些数据我们要利用最小二乘法拟合出一条直线方程bx a Y +=∧即确定参数a 、b ,使拟合偏差i i Y Y ∧-的平方和∑∧-=22)(i i Y Y S 最小。
由微分法,令02=∂∂a S ,02=∂∂bS ,解之可得到∑∑---=-=x b Y x nb Y n a i i 11 (4-13) ∑∑∑∑∑--=22)())((i i i i i i x x n Y x Y x n b (4-14)当时间序列是整数项时,我们取i x 的中间项为0,其余按下列取值 …,-5,-4,-3,-2,-1,0,1,2,3,4,5,… (中间项)例如 n=7时,i x 分别取为-3,-2,-l ,0,1,2,3七个数值。
这样规定i x 取值后,n 为奇数时有∑=0i x ,则计算参数a 、b 的公式可以简化为∑==-i Y nY a 1(4-15)∑∑=2ii i xY x b (4-16) 例8 某市五金公司1978年到l984年销售额资料为 年份 l978 1979 1980 1981 1982 1983 1984 销售额 4923 5811 7171 8248 8902 9860 l0800(万元)试预测l985、1986两年的销售额。
趋势外推预测法摘要: 电力负荷预测是电力系统规划的重要组成部分, 也是电力系统经济运行的基础, 任何时候, 电力负荷预测对电力系统规划和运行都极其重要。
近年来, 随着我国电力供需矛盾的突出及电力工业市场化营运机制的推进, 电力负荷预测的准确性有待进一步提高;然而, 由于社会运转速度的不断加快和信息量的膨胀, 使准确的负荷预测变得愈加困难。
关键字: 电力;负荷预测;预测方法;趋势外推。
负荷预测方法可分为确定性负荷预测方法和不确定性负荷预测方法。
确定性负荷预测方法是把电力负荷预测用一个或者一组方程来描述, 电力负荷与变量之间有明确的一一对应的关系。
其中又可分为经验技术预测法、经典技术预测法、经济模型预测法、时间序列预测法、相关系数预测法和饱和曲线预测法等。
不确定性预测方法基于类比对应等关系进行推理预测的, 包括灰色理论预测法、专家系统法、模糊预测法、神经网络法、小波分析预测法等。
常用到的确定性负荷预测方法主要有: 回归分析法;时间序列预测法;趋势外推预测法。
本文主要介绍和分析趋势外推预测法。
一、回归分析法回归分析法就是通过对历史数据的分析、研究, 并考虑和电力负荷有关的各种影响因素, 建立起适当的回归预测模型, 用数理统计中的回归分析方法对变量的观测数据统计分析, 从而预测未来的电力负荷。
回归预测模型可以是线性的也可以是非线性的, 可以是一元的也可以是多元的, 其中一元线性回归预测是最基本的、最简单的预测方法。
回归分析法适用于中、短期预测, 它的预测精度依赖于模型的准确性和影响因子(如国民生产总值、工农业生产总值、人口、气候等)预测值的准确度, 该方法只能预测出综合用电负荷的发展水平, 无法预测出各供电区的负荷发展水平, 无法进行具体的电网建设规划。
二、时间序列法时间序列预测方法就是根据到目前为止的历史资料数据, 即时间序列所呈现出来的发展趋势和规律, 设法建立一个数学模型, 在该数学模型的基础上用数学方法进行延伸、外推, 预测出今后各时期的指标值。
趋势外推法的手段趋势外推法是一种预测未来发展方向和趋势的方法,其基本原理是根据过去的数据和趋势,通过一定的数学模型和推理方法,对未来的可能发展进行预测和判断。
下面将介绍趋势外推法的几种常见手段。
1. 线性外推法:线性外推法是一种基于线性趋势的外推方法。
根据一组数据点的线性趋势,计算出其斜率和截距,从而得出线性方程,并利用该方程预测未来的发展趋势。
