河北中考数学 §8.3 几何最值问题
- 格式:pptx
- 大小:972.98 KB
- 文档页数:46
问题分析从前有个少年外出求学.某天不幸得知老父亲病危的消息.便立即赶路回家.根据“两点之间线段最短”.虽然从他此刻位置A 到家B 之间是一片砂石地.但他义无反顾踏上归途.当赶到家时.老人刚咽了气.小伙子追悔莫及失声痛哭.邻居告诉小伙子说.老人弥留之际不断念叨着“胡不归?胡不归?看到这里很多人都会有一个疑问.少年究竟能不能提前到家呢?假设可以提早到家.那么他该选择怎样的一条路线呢?这就是今天要讲的“胡不归”问题. 模型展示:如图.一动点P 在直线MN 外的运动速度为V 1.在直线MN 上运动的速度为V 2.且V 1<V 2.A 、B 为定点.点C 在直线MN 上.确定点C 的位置使21AC BCV V +的值最小.121121=V AC BC BC AC V V V V ⎛⎫++ ⎪⎝⎭.记12V k V =. 即求BC +kAC 的最小值.构造射线AD 使得sin∠DAN =k .CH /AC =k .CH =kAC .V 1V 2V 1驿道砂石地ABCV 2V 1MNCBA几何最值之胡不归问题方法技巧将问题转化为求BC +CH 最小值.过B 点作BH ∠AD 交MN 于点C .交AD 于H 点.此时BC +CH 取到最小值.即BC +kAC 最小.最值解法:在求形如“P A +kPB ”的式子的最值问题中.关键是构造与kPB 相等的线段.将“P A +kPB ”型问题转化为“P A +PC ”型.【例1】如图.平行四边形ABCD 中.∠DAB =60°.AB =6.BC =2.P 为边CD 上的一动点.则32PB PD的最小值等于________.【解析】已知∠A =60°.且sin60°=32.故延长AD .作PH ∠AD 延长线于H 点. ABCDPMHP DCBAABCDPH M 题型精讲即可得3PH =.∠3PB =PB +PH . 当B 、P 、H 三点共线时.可得PB +PH 取到最小值.即BH 的长.解直角∠ABH 即可得BH 长.【例2】(2021·重庆中考真题)在等边ABC 中.6AB =.BD AC ⊥ .垂足为D .点E 为AB 边上一点.点F 为直线BD 上一点.连接EF .图1 图2图3(1)将线段EF 绕点E 逆时针旋转60°得到线段EG .连接FG .∠如图1.当点E 与点B 重合.且GF 的延长线过点C 时.连接DG .求线段DG 的长; ∠如图2.点E 不与点A .B 重合.GF 的延长线交BC 边于点H .连接EH .求证:3BE BH BF +=;(2)如图3.当点E 为AB 中点时.点M 为BE 中点.点N 在边AC 上.且2DN NC =.点F 从BD 中点Q 沿射线QD 运动.将线段EF 绕点E 顺时针旋转60°得到线段EP .连接FP .当12NP MP +最小时.直接写出DPN △的面积. 【答案】(1)21;∠见解析;(243【分析】(1)∠连接AG .根据题意得出∠ABC 和∠GEF 均为等边三角形.从而可证明∠GBC ∠∠GAC .进一步求出AD =3.AG =BG =23然后利用勾股定理求解即可;∠以点F 为圆心.FB 的长为半径画弧.与BH 的延长线交于点K .连接KF .先证明出∠BFK 是顶角为120°的等腰三角形.然后推出∠FEB ∠∠FHK .从而得出结论即可;(2)利用“胡不归”模型构造出含有30°角的直角三角形.构造出12NP MP NP PJ +=+.当N 、P 、J 三点共线的时候满足条件.然后利用相似三角形的判定与性质分别计算出PN 与DN 的长度.即可得出结论. 【详解】(1)解:∠如图所示.连接AG .由题意可知.∠ABC 和∠GEF 均为等边三角形. ∠∠GFB =60°. ∠BD ∠AC . ∠∠FBC =30°.∠∠FCB =30°.∠ACG =30°. ∠AC =BC .GC =GC . ∠∠GBC ∠∠GAC (SAS ). ∠∠GAC =∠GBC =90°.AG =BG . ∠AB =6.∠AD =3.AG =BG =3 ∠在Rt ∠ADG 中.()222223321DG AD AG =+=+=∠21DG =∠证明:以点F 为圆心.FB 的长为半径画弧.与BH 的延长线交于点K .连接KF .如图. ∠∠ABC 和∠GEF 均为等边三角形. ∠∠ABC =60°.∠EFH =120°. ∠∠BEF +∠BHF =180°. ∠∠BHF +∠KHF =180°. ∠∠BEF =∠KHF .由辅助线作法可知.FB =FK .则∠K =∠FBE . ∠BD 是等边∠ABC 的高. ∠∠K =∠DBC =∠DBA =30°. ∠∠BFK =120°. 在∠FEB 与∠FHK 中.FEB FHK FBE KFB FK ∠=∠⎧⎪∠=∠⎨⎪=⎩∠∠FEB ∠∠FHK (AAS ). ∠BE =KH .∠BE +BH =KH +BH =BK . ∠FB =FK .∠BFK =120°. ∠BK 3BF .即:3BE BH BF +=;(2)如图1所示.以MP 为边构造∠PMJ =30°.∠PJM =90°.则PJ =12MP . ∠求12NP MP +的最小值.即为求NP PJ +的最小值.如图2所示.当运动至N、P、J三点共线时.满足NP PJ+最小.此时.连接EQ.则根据题意可得EQ∠AD.且EQ=12 AD.∠∠MEQ=∠A=60°.∠EQF=90°.∠∠PEF=60°.∠∠MEP=∠QEF.由题意.EF=EP.∠∠MEP∠∠QEF(SAS).∠∠EMP=∠EQF=90°.又∠∠PMJ=30°.∠∠BMJ=60°.∠MJ∠AC.∠∠PMJ=∠DNP=90°.∠∠BDC=90°.∠四边形ODNJ为矩形.NJ=OD.由题.AD=3.BD=33∠MJ∠AC.∠∠BMO∠∠BAD.∠14 BM BO MOBA BD AD===.∠OD=34BD93OM=34AD=94.设PJ=x.则MJ3.OJ3-9 4 .由题意可知.DN =23CD =2. 9324x -=. 解得:113x =. 即:PJ =11312. ∠93113434123PN =-=. ∠11434322233DPNSDN PN ==⨯⨯=. 【例3】已知抛物线2(0)y ax bx c a =++≠过点(1,0)A .(3,0)B 两点.与y 轴交于点C .=3OC .(1)求抛物线的解析式及顶点D 的坐标;(2)过点A 作AM BC ⊥.垂足为M .求证:四边形ADBM 为正方形;(3)点P 为抛物线在直线BC 下方图形上的一动点.当PBC ∆面积最大时.求点P 的坐标; (4)若点Q 为线段OC 上的一动点.问:12AQ QC +是否存在最小值?若存在.求岀这个最小值;若不存在.请说明理由.【答案】(1)抛物线的表达式为:243y x x =-+.顶点(2,1)D -;(2)证明见解析;(3)点33,24P ⎛⎫- ⎪⎝⎭;(4)存在.12AQ QC +的最小值为233+. 【详解】(1)函数的表达式为:()()()2y a x 1x 3a x 4x 3=--=-+.即:3a=3.解得:a=1.故抛物线的表达式为:2y x 4x 3=-+. 则顶点D(2,1)-; (2)OB OC 3==.OBC OCB 45∠∠︒∴==.∠A(1,0).B(3,0).∠ OB=3.OA=1. ∠AB=2.∠AM MB ABsin452︒=== 又∠D(2.-1). ()()2221102-+--=∠AM=MB=AD=BD. ∠四边形ADBM 为菱形. 又∠AMB 90∠︒=.∴菱形ADBM 为正方形;(3)设直线BC 的解析式为y=mx+n.将点B 、C 的坐标代入得:303m n n +=⎧⎨=⎩. 解得:13m n =-⎧⎨=⎩.所以直线BC 的表达式为:y=-x+3. 过点P 作y 轴的平行线交BC 于点N.设点()2P x,x 4x 3-+.则点N (x,x+3)-.则()()22ΔPBC 133S PN OB x 3x 4x 3x 3x 222=⨯=-+-+-=--. 302-<.故ΔPBC S 有最大值.此时3x 2=. 故点33P ,24⎛⎫- ⎪⎝⎭; (4)存在.理由:如图.过点C 作与y 轴夹角为30︒的直线CF 交x 轴于点F.过点A 作AH CF ⊥.垂足为H.交y 轴于点Q. 此时1HQ CQ 2=.则1AQ QC2+最小值=AQ+HQ=AH.在Rt∠COF中.∠COF=90°.∠FOC=30°.OC=3.tan∠FCO=FO CO.3.∠F(3利用待定系数法可求得直线HC的表达式为:y3x3=+…∠.∠∠COF=90°.∠FOC=30°.∠∠CFO=90°-30°=60°.∠∠AHF=90°.∠∠FAH=90°-60°=30°.3∠Q(0,3 ).利用待定系数法可求得直线AH的表达式为:33 y x=+联立∠∠并解得:133 x4-=.故点13333H-+⎝⎭.而点A(1,0).则233+=AH.即1AQ QC2+的最小值为233+.1.如图.△ABC中.AB=AC=10.tanA=2.BE∠AC于点E.D是线段BE上的一个动点.则55CD BD的最小值是______.【答案】B【详解】如图.作DH∠AB于H.CM∠AB于M.提分作业∠BE∠AC. ∠∠AEB=90°. ∠tanA=BEAE=2.设AE=a.BE=2a. 则有:100=a 2+4a 2. ∠a 2=20.5-25. 5∠AB=AC.BE∠AC.CM∠AB.5 ∠∠DBH=∠ABE.∠BHD=∠BEA. ∠5sin DH AE DBH BD AB ∠===. 55BD=CD+DH. ∠CD+DH≥CM. 55 5BD 的最小值为5 故选B .2.在平面直角坐标系中.将二次函数()20y ax a =>的图象向右平移1个单位.再向下平移2个单位.得到如图所示的抛物线.该抛物线与x 轴交于点A 、B (点A 在点B 的左侧).1OA =.经过点A 的一次函数()0y kx b k =+≠的图象与y 轴正半轴交于点C .且与抛物线的另一个交点为D .ABD ∆的面积为5.(1)求抛物线和一次函数的解析式;(2)抛物线上的动点E 在一次函数的图象下方.求ACE ∆面积的最大值.并求出此时点E 的坐标;(3)若点P 为x 轴上任意一点.在(2)的结论下.求35PE PA +的最小值. 【答案】(1)21322y x x =--;1122y x =+;(2)ACE ∆的面积最大值是2516.此时E 点坐标为315,28⎛⎫- ⎪⎝⎭;(3)35PE PA +的最小值是3. 【详解】解:(1)将二次函数()20y ax a =>的图象向右平移1个单位.再向下平移2个单位.得到的抛物线解析式为()212y a x =--. ∠1OA =.∠点A 的坐标为()1,0-. 代入抛物线的解析式得.420a -=.∠12a =. ∠抛物线的解析式为()21122y x =--.即21322y x x =--. 令0y =.解得11x =-.23x =.∠()3,0B . ∠4AB OA OB =+=. ∠ABD ∆的面积为5.∠152ABD D S AB y ∆=⋅=.∠52D y =. 代入抛物线解析式得.2513222x x =--.解得12x =-.24x =.∠54,2D ⎛⎫⎪⎝⎭. 设直线AD 的解析式为y kx b =+.∠5420k b k b ⎧+=⎪⎨⎪-+=⎩.解得:1212k b ⎧=⎪⎪⎨⎪=⎪⎩. ∠直线AD 的解析式为1122y x =+. (2)过点E 作EM y 轴交AD 于M .如图.设213,22E a a a ⎛⎫-- ⎪⎝⎭.则11,22M a a ⎛⎫+ ⎪⎝⎭.∠221113132222222EM a a a a a =+-++=-++. ∠112ACE AME CME S S S EM ∆∆∆=-=⨯⋅()22113121342224a a a a ⎛⎫=-++⨯=--- ⎪⎝⎭.213254216a ⎛⎫=--+⎪⎝⎭. ∠当32a =时.ACE ∆的面积有最大值.最大值是2516.此时E 点坐标为315,28⎛⎫- ⎪⎝⎭.(3)作E 关于x 轴的对称点F .连接EF 交x 轴于点G .过点F 作FH AE ⊥于点H .交x 轴于点P . ∠315,28E ⎛⎫-⎪⎝⎭.1OA =. ∠35122AG =+=.158EG =.∠5421538AG EG ==. ∠90AGE AHP ∠=∠=. ∠3sin 5PH EG EAG AP AE ∠===.∠35PH AP =. ∠E 、F 关于x 轴对称.∠PE PF =.∠35PE AP FP HP FH +=+=.此时FH 最小. ∠1515284EF =⨯=.AEG HEF ∠=∠. ∠4sin sin 5AG FH AEG HEF AE EF ∠=∠===. ∠415354FH =⨯=. ∠35PE PA +的最小值是3.3.已知抛物线2y x bx c =-+(b c ,为常数.0b >)经过点(1,0)A -.点(,0)M m 是x 轴正半轴上的动点.(∠)当2b =时.求抛物线的顶点坐标;(∠)点(,)D D b y 在抛物线上.当AM AD =.5m =时.求b 的值; (∠)点1(,)2Q Q b y +在抛物线上.22AM QM +332.求b 的值. 【答案】(∠)(1,4)-;(∠)321b =-;(∠)4b =. 【详解】解:(∠)∠抛物线2y x bx c =-+经过点(1,0)A -.∠10b c ++=.即1c b =--.当2b =时.2223(1)4y x x x =--=--.∠抛物线的顶点坐标为(1,4)-.(∠)由(∠)知.抛物线的解析式为21y x bx b =---. ∠点(,)D D b y 在抛物线21y x bx b =---上.∠211D y b b b b b =-⋅--=--.由0b >.得02bb >>.10b --<. ∠点(,1)D b b --在第四象限.且在抛物线对称轴2bx =的右侧. 如图.过点D 作DE x ⊥轴.垂足为E .则点(,0)E b . ∠1AE b =+.1DE b =+.得AE DE =. ∠在Rt ADE ∆中.45ADE DAE ︒∠=∠=. ∠2AD AE =. 由已知AM AD =.5m =. ∠5(1)2(1)b --=+. ∠321b =.(∠)∠点1(,)2Q Q b y +在抛物线21y x bx b =---上. ∠2113()()12224Q b y b b b b =+-+--=--. 可知点13(,)224b Q b +--在第四象限.且在直线x b =的右侧. 2222()QM AM QM +=+.可取点(0,1)N . 如图.过点Q 作直线AN 的垂线.垂足为G .QG 与x 轴相交于点M . 有45GAM ︒∠=.2AM GM =. 则此时点M 满足题意. 过点Q 作QHx ⊥轴于点H .则点1(,0)2H b +.在Rt MQH ∆中.可知45QMH MQH ︒∠=∠=.∠QH MH =.2QM MH =. ∠点(,0)M m . ∠310()()242b b m ---=+-.解得124b m =-. 332224AM QM +=. 1113322[()(1)]22[()()]242244b b b ---++--=. ∠4b =.4.如图.已知抛物线y x +2)(x ﹣4)(k 为常数.且k >0)与x 轴从左至右依次交于A.B 两点.与y 轴交于点C.经过点B 的直线y x +b 与抛物线的另一交点为D .(1)若点D 的横坐标为﹣5.求抛物线的函数表达式;(2)若在第一象限内的抛物线上有点P.使得以A.B.P 为顶点的三角形与∠ABC 相似.求k 的值;(3)在(1)的条件下.设F 为线段BD 上一点(不含端点).连接AF.一动点M 从点A 出发.沿线段AF 以每秒1个单位的速度运动到F.再沿线段FD 以每秒2个单位的速度运动到D 后停止.当点F 的坐标是多少时.点M 在整个运动过程中用时最少?【答案】(1);(2)或;(3)当点F 坐标为(﹣)时.点M在整个运动过程中用时最少.【解析】(1)抛物线y=(x+2)(x﹣4).令y=0.解得x=﹣2或x=4.∠A(﹣2.0).B (4.0).∠直线经过点B(4.0).∠×4+b=0.解得b=.∠直线BD解析式为:当x=﹣5时.y=.∠D(﹣).∠点D(﹣)在抛物线y=x+2)(x﹣4)上.∠5+2)(﹣5﹣4)=.∠.∠抛物线的函数表达式为:(x+2)(x﹣4).即.(2)由抛物线解析式.令x=0.得y=﹣k.∠C(0.﹣k).OC=k.因为点P在第一象限内的抛物线上.所以∠ABP为钝角.因此若两个三角形相似.只可能是∠ABC∠∠APB或∠ABC∠∠PAB.∠若∠ABC∠∠APB.则有∠BAC=∠PAB.如答图2﹣1所示.设P(x.y).过点P作PN∠x轴于点N.则ON=x.PN=y.tan∠BAC=tan∠PAB.即:.∠.∠P(+k).代入抛物线解析式y=x+2)(x﹣4).得x+2)(x﹣4x+k.整理得:x2﹣6x﹣16=0.解得:x=8或x=﹣2(与点A重合.舍去).∠P(8.5k).∠∠ABC∠∠APB.∠...∠若∠ABC∠∠PAB.则有∠ABC=∠PAB.如答图2﹣2所示.设P(x.y).过点P作PN∠x轴于点N.则ON=x.PN=y.tan∠ABC=tan∠PAB.即:.∠.∠P(x.x+).代入抛物线解析式y(x+2)(x﹣4).得x+2)(x﹣4x.整理得:x2﹣4x﹣12=0.解得:x=6或x=﹣2(与点A重合.舍去).∠P(6.2k).∠∠ABC∠∠PAB..∠.解得.∠k>0.∠.综上所述.或.(3)作DK∠AB.AH∠DK.AH交直线BD于点F.∠∠DBA=30°.∠∠BDH=30°.∠FH=DF×sin30°.∠当且仅当AH∠DK时.AF+FH 最小.点M在整个运动中用时为:.∠l BD:.∠F X=A X=﹣2.∠F(﹣).。
中考数学最值问题总结(含强化训练)在中学数学题中,最值题是常见题型,围绕最大(小)值所出的数学题是各种各样,就其解法,主要分为几何最值和代数最值两大部分。
一、解决几何最值问题的要领(1)两点之间线段最短;(2)直线外一点与直线上所有点的连线段中,垂线段最短;(3)三角形两边之和大于第三边或三角形两边之差小于第三边(重合时取到最值)。
二、解决代数最值问题的方法要领1.二次函数的最值公式二次函数y ax bx c =++2(a 、b 、c 为常数且a ≠0)其性质中有 ①若a >0当x b a=-2时,y 有最小值。
y ac b a min =-442; ②若a <0当x b a=-2时,y 有最大值。
y ac b a max =-442。
2.一次函数的增减性.一次函数y kx b k =+≠()0的自变量x 的取值范围是全体实数,图象是一条直线,因而没有最大(小)值;但当m x n ≤≤时,则一次函数的图象是一条线段,根据一次函数的增减性,就有最大(小)值。
3. 判别式法.根据题意构造一个关于未知数x 的一元二次方程;再根据x 是实数,推得∆≥0,进而求出y 的取值范围,并由此得出y 的最值。
4.构造函数法.“最值”问题中一般都存在某些变量变化的过程,因此它们的解往往离不开函数。
5. 利用非负数的性质.在实数范围内,显然有a b k k 22++≥,当且仅当a b ==0时,等号成立,即a b k 22++的最小值为k 。
6. 零点区间讨论法.用“零点区间讨论法”消去函数y 中绝对值符号,然后求出y 在各个区间上的最大值,再加以比较,从中确定出整个定义域上的最大值。
7. 利用不等式与判别式求解.在不等式x a ≤中,x a =是最大值,在不等式x b ≥中,x b =是最小值。
8. “夹逼法”求最值.在解某些数学问题时,通过转化、变形和估计,将有关的量限制在某一数值范围内,再通过解不等式获取问题的答案,这一方法称为“夹逼法”。
中考数学————几何最值【知识梳理】1.常见的几何最值问题有:线段最值问题,线段和差最值问题,周长最值问题、面积最值问题等2.几何最值问题的基本原理。
①两点之间线段最短②垂线段最短 ③利用函数关系求最值一般处理方法:常用定理:两点之间,线段最短(已知两个定点时) 垂线段最短(已知一个定点、一条定直线时) 三角形三边关系(已知两边长固定或其和、差固定时)线段和(周长)最小 转化构造三角形两点之间,线段最短 垂线段最短 线段差最大 线段最大(小)值三角形三边关系定理 三点共线时取得最值平移 对称 旋转使点在线异侧(如下图)使点在线同侧(如下图) 使目标线段与定长线段构成三角形平移 对称 旋转P A +PB 最小,需转化,使点在线异侧|P A -PB |最大,需转化,使点在线同侧lB'ABPl B'BA P构建“对称模型”实现转化一次对称1. 如图,在锐角△ABC 中,AB =42,∠BAC =45°,∠BAC 的平分线交BC 于点D ,M 、N 分别是AD 和AB 上的动点,则BM+MN 的最小值是____.2、如图,在△ABC 中,AC =BC =2,∠ACB =90°,D 是BC 边的中点,E 是AB 边上一动点,则EC +ED 的最小值为_______。
1题图 2题图 3题图 4题图 3.已知⊙O 的直径CD 为4,∠AOD 的度数为60°,点B 是AD ︵的中点,在直径CD 上找一点P ,使BP+AP 的值最小,并求BP+AP 的最小值.4.如图,圆柱形玻璃杯,高为12cm ,底面周长为18cm ,在杯内离杯底4cm 的点C 处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿4cm 与蜂蜜相对的点A 处,则蚂蚁到达蜂蜜的最短距离为______cm .蜂蜜蚂蚁AC正方形中的对称变换1、如图,正方形ABCD 的边长为8,M 在DC 上,且DM =2,N 是AC 上的一动点,DN +MN 的最小值为_________。
初中几何最值问题类型
初中几何中的最值问题类型有以下几种:
1.最大值最小值问题:
求某个几何图形的最大面积或最小周长,如矩形、三角形等。
求抛物线的最高点或最低点,即顶点的坐标。
2.极值问题:
求函数图像与坐标轴的交点。
求函数在某个区间内的最大值或最小值,如求二次函数的最
值等。
3.最优化问题:
求物体从一个点到另一个点的路径问题,如两点之间的最短
路径、最快速度等。
4.最长边最短边问题:
求三角形的最长边或最短边,如用三根木棍构成三角形,求
最长边的长度。
5.相等问题:
求两个几何形状中的某个参数,使得它们的某个关系成立,
如求两个相似三角形的边长比、两个等腰三角形的底角角度等。
这些问题类型都需要通过合理的分析和运用相关的几何定理
来解决。
对于初中学生来说,熟练掌握基本的几何概念和定理,灵活运用数学思维和方法,可以较好地解决这些最值问题。
通
过多做练习和思考,培养几何思维和解决问题的能力。
2022年春冀教版九年级数学中考复习《几何最值问题压轴题》专题突破训练(附答案)1.如图,在边长为6cm的等边△ABC中,点D从A出发沿A→B的方向以1cm/s 的速度运动,点E从B出发沿B→C的方向以2cm/s的速度运动,D,E两点同时出发,当点E到达点C时,D,E两点停止运动,以DE为边作等边△DEF(D,E,F按逆时针顺序排列),点N为线段AB上一动点,点M为线段BC的中点,连MF,NF,当MF+NF取得最小值时,线段BN的长度为()A.5cm B.4.5cm C.4cm D.3cm2.如图,△ABC是等边三角形,E是AC的中点,D是直线BC上一动点,线段ED绕点E逆时针旋转90°,得到线段EF,当D点运动时,若AF的最小值为2+2,那么等边三角形△ABC的边长为()A.10 B.8 C.6 D.43.如图,边长为9的等边三角形ABC中,M是高CH所在直线上的一个动点,连接MB,将线段BM绕点B逆时针旋转60°得到BN,连接HN.则在点M 运动过程中,线段HN长度的最小值是()A.3 B.C.D.4.如图,已知△ABC和△ADE均为等边三角形,点O是AC的中点,点D在射线BO上,连结OE,EC,若AB=8,则OE的最小值为()A.2 B.2C.D.25.如图,在矩形ABCD中,AB=2,BC=4,P是对角线AC上的动点,连接DP,将直线DP绕点P顺时针旋转,使旋转角等于∠DAC,且DG⊥PG,即∠DPG=∠DAC.连接CG,则CG最小值为()A.B.C.D.6.如图所示,菱形ABCO的边长为5,对角线OB的长为4,P为OB上一动点,则AP+OP的最小值为()A.4 B.5 C.2D.37.如图,菱形ABCD的边长为2,∠B=60°,E为BC边的中点,F为AB边上一动点,连接EF,以EF为边向右侧作等边△EFG,连接CG,则CG的最小值为()A.B.1 C.D.8.如图,在边长为1的菱形ABCD中,∠ABC=60°,将△ABD沿射线BD的方向平移得到△A'B'D',分别连接A'C,A'D,B'C,则A'C+B'C的最小值为.9.如图,△ABC是边长为2的等边三角形,点D为BC边上的中点,以点D为顶点作正方形DEFG,且DE=BC,连接AE,AG.若将正方形DEFG绕点D 旋转一周,当AE取最小值时,AG的长为.10.如图,△ABC是等边三角形,AB=6,E是AB中点,点G在直线BC上运动.将线段EG绕点E顺时针旋转90°,得线段EH,则线段AH的最小值为.11.如图,在平面直角坐标系中,已知A(0,2),△AOB为等边三角形,P是x轴上的一个动点,以线段AP为一边,在其右侧作等边三角形APQ,点P的运动过程中,OQ的最小值为.12.如图,在正方形ABCD中,AB=4,点P为边AB上的一动点,联结PC,以PC为边向下作等边三角形PCQ,联结BQ,则BQ的最小值为.13.如图,正方形ABCD的边长为8,E为BC上一点,且BE=2.5,F为AB边上的一个动点,连接EF,以EF为边向右侧作等边△EFG,连接CG,则CG 的最小值为.14.如图,Rt△ABC中,∠A=30°,BC=1,等边三角形DEF的顶点D,E,F分别在直角三角形的三边上,则EF长的最小值是.15.如图,在三角形△ABC中,∠A=45°,AB=8,CD为AB边上的高,CD =6,点P为边BC上的一动点,P1,P2分别为点P关于直线AB,AC的对称点,连接P1P2,则线段P1P2长度的取值范围是.16.如图,在等腰三角形ABC中,AC=BC=50,tan A=3,BD为高.M,N分别是BD,CD上的动点,若DN﹣AD=2DM,E是AB的中点,连接EM,MN,则EM+MN的最小值为.17.如图,在Rt△ABC中,∠ABC=90°,BC=4,AB=6,在线段AB上有一点M,且BM=2,在线段AC上有一动点N,连接MN,BN,将△BMN沿BN 翻折得到△BM′N,连接AM′,CM′,则2CM′+AM′的最小值为.18.如图,在△ABC中,∠ACB=90°,BC=12,AC=9,以点C为圆心,6为半径的圆上有一个动点D.连接AD、BD、CD,则AD+BD的最小值是.19.如图,已知AC=6,BC=8,AB=10,以点C为圆心,4为半径作圆.点D 是⊙C上的一个动点,连接AD、BD,则AD+BD的最小值为.20.如图,矩形ABCD中,AB=4,AD=6,点E是边CD上一点,EF⊥AE交BC于点F,则CF长的取值范围是.21.如图,在等边△ABC和等边△DEF中,FD在直线AC上,BC=3DE=3,连接BD,BE,则BD+BE的最小值是.22.如图,已知四边形ABCD中,∠A=∠B=90°,AD=5,AB=BC=6,M 为AB边上一个动点,连接CM,以BM为直径的圆交CM于Q,点P为AB 上的另一个动点,连接DP、PQ,则DP+PQ的最小值为.23.如图,已知边长为的等边△ABC,平面内存在点P,则P A+PB+PC的取值范围为.24.如图,在△ABC中,∠BAC=30°,AC=4,AB=8,点D在△ABC内,连接DA、DB、DC,则DC+DB+AD的最小值是.25.如图,在正方形ABCD中,点M,N在CB,CD上运动,且∠MAN=45°,在MN上截取一点G,满足BM=GM,连接AG,取AM,AN的中点F,E,连接GF,GE,令AM,AN交BD于H,I两点,若AB=4,当GF+GE的取值最小时,则HI的长度为.26.如图,△ABC中,AB=4,∠ACB=75°,∠ABC=45°,D是线段BC上的一个动点,以AD为直径画⊙O分别交AB,AC于E,F,连接EF,则EF 的最小值为.27.在△AOB中,∠ABO=90°,AB=3,BO=4,点C在OB上,且BC=1,(1)如图1,以O为圆心,OC长为半径作半圆,点P为半圆上的动点,连接PB,作DB⊥PB,使点D落在直线OB的上方,且满足DB:PB=3:4,连接AD①请说明△ADB∽△OPB;②如图2,当点P所在的位置使得AD∥OB时,连接OD,求OD的长;③点P在运动过程中,OD的长是否有最大值?若有,求出OD长的最大值:若没有,请说明理由.(2)如图3,若点P在以O为圆心,OC长为半径的圆上运动.连接P A,点P在运动过程中,P A﹣是否有最大值?若有,直接写出最大值;若没有,请说明理由.28.如图1,P是⊙O外的一点,直线PO分别交⊙O于点A、B,则P A是点P 到⊙O上的点的最短距离.(1)如图2,在⊙O上取一点C(不与点A、B重合),连PC、OC.求证:P A<PC.(2)如图3,在Rt△ABC中,∠ACB=90°,AC=BC=2,以BC为直径的半圆交AB于D,P是上的一个动点,连接AP,则AP的最小值是.(3)如图4,在边长为2的菱形ABCD中,∠A=60°,M是AD边的中点,N是AB边上一动点,将△AMN沿MN所在的直线翻折得到△A′MN,连接A′C,请求出A′B长度的最小值.(4)①如图5,E,F是正方形ABCD的边AD上两个动点,满足AE=DF.连接CF交BD于点G,连接BE交AG于点H.若正方形的边长为2,则线段DH的最小值是.②如图6,平面直角坐标系中,分别以点A(﹣2,3),B(3,4)为圆心,以1、2为半径作⊙A、⊙B,M、N分别是⊙A、⊙B上的动点,P为x轴上的动点,则PM+PN的最小值等于.29.如图,在等边△ABC中,点D在AC边上,点E为BD延长线上一点,连接CE,过点C作CF∥BD交AE延长线于点F.(1)如图1,若∠BAF=90°,tan∠AEB=,AB=8,求EF的长;(2)如图2,若∠CBE=45°,点F在CE的垂直平分线上,点G在BC边上,连接AG交BE于点H,且∠BHG=60°,求证:AG+AE+ED=AB;(3)如图3,若∠CBE=45°,tan∠BCE=3,BC=4,点K、M、N分别是△BCE三边上的动点,当△KMN周长取得最小值时,取线段BK的中点I,点T为平面内一点,且∠ETI=45°,连接BT、CT,请直接写出的最大值.30.问题提出:(1)如图①,在正方形ABCD中,E为边AB上一点(点E不与点A、B重合),连接DE,过点A作AF⊥DE,交BC于点F,则DE与AF的数量关系是:DE AF;问题探究:(2)如图②,在矩形ABCD中,AB=4,AD=6,点E、F分别在边AB、CD 上,点M为线段EF上一动点,过点M作EF的垂线分别交边AD、BC于点G、点H.若线段EF恰好平分矩形ABCD的面积,且DF=1,求GH的长;问题解决:(3)如图③,在正方形ABCD中,M为AD上一点,且,E、F分别为BC、CD上的动点,且BE=2DF,若AB=4,求ME+2AF的最小值.参考答案1.解:如图,过点E作EH⊥AB于H,连接FC.由题可得:∠BEH=30°,BD=1×t=t(cm),CE=2(t﹣3)=(2t﹣6)(cm),∴BE=6﹣(2t﹣6)=(12﹣2t)(cm),BH=BE•cos B=BE=(6﹣t)(cm),∴DH=t﹣(6﹣t)=(2t﹣6)(cm),∴DH=EC.∵△DEF是等边三角形,∴DE=EF,∠DEF=60°.∵∠HDE+∠HED=90°,∠HED+∠FEC=180°﹣30°﹣60°=90°,∴∠HDE=∠FEC.在△DHE和△ECF中,,∴△DHE≌△ECF(SAS),∴∠DHE=∠ECF=90°,∴F点运动的路径为过点C垂直于BC的一条线段,作点M关于CF的对称点K,连接FK,过点K作KJ⊥AB于J,∵FM+FM=FK+FN≥KJ,∴当点N与J重合,点F在KJ上时,FM+FN的值最小,此时BK=BC+CK =6+3=9(cm),∵∠KJB=90°,∠B=60°,∴BJ=BK•cos60°=9×=4.5(cm),当MF+NF取得最小值时,线段BN的长度为4.5cm.故选:B.2.解:如图,连接BE,延长AC至N,使EN=BE,连接FN,∵△ABC是等边三角形,E是AC的中点,∴AE=EC,∠ABE=∠CBE=30°,BE⊥AC,∴∠BEN=∠DEF=90°,BE=AE,∴∠BED=∠CEF,在△BDE和△NFE中,,∴△BDE≌△NFE(SAS),∴∠N=∠CBE=30°,∴点N在与AN成30°的直线上运动,∴当AF'⊥F'N时,AF'有最小值,∴AF'=AN,∴2+2=(AE+AE),∴AE=4,∴AC=8,故选:B.3.解:如图,取BC的中点,连接MG,∵线段BM绕点B逆时针旋转60°得到BN,∴∠MBH+∠HBN=60°,又∵△ABC是等边三角形,∴∠ABC=60°,即∠MBH+∠MBC=60°,∴∠HBN=∠GBM,∵CH是等边三角形的高,∴BH=AB,∴BH=BG,又∵BM旋转到BN,∴BM=BN,在△MBG和△NBH中,,∴△MBG≌△NBH(SAS),∴MG=NH,根据垂线段最短,当MG⊥CH时,MG最短,即HN最短,此时∠BCH=×60°=30°,∴CG=BC=×9=,∴MG=CG=,∴HN=.∴线段HN长度的最小值是.故选:B.4.解:∵△ABC的等边三角形,点O是AC的中点,∴OC=AC,∠ABD=30°,∵△ABC和△ADE均为等边三角形,∴AB=AC,AD=AE,∠BAC=∠DAE=60°,∴∠BAD=∠CAE,且AB=AC,AD=AE,∴△ABD≌△ACE(SAS),∴∠ACE=30°=∠ABD,当OE⊥EC时,OE的长度最小,∵∠OEC=90°,∠ACE=30°,∴OE最小值=OC=AB=2,故选:A.5.解:如图,作DH⊥AC于H,连接HG延长HG交CD于F,作HE⊥CD于E,∵DG⊥PG,DH⊥AC,∴∠DGP=∠DHA,∵∠DPG=∠DAH,∴△ADH∽△PDG,∴,∠ADH=∠PDG,∴∠ADP=∠HDG,∴△ADP∽△DHG,∴∠DHG=∠DAP=定值,∴点G在射线HF上运动,∴当CG⊥HF时,CG的值最小,∵四边形ABCD是矩形,∴∠ADC=90°,∴∠ADH+∠HDF=90°,∵∠DAH+∠ADH=90°,∴∠HDF=∠DAH=∠DHF,∴FD=FH,∵∠FCH+∠CDH=90°,∠FHC+∠FHD=90°,∴∠FHC=∠FCH,∴FH=FC=DF=1,在Rt△ADC中,∵∠ADC=90°,AD=4,CD=2,由勾股定理得AC=2,DH=,∴CH==,∴EH=,∵∠CFG=∠HFE,∠CGF=∠HEF=90°,CF=HF,∴△CGF≌△HEF(AAS),∴CG=HE=,∴CG的最小值为,故选:C.6.解:如图,过点A作AH⊥OC于点H,过点P作PF⊥OC于点F,连接AC 交OB于点J.∵四边形OABC是菱形,∴AC⊥OB,∴OJ=JB=2,CJ===,∴AC=2CJ=2,∵AH⊥OC,∴OC•AH=•OB•AC,∴AH=×=4,∴sin∠POF===,∴PF=OP,∴AP+OP=AP+PF,∵AP+PF≥AH,∴AP+OP≥4,∴AP+OP的最小值为4,故选:A.7.解:如图1,记AB与CD的中点分别为点M、N,连接MN、EM,则MN∥BC,∵点E是BC的中点,四边形ABCD是菱形,∴BM=BE,∵∠B=60°,∴△BME为等边三角形,∴∠BEM=60°,∵△EFG是等边三角形,∴EF=EG,∠FEG=60°,∴∠BEM+∠MEF=∠FEG+∠MEF,即∠BEF=∠MEG,∴△BEF≌△MEG(SAS),∴∠B=∠GME=60°,∴∠BEM=∠GME=60°,∴GM∥BC,∵MN∥BC,∴点G在MN上运动,∴CG⊥MN时,CG的值最小,如图2所示,∵菱形ABCD的边长为2,CD=2,∴CN=1,∵∠BCD=120°,∠GCB=90°,∴∠GCN=30°,在Rt△GCN中,CG=CN•cos∠GCN=1×=.故选:C.8.解:∵在边长为1的菱形ABCD中,∠ABC=60°,∴AB=CD=1,∠ABD=30°,∵将△ABD沿射线BD的方向平移得到△A'B'D',∴A′B′=AB=1,A′B′∥AB,∵四边形ABCD是菱形,∴AB=CD,AB∥CD,∴∠BAD=120°,∴A′B′=CD,A′B′∥CD,∴四边形A′B′CD是平行四边形,∴A′D=B′C,∴A'C+B'C的最小值=A′C+A′D的最小值,∵点A′在过点A且平行于BD的定直线上,∴作点D关于定直线的对称点E,连接CE交定直线于A′,则CE的长度即为A'C+B'C的最小值,∵在Rt△AHD中,∵∠A′AD=∠ADB=30°,AD=1,∴∠ADE=60°,DH=EH=AD=,∴DE=1,∴DE=CD,∵∠CDE=∠EDB′+∠CDB=90°+30°=120°,∴∠E=∠DCE=30°,∴CE=2×CD=.故答案为:.9.解:连接AD,∵△ABC是边长为2的等边三角形,点D为BC边上的中点,∴BD=CD==1,AD⊥BC,在Rt△ABD中,AD==,当点E在DA延长线上时,AE=DE﹣AD.此时AE取最小值,在Rt△ADG中,AG===,故答案为:.10.解:将△AHE绕点E顺时针旋转90°得到△DGE,过D作直线BC垂线交CB延长线于F,过E作EK⊥CB于K,作EM⊥DF于M,在△ABC是等边三角形中,AB=6,E是BA的中点,由旋转性质可得,AE=DE=3,AH=DG,∠DEB=90°,∵G是直线CB上一动点,∴当点G运动时,DG的最小值是DF,∵∠EKF=∠KFM=∠FME=90°,∴四边形EKFM为矩形,∴EK=MF,ME∥FK,∵△ABC为等边三角形,∴∠ABC=60°,∴∠KEB=30°,∠BEM=60°,即∠DEM=30°,∴KB=BE=,DM=DE=,∴EK==,∴DF=DM+MF=+.故答案为:+.11.解:∵△APQ、△AOB均为等边三角形,∴AP=AQ、AO=AB、∠P AQ=∠OAB,∴∠P AO=∠QAB;在△APO与△AQB中,,∴△APO≌△AQB(SAS).∴∠ABQ=∠AOP=90°,∴OQ的最小值为OQ垂直直线BQ时,如图,延长BQ交y轴于点C,∵AB=AO=2,∴AC=4,∴OQ=(AC﹣AO)=1.故答案为1.12.解:如图,以BC为边在正方形ABCD内部作等边三角形BCE,连接PE,过点E作EF⊥AB于F,∵△PCQ和△BCE是等边三角形,∴PC=QC,BC=CE=BE=4,∠ECB=∠PCQ=∠EBC=60°,∴∠PCE=∠BCQ,∠ABE=30°,∵EF⊥AB,∴EF=BE=2,在△PEC和△QBC中,,∴△PEC≌△QBC(SAS),∴BQ=PE,∴当PE有最小值时,BQ有最小值,∴当点P与点F重合时,PE有最小值为2,即BQ有最小值为2,故答案为:2.13.解:由题意可知,点F是主动点,点G是从动点,点F在线段上运动,点G也一定在直线轨迹上运动,将△EFB绕点E旋转60°,使EF与EG重合,得到△EFB≌△EHG,从而可知△EBH为等边三角形,点G在垂直于HE的直线HN上,过点C作CM⊥HN,则CM即为CG的最小值,过点E作EP⊥CM,可知四边形HEPM为矩形,则CM=MP+CP=HE+EC=2.5+=,故答案为:.14.解:由题意知,Rt△ABC中,∠A=30°,∠C=90°,∴∠B=60°,延长BC至G,连接FG使∠G=∠B=60°,∵△DEF为等边三角形,∴DE=DF,∠EDF=60°,∴∠BDE+∠FDG=120°,∵∠B=60°,∴∠BDE+∠BED=120°,∴∠FDG=∠BED,在△GFD和△BED中,,∴△GFD≌△BED(AAS),∴BD=GF,设CG=x,∵Rt△CFG中,∠G=60°,∴∠CFG=30°,∴GF=2x,FC=x,∴BD=2x,CD=1﹣2x,在Rt△DCF中,由勾股定理得,DC2+CF2=DF2,∴DF=EF==,∵0≤2x≤1,即0≤x≤,∴当x=时,EF=,最小值∴EF的最小值为,故答案为:.15.解:如图,连接AP1,AP,AP2,作AH⊥BC于H.∵P1,P2分别为点P关于直线AB,AC的对称点,∴AP=AP1=AP2,∠P AB=∠BAP1,∠P AC=∠CAP2,∵∠BAC=45°,∴∠P1AP2是等腰直角三角形,∴P1P2=AP2=P A.∵CD⊥AB,∴∠ADC=90°,∠DAC=∠DCA=45°,∴AD=DC=6,∴AC=6>AB,∵AB=8,∴BD=2,BC===2,∵S=•BC•AH=•AB•CD,△ABC∴AH==,∵≤P A≤6,∴≤P1P2≤12.故答案为≤P1P2≤12.16.解:如图在线段DC上取一点F使得DF=AD,在DF的下方以DF为斜边构造直角△DFG,使得FG=2DG.