线性外推法常用于简单的线性发展趋势,适用于数据变化比较稳定的情况。
例如,我们可以通过过去几年的销售数据,计算出销售额与时间之间的线性关系,然后根据线性方程的参数,预测未来销售额的发展趋势。
2. 指数平滑外推法:指数平滑外推法是一种基于指数趋势的外推方法。
它根据过去数据的指数增长或指数衰减趋势,对未来数据进行预测。
指数平滑外推法适用于有明显趋势变化的数据,并且能够较好地适应数据的变化。
例如,在预测某产品的未来销售量时,可以利用指数平滑外推法,根据过去销售量的变化趋势,对未来销售量进行预测。
3. 趋势函数外推法:趋势函数外推法是一种基于数学函数的外推方法。
它通过拟合历史数据的变化趋势,找出最适合数据变化的函数,并利用该函数预测未来的趋势。
常用的趋势函数包括多项式函数、指数函数、对数函数等。
例如,我们可以通过拟合历史数据的变化趋势,找到一个最适合该数据的多项式函数,然后利用该函数预测未来的数据发展趋势。
4. 时间序列分析外推法:时间序列分析外推法是一种基于时间序列数据的外推方法。
它通过对时间序列数据的周期性、波动性等特征进行分析,找出其规律性,并利用规律性预测未来的趋势。
时间序列分析外推法常用的方法包括自回归(AR)、滑动平均(MA)、自回归滑动平均(ARMA)等。
例如,在对某商品的销售数据进行预测时,可以使用时间序列分析外推法,通过对历史销售数据的波动性和周期性进行分析,预测未来销售的发展趋势。
综上所述,趋势外推法是一种常用的预测未来发展趋势的方法,其手段包括线性外推法、指数平滑外推法、趋势函数外推法和时间序列分析外推法等。
趋势外推法的步骤趋势外推法是一种通过分析过去的趋势来预测未来的方法。
它基于假设,当前的趋势将会延续到未来,并使用历史数据来预测未来的发展。
以下是趋势外推法的步骤。
1. 收集数据:首先,需要收集相关领域的历史数据。
这些数据可以包括过去几年的销售数据、市场趋势数据等。
确保数据的准确性和完整性非常重要。
2. 数据预处理:在进一步分析之前,需要对数据进行预处理。
这可能涉及到去除异常值、填补缺失值、平滑数据等。
通过预处理可以保证数据的稳定性和可靠性。
3. 分析趋势:接下来,使用图表或统计方法来分析数据的趋势。
可以使用线性回归、移动平均法或指数平滑法等方法来发现数据的趋势。
趋势是数据的长期变化方向,可以是上升、下降或平稳。
4. 建立模型:基于分析的趋势,建立适当的趋势模型。
对于线性趋势,可以使用线性回归模型;对于非线性趋势,可以使用曲线拟合模型。
选择合适的模型可以更好地描述数据的发展趋势。
5. 模型验证:验证模型的准确性和可靠性是非常重要的。
可以使用一部分历史数据来验证模型的预测结果。
如果模型的预测结果与实际结果相差较大,则需要重新调整模型或选择其他方法。
6. 趋势外推:一旦模型被验证通过,就可以使用该模型来预测未来的趋势。
基于当前的趋势和模型的预测结果,可以预测未来一段时间内的发展方向和趋势。
7. 风险评估:进行风险评估是非常重要的。
预测的结果可能受到多种因素的影响,如经济、市场竞争、政策变化等。
对这些风险因素进行评估,并将其考虑到预测模型中,可以提高预测的准确性和可靠性。
8. 结果展示:最后,将预测结果进行展示。
可以使用图表、报告或可视化工具来呈现结果,以便决策者能够更好地理解和利用这些预测结果。
总之,趋势外推法是一种通过分析历史数据的趋势来预测未来的方法。
通过合理的数据收集、预处理、趋势分析、模型建立和验证等步骤,可以得到准确和可靠的预测结果,并帮助决策者做出明智的决策。
趋势外推法趋势外推法是一种使用历史数据来预测未来趋势的方法。