连接GN,MG,过点E作EK⊥AC于K,过点G作GP⊥EK交EK的延长线于P,GJ⊥AC于J.∵BD⊥AC,∴∠ADB=∠CDB=90°,∵tan A==3,∴可以设AD=x,BD=3x,则CD=50﹣x,在Rt△BDC中,BC2=BD2+CD2,∴502=(3x)2+(50﹣x)2,解得x=10,∴AD=10,BD=30,CD=40,∵DN﹣AD=DN﹣DF=FN=2DM,∴==2,∵∠MDG=90°+∠GDF,∠GFN=90°+∠GDF,∴∠MDG=∠GFN,∴△GFN∽△GDM,∴==,∠FGN=∠DGM,∴∠DGF=∠MGN=90°,GN=2MG,∴MG=MN,在Rt△DFG中,∠DGF=90°,DF=10,FG=2DG,∴DG=2,GF=4,∵GJ⊥DF,∴GJ==4,DJ===2,∵AE=EB,EK∥BD,∴AK=DK=5,∴EK=BD=15,KJ=KD+DJ=7,∵四边形PGJK是矩形,∴PG=KJ=7,PK=GJ=4,∴PE=EK+PK=19,∴EG===,∵EM+MN=(EM+MN)=(EM+MG),∵EM+MG≥EG,∴EM+MN≥5.∴EM+MN的最小值为5.故答案为:5.17.解:如图,在BA上取一点T,使得BT=,连接TM′,TC.∵BM′=BM=2,BT=,BA=6,∴M′B2=BT•BA,∴=,∵∠ABM′=∠M′BT,∴△BAM′∽△BM′T,∴==,∴TM′=AM′,∵2CM′+AM′=2(CM′+AM′)=2(CM′+TM′),∵CM′+TM′≥CT,CT===,∴2CM′+AM′≥,∴2CM′+AM′的最小值为.故答案为.18.解:在CA上截取CM,使得CM=4,连接DM,BM.∵CD=6,CM=4,CA=9,∴CD2=CM•CA,∴=,∵∠DCM=∠ACD,∴△DCM∽△ACD,∴==,∴DM=AD,∴AD+BD=DM+BD,∵DM+BD≥BM,在Rt△CBM中,∵∠MCB=90°,CM=4,BC=12,∴BM==4,∴AD+BD≥4,∴AD+BD的最小值为4.故答案为4.19.解:如图,在CB上取一点E,使CE=2,连接CD、DE、AE.∵AC=6,BC=8,AB=10,所以AC2+BC2=AB2,∴∠ACB=90°,∵CD=4,∴==,∴△CED∼△CDB,∴==,∴ED=BD,∴AD+BD=AD+ED≥AE,当且仅当E、D、A三点共线时,AD+BD取得最小值AE==2.20.解:如图所示:∵EF⊥AE,∴∠AEF=90°,又∵∠AED+∠AEF+∠CEF=180°,∴∠AED+∠CEF=90°,又∵四边形ABCD是矩形,∴∠D=∠C=90°,又∵∠AED+∠DAE=90°,∴∠DAE=∠CEF,∴△ADE∽△ECF,∴,又∵AB=4,AD=6,AB=EC+ED,∴,解得:CF==,又∵0≤CE≤4,∴,故答案为.21.解:如图,延长CB到T,使得BT=DE,连接DT,作点B关于直线AC的对称点W,连接TW,DW,过点W作WK⊥BC交BC的延长线于K.∵△ABC,△DEF都是等边三角形,BC=3DE=3,∴BC=AB=3,DE=1,∠ACB=∠EDF=60°,∴DE∥TC,∵DE=BT=1,∴四边形DEBT是平行四边形,∴BE=DT,∴BD+BE=BD+DT,∵B,W关于直线AC对称,∴CB=CW=3,∠ACW=∠ACB=60°,DB=DW,∴∠WCK=60°,∵WK⊥CK,∴∠K=90°,∠CWK=30°,∴CK=CW=,WK=CK=,∴TK=1+3+=,∴TW===,∴DB+BE=DB+DT=DW+DT≥TW,∴BD+BE≥,∴BD+BE的最小值为.故答案为.22.解:如图,连接BQ,取BC的中点T,连接TQ.∵BM是直径,∴∠BQM=∠BQC=90°,∵BT=CT=3,∴QT=BC=3,∴当P,Q,T共线时,PQ的长最小,要使得PQ+PD的值最小,只要PT+PD的值最小即可,作点T关于直线AB的对称点T′,连接DT′交AB于P′,连接P′T交⊙T 于Q′,此时P′T+P′D的值最小,最小值=DT′的长,过点D作DH⊥BC于H,则四边形ABHD是矩形,∴DH=AB=6,AD=BH=5,∴HT′=3+5=8,∴DT′===10,∴P′D+P′T的最小值为10,∴P′D+P′Q′的最小值=10﹣3=7,故答案为7.23.解:如图,将△BPC绕点B顺时针旋转120°,得△BP′C′,连接PP′,过点B作BD⊥PP′于点D,∵△ABC是等边三角形,∴∠ABC=60°,AB=BC=BC′=,∴AC′=AB+BC′=2,∵∠CBC′=∠PBP′=120°,∴∠ABC′=∠ABC+∠CBC′=180°,∴点A,B,C′在同一条直线上,∵BP=BP′,∠PBP′=120°,BD⊥PP′,∴∠BPP′=∠BP′P=30°,∴PD=PB,∴PP′=2PD=PB,∴P A+PP′+PC=P A+PB+PC>AC′,因为等边三角形的边长为,∴P A+PB+PC的取值范围为大于等于2,故答案为:大于等于2.24.解:如图,将△ADB绕点A顺时针旋转120°得到△AEF,连接DE,CF,过点F作FH⊥CA交CA的延长线于H.∵AD=AE,∠DAE=120°,BD=EF,∴DE=AD,∴DC+DB+DA=DC+DE+EF,∵CD+DE+EF≥CF,在Rt△ABC中,∠ACB=90°,AB=8,∠BAC=30°,∴AB=AB•cos30°=4,在Rt△AFH中,∠H=90°,AF=AB=8,∠F AH=30°,∴FH=AF=4,AH=FH=4,∴CH=AC+AH=8,∴CF===4,∴CD+DB+AD≥4,∴CF的最小值为4.故答案为:.25.解:如图1中,将△ADN绕点A顺时针旋转90°得到△ABJ,则AN=AJ,∠DAN=∠BAJ,∵四边形ABCD是正方形,∴∠DAB=∠ABC=90°,∵∠MAN=45°,∴∠MAJ=∠MAB+∠BAJ=∠MAB+∠DAN=45°,∴∠MAJ=∠MAN,∵AM=AM,AJ=AN,∴△AMJ≌△AMN(SAS),∴∠AMB=∠AMN,∵MA=MA,MB=MG,∴△MAB≌△MAG(SAS),∴AB=AG=4,∠ABM=∠AGM=90°,∵AF=FM,AE=EN,∴FG=AM,EG=AN,∴GF+GE=(AM+AN),下面证明当AM=AN时,AM+AN的值最小,如图2中,过点A在直线l∥MN,作点N关于直线l的对称点N′,连接AN′,MN′.∵N,N′关于直线对称,∴AN=AN′,∴AM+AN=AN′+AM,∴当A,M,N′共线时,AM+AN的值最小,此时∵AN=AN′,∴∠ANN′=∠AN′N,∵MN∥直线l,NN′⊥直线l,∴NN′⊥MN,∴∠MNN′=90°,∴∠AMN+∠AN′N=90°,∠ANM+∠ANN′=90°,∴∠AMN=∠ANM,∴AN=AM,∴当AM=AN时,AM+AN的值最小,如图1中,当AM=AN时,可知BH=DI,过点H作HP⊥AB于P,在AP上截取一点K,使得AK=KH,连接KH,设PH=PB=x,∵∠BAM=∠DAN=22.5°,KA=KH,∴∠KAH=∠KHA=22.5°,∴∠PKH=∠KAH+∠KHA=45°,∴PK=PB=PH=x.AK=KH=x,∵AB=4,∴2x+x=4,∴x=4﹣2,∴BH=DI=PB=4﹣4,∵BD=4,∴HI=4﹣2(4﹣4)=8﹣4,故答案为8﹣4.26.解:连接OE、OF,过O点作OM⊥EF,如图,则EM=FM,∵∠ACB=75°,∠ABC=45°,∴∠BAC=60°,∴∠EOF=2∠EAF=120°,∵OE=OF,∴∠OEF=∠OFE=30°,∴OM=OE,∴EM=OM=OE,∴EF=OE,当OE的值最小时,EF的值最小,∵D是线段BC上的一个动点,AD为直径,∴当AD垂直BC时,AD的值最小,过A点作AH⊥BC于H,∵∠ABH=45°,∴AH=AB=×4=2,即AD的最小值为2,∴OE的最小值为,∴EF的最小值为×=.故答案为:.27.解:(1)①∵DB⊥PB,∠ABO=90°,∴∠ADB=∠CDP,又∵AB=3,BO=4,DB:PB=3:4,即:,∴△ADB∽△OPB;②如解图(2),过D点作DH⊥BO交OB延长线于H点,∵AD∥OB,∠ABD=90°,∴∠DAB=90°,又∵△ADB∽△OPB,∴,∴AD=,∵四边形ADHB为矩形,∴HD=AB=3,HB=AD=,∴OH=OB+HB=在Rt△DHO中,OD===.③在△AOB中,∠ABO=90°,AB=3,BO=4,∴OA=5.由②得AD=,∴D在以A为圆心AD为半径的圆上运动,∴OD的最大值为OD过A点时最大,即OD的最大值为=OA+AD=5+=.(2)如解图(4),在OC上取点B′,使OB′=OP=,∵∠BOP=∠POB′,=,∴△BOP∽△POB′,∴,∴=P A﹣PB′≤AB',∴有最大值为AB′,在Rt△ABB′中,AB=3,BB′==,∴AB′===,即:点P在运动过程中,P A﹣有最大值为,28.(1)证明:如图2,在⊙O上任取一点C(不为点A、B),连接PC、OC.∵PO<PC+OC,PO=P A+OA,OA=OC,∴P A<PC.(2)解:连接AO与⊙O相交于点P,如图3,由已知定理可知,此时AP最短,∵∠ACB=90°,AC=BC=2,BC为直径,∴PO=CO=1,∴AO==,∴AP=﹣1,故答案为:﹣1;(3)解:如图4,由折叠知A′M=AM,又M是AD的中点,可得MA=MA′=MD,故点A′在以AD为直径的圆上,由模型可知,当点A′在BM上时,A′B长度取得最小值,∵边长为2的菱形ABCD中,∠A=60°,M是AD边的中点,∵MA=MA′=MD,则BM⊥AM,∴BM==,故A′B的最小值为:﹣1;(4)①解:在正方形ABCD中,AB=AD=CD,∠BAD=∠CDA,∠ADG=∠CDG,在△ABE和△DCF中,,∴△ABE≌△DCF(SAS),∴∠1=∠2,在△ADG和△CDG中,,∴△ADG≌△CDG(SAS),∴∠2=∠3,∴∠1=∠3,∵∠BAH+∠3=∠BAD=90°,∴∠1+∠BAH=90°,∴∠AHB=180°﹣90°=90°,取AB的中点O,连接OH、OD,则OH=AO=AB=1,在Rt△AOD中,OD==,根据三角形的三边关系,OH+DH>OD,∴当O、D、H三点共线时,DH的长度最小,DH最小值=OD﹣OH=﹣1.故答案为:﹣1;②解:作⊙A关于x轴的对称⊙A′,连接BA′分别交⊙A′和⊙B于M、N,交x轴于P,如图6,则此时PM+PN最小,∵点A坐标(﹣2,3),∴点A′坐标(﹣2,﹣3),∵点B(3,4),∴A′B==,∴MN=A′B﹣BN﹣AM=﹣2﹣1=﹣3,∴PM+PN的最小值为﹣3.故答案为:﹣3.29.解:(1)如图1,∵∠BAF=90°,tan∠AEB=,AB=8,∴AE==6,作CG⊥AF于G,∵△ABC是等边三角形,∴AC=AB=8,∠CAB=60°,∴∠CAG=30°,∴CG=AC=4,AG=AC•cos∠CAG=4,在Rt△CGF中,∠CFG=∠AEB,∴FG==3,∴EF=AF﹣AE=AG+FG﹣AE=4+3﹣6=4﹣3;(2)如图2,证明:作CP⊥CB交BE的延长线于P,作CM⊥BE于M,CN⊥EF于N,∴∠CNE=∠CME=90°,∵点F在CE的垂直平分线上,∴FC=FE,∴∠FCE=∠FEC,∵CF∥BE,∴∠FCE=∠CEB,∴∠CEF=∠CEB,∵CE=CE,∴△CNE≌△CME(AAS),∴CN=CM,EN=EM,∴∠BCP=90°,∵∠CBE=45°,∴∠CPB=45°,∴CP=CB,PB=CB=AB,∵AC=CB,∴CP=AC,∴△PCM≌△ACN(HL),∴AN=PM,∴AN﹣EN=PM﹣EM,∴PE=AE,∵∠BHG=60°,∠BHG=∠ABD+∠BAH,∴∠ABD+∠BAH=60°,∵∠BAC=60°,∴∠BAH+∠CAG=60°,∴∠ABD=∠CAG,∵∠ACB=∠BAC=60°,AC=AB,∴△ACG≌△BAD(ASA),∴BD=AG,∵PE+DE+BD=PB,∴AE+DE+AG=AB;(3)如图3,∵△KMN周长取得最小值,∴BK⊥CE,∵tan∠BCE=3,BC=4,∴sin∠BCE=,cos∠BCE=,∴CK=4•cos∠BCE=,BK=,∵I是BK的中点,∴KI==,作EP⊥BC于P,∵tan∠BCE==3,∴设EP=3k,CP=k,∵∠CBE=45°,∴BP=CP=3k,∵CB+BP=BC∴k+3k=4,∴k=1,∴CP=1,EP=3,∴CE=,∴EK=CE﹣CK=﹣=,∴EK=KI,∴△KEI是等腰直角三角形,以K为圆心,EK长为半径作⊙K,∵∠ETJ=45°,∴T在⊙K上运动,取KI的中点O,∴==,∵∠KTO=∠BKT,∴△TKO∽△BKT,∴==,∴OT=BT,∵OT﹣CT≤CK,∴当O、C、T(图中T′)共线时,OT﹣CT最大=OC,∵OK=KI=,CK=,,∴OC==,∴最大值是,∵BT﹣2CT=2•(),∴BT﹣2CT最大值是,∴最大值==.30.解:(1)如图1,DE=AF,理由如下:在正方形ABCD中,∠ABC=∠BAD=90°,AD=AB,∴∠BAF+∠AFB=90°,∵AF⊥DE,∴∠AOE=90°,∴∠BAF+∠AED=90°,∴∠AFB=∠AED,∴△ABF≌△DAE(AAS),∴DE=AF,故答案是“=”;(2)如图2,连接AC,交EF于O,∵线段EF恰好平分矩形ABCD的面积,∴O是矩形的对称中心,∴BE=DF=1,作DI∥EF,AJ∥GH,∵四边形ABCD是矩形,∴DF∥IE,∴四边形DIEF是平行四边形,∴EI=DF=1,∴AI=AB﹣BE﹣EI=2,同理可得,AJ=GH,∵EF⊥GH,∴DI⊥AJ,由(1)得,∠AID=∠AJB,∴△ADI∽△BAJ,∴=,∴=,∴BJ=,在Rt△ABJ中由勾股定理得,AJ===,∴GH=;(3)如图3,作EG⊥AD于G,∵,AD=4,∴AM=3,设DF=a,则BE=2a,∴GM=AM﹣AG=3﹣2a,在Rt△ADF中,AF==,在Rt△EGM中,ME==,∴ME+2AF=+=+ME+2AF最小值可以看作在平面直角坐标系中,点H(2a,0)到定点I(3,4),J(0,8)的距离之和最小,如图4,作J的对称点K,连接KI,则KI与x轴的交点是H点,此时ME最小,作IK⊥y轴于T,=KI===3.∴ME最小。
几何最值的存在性问题【考题研究】在平面几何的动态问题中,当某几何元素在给定条件变动时,求某几何量(如线段的长度、图形的周长或面积、角的度数以及它们的和与差)的最大值或最小值问题,称为最值问题。
从历年的中考数学压轴题型分析来看,经常会考查到距离或者两条线段和差最值得问题,并且这部分题目在中考中失分率很高,应该引起我们的重视。
几何最值问题再教材中虽然没有进行专题讲解,到却给了我们很多解题模型,因此在专题复习时进行压轴训练是必要的。
【解题攻略】最值问题是一类综合性较强的问题,而线段和(差)问题,要归归于几何模型:(1)归于“两点之间的连线中,线段最短”凡属于求“变动的两线段之和的最小值”时,大都应用这一模型.(2)归于“三角形两边之差小于第三边”凡属于求“变动的两线段之差的最大值”时,大都应用这一模型.两条动线段的和的最小值问题,常见的是典型的“牛喝水”问题,关键是指出一条对称轴“河流”(如图1).三条动线段的和的最小值问题,常见的是典型的“台球两次碰壁”或“光的两次反射”问题,关键是指出两条对称轴“反射镜面”(如图2).两条线段差的最大值问题,一般根据三角形的两边之差小于第三边,当三点共线时,两条线段差的最大值就是第三边的长.如图3,PA与PB的差的最大值就是AB,此时点P在AB的延长线上,即P′.解决线段和差的最值问题,有时候求函数的最值更方便,建立一次函数或者二次函数求解最值问题.【解题类型及其思路】解决平面几何最值问题的常用的方法有:(1)应用两点间线段最短的公理(含应用三角形的三边关系)求最值;(2)应用垂线段最短的性质求最值;(3)应用轴对称的性质求最值;(4)应用二次函数求最值;(5)应用其它知识求最值。
【典例指引】类型一【确定线段(或线段的和,差)的最值或确定点的坐标】【典例指引1】(2018·天津中考模拟)如图,在平面直角坐标系中,长方形OABC的顶点A、C分别在x 轴、y轴的正半轴上.点B的坐标为(8,4),将该长方形沿OB翻折,点A的对应点为点D,OD与BC 交于点E.(I)证明:EO=EB;(Ⅱ)点P是直线OB上的任意一点,且△OPC是等腰三角形,求满足条件的点P的坐标;(Ⅲ)点M是OB上任意一点,点N是OA上任意一点,若存在这样的点M、N,使得AM+MN最小,请直接写出这个最小值.【举一反三】(2020·云南初三)如图,抛物线y=ax2+bx+3经过点B(﹣1,0),C(2,3),抛物线与y轴的焦点A,与x轴的另一个焦点为D,点M为线段AD上的一动点,设点M的横坐标为t.(1)求抛物线的表达式;(2)过点M作y轴的平行线,交抛物线于点P,设线段PM的长为1,当t为何值时,1的长最大,并求最大值;(先根据题目画图,再计算)(3)在(2)的条件下,当t为何值时,△PAD的面积最大?并求最大值;(4)在(2)的条件下,是否存在点P,使△PAD为直角三角形?若存在,直接写出t的值;若不存在,说明理由.类型二【确定三角形、四边形的周长的最值或符合条件的点的坐标】【典例指引2】(2020·重庆初三期末)如图,抛物线2y ax bx =+(0a >)与双曲线k y x =相交于点A 、B ,已知点A 坐标()1,4,点B 在第三象限内,且AOB ∆的面积为3(O 为坐标原点).(1)求实数a 、b 、k 的值;(2)在该抛物线的对称轴上是否存在点P 使得POB ∆为等腰三角形?若存在请求出所有的P 点的坐标,若不存在请说明理由.(3)在坐标系内有一个点M ,恰使得MA MB MO ==,现要求在y 轴上找出点Q 使得BQM ∆的周长最小,请求出M 的坐标和BQM ∆周长的最小值.【举一反三】(2019·重庆实验外国语学校初三)如图1,已知抛物线y =﹣23384x +x +3与x 轴交于A 和B 两点,(点A 在点B 的左侧),与y 轴交于点C .(1)求出直线BC 的解析式.(2)M 为线段BC 上方抛物线上一动点,过M 作x 轴的垂线交BC 于H ,过M 作MQ ⊥BC 于Q ,求出△MHQ 周长最大值并求出此时M 的坐标;当△MHQ 的周长最大时在对称轴上找一点R ,使|AR ﹣MR |最大,求出此时R 的坐标.(3)T 为线段BC 上一动点,将△OCT 沿边OT 翻折得到△OC ′T ,是否存在点T 使△OC ′T 与△OBC 的重叠部分为直角三角形,若存在请求出BT 的长,若不存在,请说明理由.类型三 【确定三角形、四边形的面积最值或符合条件的点的坐标】【典例指引3】(2019·甘肃中考真题)如图,已知二次函数y =x 2+bx+c 的图象与x 轴交于点A (1,0)、B (3,0),与y 轴交于点C .(1)求二次函数的解析式;(2)若点P 为抛物线上的一点,点F 为对称轴上的一点,且以点A 、B 、P 、F 为顶点的四边形为平行四边形,求点P 的坐标;(3)点E 是二次函数第四象限图象上一点,过点E 作x 轴的垂线,交直线BC 于点D ,求四边形AEBD 面积的最大值及此时点E 的坐标.【举一反三】(2019·内蒙古中考真题)如图,在平面直角坐标系中,已知抛物线22(0)y ax bx a =++≠与x 轴交于()1,0A -),()3,0B 两点,与y 轴交于点C ,连接BC .(1)求该抛物线的解析式,并写出它的对称轴;(2)点D 为抛物线对称轴上一点,连接CD BD 、,若DCB CBD ∠=∠,求点D 的坐标;(3)已知()1,1F ,若(),E x y 是抛物线上一个动点(其中12x <<),连接CE CF EF 、、,求CEF ∆面积的最大值及此时点E 的坐标.(4)若点N 为抛物线对称轴上一点,抛物线上是否存在点M ,使得以,,,B C M N 为顶点的四边形是平行四边形?若存在,请直接写出所有满足条件的点M 的坐标;若不存在,请说明理由.【新题训练】1.如图,直线y=5x+5交x轴于点A,交y轴于点C,过A,C两点的二次函数y=ax2+4x+c的图象交x轴于另一点B.(1)求二次函数的表达式;(2)连接BC,点N是线段BC上的动点,作ND⊥x轴交二次函数的图象于点D,求线段ND长度的最大值;(3)若点H为二次函数y=ax2+4x+c图象的顶点,点M(4,m)是该二次函数图象上一点,在x轴,y轴上分别找点F,E,使四边形HEFM的周长最小,求出点F、E的坐标.2.(2019·江苏中考真题)如图,已知等边△ABC的边长为8,点P是AB边上的一个动点(与点A、B不重合),直线l是经过点P的一条直线,把△ABC沿直线l折叠,点B的对应点是点B’.(1)如图1,当PB=4时,若点B’恰好在AC边上,则AB’的长度为_____;(2)如图2,当PB=5时,若直线l//AC,则BB’的长度为;(3)如图3,点P在AB边上运动过程中,若直线l始终垂直于AC,△ACB’的面积是否变化?若变化,说明理由;若不变化,求出面积;(4)当PB=6时,在直线l变化过程中,求△ACB’面积的最大值.3.(2019·湖南中考真题)如图,在平面直角坐标系xOy中,矩形ABCD的边AB=4,BC=6.若不改变矩形ABCD的形状和大小,当矩形顶点A在x轴的正半轴上左右移动时,矩形的另一个顶点D始终在y 轴的正半轴上随之上下移动.(1)当∠OAD=30°时,求点C的坐标;(2)设AD的中点为M,连接OM、MC,当四边形OMCD的面积为212时,求OA的长;(3)当点A移动到某一位置时,点C到点O的距离有最大值,请直接写出最大值,并求此时cos∠OAD的值.4.(2018·江苏中考真题)如图,在平面直角坐标系中,一次函数y=﹣23x+4的图象与x轴和y轴分别相交于A、B两点.动点P从点A出发,在线段AO上以每秒3个单位长度的速度向点O作匀速运动,到达点O停止运动,点A关于点P的对称点为点Q,以线段PQ为边向上作正方形PQMN.设运动时间为t秒.(1)当t=13秒时,点Q的坐标是;(2)在运动过程中,设正方形PQMN与△AOB重叠部分的面积为S,求S与t的函数表达式;(3)若正方形PQMN对角线的交点为T,请直接写出在运动过程中OT+PT的最小值.5.(2020·江苏初三期末)已知二次函数223y x x =--+的图象和x 轴交于点A 、B ,与y 轴交于点C ,点P 是直线AC 上方的抛物线上的动点.(1)求直线AC 的解析式.(2)当P 是抛物线顶点时,求APC ∆面积.(3)在P 点运动过程中,求APC ∆面积的最大值.6.(2020·江苏初三期末)如图,抛物线265y ax x =+-交x 轴于A 、B 两点,交y 轴于点C ,点B 的坐标为()5,0,直线5y x =-经过点B 、C .(1)求抛物线的函数表达式;(2)点P 是直线BC 上方抛物线上的一动点,求BCP ∆面积S 的最大值并求出此时点P 的坐标;(3)过点A 的直线交直线BC 于点M ,连接AC ,当直线AM 与直线BC 的一个夹角等于ACB ∠的3倍时,请直接写出点M 的坐标.7.(2019·石家庄市第四十一中学初三)如图,在平面直角坐标系中,抛物线y =x (x ﹣b )﹣与y 轴相交于A 点,与x 轴相交于B 、C 两点,且点C 在点B 的右侧,设抛物线的顶点为P .(1)若点B 与点C 关于直线x =1对称,求b 的值;(2)若OB =OA ,求△BCP 的面积;(3)当﹣1≤x≤1时,该抛物线上最高点与最低点纵坐标的差为h ,求出h 与b 的关系;若h 有最大值或最小值,直接写出这个最大值或最小值.8.(2020·江西初三期中)如图①,已知抛物线y=ax2+bx+3(a≠0)与x轴交于点A(1,0)和点B(-3,0),与y轴交于点C.(1)求抛物线的解析式;(2)设抛物线的对称轴与x轴交于点M,问在对称轴上是否存在点P,使△CMP为等腰三角形?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由;(3)如图②,若点E为第二象限抛物线上一动点,连接BE、CE,求四边形BOCE面积的最大值,并求此时E点的坐标.9.(2020·山东初三期末)如图,抛物线y=ax2+bx+c(a≠0)的图象过点C(0,1),顶点为Q(2,3),点D在x轴正半轴上,且OD=OC.(1)求直线CD 的解析式;(2)求抛物线的解析式;(3)将直线CD 绕点C 逆时针方向旋转45°所得直线与抛物线相交于另一点E ,求证:△CEQ ∽△CDO ; (4)在(3)的条件下,若点P 是线段QE 上的动点,点F 是线段OD 上的动点,问:在P 点和F 点移动过程中,△PCF 的周长是否存在最小值?若存在,求出这个最小值;若不存在,请说明理由. 10.(2020·盘锦市双台子区第一中学初三月考)如图①,已知抛物线y=ax 2+bx+c 的图像经过点A (0,3)、B (1,0),其对称轴为直线l :x=2,过点A 作AC ∥x 轴交抛物线于点C ,∠AOB 的平分线交线段AC 于点E ,点P 是抛物线上的一个动点,设其横坐标为m.(1)求抛物线的解析式;(2)若动点P 在直线OE 下方的抛物线上,连结PE 、PO ,当m 为何值时,四边形AOPE 面积最大,并求出其最大值;(3)如图②,F 是抛物线的对称轴l 上的一点,在抛物线上是否存在点P 使△POF 成为以点P 为直角顶点的等腰直角三角形?若存在,直接写出所有符合条件的点P 的坐标;若不存在,请说明理由.11.(2020·四川初三)如图,一次函数122y x =-+的图像与坐标轴交于A 、B 两点,点C 的坐标为(1,0)-,二次函数2y ax bx c =++的图像经过A 、B 、C 三点.(1)求二次函数的解析式(2)如图1,已知点(1,)D n 在抛物线上,作射线BD ,点Q 为线段AB 上一点,过点Q 作QM y ⊥轴于点M ,作QN BD ⊥于点N ,过Q 作//QP y 轴交抛物线于点P ,当QM 与QN 的积最大时,求点P 的坐标;(3)在(2)的条件下,连接AP ,若点E 为抛物线上一点,且满足APE ABO ∠=∠,求点E 的坐标.12.(2019·广东初三)如图,已知抛物线y =﹣3x 2+bx +c 与x 轴交于原点O 和点A (6,0),抛物线的顶点为B .(1)求该抛物线的解析式和顶点B 的坐标;(2)若动点P 从原点O 出发,以每秒1个长度单位的速度沿线段OB 运动,设点P 运动的时间为t (s ).问当t 为何值时,△OPA 是直角三角形?(3)若同时有一动点M 从点A 出发,以2个长度单位的速度沿线段AO 运动,当P 、M 其中一个点停止运动时另一个点也随之停止运动.设它们的运动时间为t (s ),连接MP ,当t 为何值时,四边形ABPM 的面积最小?并求此最小值.13.(2019·山东初三期中)如图,已知抛物线经过两点A (﹣3,0),B (0,3),且其对称轴为直线x =﹣1.(1)求此抛物线的解析式.(2)若点Q 是对称轴上一动点,当OQ +BQ 最小时,求点Q 的坐标.(3)若点P 是抛物线上点A 与点B 之间的动点(不包括点A ,点B ),求△PAB 面积的最大值,并求出此时点P 的坐标.14.(2019·四川中考真题)如图,抛物线212y x bx c =-++过点(3,2)A ,且与直线72y x =-+交于B 、C两点,点B 的坐标为(4,)m .(1)求抛物线的解析式;(2)点D 为抛物线上位于直线BC 上方的一点,过点D 作DE x ⊥轴交直线BC 于点E ,点P 为对称轴上一动点,当线段DE 的长度最大时,求PD PA +的最小值;(3)设点M 为抛物线的顶点,在y 轴上是否存在点Q ,使45AQM ︒∠=?若存在,求点Q 的坐标;若不存在,请说明理由.15.(2019·天津中考真题)已知抛物线2y x bx c =-+(b c ,为常数,0b >)经过点(1,0)A -,点(,0)M m 是x 轴正半轴上的动点.(Ⅰ)当2b =时,求抛物线的顶点坐标;(Ⅱ)点(,)D D b y 在抛物线上,当AM AD =,5m =时,求b 的值;(Ⅲ)点1(,)2QQ b y+在抛物线上,当22AM QM+的最小值为3324时,求b的值.16.(2019·湖南中考真题)如图,抛物线y=ax2+bx(a>0)过点E(8,0),矩形ABCD的边AB在线段OE上(点A在点B的左侧),点C、D在抛物线上,∠BAD的平分线AM交BC于点M,点N是CD的中点,已知OA=2,且OA:AD=1:3.(1)求抛物线的解析式;(2)F、G分别为x轴,y轴上的动点,顺次连接M、N、G、F构成四边形MNGF,求四边形MNGF周长的最小值;(3)在x轴下方且在抛物线上是否存在点P,使△ODP中OD边上的高为610?若存在,求出点P的坐标;若不存在,请说明理由;(4)矩形ABCD不动,将抛物线向右平移,当平移后的抛物线与矩形的边有两个交点K、L,且直线KL 平分矩形的面积时,求抛物线平移的距离.17.(2019·辽宁中考真题)如图,在平面直角坐标系中,抛物线y=ax2+bx+2(a≠0)与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,抛物线经过点D(﹣2,﹣3)和点E(3,2),点P是第一象限抛物线上的一个动点.(1)求直线DE和抛物线的表达式;(2)在y 轴上取点F (0,1),连接PF ,PB ,当四边形OBPF 的面积是7时,求点P 的坐标;(3)在(2)的条件下,当点P 在抛物线对称轴的右侧时,直线DE 上存在两点M ,N (点M 在点N 的上方),且MN =22,动点Q 从点P 出发,沿P→M→N→A 的路线运动到终点A ,当点Q 的运动路程最短时,请直接写出此时点N 的坐标.18.(2019·湖南中考真题)已知抛物线2(0)y ax bx c a =++≠过点(1,0)A ,(3,0)B 两点,与y 轴交于点C ,=3OC .(1)求抛物线的解析式及顶点D 的坐标;(2)过点A 作AM BC ⊥,垂足为M ,求证:四边形ADBM 为正方形;(3)点P 为抛物线在直线BC 下方图形上的一动点,当PBC ∆面积最大时,求点P 的坐标; (4)若点Q 为线段OC 上的一动点,问:12AQ QC +是否存在最小值?若存在,求岀这个最小值;若不存在,请说明理由.几何最值的存在性问题【考题研究】在平面几何的动态问题中,当某几何元素在给定条件变动时,求某几何量(如线段的长度、图形的周长或面积、角的度数以及它们的和与差)的最大值或最小值问题,称为最值问题。
重难点几何最值问题中考数学中《几何最值问题》部分主要考向分为五类:一、将军饮马类最值二、动点辅助圆类最值三、四点共圆类最值四、瓜豆原理类最值五、胡不归类最值几何最值问题虽然在中考数学中经常考察的是将军饮马类和辅助圆类,剩余几种虽然不经常考察,但是考到的时候难度都比较大,所以也需要理解并掌握不同类型的几何最值问题的处理办法,这样到考到的时候才能有捷径应对。
考向一:将军饮马类最值一动”“两定异侧普通一动”“两定同侧普通动”两定“一动”两定“两两动”“两定同侧两动”“两定异侧满分技巧将军饮马:。
1.(2023•绥化)如图,△ABC是边长为6的等边三角形,点E为高BD上的动点.连接CE,将CE绕点C 顺时针旋转60°得到CF.连接AF,EF,DF,则△CDF周长的最小值是3+3.【分析】分析已知,可证明△BCE≌△ACF,得∠CAF=∠CBE=30°,可知点F在△ABC外,使∠CAF =30°的射线AF上,根据将军饮马型,求得DF+CF的最小值便可求得本题结果.【解答】解:∵△ABC是等边三角形,∴AC=BC=6,∠ABC=∠BCA=60°,∵∠ECF=60°,∴∠BCE=60°﹣∠ECA=∠ACF,∵CE=CF,∴△BCE≌△ACF(SAS),∴∠CAF=∠CBE,∵△ABC是等边三角形,BD是高,∴∠CBE=∠ABC=30°,CD=AC=3,过C点作CG⊥AF,交AF的延长线于点G,延长CG到H,使得GH=CG,连接AH,DH,DH与AG 交于点I,连接CI,FH,则∠ACG=60°,CG=GH=AC=3,∴CH=AC=6,∴△ACH为等边三角形,∴DH=CD•tan60°=,AG垂直平分CH,∴CI=HI,CF=FH,∴CI+DI=HI+DI=DH=3,CF+DF=HF+DF≥DH,∴当F与I重合时,即D、F、H三点共线时,CF+DF的值最小为:CF+DF=DH=3,∴△CDF的周长的最小值为3+3.故答案为:3+3.2.(2023•德州)如图,在四边形ABCD中,∠A=90°,AD∥BC,AB=3,BC=4,点E在AB上,且AE=1.F,G为边AD上的两个动点,且FG=1.当四边形CGFE的周长最小时,CG的长为.【分析】先确定FG和EC的长为确定的值,得到四边形CGFE的周长最小时,即为CG+EF最小时,平移CG到C'F,作点E关于AD对称点E',连接E'C'交AD于点G',得到CG+EF最小时,点G与G'重合,再利用平行线分线段成比例求出C'G'长即可.【解答】解:∵∠A=90°,AD∥BC,∴∠B=90°,∵AB=3,BC=4,AE=1,∴BE=AB﹣AE=3﹣1=2,在Rt△EBC中,由勾股定理,得EC===,∵FG=1,∴四边形CGFE的周长=CG+FG+EF+EC=CG+EF+1+,∴四边形CGFE的周长最小时,只要CG+EF最小即可.过点F作FC'∥GC交BC于点C',延长BA到E',使AE'=AE=1,连接E'F,E'C',E'C'交AD于点G',可得AD垂直平分E'E,∴E'F=EF,∵AD∥BC,∴C'F=CG,CC'=FG=1,∴CG+EF=C'F+E'F≥E'C',即CG+EF最小时,CG=C'G',∵E'B=AB+AE'=3+1=4,BC'=BC﹣CC'=4﹣1=3,由勾股定理,得E'C'===5,∵AG'∥BC',∴=,即=,解得C'G'=,即四边形CGFE的周长最小时,CG的长为.故答案为:.考向二:动点辅助圆类最值满分技巧动点运动轨迹为辅助圆的三种类型:一.定义法——若一动点到定点的距离恒等于固定长,则该点的运动轨迹为以定点为圆心,定长为半径的圆(或圆弧)二.定边对直角模型原理:直径所对的圆周角是直角思路构造:若一条定边所对的“动角”始终为直角,则直角顶点运动轨迹是以该定边为直径的圆(或圆弧)三.定边对定角模型原理:在同圆或等圆中,同弧所对的圆周角相等思路构造:若一条定边所对的“动角”始终为定角,则该定角顶点运动轨迹是以该定角为圆周角,该定边为弦的圆(或圆弧)1.(2023•徐州)如图,在Rt△ABC中,∠C=90°,CA=CB=3,点D在边BC上.将△ACD沿AD折叠,使点C落在点C′处,连接BC′,则BC′的最小值为.【分析】由折叠性质可知AC=AC'=3,然后根据三角形的三边不等关系可进行求解.【解答】解:∵∠C=90°,CA=CB=3,∴,由折叠的性质可知AC=AC'=3,∵BC'≥AB﹣AC',∴当A、C′、B三点在同一条直线时,BC'取最小值,最小值即为,故答案为.2.(2023•黑龙江)如图,在Rt△ACB中,∠BAC=30°,CB=2,点E是斜边AB的中点,把Rt△ABC绕点A顺时针旋转,得Rt△AFD,点C,点B旋转后的对应点分别是点D,点F,连接CF,EF,CE,在旋转的过程中,△CEF面积的最大值是4+.【分析】线段CE为定值,点F到CE距离最大时,△CEF的面积最大,画出图形,即可求出答案.【解答】解:∵线段CE为定值,∴点F到CE的距离最大时,△CEF的面积有最大值.在Rt△ACB中,∠BAC=30°,E是AB的中点,∴AB=2BC=4,CE=AE=AB=2,AC=AB•cos30°=2,∴∠ECA=∠BAC=30°,过点A作AG⊥CE交CE的延长线于点G,∴AG=AC=,∵点F在以A为圆心,AB长为半径的圆上,∴AF=AB=4,∴点F到CE的距离最大值为4+,∴,故答案为:.3.(2023•大庆模拟)如图,AB是⊙O的直径,AB=4,C为的三等分点(更靠近A点),点P是⊙O上个动点,取弦AP的中点D,则线段CD的最大值为()A.2B.C.D.【分析】如图,连接OD,OC,首先证明点D的运动轨迹为以AO为直径的⊙K,连接CK,当点D在CK的延长线上时,CD的值最大,利用勾股定理求出CK即可解决问题.【解答】解:如图,连接OD,OC,∵AD=DP,∴OD⊥P A,∴∠ADO=90°,∴点D的运动轨迹为以AO为直径的⊙K,连接CK,AC,当点D在CK的延长线上时,CD的值最大,∵C为的三等分点,∴∠AOC=60°,∴△AOC是等边三角形,∴CK⊥OA,在Rt△OCK中,∵∠COA=60°,OC=2,OK=1,∴CK==,∵DK=OA=1,∴CD=+1,∴CD的最大值为+1,故选:D.考向三:四点共圆类最值满分技巧对角互补的四边形必有四点共圆,即辅助圆产生模型原理:圆内接四边形对角互补∴FD=,在四边形ACBF中,∠ACB=∠AFB=90°,∴A、C、B、F四点共圆,∴∠ACF=∠ABF=45°,∠CAB=∠CFB,∵∠PCD=45°∴∠ACP=∠FCD,又∵△ABE∽△FBD,∴∠BAE=∠BFD,∴∠CAP=∠CFD,∴△CAP∽△CFD,∴,在四边形ACBF中,由对角互补模型得AC+CB=,∴CF=∴,∴AP=1,∴PE=2,故答案为:2考向四:瓜豆原理类最值满分技巧瓜豆原理的特征和结论:∴AB=CD=6,∠B=∠BCD=90°,∵∠BET=∠FEG=45°,∴∠BEF=∠TEG,∵EB=ET,EF=EG,∴△EBF≌△ETG(SAS),∴∠B=∠ETG=90°,∴点G在射线TG上运动,∴当CG⊥TG时,CG的值最小,∵BC=,BE=,CD=6,∴CE=CD=6,∴∠CED=∠BET=45°,∴∠TEJ=90°=∠ETG=∠JGT=90°,∴四边形ETGJ是矩形,∴DE∥GT,GJ=TE=BE=,∴CJ⊥DE,∴JE=JD,∴CJ=DE=3,∴CG=CJ+GJ=+3,∴CG的最小值为+3,故答案为:+3.2.(2023•宿城区二模)如图,矩形ABCD中,AD=6,DC=8,点E为对角线AC上一动点,BE⊥BF,,BG⊥EF于点G,连接CG,当CG最小时,CE的长为.【分析】过点B作BP⊥AC于点P,连接PG,则可得△ABE∽△PBG,进而可知∠BPG为定值,因此CG⊥PG时,CG最小,通过设元利用三角函数和相似比可表示出PG、CP,即可求出结果.【解答】解:如图,过点B作BP⊥AC于点P,连接PG,∵,∠ABC=∠EBF,∴△ABC∽△EBF,∴∠CAB=∠FEB,∵∠APB=∠EGB=90°,∴△ABP∽△EBG,∴=,∠ABP=∠EBG,∴∠ABE=∠PBG,∴△ABE∽△PBG,∴∠BPG=∠BAE,即在点E的运动过程中,∠BPG的大小不变且等于∠BAC,∴当CG⊥PG时,CG最小,设此时AE=x,∵,∴PG=,∵CG⊥PG,∴∠PCG=∠BPG=∠BAC,∴,代入PG=,解得CP=x,∵CP=BC•sin∠CBP=BC•sin∠BAC=,∴x=,∴AE=∴CE=,故答案为:.考向五:胡不归类最值满分技巧胡不归模型解决步骤:模型具体化:如图,已知两定点A、B,在定直线BC上找一点P,使从B走道P,再从P走到A的总时间最小解决步骤:由系数k·PB确定分割线为PBPA在分割线一侧,在分割线PB另一侧依定点B构α角,使sinα=k,α角另一边为BD过点P作PQ⊥BD,转化kPB=PQ过定点A作AH⊥BD,转化(PA+k·PB)min=AH,再依“勾股法”求AH的长即可。
【2013年中考攻略】专题8:几何最值问题解法探讨在平面几何的动态问题中,当某几何元素在给定条件变动时,求某几何量(如线段的长度、图形的周长或面积、角的度数以及它们的和与差)的最大值或最小值问题,称为最值问题。
解决平面几何最值问题的常用的方法有:(1)应用两点间线段最短的公理(含应用三角形的三边关系)求最值;(2)应用垂线段最短的性质求最值;(3)应用轴对称的性质求最值;(4)应用二次函数求最值;(5)应用其它知识求最值。
下面通过近年全国各地中考的实例探讨其解法。
一、应用两点间线段最短的公理(含应用三角形的三边关系)求最值:典型例题:例1. (2012山东济南3分)如图,∠MON=90°,矩形ABCD 的顶点A 、B 分别在边OM ,ON 上,当B 在边ON 上运动时,A 随之在边OM 上运动,矩形ABCD 的形状保持不变,其中AB=2,BC=1,运动过程中,点D 到点O 的最大距离为【 】A 1BC 5D .52 【答案】A 。
【考点】矩形的性质,直角三角形斜边上的中线性质,三角形三边关系,勾股定理。
【分析】如图,取AB 的中点E ,连接OE 、DE 、OD ,∵OD≤OE+DE,∴当O 、D 、E 三点共线时,点D 到点O 的距离最大,此时,∵AB=2,BC=1,∴OE=AE=12AB=1。
DE=∴OD 1。
故选A 。
例2.(2012湖北鄂州3分)在锐角三角形ABC 中,BC=24,∠ABC=45°,BD 平分∠ABC,M 、N 分别是BD 、BC 上的动点,则CM+MN 的最小值是 ▲ 。
【答案】4。