它基于一个基本假设,即未来的发展将延续过去的趋势。
这种方法常常被应用于经济、市场和社会领域的趋势预测。
本文将介绍趋势外推法的基本原理和应用,并通过一个实例来解释其实际应用。
趋势外推法基于观察到的趋势和周期性模式进行预测。
它假设未来变化的方向与历史数据中的变化方向一致,但可能会有一些变化幅度上的差异。
因此,它可以提供有关未来可能发展的大致方向和范围的预测。
这种方法可以应用于各种趋势预测,例如经济增长、市场销售额和人口发展等。
首先,收集一段时间内的历史数据,并通过绘制曲线或制作图表来分析这些数据。
然后,根据观察到的趋势和模式,推断未来可能的变化趋势。
举一个实际的例子,我们可以使用趋势外推法来预测一家公司未来一年的销售额。
首先,我们收集了公司过去五年的销售额数据,并将其绘制成图表。
通过观察到的趋势,我们可以看到公司销售额呈现逐年增长的趋势。
接下来,我们可以利用这个趋势来预测未来一年的销售额。
通过简单地延续过去几年的增长率,我们可以估计未来一年公司的销售额可能在一个特定的范围内,例如增长10%-15%。
然而,需要注意的是,趋势外推法并不能完全准确地预测未来的变化。
它只能提供一个大致的预测,没有考虑到其他可能影响未来趋势的因素。
因此,在实际应用中,必须结合其他方法和因素来进行综合分析和预测。
总之,趋势外推法是一种常用的趋势预测方法,它利用历史数据来判断未来的发展趋势。
它能够提供一个大致的预测范围,但不能完全准确地预测未来的变化。
因此,在实际应用中,需要结合其他因素和方法进行综合分析和预测,以提高预测的准确性和可靠性。
人力需要预测之趋势外推预测法将人力资源需求量的历史数据按时间顺序排列,即可形成一个时间数列。
时间数列分为绝对数时间数列、相对数时间数列和平均数时间数列三种,人力资源需求量是绝对数,因而其数列是绝对数时间数列。
按数列反映的现象性质不同,又可分为时期数列和时点数列,人力资源需求量是期末时点上的数据,因而其数列是时点数列。
在明确人力资源需求时点数列的性质后,考虑采用恰当的预测方法。
针对时点数列,一般可选用三种方法:方法一,当时点数列不存在长期趋势和季节变动时,宜采用平滑方法预测;方法二,当时点数列存在长期趋势但不含季节变动时,宜采用趋势外推方法预测;方法三,当时点数列存在长期趋势和季节变化时,宜采用趋势季节模型方法预测。
当人力资源需求时点数列不存在长期趋势,但中短期内有一定规律可循时,可采用方法一。
但是当随时间变化的趋势不明显时,一般最好不要采用该类数量方法预测,所以方法一在人力资源需求预测方面运用较少。
当人力资源需求呈现长期发展趋势,又随季节变化时,采用方法三。
在组织中,一般人员是较为固定的,不会轻易随季节变化而变动,否则会严重地影响员工的忠诚度,甚至有些企业提倡经济萧条时也不裁员,因随便增减人员对企业危害巨大。
也有符合该要求的人力资源需求数列,比如有淡旺季之分的产品促销员,这些促销员是临时招聘,而非正式员工,市场上供给充分,不需要过早预测,所以方法三更少运用。
事实上,当正式员工需求呈现长期发展趋势时,不会考虑季节变动,一般选用方法二,所以趋势外推预测法(trend analysis)是人力资源需求预测中运用最广泛的时点数列预测方法。
趋势外推预测法中,最重要的是找出趋势线。
找出趋势线的方法有多种,一般有绘图法、分段平均法、最小二乘法、指数平滑法等。
最简单、最直观的方法是绘图法。
以人力资源需求量为纵轴,以时间为横轴,在坐标图上描出各年的历史数据。
观察这些点是否有一定的发展规律,如果有,尝试在图上画出一条直线或曲线,使得大多数点尽可能地与这条线重合或接近。