【考点】最短路线问题,全等三角形的判定和性质,三角形三边关系,垂直线段的性质,锐角三角函数定义,特殊角的三角函数值。
【分析】如图,在BA 上截取BE=BN ,连接EM 。
∵∠ABC 的平分线交AC 于点D ,∴∠EBM=∠NBM。
在△AME 与△AMN 中,∵BE=BN ,∠EBM=∠NBM,BM=BM ,∴△BME≌△BMN(SAS )。
几何图形中求线段,线段和,面积等最值问题(压轴通关)目录【中考预测】预测考向,总结常考点及应对的策略 【误区点拨】点拨常见的易错点【抢分通关】精选名校模拟题,讲解通关策略(含新考法、新情境等)几何图形中求线段、线段和、面积最值题是全国中考的热点内容,更是全国中考的必考内容。
每年都有一些考生因为知识残缺、基础不牢、技能不熟、答欠规范等原因导致失分。
1.从考点频率看,几何图形中的性质综合问题,是高频考点、也是必考点。
2.从题型角度看,以解答题的最后一题或最后二题为主,分值12分左右,着实不少!题型一 线段最值问题【例1】(2024·四川成都·一模)如图1,在四边形ABFE 中,90F ∠=︒,点C 为线段EF 上一点,使得AC BC ⊥,24AC BC ==,此时BF CF =,连接BE ,BE AE ⊥,且AE BE =.(1)求CE 的长度;(2)如图2,点D 为线段AC 上一动点(点D 不与A ,C 重合),连接BD ,以BD 为斜边向右侧作等腰直角三角形BGD .①当DG AB ∥时,试求AD 的长度;②如图3,点H 为AB 的中点,连接H G ,试问H G 是否存在最小值,如果存在,请求出最小值;如果不存在,请说明理由.【答案】(2)①103;②2【分析】(1)取AB 的中点H ,连接,EH HC ,证明FEB CAB ∠=∠,得出1tan tan 2FB FEB CAB EF ∠==∠=则12BF EF =,进而根据CE EF CF =−(2)①如图所示,过点D 作DM EF ⊥于点M ,过点D 作DN AB ⊥于点N ,证明DBC GBF ∽得出DC ,即可得出DM GF =,证明DMG GFB ≌,进而证明G 在EF 上,根据已知条件证明D 在EB上,然后解直角三角形,即可求解;②如图所示,过点H 作HP EF ⊥于点P ,连接EH ,由①可得G 在EF 上运动,当HG EF ⊥时,H G 取得最小值,即,G P 重合时,HP 的长即为HG 的最小值,由①可得103AT =,求得sin ETA ∠=45HEF ETA α∠=+︒=∠,即可求解.【详解】(1)解:如图所示,取AB 的中点H ,连接,EH HC ,∵BF CF =,90F ∠=︒,∴45BCF ∠=︒,BC , 又∵AC BC ⊥ ∴45ECA ∠=︒ ∵AE BE =,BE AE ⊥ ∴45EBA ∠=︒ ∴45ECA ABE ∠=∠=︒ ∴FEB CAB ∠=∠ ∵24AC BC ==, ∴2BC =∴BF CF = ∴1tan 2CB CAB AC ∠== ∴1tan tan 2FB FEB CAB EF ∠==∠= ∴12BF EF =∴EF =∴CE EF CF =−(2)①如图所示,过点D 作DM EF ⊥于点M ,过点D 作DN AB ⊥于点N ,由(1)可得45ACE ABE ∠=∠=︒ ∴CDM V 是等腰直角三角形,∴CD ,∵,CBF DBG 都是等腰直角三角形,∴CB DBBF BG==∴BD BGBC BF= 又∵DBG CBF ∠=∠ ∴DBC GBF ∠=∠ ∴DBC GBF ∽∴DC DBGF GB==∴DC ∴DM GF = 在,DMG GFB 中,DM GF DMG F DG BG =⎧⎪∠=∠⎨⎪=⎩∴DMG GFB ≌ ∴MGD FBG ∠=∠ ∵90FBG FGB ∠+∠=︒∴90MGD FGB ∠+∠=︒ 又∵90DGB ∠=︒ ∴180MGF ∠=︒ ∴G 在EF 上,∵DG AB ∥,90DGB ∠=︒ ∴90GBA ∠=︒∵45,45ABE DBG ABD ∠=︒∠=︒=∠ ∴D 在EB 上, ∵1tan 2CAB ∠=,∴12DN AN =,则AD ∵,45DN AB ABE ⊥∠=︒ ∴DN DB = ∴3AB DN =, ∵4AC =,2CB =∴AB ==∴13DN AB ==∴103AD ==, ②如图所示,过点H 作HP EF ⊥于点P ,连接EH ,由①可得G 在EF 上运动,∴当HG EF ⊥时,HG 取得最小值,即,G P 重合时,HP 的长即为H G 的最小值, 设,AC EB 交于点T ,即与①中点D 重合,由①可得103AT =∵AB =∴AE 12EH AB ==∴sin 3AE ETA AT ∠=== 设FEB CAB α∠=∠= 则45HEF ETA α∠=+︒=∠,在Rt PEH △中,sin sin 102PH HEF EH ETA EH =∠⨯=∠⨯= 【点睛】证明G 点在EF 上是解题的关键.【例2】(2024·天津红桥·一模)在平面直角坐标系中,点()0,0O ,()2,0A , (2,B ),C ,D 分别为OA ,OB 的中点.以点O 为中心,逆时针旋转OCD ,得OC D '',点C ,D 的对应点分别为点C ',D ¢.(1)填空∶如图①,当点D ¢落在y 轴上时,点D ¢的坐标为_____,点C '的坐标为______; (2)如图②,当点C '落在OB 上时, 求点D ¢的坐标和 BD '的长; (3)若M 为C D ''的中点,求BM 的最大值和最小值(直接写出结果即可). 逆时针旋转OCD ,得OC D '',知为中心,逆时针旋转OCD,得OC D'',可得(2,23B为中心,逆时针旋转OCD,得OC D'',()A,2,0()A2,0,(2,23 B是AOB的中位线,为中心,逆时针旋转OCD,得OC D'','==,D CD3M是C'(2,23B1.(2024·山东济宁·模拟预测)已知,四边形ABCD 是正方形,DEF 绕点D 旋转(DE AB <),90EDF ∠=︒,DE DF =,连接AE CF ,.(1)如图1,求证:ADE CDF ≅; (2)直线AE 与CF 相交于点G .①如图2,BM AG ⊥于点M ,⊥BN CF 于点N ,求证:四边形BMGN 是正方形;②如图3,连接BG ,若6AB =,3DE =,直接写出在DEF 旋转的过程中,线段BG 长度的最小值为 . 再证明AMB CNB ≅可得MB ,证明BGM 是等腰直角三角形,然后求出【详解】(1)证明:四边形ABCD 是正方形,AD DC ∴=,90ADC ∠=︒,DE DF =,90EDF ∠=︒,ADC EDF ∴∠=∠,ADE CDF \Ð=Ð,在ADE V 和CDF 中,DA DC ADE CDF DE DF =⎧⎪∠=∠⎨⎪=⎩, SAS ADE CDF ∴()≌. (2)解:①证明:如图2中,设AG 与CD 相交于点P ,90ADP ∠=︒, 90DAP DPA ∴∠+∠=︒,ADE CDF ≅,DAE DCF ∴∠=∠,DPA GPC ∠∠=,90DAE DPA GPC GCP ∠∠∠∠∴+=+=︒, 90PGN ∠∴=︒,BM AG ⊥,BN GN ⊥,∴四边形BMGN 是矩形,90MBN ∴∠=︒,四边形ABCD 是正方形,AB BC ∴=,90ABC MBN∠∠==︒,ABM CBN ∴∠=∠,又90AMB BNC ∠∠==︒,AMB CNB ∴≅,MB NB ∴=,∴矩形BMGN 是正方形;∵DAH BAM ABM ∠+∠=∠∴DAH ABM ∠=∠,又∵AD BA =,DHA ∠∴AMB DHA ≌△△, BM AH ∴=,2AH AD =DH ∴最大时,可知,BGM 是等腰直角三角形,23⨯=(1)若AC AB AD BC >⊥,,当点E 在线段AC 上时,AD BE ,交于点F ,点F 为BE 中点.①如图1,若37BF BD AD ===,,求AE 的长度;②如图2,点G 为线段AF 上一点,连接GE 并延长交BC 的延长线于点H .若点E 为GH 中点,602BAC DAC EBC ∠=︒∠=∠,,求证:12AG DF AB +=. (2)如图3,若360AC AB BAC ︒==∠=,.当点E 在线段AC 的延长线上时,连接DE ,将DCE △沿DC 所在直线翻折至ABC 所在平面内得到DCM △,连接AM ,当AM 取得最小值时,ABC 内存在点K ,使得ABK CAK ∠=∠,当KE 取得最小值时,请直接写出2AK 的值.的长,证明(AAS)FDB FGE ≌AD BC EG AD ⊥⊥,, 90BDF ∴∠=︒,EGF ∠=BDF EGF ∴∠=∠,在Rt BDF △中,90BDF ∠=点(AAS)FDB FGE ∴≌3BD GE ∴==DFAD=,7∴=AG ADRt AGE中,2⊥,AD BC90∴∠=︒,ADC点E为GH的中点,∴=,GE HE在AGE和KHE△中,=AE KE∴≌(SAS) AGE KHE∴∠=∠34∠=DAC∴设EBC∠点和KEF中,(SAS)AFB KEF ∴≌89AB FK ∴=∠=∠,BAC ∠=Rt FDM 中,1由题意可知:160∠=︒,AC 30CAM ∴∠=︒,1322CM AC ∴==, ABK ∠=ABK ∴∠+∠EKQ EOA ∴∽,KE KQ QE(1)如图①,在ABC 中,点M ,N 分别是AB ,AC 的中点,若BC =MN 的长为__________. 问题探究:(2)如图②,在正方形ABCD 中,6AD =,点E 为AD 上的靠近点A 的三等分点,点F 为AB 上的动点,将AEF △折叠,点A 的对应点为点G ,求CG 的最小值. 问题解决:(3)如图③,某地要规划一个五边形艺术中心ABCDE ,已知120ABC ∠=︒,60BCD ∠=︒,40m AB AE ==,80m BC CD ==,点C 处为参观入口,DE 的中点P 处规划为“优秀”作品展台,求点C 与点P 之间的最小距离.是ABC 的中位线,由中位线的性质,即可求解,Rt EDC 中,根据勾股定理,求出∵点E为AD上的靠近点∴11633AE AD==⨯=在Rt EDC中,EC 根据折叠的性质,【问题提出】(1)如图1,点D 为ABC 的边BC 上一点,连接2,,3BD AD BDA BAC AB ∠=∠=,若ABD △的面积为4,则ACD 的面积为______; 【问题探究】(2)如图2,在矩形ABCD 中,6,5AB BC ==,在射线BC 和射线CD 上分别取点E F 、,使得65BE CF =,连接AE BF 、相交于点P ,连接CP ,求CP 的最小值; 【问题解决】(3)如图3,菱形ABCD 是某社区的一块空地,经测量,120AB =米,60ABC ∠=︒.社区管委会计划对该空地进行重新规划利用,在射线AD 上取一点E ,沿BE CE 、修两条小路,并在小路BE 上取点H ,将CH 段铺设成某种具有较高观赏价值的休闲通道(通道宽度忽略不计),根据设计要求,BHC BCE ∠=∠,为了节省铺设成本,要求休闲通道CH 的长度尽可能小,问CH 的长度是否存在最小值?若存在,求出CH 长度的最小值;若不存在,请说明理由.994CBAABDSS ==,即可得到ACD 的面积;为直径的O 上交O 于点P )证明,CBH EBC ∽得到,再证明,ABH EBA ∽得到在O 的劣弧与O 相交于点ABDCBAS S=994CBAABDSS ==,∴ACD 的面积为9CBAABDS S−=故答案为:为直径的O 上运动,交O 于点P,作ABH 的外接圆O ,连接∴,CBH EBC ∽ BC BH∴,ABH EBA ∽ 120AHB EAB ∠=∠=在O 的劣弧120=︒在AOB 中,则1602BM AM AB ===米, 与O 相交于点题型二 线段和的最小值问题【例1】(2024·四川达州·模拟预测)【问题发现】(1)如图1,在OAB 中,3OB =,若将OAB 绕点O 逆时针旋转120︒得OA B '',连接BB ',则BB '=________. 【问题探究】(2)如图2,已知ABC 是边长为BC 为边向外作等边BCD △,P 为ABC 内一点,连接AP BP CP ,,,将BPC △绕点C 逆时针旋转60︒,得DQC △,求PA PB PC ++的最小值; 【实际应用】(3)如图3,在长方形ABCD 中,边1020AB AD ==,,P 是BC 边上一动点,Q 为ADP △内的任意一点,是否存在一点P 和一点Q ,使得AQ DQ PQ ++有最小值?若存在,请求出此时PQ 的长,若不存在,请说明理由.将AQD 绕点BC ⊥在OAB 中,3OB =,将OAB 绕点120BOB '∴∠=︒,3OB OB '==,OBB OB B ''∴∠=∠,OBB '∠+OC BB ⊥OCB '∴∠将∴++=+PA PB PC PA∴当点D、Q、P、A⊥连接AD,作DE AC∠=,ABC边长为DCBDCE BCA∴∠=∠=60)如图所示,将AQD绕点,90EA︒=【例2】(2024·贵州毕节·一模)在学习了《图形的平移与旋转》后,数学兴趣小组用一个等边三角形继续进行探究.已知ABC 是边长为2的等边三角形.(1)【动手操作】如图1,若D 为线段BC 上靠近点B 的三等分点,将线段AD 绕点A 逆时针旋转60︒得到线段AE ,连接CE ,则CE 的长为________;(2)【探究应用】如图2,D 为ABC 内一点,将线段AD 绕点A 逆时针旋转60︒得到线段AE ,连接CE ,若,,B D E本题主要考查了等边三角形的性质与判定,矩形的性质与判定,旋转的性质,勾股定理,含度角的直角三角形的性质,解题的关键在于利用旋转构造等边三角形,从而把三条不在一条直线的线段之和的问题,转换成几点共线求线段的最值问题是解题的关键.三点共线,求证:EB 平分AEC ∠;(3)【拓展提升】如图3,若D 是线段BC 上的动点,将线段AD 绕点D 顺时针旋转60︒得到线段DE ,连接CE .请求出点D 在运动过程中,DEC 的周长的最小值. 证明BAD CAE ≌,的三等分点和ABC 是边长为ADB AEC =∠60BEC ∠=︒EB(3)由ABD ACE ≌△△,得CE BD =,可得DEC 的周长BC DE =+,而DE AD =,知AD 的最小时,DEC的周长最小,此时AD BC ⊥,即可求得答案.∵ABC 是等边三角形,AB AC =,∴SAS ABD ACE ≌()BD CE =;的三等分点,且ABC 是边长为∵ABC 是等边三角形,AB AC =,∴SAS ABD ACE≌(),120ADB AEC ∠=∠=上时,DEC 的周长存在最小值,如图:∵ABD ACE ≌△△, ∴CE BD =,∴DEC 的周长DE CE =++∴当点D 在线段BC 上时,DEC 的周长∵DEC 为等边三角形,DE AD =,的最小时,DEC 的周长最小,此时∴DEC 的周长的最小值为【点睛】本题考查几何变换综合应用,旋转性质、涉及等边三角形的性质,全等三角形的判定和性质,垂1.(2024·陕西·二模)在平面直角坐标系中,A 为y 轴正半轴上一点,B 为x 轴正半轴上一点,且4OA OB ==,连接AB .(1)如图1,C 为线段AB 上一点,连接OC ,将OC 绕点O 逆时针旋转90︒得到OD ,连接AD ,求AC AD +的值.(2)如图2,当点C 在x 轴上,点D 位于第二象限时,90ADC ∠=︒,且AD CD =,E 为AB 的中点,连接DE ,试探究线段AD DE +是否存在最小值?若存在,求出AD DE +的最小值;若不存在,请说明理由.≌,可得出点,证明AND CMDAOC的平分线对称,由∴AND CMD≌,DN DM=,P大值和最小值分别是______和______;(2)如图2,在矩形ABCD中,4AB=,6AD=,点P在AD上,点Q在BC上,且AP CQ=,连接CP、QD,求PC QD+最小时AP的长;(3)如图3,在ABCDY中,10AB=,20AD=,点D到AB的距离为动点E、F在AD边上运动,始终保持3EF=,在BC边上有一个直径为BM的半圆O,连接AM与半圆O交于点N,连接CE、FN,求CE EF FN++的最小值.()SASABP CDQ≌=的O 外有一点在O 上, 如图,当点P 在AO 的延长线上时,此时PA 的最大值为:PO OA +故答案为:11;3;(2)延长BA 至点B ',使AB ∵在矩形ABCD 中,4AB =,∴DAB BAP CBA DCQ '∠=∠=∠=∠在ABP 和CDQ 中,AB CD =∴()SAS ABP CDQ ≌Rt B BC '中,AB P BB ''=∠ (3)如图,过点F 作FG EC ∥,交BC OG ',NO ,∵在ABCD Y 中,10AB =,20AD =,点∴AD BC ∥,即EF CG ∥,BC AD =EFGC【点睛】本题考查圆的基本性质,全等三角形的判定和性质,相似三角形的判定和性质,矩形的性质,平行四边形的判定和性质,对称的性质,勾股定理,三角形三边关系定理,两点之间线段最短等知识点.灵活运用所学知识、弄清题意并作出适当辅助线是解题的关键.3.(2024·陕西西安·三模)【问题提出】(1)如图①,AB 为半圆O 的直径,点P 为半圆O 的AB 上一点,BC 切半圆O 于点B ,若10AB =,12BC =,则CP 的最小值为 ; 【问题探究】(2)如图②,在矩形ABCD 中,3AB =,5BC =,点P 为矩形ABCD 内一点,连接PB 、PC ,若矩形ABCD 的面积是PBC 面积的3倍,求PB PC +的最小值; 【问题解决】(3)如图③,平面图形ABCDEF 为某校园内的一片空地,经测量,AB BC ==米,=60B ∠︒,150BAF BCD ∠=∠=︒,DE DC ⊥,20CD =米,劣弧E F 所对的圆心角为90︒,E F 所在圆的圆心在AF 的延长线上,10AF =米.某天活动课上,九(1)班的同学准备在这块空地上玩游戏,每位同学在游戏开始前,在BC 上选取一点P ,在弧E F 上选取一点Q ,并在点P 和点Q 处各插上一面小旗,从点A 出发,先到点P 处拔下小旗,再到点Q 处拔下小旗,用时最短者获胜.已知晓雯和晓静的跑步速度相同,要使用时最短,则所跑的总路程()AP PQ +应最短,问AP PQ +是否存在最小值?若存在,请你求出AP PQ +的最小值;若不存在,请说明理由.交O于点P⊥PH BC交O于点P点P为半圆O的AB上一点,∴当点P与点P不重合时,1当点P与点P重合时,BC切半圆∴∠=ABC=OB OP矩形ABCD 的面积是PBC 面积的13553PBCS∴=⨯⨯=CF PH =又5BC =,60ABC ∠=︒,AB BC ==ABC ∴是等边三角形, 60BAC BCA ∴∠=∠=︒,150BAF BCD ∠=∠=︒,DE AA M '∴和CMN ∴∠=点'A Q OQ+∴的最小值为A Q'ABC为等边三角形,点∴点为BC△,E G分别作,,⊥⊥与EF交于点F,连接CF.EF AD FG AB FG特例感知(1)以下结论中正确的序号有______;ED CF BG为边围成的三角形不是直①四边形AGFE是矩形;②矩形ABCD与四边形AGFE位似;③以,,角三角形;类比发现(2)如图2,将图1中的四边形AGFE绕着点A旋转,连接BG,观察CF与BG之间的数量关系和位置关系,并证明你的发现;拓展应用(3)连接CE ,当CE 的长度最大时, ①求BG 的长度;②连接,,AC AF CF ,若在ACF △内存在一点P ,使CP AP ++的值最小,求CP AP ++的最小值.先证明APF AKL ∽,得到∴HF DE =,CH BG =,∴CHF 是直角三角形,∵四边形ABCD 是矩形,∴43AB CD ==,AD =∴228AC AB BC =+=,则由(2)知,90CEF ∠=︒,∵2247CF CE EF =+=,根据旋转,可得30PAF KAL ∠=∠=,根据两边对应成比例且夹角相等可得APF AKL ∽, ∴3KL PF =,过P 作PS AK ⊥于S ,则12PS AP =题型三 面积的最小值问题【例1】(新考法,拓视野)(2024·陕西西安·一模)【问题提出】(1)如图1,已知在边长为5的等边ABC 中,点D 在边BC 上,3BD =,连接AD ,则ACD 的面积为 ; 【问题探究】(2)如图2,已知在边长为6的正方形ABCD 中,点E 在边BC 上,点F 在边CD 上,且45EAF ∠=︒,若5EF =,求AEF △的面积; 【问题解决】(3)如图3是某座城市廷康大道的一部分,因自来水抢修在4AB =米,AD =ABCD 区域内开挖一个AEF △的工作面,其中B 、F 分别在BC CD 、边上(不与B 、C 、D 重合),且60EAF ∠=︒,为了减少对该路段的拥堵影响,要求AEF △面积最小,那么是否存在一个面积最小的AEF △?若存在,请求出AEF △面积的最小值;若不存在,请说明理由.,证明()SAS ABG ADF ≌,再证明()SAS AEF AEG ≌,得到ABG ,则)()33AEF AEG SS==最小值最小值∵ABC 是边长为 ∴()SAS ABG ADF ≌∴()SAS AEF AEG ≌,得到ABG , )()33AEF AEG SS==最小值最小值【例2】(2024·陕西西安·二模)图形旋转是解决几何问题的一种重要方法.如图1,正方形ABCD 中,E F 、分别在边AB BC 、上,且45EDF ∠=︒,连接EF ,试探究AE CF EF 、、之间的数量关系.解决这个问题可将ADE V 绕点D 逆时针旋转90︒到CDH △的位置(易得出点H 在BC 的延长线上),进一步证明DEF 与DHF △全等,即可解决问题.(1)如图1,正方形ABCD 中,45,3,2EDF AE CF ∠=︒==,则EF =______;(2)如图2,正方形ABCD 中,若30EDF ∠=︒,过点E 作EM BC ∥交DF 于M 点,请计算AE CF +与EM 的比值,写出解答过程;(3)如图3,若60EDF ∠=︒,正方形ABCD 的边长8AB =,试探究DEF 面积的最小值. 进一步证明DEF,,,D F H G 四点共圆;进而可得30FHG ∠=,根据1tan 30AE CF CH CF FH EM GH GH ++====︒(3)过点E 作EK CD ⊥于K ,交DF 于M ,作FT EK ⊥于T ,得出 4DEFS EM =,进而根据(2)的方法得出EM GH =,根据FC AE CH ==时,面积最小,得出32OF =− 【详解】(1)解:∵将ADE V 绕点D 逆时针旋转90︒, ∴90DCH A DCB ∠=∠=︒=∠,DH DE HDC EDA =∠=∠, ∴点H 在BC 的延长线上, ∵四边形ABCD 是正方形 ∴90ADC ∠=︒, ∵45EDF ∠=︒,∴45HDF CDH FDC ADE FDC EDF ∠=∠+∠=∠+∠=︒=∠ 又∵DF DF =,∴DEF ()SAS DHF ≌,∴235EF FH FC CH FC AE ==+=+=+=, 故答案为:5.(2)解:将ADE V ,DEM △绕点D 逆时针旋转90︒,得,DCH DHG∴,AED CHD DEM DHG ∠=∠∠=∠, ∵EM BC ∥,则EM AB ⊥, ∴90AEM ∠=︒,∴90CHG CHD DHG AED DEM AEM ∠=∠+∠=∠+∠=∠=︒, ∵30EDF ∠=︒,EM BC ∥则EM AD ∥, ∴ADE CDH ∠=∠,30GDH MDE ∠=∠=︒, ∵EM BC ∥, ∴EMF DFC ∠=∠,∴180EMD EMF EMD DFC ∠+∠=∠+∠=︒, 即180DFC DGH ∠+∠=︒, ∴,,,D F H G 四点共圆; ∴30GFH GDH ∠=∠=︒, 又30FHG ∠=︒∴1tan 30AE CF CH CF FH EM GH GH ++====︒(3)如图,过点E 作EK CD ⊥于K ,交DF 于M ,作FT EK ⊥于T ,90FTK TKC BCD ∠=∠=∠=︒∴四边形CFTK 是矩形, FT CK ∴=8DK CK DK FT ∴+=+= 111()4222DEFEMDEMFSSSEM DK EM FT EM DK FH EM ∴=+=⋅+⋅=+=同(2)将ADE V ,DEM △绕点D 逆时针旋转90︒,得,DCH DHG , 可得60GFH EDM ∠=∠=︒,EM GH = 取得最小值时,DEF 的面积最小,∵2220−=≥,∴FH x y =+≥ 当且仅当x y =时取得等于号, 此时FC AE CH ==, 设,,,D F H G 的圆心为O , ∵DC FH ⊥,FC CH =, ∴DC 经过点O ,∴OF OD =,sin 602OC OF =︒= ∵8OD OC +=8OF +=解得:32OF =−∴232FH FC OF ===−∴48GH =,∴()44448192DEFSEM GH ====,即DEF 面积的最小为192.【点睛】本题考查了旋转的性质,正方形的性质、全等三角形的判定与性质、四点共圆等知识,解直角三角形,熟练掌握旋转的性质是解题的关键.1.(2023·陕西西安·一模)问题发现(1)在ABC 中,2AB =,60C ∠=︒,则ABC 面积的最大值为 ;(2)如图1,在四边形ABCD 中,6AB AD ==,90BCD BAD ∠=∠=︒,8AC =,求BC CD +的值. 问题解决(3)有一个直径为60cm 的圆形配件O ,如图2所示.现需在该配件上切割出一个四边形孔洞OABC ,要求60O B ∠=∠=︒,OA OC =OABC 的面积尽可能小.试问,是否存在符合要求的面积最小的四边形OABC ?若存在,请求出四边形OABC 面积的最小值及此时OA 的长;若不存在,请说明理由.为弦的确定的圆上,作ABC 的外接圆,可得当点时,ABC 的面积最大,求出,再根据三角形的面积公式计算即可;将ABC 绕点A 逆时针旋转、D 、E 在同一条直线上,求出BCES,可得要使四边形面积最小,就要使BCE 的面积最大,然后由(时,BCE 的面积最)的方法求出BCE 面积的最大值,可得四边形,根据OA 如图,作ABC 的外接圆,∴当点C 在C '的位置,即时,ABC 的面积最大,∴C A C B ''=,BD =∴ABC '△是等边三角形,∴ABC 面积的最大值为)如图,将ABC 绕点∴B ADE ∠=∠,BAC ∠∵6AB AD ==,BCD ∠∴180B ADC ∠+∠=︒,∵60AOC ∠=︒,OA OC =∴将AOB 绕O 点顺时针旋转至COE ,连接∴60BOE ∠=︒,OE OB =∴BOE △是等边三角形,AOBBCOSS+COEBCOSS+ BOE BCES S− BCESBCES,的面积最小,就要使BCE 的面积最大,作BCE 的外接圆I ,点F 是I 上一点,CF 交由(1)可知,当CF 是直径,且CF BE ⊥时,BCE 的面积最大,∴BCE 面积的最大值为150BCES=(1)如图①,已知ABC 是面积为AD 是BAC ∠的平分线,则AB 的长为______. 问题探究:(2)如图②,在ABC 中,90C ∠=︒,AC BC =,4AB =,点D 为AB 的中点,点E ,F 分别在边AC ,BC 上,且90EDF ∠=︒.证明:DE DF =.问题解决:(3)如图③,李叔叔准备在一块空地上修建一个矩形花园ABCD ,然后将其分割种植三种不同的花卉.按照他的分割方案,点P ,Q 分别在AD ,BC 上,连接PQ 、PB 、PC ,60BPC ∠=︒,E 、F 分别在PB 、PC 上,连接QE 、QF ,QE QF =,120EQF ∠=︒,其中四边形PEQF 种植玫瑰,ABP 和PCD 种植郁金香,剩下的区域种植康乃馨,根据实际需要,要求种植玫瑰的四边形PEQF 的面积为2,为了节约成本,矩形花园ABCD 的面积是否存在最小值?若存在,请求出矩形ABCD 的最小面积,若不存在,请说明理由.)设ABC 的边长为EQG ,根据四边形则当PQ BC ⊥时,矩形ABCD 的面积最小,根据2ABCD PEQF S S =四边形四边形,即可求解.【详解】解:(1)∵ABC 是面积为AD 是BAC ∠的平分线, ∴12BD CD AB ==设ABC 的边长为a∴AD ==∴2112224ABCS BC AD a =´=´´=∴24a =解得:4a =, 故答案为:4.(2)如图所示,连接CD ,∵在ABC 中,90C ∠=︒,AC BC =,4AB =,点D 为AB 的中点, ∴CD AD =,90ADC ∠=︒,45A DCF ∠=∠=︒ 又∵90EDF ∠=︒∴ADE ADC CDE EDF EDC CDF ∠=∠−∠=∠−∠=∠ 在,ADE CDF △△中,45A DCF ADE CDF AD CD ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩∴ADE CDF V V ≌ ∴DE DF =; (3)如图所示,∵60BPC ∠=︒,120EQF ∠=︒, ∴36060120180PFQ PEQ ∠+∠=︒−︒−︒=︒ 将QFP △绕点Q 逆时针旋转120︒,得到EQG , ∴,,P E G 三点共线,∴四边形PEQF 的面积等于PQG , 又∵120,PQG PQ GQ ∠=︒=,∴30QPG QGP ∠=∠=︒过点Q 作QN PG ⊥于点N ,则12QN PQ =设PQ b =,则1,22NQ b PN ==∴2PG PN ==∴2111222PQGSPG NQ b =⨯=⨯=∵四边形PEQF 的面积为 ∴16b =,即16PQ =,如图所示,作QM PM ⊥于点M ,∵30EPQ FPQ ∠=∠=︒,QM PM ⊥,QN PG ⊥,则QN QM =, 在,ENQ FMQ 中,QN QM EQ FQ =⎧⎨=⎩∴()HL ENQ FMQ ≌, 同理可得PNQ PMQ ≌ 则2PNQPEQF S S=四边形∴PEQF PNQM S S =四边形四边形,作点Q 关于PE 的对称点T ,连接PT ,则PTQ 是等边三角形,则PTQS=如图所示,依题意,当PQ BC ⊥时,矩形ABCD 的面积最小,此时,E F 与,N M 重合,,∴22ABCD PEQF S S ==⨯四边形四边形∴矩形ABCD 的最小面积为2【点睛】本题考查了全等三角形的性质与判定,等边三角形的性质与判定,等腰三角形的性质与判定,勾股定理,旋转的性质,综合运用以上知识是解题的关键.3.(2024·陕西榆林·二模)(1)如图1,AB CD ∥,1,2AB CD ==,AD ,BC 交于点E ,若4=AD ,则AE = ;(2)如图2,矩形ABCD 内接于O , 2,AB BC ==点 P 在AD 上运动,求 PBC 的面积的最大值; (3)为了提高居民的生活品质,市政部门计划把一块边长为 120米的正方形荒地 ABCD (如图3)改造成一个户外休闲区,计划在边AD ,BC 上分别取点P ,Q ,修建一条笔直的通道PQ ,要求 2CQ AP =,过点 B 作 BE PQ ⊥于点E ,在点E 处修建一个应急处理中心,再修建三条笔直的道路BE CE DE ,,,并计划在 CDE 内种植花卉, DEP 内修建老年活动区, BCE 内修建休息区,在四边形ABEP 内修建儿童游乐园.问种植花卉的 CDE 的面积是否存在最小值? 若存在,求出最小值;若不存在,请说明理由.得ABE DCE ∽,得对应成比例的线段,于是得到结论;时,PBC 的面积有最大值,解直角三角形求出PBC 的高即可得到结论;于点M ,作BME 的外接圆O ,过点OF DC ⊥₂E CD ₂的面积最小. ()∥AB CD DCE ,是O的直径.₂的面积最大.P BC上任意另取一点P₁PBC的面积最大.Rt OBE中,.S=PBC。
中考数学专题复习—几何最值问题一、知识点睛在平面几何的动态问题中,当某几何元素在给定条件变动时,求某几何量(如线段的长度、图形的周长或面积、角的度数以及它们的和与差)的最大值或最小值问题,称为几何最值问题。
解决平面几何最值问题的常用的方法有:(1)应用两点间线段最短的公理(含应用三角形的三边关系)求最值;(2)应用垂线段最短的性质求最值;(3)应用轴对称的性质求最值;(4)应用二次函数求最值;(5)应用其它知识求最值。
一般处理方法:常用定理:两点之间,线段最短(已知两个定点时)垂线段最短(已知一个定点、一条定直线时)三角形三边关系(已知两边长固定或其和、差固定时)二、考点剖析,分类探究(一)线段之和最小问题P A+PB 最小, 需转化, 使点在线异侧B l1. (2014年贵州南州)在如图所示的平面直角坐标系中,点P是直线y=x上的动点,A(1,0),B(2,0)是x轴上的两点,则PA+PB的最小值为_____ 。
(二)线段之差最大问题2.(2013年江苏省宿迁市)在平面直角坐标系xoy中,已知点A(0,1),B(1,2),点P在x轴上运动,当点P到A、B两点距离之差的绝对值最大时,点P的坐标是_____ 。
(三)应用垂线段最短求最值问题3.(2014年葫芦岛)如图,矩形ABCD中,点M是CD的中点,点P是AB上的一动点,若AD=1,AB=2,则PA+PB+PM的最小值是_____ 。
(四)图形周长最值问题4. (2015年盘锦)如图,菱形ABCD的边长为2,∠DAB=60°,E为BC的中点,在对角线AC上存在一点P,使△PBE的周长最小,则△PBE的周长的最小值为_____ 。
(五)表面展开最值问题5. 如图,一圆锥的底面半径为2,母线PB的长为6,D为PB的中点.一只蚂蚁从点A出发,沿着圆锥的侧面爬行到点D,则蚂蚁爬行的最短路程为_____ 。
(六)图形面积的最值问题6.(2014年湖北省十堰市)如图,扇形OAB中,∠AOB=60°,扇形半径为4,点C在弧AB上,CD⊥OA,垂足为点D,当△OCD的面积最大时,求图中阴影部分的面积。
中考数学专题复习--几何最值问题解题策略【专题分析】最值问题是初中数学的重要内容,无论是代数问题还是几何问题都有最值问题,在中考压轴题中出现比较高的主要有利用重要的几何结论(如两点之间线段最短、三角形两边之和大于第三边、两边之差小于第三边、垂线段最短等)以及用一次函数和二次函数的性质来求最值问题.【知识归纳】1.在求几何图形中的周长或线段长度最值时,解决此类问题的方法一般是先将要求线段(要求的量)用未知数x表示出来,建立函数模型(一般所表示的式子为一次函数解析式或二次函数解析式),常用勾股定理或三角形相似求得函数关系式,再用函数的增减性或最值来求解即可.2.利用对称的性质求两条线段之和最小值的问题,解决此类问题的方法为:如图,要求直线l上一动点P到点A,B距离之和的最小值,先作点A关于直线l的对称点A',连接A'B,则A'B与直线l的交点即为P点,根据对称性可知此时A'B的长即为PA+PB的最小值,求出A'B的值即可.【题型解析】题型1:三角形中最值问题例题:(2017山东枣庄)如图,直线y=x+4与x轴、y轴分别交于点A和点B,点C、D分别为线段AB、OB的中点,点P为OA上一动点,PC+PD值最小时点P的坐标为()A.(﹣3,0)B.(﹣6,0)C.(﹣,0) D.(﹣,0)【考点】F8:一次函数图象上点的坐标特征;PA:轴对称﹣最短路线问题.【分析】(方法一)根据一次函数解析式求出点A、B的坐标,再由中点坐标公式求出点C、D的坐标,根据对称的性质找出点D′的坐标,结合点C、D′的坐标求出直线CD′的解析式,令y=0即可求出x的值,从而得出点P的坐标.(方法二)根据一次函数解析式求出点A、B的坐标,再由中点坐标公式求出点C、D的坐标,根据对称的性质找出点D′的坐标,根据三角形中位线定理即可得出点P为线段CD′的中点,由此即可得出点P的坐标.【解答】解:(方法一)作点D关于x轴的对称点D′,连接CD′交x轴于点P,此时PC+PD值最小,如图所示.令y=x+4中x=0,则y=4,∴点B的坐标为(0,4);令y=x+4中y=0,则x+4=0,解得:x=﹣6,∴点A的坐标为(﹣6,0).∵点C、D分别为线段AB、OB的中点,∴点C(﹣3,2),点D(0,2).∵点D′和点D关于x轴对称,∴点D′的坐标为(0,﹣2).设直线CD′的解析式为y=kx+b,∵直线CD′过点C(﹣3,2),D′(0,﹣2),∴有,解得:,∴直线CD′的解析式为y=﹣x﹣2.令y=﹣x﹣2中y=0,则0=﹣x﹣2,解得:x=﹣,∴点P的坐标为(﹣,0).故选C.(方法二)连接CD,作点D关于x轴的对称点D′,连接CD′交x轴于点P,此时PC+PD值最小,如图所示.令y=x+4中x=0,则y=4,∴点B的坐标为(0,4);令y=x+4中y=0,则x+4=0,解得:x=﹣6,∴点A的坐标为(﹣6,0).∵点C、D分别为线段AB、OB的中点,。
专题10 最值模型---胡不归问题最值问题在中考数学常以压轴题的形式考查,可将胡不归问题看作将军饮马衍生,主要考查转化与化归等的数学思想。
在各类考试中都以高档题为主,中考说明中曾多处涉及。
本专题就最值模型中的胡不归问题进行梳理及对应试题分析,方便掌握。
在解决胡不归问题主要依据是:①两点之间,线段最短;②垂线段最短。
【模型背景】从前有个少年外出求学,某天不幸得知老父亲病危的消息,便立即赶路回家.根据“两点之间线段最短”,虽然从他此刻位置A 到家B 之间是一片砂石地,但他义无反顾踏上归途,当赶到家时,老人刚咽了气,小伙子追悔莫及失声痛哭.邻居告诉小伙子说,老人弥留之际不断念叨着“胡不归?胡不归?看到这里很多人都会有一个疑问,少年究竟能不能提前到家呢?假设可以提早到家,那么他该选择怎样的一条路线呢?这就是今天要讲的“胡不归”问题.【模型解读】一动点P 在直线MN 外的运动速度为V 1,在直线MN 上运动的速度为V 2,且V 1<V 2,A 、B 为定点,点C 在直线MN 上,确定点C 的位置使21AC BCV V的值最小.(注意与阿氏圆模型的区分)2驿道V 2V 1MNCBA1)121121=V AC BC BC AC V V V V ⎛⎫++ ⎪⎝⎭,记12V k V =,即求BC +kAC 的最小值. 2)构造射线AD 使得sin ∠DAN =k ,CHk AC=,CH =kAC ,将问题转化为求BC +CH 最小值. 3)过B 点作BH ⊥AD 交MN 于点C ,交AD 于H 点,此时BC +CH 取到最小值,即BC +kAC最小.【解题关键】在求形如“P A +kPB ”的式子的最值问题中,关键是构造与kPB 相等的线段,将“P A +kPB ”型问题转化为“P A +PC ”型.(若k >1,则提取系数,转化为小于1的形式解决即可)。
【最值原理】两点之间线段最短及垂线段最短。
例1.(2022·内蒙古·中考真题)如图,在△ABC 中,AB =AC =4,△CAB =30°,AD △BC ,垂足为D ,P 为线段AD 上的一动点,连接PB 、PC .则P A +2PB 的最小值为 _____.【答案】4在△BAC 的外部作△CAE =15°,作BF △AE 于F ,交AD 于P ,例2.(2022·湖北武汉·一模)如图,在ACE △中,CA CE =,30CAE ∠=︒,半径为5的O 经过点C ,CE 是圆O 的切线,且圆的直径AB 在线段AE 上,设点D 是线段AC 上任意一点(不含端点),则12OD CD +的最小值为______.//CH AB ,30CAE ∠=︒,OC OA =, 30HCA OCA ∴∠=∠=︒,sin HCD ∴∠当O ,∴当O ,'OH OC =相交于点,点在线段上,且,点为线段上的一个动点,则的最小值是______. O M AC 3AM =P BD 12MP PB +【分析】过M 点作MH 垂直BC 于H 点,与OB 的交点为P 点,此时的长度最小为MH ,再算出MC 的长度, 在直角三角形MPC 中利用三角函数即可解得MH 【详解】过M 点作MH 垂直BC 于H 点,与OB 的交点为P 点,此时的长度最小∵菱形中,∴AB =BC =AC =10,△ABC 为等边三角形 ∴∠PBC =30°,∠ACB=60°∴在直角△PBH 中,∠PBH =30°∴PH = ∴此时得到最小值, ∵AC =10,AM =3,∴MC =7又∠MPC =60°∴MH =MC【点睛】本题主要考查了菱形的性质与三角函数,能够找到最小值时的P 点是解题关键. 例4.(2022·山东淄博·二模)如图,在平面直角坐标系中,点A 的坐标是(0,2),点C 的坐标是(0,2)-,点(,0)B x 是x 轴上的动点,点B 在x 轴上移动时,始终保持ABP 是等边三角形(点P 不在第二象限),连接PC ,求得12AP PC +的最小值为( )12MP PB +12MP PB +ABCD 10AB AC ==1PB 212MP PB +1=2MP PB MP PH MH ++=A.B.4C.D.2当点P 运动到y 轴时,如图2所示,此时点P 与点C 重合, 例5.(2021·资阳市·中考真题)抛物线与x 轴交于A 、B 两点,与y 轴交于点C ,且.(1)求抛物线的解析式;(2)如图1,点P 是抛物线上位于直y x bx c =-++()()1,0,0,3B C -线上方的一点,与相交于点E ,当时,求点P 的坐标;(3)如图2,点D 是抛物线的顶点,将抛物线沿方向平移,使点D 落在点处,且,点M 是平移后所得抛物线上位于左侧的一点,轴交直线于点N ,连结的值最小时,求的长.【答案】(1);(2)或;(3). 【分析】(1)利用待定系数法即可得;(2)设点的坐标为,先利用待定系数法求出直线的解析式,再根据可得点的坐标,代入直线的解析式求解即可得;(3)先根据求出点的坐标,再根据二次函数图象的平移规律得出平移后的函数解析式,设点的坐标,从而可得点的坐标,然后根据两点之间的距离公式可得,最后根据两点之间线段最短、垂线段最短求解即可得. 【详解】解:(1)由题意,将点代入得:, 解得,则抛物线的解析式为;(2)对于二次函数,当时,,解得或,,设点的坐标为,点的坐标为,AC BP AC :1:2PE BE =CD D 2DD CD '=D //MN y OD 'CN N CN '+MN 2y x 2x 3=-++(1,4)P (2,3)P 34P 2(,23)P a a a -++AC :1:2PE BE =E AC 2DD CD '=D M N 5D N CN '+()()1,0,0,3B C -2y x bx c =-++103b c c --+=⎧⎨=⎩23b c =⎧⎨=⎩2y x 2x 3=-++2y x 2x 3=-++0y =2230x x -++=1x =-3x =(3,0)A ∴P 2(,23)(03)P a a a a -++<<E 11(,)E x y,,解得,,设直线的解析式为,将点代入得:,解得,则直线的解析式为, 将点代入得:,解得或,当时,,此时, 当时,,此时, 综上,点的坐标为或;(3)二次函数的顶点坐标为,设点的坐标为,,,解得,,则平移后的二次函数的解析式为,设直线的解析式为,将点代入得:,解得, 则直线的解析式为,设点的坐标为,则点的坐标为,如图,连接,过点作于点,过点作于点,交于点,连接,:1:2,(1,0)PE BE B =-1121111223102a x x a a y y -⎧=⎪+⎪∴⎨-++-⎪=⎪-⎩121213324233x a y a a ⎧=-⎪⎪⎨⎪=-++⎪⎩22124(,2)3333E a a a ∴--++AC y kx t =+(3,0),(0,3)A C 303k t t +=⎧⎨=⎩13k t =-⎧⎨=⎩AC 3y x =-+22124(,2)3333E a a a --++22124323333a a a -++=-++1a =2a =1a =2231234a a -++=-++=(1,4)P 2a =22342233a a -++=-+⨯+=(2,3)P P (1,4)P (2,3)P 2223(1)4y x x x =-++=--+D (1,4)D D 22(,)D x y '2,(0,3),(1,4)DD C D D C '=2212104243x y -⎧=⎪⎪-∴⎨-⎪=⎪-2236x y =⎧⎨=⎩(3,6)D '∴22(3)663y x x x =--+=-+-OD '0y k x =(3,6)D '036k =02k =OD '2y x =M 2(,63)(3)M m m m m -+-<N (,2)N m m AD 'N NF AD '⊥F C CG AD '⊥G OD 'N 'CF,轴,,, 由两点之间线段最短得:的最小值为,由垂线段最短得:当点与点重合时,取得最小值,此时点与点重合, 则点的纵坐标与点的纵坐标相等,即,解得, 则,,. 【点睛】二次函数图象的平移规律、垂线段最短等知识点,较难的是题(3),正确求出平移后的抛物线的解析式是解题关键.例6.(2020·湖南·中考真题)已知直线与抛物线(b ,c 为常数,)的一个交点为,点是x 轴正半轴上的动点.(1)当直线与抛物线(b ,c 为常数,)的另一个交点为该抛物线的顶点E 时,求k ,b ,c 的值及抛物线顶点E 的坐标; (2)点D 在抛物线上,且点D 的横坐标为,时,求b 的值.【答案】(1)-2,2,-3,;(2)4或6;(3)3【分析】(1)由题意可知直线经过,因而把代入直线即可求出k 的值,然后把代入抛物线得出含b 的代数式表达c ,再根据直线(3,0),(3,6)D A 'AD x '∴⊥3FN m ∴=-3D N CN CN m CN FN CN '+==-+=+FN CN +CF F G CF CG N N 'N 'C 23m =32m =2263243MN m m m m m =-+--=-+-233()4322=-+⨯-34=2y kx =-2y x bx c =-+0b >(1,0)A -(,0)M m 2y kx =-2y x bx c =-+0b >12b +2DM +()1,4-2y kx =-(1,0)A -(1,0)A -2y kx =-(1,0)A -与抛物线(b ,c 为常数,)的另一个交点得出抛物线的顶点坐标E ,并代入直线,解方程即可求出b 的值,代入即可求解; (2)将点D 的横坐标代入抛物线(b ,c 为常数,),根据点A 的坐标得到含b 的代数式表达c ,求出点D 的纵坐标为,可知点D 在第四象限,且在直线的右侧,取点,过点D 作直线AN 的垂线,垂足为G ,DG 与x 轴相交于点M ,过点D 作QH ⊥x 轴于点H ,则点H ,在Rt △MDH 中,可知,由题意可知点,用含b 的代数式表示m ,因,可得方程,求解即可得出答案. 【详解】解:(1)∵直线经过,∴把代入直线,可得,解得; ∵抛物线(b ,c 为常数,)经过, ∴把代入抛物线,可得,∵当直线与抛物线(b ,c 为常数,)的另一个交点为该抛物线的顶点E ,∴顶点的坐标为,把代入直线, 可得,∴,解得,∵,∴,∴,∴顶点的坐标为.(2)∵点D 在抛物线(b ,c 为常数,)上,且点D 的横坐标为, ∴,∵在抛物线(b ,c 为常数,)上,∴,即,∴,2y kx =-2y x bx c =-+0b >24,24b c b ⎛⎫- ⎪⎝⎭22y x =--12b +2y x bx c =-+0b >324b --13,224b b ⎛⎫+--⎪⎝⎭x b =(0,1)N 1,02b ⎛⎫+⎪⎝⎭45DMH MDH ︒∠=∠=(,0)Mm 24DM +=2y kx =-(1,0)A -(1,0)A -2y kx =-02k =--2k =-2y x bx c =-+0b >(1,0)A -(1,0)A -2y x bx c =-+1c b =--2y kx =-2y x bx c =-+0b >E 24,24b c b ⎛⎫- ⎪⎝⎭E24,24b c b ⎛⎫- ⎪⎝⎭22y x =--242224b c b --⨯-=()2412224b b b----⨯-=2b =±0b >2b =213c =--=-E ()1,4-2y x bx c =-+0b >12b +21122D y b b b c ⎛⎫⎛⎫=+-++ ⎪ ⎪⎝⎭⎝⎭(1,0)A -2y x bx c =-+0b >()210b c -+=+1c b =--21131=2224D b y b b b b ⎛⎫⎛⎫=+-+---- ⎪ ⎪⎝⎭⎝⎭可知点D在第四象限,且在直线的右侧.,∴可取点,如图2,过点D作直线AN的垂线,垂足为G,DG与x轴相交于点M,∴,得,则此时点M满足题意,过点D作QH⊥x轴于点H,则点H,在Rt△MDH中,可知,∴,∵点,∴,解得:,,∴.【点睛】本题是二次函数综合题,主要考查了待定系数法求解析式、二次函数的性质、等腰三角形的性质、三角形的面积公式等知识点,解题的关键是学会使用待定系数法求出抛物线的解析式.例7.(2022·四川成都·中考模拟)6.如图,已知抛物线为常数,且与轴从左至右依次交于,两点,与轴交于点,经过点的直线与抛物线的另一交点为.(1)若点的横坐标为,求抛物线的函数表达式;(2)若在第一象限内的抛物线上有点,使得以,,为顶点的三角形与相似,求的值;(3)在(1)的条件下,13,224bb⎛⎫+--⎪⎝⎭x b=222DM AM DM⎛⎫+=+⎪⎪⎝⎭(0,1)N45GAM︒∠= 2AM GM=1,02b⎛⎫+⎪⎝⎭45DMH MDH︒∠=∠=,DDH MH M==(,0)M m31242bb m⎛⎫⎛⎫---=+-⎪ ⎪⎝⎭⎝⎭124bm=-24DM+=111(1)224224b bb⎤⎤⎛⎫⎛⎫⎛⎫---++--=⎪ ⎪ ⎪⎥⎥⎝⎭⎝⎭⎝⎭⎦⎦3b=(2)(4)(8ky x x k=+-0)k> x A B y C B y b=+DD5-P A B P ABC∆k设为线段上一点(不含端点),连接,一动点从点出发,沿线段以每秒1个单位的速度运动到,再沿线段以每秒2个单位的速度运动到后停止,当点的坐标是多少时,点在整个运动过程中用时最少?4解:(1)抛物线,令,解得或,,.直线经过点,,解得,直线解析式为:.当时,,,.点,在抛物线上,,.抛物线的函数表达式为:.即.(2)由抛物线解析式,令,得,,.因为点在第一象限内的抛物线上,所以为钝角.因此若两个三角形相似,只可能是或.①若,则有,如答图所示.设,过点作轴于点,则,.FBD AF M A AFFFD D F M(2)(4)8y x x=+-0y=2x=-4x=(2,0)A∴-(4,0)B y b=+(4,0)B40b+=b=∴BD y x=5x=-y=(5D∴-(5D-(2)(4)8ky x x=+-∴(52)(54)8k-+--=k∴=∴2)(4)y x x+-2y xx=y k=-(0,)C k∴-OC k=P ABP∠ABC APB∆∆∽ABC PAB∆∆∽ABC APB∆∆∽BAC PAB∠=∠21-(,)P x y P PN x⊥N ON x=PN y=,即:,. ,代入抛物线解析式,得,整理得:, 解得:或(与点重合,舍去),.,,解得:. ②若,则有,如答图所示. 设,过点作轴于点,则,. ,即:,.,代入抛物线解析式,得,整理得:, 解得:或(与点重合,舍去),. ,,tan tan BAC PAB ∠=∠22k y x =+2k y x k ∴=+(,)2k P x x k ∴+(2)(4)8ky x x =+-(2)(4)82k kx x x k +-=+26160x x --=8x =2x =-A (8,5)P k ∴ABC APB ∆∆∽∴AC AB AB AP ==k =ABC PAB ∆∆∽ABC PAB ∠=∠22-(,)P x y P PN x ⊥N ON x =PN y =tan tan ABC PAB ∠=∠42k y x =+42k ky x ∴=+(,)42k k P x x ∴+(2)(4)8ky x x =+-(2)(4)842k k kx x x +-=+24120x x --=6x =2x =-A (6,2)P k ∴ABC PAB ∆∆∽AB CBAP AB=∴=k =,,综上所述,或(3)方法一:如答图3,由(1)知:,,如答图,过点作轴于点,则,,, ,. 过点作轴,则.过点作于点,则. 由题意,动点运动的路径为折线,运动时间:,,即运动的时间值等于折线的长度值.由垂线段最短可知,折线的长度的最小值为与轴之间的垂线段.过点作于点,则,与直线的交点,即为所求之点.点横坐标为,直线解析式为:,,. 综上所述,当点坐标为,时,点在整个运动过程中用时最少. 方法二:作,,交直线于点, ,,, 当且仅当时,最小,点在整个运动中用时为:,, 【点睛】本题考查单动点问题;二次函数和一次函数交点问题;曲线上点的坐标与方程的关系;勾股定理;相似三角形的判定;垂直线段最短的性质;分类思想和数形结合思想的应用.0k>k ∴k =k =(5D -22-D DN x ⊥N DN =5ON =459BN =+=tan DN DBA BN ∴∠==30DBA ∴∠=︒D //DK x 30KDF DBA ∠=∠=︒F FG DK ⊥G 12FG DF =M AF DF +12t AF DF =+t AF FG ∴=+AF FG +AF FG +DK x A AH DK ⊥H t AH =最小AH BD F A 2-BD y =+(2)y ∴=-=(2F ∴-F (2-M //DK AB AH DK ⊥AH BD F 30DBA ∠=︒30BDH ∴∠=︒sin302FDFH DF ∴=⨯︒=∴AH DK ⊥AF FH +M 12AF FDt AF FH =+=+:BD l y =2X X F A ∴==-(F ∴-课后专项训练1.(2022·河北·九年级期中)如图,在△ABC中,∠A=15°,AB=2,P为AC边上的一个动点(不与A、C重合),连接BP,则AP+PB的最小值是()A.B.C.D.2【解答】解:如图,在△ABC内作∠MBA=30°过点A作AE⊥BM于点E,BM交AC于点P,∵∠BAC=15°,∴∠APE=45°∴EP=AP当BP⊥AE时,则AP+PB=PE+PB的值最小,最小值是BE的长,在Rt△ABE中,∠ABE=30°,AB=2∴BE=AB•cos30°=.∴AP+PB的最小值是.故选:B.2.(2022·江苏·九年级月考)如图,在Rt△ABC中,∠ACB=90°,∠B=30°,AB=4,点D、F分别是边AB,BC上的动点,连接CD,过点A作AE⊥CD交BC于点E,垂足为G,连接GF,则GF+FB的最小值是()A.B.C.D.【解答】解:延长AC到点P,使CP=AC,连接BP,过点F作FH⊥BP于点H,取AC中点O,连接OG,过点O作OQ⊥BP于点Q,∵∠ACB=90°,∠ABC=30°,AB=4∴AC=CP=2,BP=AB=4∴△ABP是等边三角形∴∠FBH=30°∴Rt△FHB中,FH=FB∴当G、F、H在同一直线上时,GF+FB=GF+FH=GH取得最小值∵AE⊥CD于点G∴∠AGC=90°∵O为AC中点∴OA=OC=OG=AC∴A、C、G三点共圆,圆心为O,即点G在⊙O上运动∴当点G运动到OQ上时,GH取得最小值∵Rt△OPQ中,∠P=60°,OP=3,sin∠P=∴OQ=OP=∴GH最小值为故选:C.3.(2022·山东·九年级月考)如图,在平面直角坐标系中,二次函数y=x2﹣2x+c的图象与x轴交于A、C两点,与y轴交于点B(0,﹣3),若P是x轴上一动点,点D(0,1)在y轴上,连接PD+PC的最小值是()A .4B .2+C .D .32△二次函数y =x 2﹣2x +c 的图象与y 轴交于点B (0,﹣3),△c =﹣3,为OB 上一动点,则AP +的最小值为( )A .4B .5C .D .解:如图,过点A 作AH OC ⊥于点H ,过点P 作PF OC ⊥于点F ,连接AC 交OB 于点J .四边形OABC 是菱形,AC OB ∴⊥,OJ JB ∴==CJ 2AC CJ ∴==AH OC ⊥,12OC AH OB AC ∴⋅=⋅⋅,142AH ∴==,sin PF CJ POF OP OC ∴∠===,PF ∴=,AP AP PF ∴=+,AP PF AH +,4AP ∴,AP ∴的最小值为4,故选:A .5.(2022·浙江宁波·九年级开学考试)如图,在平面直角坐标系中,一次函数y x =别交x 轴、y 轴于A 、B 两点,若C 为x 轴上的一动点,则2BC +AC 的最小值为__________.【答案】6【分析】先求出点A ,点B 坐标,由勾股定理可求AB 的长,作点B 关于OA 的对称点B ',△3OB OB '==,△23BB '=,23AB AB '==△AB AB BB ''==,△ABB '∆是等边三角形,6.(2022·湖南·九年级月考)如图,在Rt △ABC 中,∠ACB =90°,∠A =60°,AB =6,△BCD 为等边三角形点E 为△BCD 围成的区域(包括各边)的一点过点E 作EM ∥AB ,交直线AC 于点M 作EN ∥AC 交直线AB 于点N ,则AN +AM 的最大值为 .【解答】解:过E 作EH ⊥AC 交AC 的延长线于点H ,∵EN ∥AC ,EM ∥AB ,∴四边形ANEM 是平行四边形,∠HME =∠A =60°, 设EM =AN =a ,AM =b ,Rt △HEM 中,∠HEM =30°,∴MH =ME =a , ∴AN +AM =a +b =MH +AM =AH ,当E 在点D 时,AH 的值最大是:3+4.5=7.5, AN +AM 的最大值为7.5,故答案为:7.5.7.(2022·湖北武汉·九年级期末)如图,△ABCD 中60A ∠=︒,6AB =,2AD =,P 为边CD2PB +.【答案】63四边形ABCD 是平行四边形,//AB CD ∴,△60A PDH ∠=∠=︒ 于B 、C 两点,点A 、C 的坐标分别为(3,0)、(0,﹣3),且△OCB =60°,点P 是直线l 上一动点,连接AP ,则AP 的最小值是______.在Rt△PCG中,△PCG=60°,则△CPG=30°,如图,ABC中,是线段BE上的一个动点,则CD的最小值是__________.DH CM 即BE,2AB AE =(舍弃),△BE ,CM AB ⊥BHD BEA =∠5BD +=DH CM ,△45CD BD ,△CD 【点睛】本题主要考查解直角三角形,等腰三角形的性质,勾股定理,垂线段最短等,学会添加辅助线并利用转化的思想是解题的关键.10.(2022·广东·一模)已知抛物线243y xx =-+与x 轴交于A ,B 两点(A 在B 点左侧),与y 轴正半轴交于点C ,点P 是直线BC 上的动点,点Q 是线段OC 上的动点.(1)求直线BC 解析式.(2)如图①,求OP +P A 的和取最小值时点P 的坐标. (3)如图②,求AQ +QP 的最小值.(4)如图③,求AQ 12+QC 的最小值.Rt A PB '中求出,则可得当A ,Q ,△B (3,0),C (0,3),△BO =CO =3, 由对称性可知OCP DCP ≌,OCB DCB ≌,OCB =45°,△CDB =△COB =90°,CO =CD ,△四边形OCDB 为正方形,△D 坐标为(,△AB =2,BD =3, 2222+3=13BD +=,则AQ +QP =A Q PQ A P ''+≥,当A ',Q ,P 三点共线,且A P BC '⊥时,AQ +PQ 最小, Rt A PB '中,)解:如图,在1111.(2022·江苏·中考模拟)如图,抛物线与直线交于,两点,交轴于,两点,连接,,已知,.(Ⅰ)求抛物线的解析式和的值;(Ⅱ)在(Ⅰ)条件下:(1)为轴右侧抛物线上一动点,连接,过点作交轴于点,问:是否存在点使得以,,为顶点的三角形与相似?若存在,请求出所有符合条件的点的坐标;若不存在,请说明理由.(2)设为线段上一点(不含端点),连接,一动点从点出发,沿线段以每秒一个单位速度运动到点,再沿线段个单位的速度运动到后停止,当点的坐标是多少时,点在整个运动中用时最少?解:(Ⅰ)把,代入,得 ,解得:.抛物线的解析式为 联立,解得:或,点的坐标为.如图1.,,,,,,22y x mx n =++32y x =-+A B x D C AC BC (0,3)A (3,0)C tan BAC ∠P y PA P PQ PA ⊥y Q P A P Q ACB ∆P E AC DE M D DE E EA A E M (0,3)A (3,0)C 212y x mx n =++31902n mx n =⎧⎪⎨⨯++=⎪⎩523m n ⎧=-⎪⎨⎪=⎩∴215322y x x =-+213215322y x y x x ⎧=-+⎪⎪⎨⎪=-+⎪⎩03x y =⎧⎨=⎩41x y =⎧⎨=⎩∴B (4,1)(3,0)C (4,1)B (0,3)A 220AB ∴=22BC =218AC =,是直角三角形,,;(Ⅱ)方法一:(1)存在点,使得以,,为顶点的三角形与相似. 过点作轴于,则.设点的横坐标为,由在轴右侧可得,则. ,,.若点在点的下方,①如图2①,当时,则. ,, ,.. 则.把代入,得 ,整理得:解得:(舍去),(舍去). ②如图2②,当时,则. 同理可得:,则,把代入,得,整理得:解得:(舍去),,,; 若点在点的上方,①当时,则,同理可得:点的坐标为.②当时,则.同理可得:点的坐标为,.综上所述:满足条件的点的坐标为、,、,;方法二:作的“外接矩形” ,易证,, 222BC AC AB ∴+=ABC ∴∆90ACB ∴∠=︒1tan 3BC BAC AC ∴∠===P A P Q ACB ∆P PG y ⊥G 90PGA ∠=︒P x P y 0x >PG x =PQ PA ⊥90ACB ∠=︒90APQ ACB ∴∠=∠=︒G A PAQ CAB ∠=∠PAQ CAB ∆∆∽90PGA ACB ∠=∠=︒PAQ CAB ∠=∠PGA BCA ∴∆∆∽∴13PG BC AG AC ==33AG PG x ∴==(,33)P x x -(,33)P x x -215322y x x =-+21533322x x x -+=-20x x +=10x =21x =-PAQ CBA ∠=∠PAQ CBA ∆∆∽1133AG PG x ==1(,3)3P x x -1(,3)3P x x -215322y x x =-+215133223x x x -+=-21303x x -=10x =2133x =13(3P ∴14)9G A PAQ CAB ∠=∠PAQ CAB ∆∆∽P (11,36)PAQ CBA ∠=∠PAQ CBA ∆∆∽P 17(3P 44)9P (11,36)13(314)917(344)9APQ ∆AQGH AHP QGP ∆∆∽∴AP HPPQ QG=以,,为顶点的三角形与相似,或,设,,,①,,,, ②,,,(舍, 满足题意的点的坐标为、,、,;(2)方法一:过点作轴于,如图3. 在中,,即, 点在整个运动中所用的时间为. 作点关于的对称点,连接,则有,,,,.根据两点之间线段最短可得:当、、三点共线时,最小.此时,,四边形是矩形, ,.对于, 当时,有,解得:,.,,,,点的坐标为.A P Q ACB ∆∴13AP HP BC PQ QG AC ===3AP HP ACPQ QG BC===2(2,253)P t t t -+(0,3)A (2,3)H t 13HP QG =232531||23t t t --+∴=11323t ∴=21723t =3HPQG=23253||32t t t --+∴=1211t ∴=221t =-)∴P (11,36)13(314)917(344)9E EN y ⊥N Rt ANE∆sin 45EN AE AE =⋅︒=AE ∴M 1DE DE EN =+D AC D 'D E 'D E DE '=D C DC '=45D CA DCA ∠'=∠=︒90D CD ∴∠'=︒DE EN D E EN +='+D 'E N DE EN D E EN +='+90D CD D NO NOC ∠'=∠'=∠=︒∴OCD N '3ND OC ∴'==ON D C DC ='=215322y x x =-+0y =2153022x x -+=12x =23x =(2,0)D ∴2OD =321ON DC OC OD ∴==-=-=312NE AN AO ON ∴==-=-=∴E(2,1)方法二:作点关于的对称点,交于点,显然, 作轴,垂足为,交直线于点,如图4, 在中,,即, 当、、三点共线时,最小,,,,,,,,,,,, 为的中点,,,.方法三:如图,5,过作射线轴,过作射线轴,与交于点. ,,.,,,,..当且仅当时,在整个运动中用时最少为:, 抛物线的解析式为,且,可求得点坐标为 则点横坐标为2,将代入,得.所以.12.(2020·四川乐山市·中考真题)已知抛物线与轴交于,两点,为抛物线的顶点,抛物线的对称轴交轴于点,连结,且,如图所示.(1)求抛物线的解析式;(2)设是抛物线的对称轴上的一个动点.①过点作轴的平行线交线段于点,过点作交抛物线于点,连结、,求的面积的最大值;②连结,求的最小值.D AC D 'DD 'AC M DE D E ='D N y '⊥N AC E Rt ANE∆sin 452EN AE AE =⋅︒=AE ∴D 'E N DE EN D E EN +='+(0,3)A (3,0)C :3AC l y x ∴=-+(,3)M m m ∴-+(2,0)D DM AC ⊥1DM AC K K ∴⨯=-3112m m -+∴-⨯=--52m ∴=5(2M ∴1)2M DD '(3,1)D ∴'1Y Y E D ='=(2,1)E ∴A //AF x D //DF y DF AC E (0,3)A (3,0)C :3AC l y x ∴=-+OA OC =90AOC ∠=︒45ACO ∴∠=︒//AF OC 45FAE ∴∠=︒sin 45EF AE ∴=⋅︒∴AF DF ⊥DE EF +M 1DE t DE EF ==+215322y x x =-+(3,0)C ∴D (2,0)E 2x =:3AC l y x =-+1y =(2,1)E 2y ax bx c =++x (1,0)A -(50)B ,C xD BC 4tan 3CBD ∠=P P x BC E E EF PE ⊥F FB FC BCF ∆PB 35PC PB +【答案】(1);(2)①;②. 【分析】(1)先函数图象与x 轴交点求出D 点坐标,再由求出C 点坐标,用待定系数法设交点式,将C 点坐标代入即可求解;(2)①先求出BC 的解析式,设E 坐标为,则F 点坐标为,进而用t 表示出的面积,由二次函数性质即可求出最大值;②过点作于,由可得,由此可知当BPH 三点共线时的值最小,即过点作于点,线段的长就是的最小值,根据面积法求高即可.【详解】解:(1)根据题意,可设抛物线的解析式为:, ∵是抛物线的对称轴,∴,又∵,∴,即,代入抛物线的解析式,得,解得 ,∴二次函数的解析式为 或; (2)①设直线的解析式为 ,∴ 解得241620999y x x =-++322454tan 3CBD ∠=42033=-+y x 420,33t t ⎛⎫-+ ⎪⎝⎭241620999,t t t ⎛⎫ ⎪⎝-+⎭+BCF ∆P PG AC ⊥G 3sin 5PG PC ACD PC =⋅∠=35PC PB PG PB +=+35PC PB +B BH AC ⊥H BH 35PC PB +(1)(5)y a x x =+-CD (20)D ,4tan 3CBD ∠=tan 4CD BD CBD =⋅∠=(24)C ,4(21)(25)a =+-49a =-4(1)(5)9y x x =-+-241620999y x x =-++BC y kx b =+0542.k b k b =+⎧⎨=+⎩,4320.3k b ⎧=-⎪⎪⎨⎪=⎪⎩,即直线的解析式为 ,设E 坐标为,则F 点坐标为, ∴, ∴的面积 ∴, ∴当时,的面积最大,且最大值为; ②如图,连接,根据图形的对称性可知 ,,∴,过点作于,则在中,, ∴,再过点作于点,则, ∴线段的长就是的最小值,∵, 又∵,∴,即,∴的最小值为. 【点睛】此题主要考查了二次函数的综合题型,其中涉及了待定系数法求解析式和三角形的面积最大值求法、线段和的最值问题.解(1)关键是利用三角函数求出C 点坐标,解(2)关键是由点E 、F 坐标表示线段EF 长,从而得到三角形面积的函数解析式,解(3)的难点BC 42033=-+y x 420,33t t ⎛⎫-+ ⎪⎝⎭241620999,t t t ⎛⎫⎪⎝-+⎭+22420341620428409999993EF t t t t t =-++-=-+⎛⎫⎛⎫-+ ⎪ ⎪⎝⎭-⎝⎭BCF ∆21142840322999S EF BD t t ⎛⎫=⨯⨯=-+- ⎪⎝⎭2273()322S t =--+72t =BCF∆32AC ACD BCD ∠=∠5AC BC ==3sin 5AD ACD AC ∠==P PG AC ⊥G Rt PCG ∆3sin 5PG PC ACD PC =⋅∠=35PC PB PG PB +=+B BH AC ⊥H PG PH BH +≥BH 35PC PB +11641222ABC S AB CD ∆=⨯⨯=⨯⨯=1522ABC S AC BH BH ∆=⨯⨯=5122BH =245BH =35PC PB +245是将的最小值转化为点B 到AC 的距离. 13.(2021·四川达州市·中考真题)如图,在平面直角坐标系中,抛物线交轴于点和,交轴于点,抛物线的对称轴交轴于点,交抛物线于点.(1)求抛物线的解析式;(2)将线段绕着点沿顺时针方向旋转得到线段,旋转角为,连接,,求的最小值.(3)为平面直角坐标系中一点,在抛物线上是否存在一点,使得以,,,为顶点的四边形为矩形?若存在,请直接写出点的横坐标;若不存在,请说明理由; 【答案】(1);(2);(3)存在,点的横坐标分别为:2,,. 【分析】(1)待定系数法求二次函数解析式,设解析式为将,两点代入求得,c 的值即可;(2)胡不归问题,要求的值,将折线化为直线,构造相似三角形将转化为,再利用三角形两边之和大于第三边求得最值;(3)分2种情形讨论:①AB 为矩形的一条边,利用等腰直角三角形三角形的性质可以求得N 点的坐标;35PC PB +2y x bx c =-++xA ()1,0C y ()0,3B x E F OE О'OE ()090αα︒<<︒'AE 'BE 13''BE AE +M N A B M N N 223y x x =--+3N 1-2y x bx c =-++()1,0C ()0,3B b 13''BE AE +13'AE 13'DE 13''BE AE +②AB 为矩形的对角线,设R 为AB 的中点,RN =AB ,利用两点距离公式求解方程可得N 点的坐标.【详解】解:(1)∵过,∴∴,∴抛物线的解析式为: (2)在上取一点,使得,连接,∵对称轴.∴, ,∴,∴ ∴ ∴ 当,,三点在同一点直线上时,最小为. 在中,, ∴ 即. (3)情形①如图,AB 为矩形的一条边时,联立得 是等腰,122y x bx c =-++()1,0C ()0,3B 103b c c -++=⎧⎨=⎩2b =-3c =223y x x =--+OE D 13OD OE ='AE BD 11'33OD OE OE ==3112x -+==-()1,0E -1OE ='1OE OE ==3OA ='1'3OE OD OA OE ==''DOE E OA ∠=∠''DOE E OA ∆∆∽1''3DE AE =1''''3BE AE BE DE +=+B 'E D ''BE DE +BD Rt BOD ∆13OD =3OB =3BD ===13''BE AE +2023y y x x =⎧⎨=--+⎩31,00x x y y =-=⎧⎧⎨⎨==⎩⎩(3,0),3A OA ∴-=3OB =ABO ∴Rt 45BAO ∠=︒分别过 两点作的垂线,交于点,过作轴,轴,,也是等腰直角三角形 设,则,所以代入,解得,(不符题意,舍)同理,设,则 ,所以代入,解得,(不符题意,舍)② AB 为矩形的对角线,设R 为AB 的中点,则 ,设 ,则整理得: 解得:(不符题意,舍),(不符题意,舍),, 综上所述:点的横坐标分别为:2,,或. 【点睛】本题考查了二次函数的性质,待定系数法求解析式,三角形相似,勾股定理,二次函数与一次函数交点,矩形的性质,等腰直角三角形性质,平面直角坐标系中两点距离计算等知识,能正确做出辅助线,找到相似三角形是解题的关键.,A B AB 223y x x =--+12,N N 12,N N 1N Qy ⊥2N P x ⊥1245QBN PAN ∴∠=∠=︒∴1BN Q △2AN P △QB m =1N Q m =1(,3)N m m -+223y x x =--+11m =20m =∴1(1,4)N -OP n ==3PN n +2(,3)N n n --223y x x =--+1n 2=23n =-2(2,-5)N ∴12RN AB =()3,0,()0,3A B -33(,)22R ∴-AB ==122RB AB ∴==12RN AB ==2RN ∴2(,23)N x x x --+222233()(2)22x x x +++-=2(3)(1)0x x x x ++-=1=0x 23x =-31=2x -+41=2x --∴N 1-12-12-14.(2022·广西·南宁三中一模)如图,二次函数21y ax bx =++的图象交x 轴于点()2,0A -、()10B ,,交y 轴于点C ,点D 是第四象限内抛物线上的动点,过点D 作//DE y 轴交x 轴于点E ,线段CB 的延长线交DE 于点M ,连接OM 、BD 交于点N ,连接AD .(1)求二次函数的表达式;(2)当OEM DBES S=时,求点D 的坐标及sin DAE ∠;(3)在(2)的条件下,点P 是x轴上一个动点,求DP 的最小值.OEM DBES S=,△OE【点睛】主要考查了待定系数法求函数的解析式,函数图象上点的坐标特征,勾股定理,垂.(广东东莞市三模)已知,如图,二次函数图像交轴于,交y 交轴于点(0,3)C ,D 是抛物线的顶点,对称轴DF 经过x 轴上的点(1,0)F .(1)求二次函数关系式;(2)对称轴DF 与BC 交于点M ,点P 为对称轴DF 上一动点.①求AP 的最小值及取得最小值时点P 的坐标;②在①的条件下,把APF 沿着x 轴向右平移t 个单位长度(04)t ≤≤时,设APF 与MBF重叠部分面积记为S ,求S 与t 之间的函数表达式,并求出S 的最大值.11的直径AB在线段AE上.(1)证明:CE是⊙O的切线;(2)若△ACE中AE边上的高为h,试用含h的代数式表示⊙O的直径AB;(3)设点D是线段AC上任意一点(不含端点),连接OD,当+OD的最小值为6时,求⊙O的直径AB的长.【答案】(1)见解析;(2)(3)AB=【解析】(1)连接OC,如图,∵CA=CE,∠CAE=30°,∴∠E=∠CAE=30°,∠COE=2∠A=60°,∴∠OCE=90°,∴CE 是⊙O的切线;(2)过点C作CH⊥AB于H,连接OC,如图,由题可得CH=h.在Rt△OHC中,CH=OC•sin∠COH,∴h=OC•sin60°=,∴OC=h,∴AB=2OC=h;(3)作OF平分∠AOC,交⊙O于F,连接AF、CF、DF,如图,则∠AOF=∠COF=∠AOC=180°﹣60°)=60°.∵OA=OF=OC,∴△AOF、△COF是等边三角形,∴AF=AO=OC=FC,∴四边形AOCF是菱形,∴根据对称性可得DF=DO.过点D作DH⊥OC于H,∵OA=OC,∴∠OCA=∠OAC=30°,∴DH=DC•sin∠DCH=DC•sin30°=,∴+OD=DH+FD.根据两点之间线段最短可得:当F、D、H三点共线时,DH+FD CD+OD)最小,此时FH=OF•sin∠FOH==6,则OF=4,AB=2OF=8.∴当+OD的最小值为6时,⊙O的直径AB的长为8.。
几何最值问题复习本内容全部需要在做讲义题目之前进行一、读一读下面的内容,想一想1.解决几何最值问题的理论依据①两点之间,线段最短(已知两个定点);②_______________(已知一个定点、一条定直线);③三角形三边关系(已知两边长固定或其和、差固定).2.几何最值问题常见的基本结构①利用几何变换进行转化——在右侧一栏中画出相关分析的辅助线,找到最终时刻点P的位置B BA AP l P l,异侧和最小求(P A+PB)minB BA AM N l M N lMN为固定线段长,求(AM+BN)minA AP l P lB B,同侧差最大求PB-P Amax②利用图形性质进行转化M AO 求ODDCB N max不变特征:Rt△AOB中,直角与斜边长均不变,取斜边中点进行分析.二、还原自己做最值问题的过程(从拿到题目读题开始),与下面小明的动作对标,补充或调整与自己不一样的地方.①研究背景图形,相关信息进行标注;②分析考查目标中的定点、动点及图形特征,利用几何变换或图形性质对问题进行分析;③封装常见的几何结构,当成一个整体处理,后期直接调用分析.三、根据最值问题做题的思考过程,思考最值问题跟存在性问题、动点问题在分析过程中有什么样的区别和联系,简要写一写你的看法.答:下面是小明的看法:①都需要分层对问题分析,一层层,一步步进行分析;②都需要研究基本图形,目标,条件,相关信息都需要有标注;③在画图分析时,都会使用与之有关的性质,判定,定理及公理.如存在性问题需要用四边形的判定;最值问题需要回到问题处理的理论依据.四、借助对上述问题的思考,做讲义的题目.几何最值问题(讲义)一、知识点睛解决几何最值问题的通常思路:1.分析定点、动点,寻找不变特征.2.若属于常见模型、结构,调用模型、结构解决问题;若不属于常见模型,结合所求目标,依据不变特征转化,借助基本定理解决问题.转化原则:尽量减少变量,向定点、定线段、定图形靠拢.二、精讲精练1.如图,在ABC中,AB=6,AC=8,BC=10,P为BC边上一动点,PE⊥AB于点E,PF⊥AC于点F.若M为EF的中点,则AM长度的最小值为____________.C BC CA EFE M D OB PC B A第1题图第2题图2.如图,在Rt△ABC中,∠B=90°,AB=3,BC=4,点D在BC边上,则以AC为对角线的所有□ADCE中,DE长度的最小值为_____________.3.若点D与点A(8,0),B(0,6),C(a,a)是一平行四边形的四个顶点,则CD长度的最小值为_____________.4.如图,已知AB=2,C是线段AB上任一点,分别以AC,BC为斜边,在AB的同侧作等腰直角三角形ACD和等腰直角三角形BCE,则DE长度的最小值为_____________.PE QDAA B第4题图第5题图5.如图,已知AB=10,C是线段AB上任一点,分别以AC,BC为边,在AB的同侧作等边三角形ACP和等边三角形BCQ,则PQ长度的最小值为_____________.6.动手操作:在矩形纸片ABCD中,AB=3,AD=5.如图所示,折叠纸片,使点A落在BC边上的A′处,折痕为PQ,当点A′在BC边上移动时,折痕的端点P,Q也随之移动.若限定点P,Q分别在AB,AD边上移动,则点A′在BC边上可移动的最大距离为________________.B A'C B CPA Q D A D7.如图,在直角梯形纸片ABCD中,AD⊥AB,AB=8,AD=CD=4,点E,F分别在线段AB,AD上,将△AEF沿EF翻折,点A的对应点记为P.(1)当点P落在线段CD上时,PD的取值范围是_______.(2)当点P落在直角梯形ABCD内部时,PD长度的最小值为_____________.D P C D CF FPA EB A E BD C D CA B A B8.如图,在Rt△ABC中,∠ACB=90°,∠A=30°,AC=43,BC的中点为△D.将ABC绕点C顺时针旋转任意一个角度得到△FEC,EF的中点为G,连接DG,则在旋转过程中,DG长度的最大值为____________.yAB EDG BEDCC A O xF9.如图,已知ABC是边长为2的等边三角形,顶点A的坐标为(0,6),BC的中点D在点A下方的y轴上,E是边长为2且中心在坐标原点的正六边形的一个顶点,把这个正六边形绕其中心旋转一周,则在旋转过程中DE长度的最小值为_________.10.探究:如图1,在等边三角形ABC中,AB=6,AH⊥BC于点H,则AH=_______,△ABC的面积S△ABC__________.发现:如图2,在等边三角形ABC中,AB=6,点D在AC边上(可与点A,C重合),分别过点A,C作直线BD的垂线,垂足分别为点E,F,设BD=x,AE=m,CF=n.AAFE DB HC B C图1图2(1)用含x,m,n的代数式表示S△ABD 及S△CBD;(2)求(m+n)与x之间的函数关系式,并求出(m+n)的最大值和最小值.D C 应用:如图,已知正方形ABCD的边长为1,P是BC边上的任一点(可与点B,C重合),分别过点B,C,D作射线AP的垂线,垂足分别为点B′,C′,D′,则BB′+CC′+DD′的最大值为______,A D'B'P C'B最小值为______.三、回顾与思考________________________________________________ ________________________________________________ ________________________________________________【参考答案】精讲精练1.12 52.3 3.72 4.1△S ABD = 1发现:(1) xm , △SCBD= 25.56.27.(1) 8 - 4 3 ≤ PD ≤ 4 ;(2) 4 5 - 8 8.69. 4 - 310.探究: 3 3 , 9 31 2xn(2) m + n =应用:2, 218 3 x;m +n 的最大值为 6,最小值为 3 3。