立体几何中的计算问题
- 格式:doc
- 大小:107.00 KB
- 文档页数:2
初中数学知识归纳立体几何体的计算立体几何是初中数学中重要的内容之一,它涉及到对立体几何体的计算。
本文将从不同类型的立体几何体入手,归纳总结它们的计算方法。
I. 定义立体几何体是具有三个维度(高度、宽度和长度)的实体物体。
在数学中,常见的立体几何体包括球体、圆柱体、圆锥体、正方体、长方体等。
II. 体积计算1. 球体的体积计算球体的体积计算公式为:V = (4/3)πr³,其中V表示体积,π表示圆周率,r表示球体的半径。
示例:已知球体的半径为5cm,求其体积。
解:V = (4/3) ×3.14 × 5³ ≈ 523.33cm³2. 圆柱体的体积计算圆柱体的体积计算公式为:V = πr²h,其中V表示体积,π表示圆周率,r表示底面半径,h表示高度。
示例:已知圆柱体的底面半径为6cm,高度为10cm,求其体积。
解:V = 3.14 × 6² × 10 = 1130.4cm³3. 圆锥体的体积计算圆锥体的体积计算公式为:V = (1/3)πr²h,其中V表示体积,π表示圆周率,r表示底面半径,h表示高度。
示例:已知圆锥体的底面半径为4cm,高度为8cm,求其体积。
解:V = (1/3) × 3.14 × 4² × 8 ≈ 267.79cm³4. 正方体的体积计算正方体的体积计算公式为:V = a³,其中V表示体积,a表示边长。
示例:已知正方体的边长为7cm,求其体积。
解:V = 7³ = 343cm³5. 长方体的体积计算长方体的体积计算公式为:V = lwh,其中V表示体积,l表示长度,w表示宽度,h表示高度。
示例:已知长方体的长度为6cm,宽度为4cm,高度为9cm,求其体积。
解:V = 6 × 4 × 9 = 216cm³III. 表面积计算1. 球体的表面积计算球体的表面积计算公式为:S = 4πr²,其中S表示表面积,π表示圆周率,r表示球体的半径。
立体几何题型及解题方法
立体几何是数学中研究三维空间几何图形的学科。
以下是一些常见的立体几何题型及其解题方法:
1. 计算体积和表面积:这类题目通常涉及到三维空间中的几何形状,如长方体、圆柱体、圆锥体等。
解题方法包括使用体积和表面积的公式,以及根据题目描述建立数学模型。
2. 证明定理和性质:这类题目通常涉及到几何图形的性质和定理,如平行线性质、勾股定理等。
解题方法包括使用已知定理和性质进行推导,以及通过构造辅助线或辅助图形来证明。
3. 求解最值问题:这类题目通常涉及到求几何图形中的最值,如最短路径、最大面积等。
解题方法包括使用不等式、极值定理和优化方法等。
4. 判定和性质应用:这类题目通常涉及到判定几何图形是否满足某个性质,或应用某个性质到实际场景中。
解题方法包括根据性质进行推导和判断,以及根据实际场景建立数学模型。
以上是一些常见的立体几何题型及其解题方法,当然还有其他的题型和解题方法。
在解决立体几何问题时,需要灵活运用几何知识和方法,多做练习,提高自己的解题能力。
高中数学立体几何体积和表面积计算技巧在高中数学中,立体几何是一个重要的内容,其中计算几何体的体积和表面积是必不可少的技巧。
本文将介绍一些常见的计算技巧,并通过具体的题目来说明这些技巧的应用。
一、立体几何体的体积计算技巧1. 直接计算法对于常见的几何体,如长方体、正方体、圆柱体、圆锥体和球体,可以直接使用相应的公式进行计算。
举例来说,如果要计算一个长方体的体积,可以使用公式 V = lwh,其中 l、w 和 h 分别表示长方体的长、宽和高。
如果已知长方体的长为 6 cm,宽为 4 cm,高为 3 cm,则可以直接代入公式计算得到体积 V = 6 × 4 × 3 = 72 cm³。
2. 分割法对于复杂的几何体,可以通过将其分割成若干简单的几何体来计算体积。
这种方法常用于计算不规则体的体积。
举例来说,如果要计算一个由三棱锥和一个正方体组成的复合体的体积,可以先计算三棱锥的体积,再计算正方体的体积,最后将两者相加。
3. 单位体积法对于一些特殊的几何体,可以利用单位体积的性质来计算体积。
这种方法常用于计算球台、球冠等几何体的体积。
举例来说,如果要计算一个球台的体积,可以先计算整个球的体积,再减去球冠的体积。
具体计算步骤如下:步骤一:计算整个球的体积,使用公式V = (4/3)πr³,其中 r 表示球的半径。
步骤二:计算球冠的体积,使用公式V = (1/3)πh²(3r - h),其中 h 表示球台的高度。
步骤三:将步骤一的结果减去步骤二的结果,即可得到球台的体积。
二、立体几何体的表面积计算技巧1. 直接计算法对于常见的几何体,可以直接使用相应的公式进行表面积的计算。
举例来说,如果要计算一个长方体的表面积,可以使用公式 S = 2lw + 2lh +2wh,其中 l、w 和 h 分别表示长方体的长、宽和高。
如果已知长方体的长为 6 cm,宽为 4 cm,高为 3 cm,则可以直接代入公式计算得到表面积 S = 2(6×4) + 2(6×3) +2(4×3) = 108 cm²。
理科立体几何计算题一.解答题(共30小题)1.如图,在四棱锥P﹣ABCD中,AD⊥平面PDC,AD∥BC,PD⊥PB,AD=1,BC=3,CD=4,PD=2.(Ⅰ)求异面直线AP与BC所成角的余弦值;(Ⅱ)求证:PD⊥平面PBC;(Ⅲ)求直线AB与平面PBC所成角的正弦值.2.如图,已知四棱锥P﹣ABCD,△PAD是以AD为斜边的等腰直角三角形,BC ∥AD,CD⊥AD,PC=AD=2DC=2CB,E为PD的中点.(Ⅰ)证明:CE∥平面PAB;(Ⅱ)求直线CE与平面PBC所成角的正弦值.3.如图,四棱锥P﹣ABCD中,侧面PAD为等边三角形且垂直于底面ABCD,AB=BC= AD,∠BAD=∠ABC=90°,E是PD的中点.(1)证明:直线CE∥平面PAB;(2)点M在棱PC 上,且直线BM与底面ABCD所成角为45°,求二面角M﹣AB﹣D的余弦值.4.如图,在平行六面体ABCD﹣A1B1C1D1中,AA1⊥平面ABCD,且AB=AD=2,AA1=,∠BAD=120°.(1)求异面直线A1B与AC1所成角的余弦值;(2)求二面角B﹣A1D﹣A的正弦值.5.如图,四面体ABCD中,△ABC是正三角形,△ACD是直角三角形,∠ABD=∠CBD,AB=BD.(1)证明:平面ACD⊥平面ABC;(2)过AC的平面交BD于点E,若平面AEC把四面体ABCD分成体积相等的两部分,求二面角D﹣AE﹣C的余弦值.6.如图,在四棱锥P﹣ABCD中,底面ABCD为正方形,平面PAD⊥平面ABCD,点M在线段PB上,PD∥平面MAC,PA=PD=,AB=4.(1)求证:M为PB的中点;(2)求二面角B﹣PD﹣A的大小;(3)求直线MC与平面BDP所成角的正弦值.7.如图,几何体是圆柱的一部分,它是由矩形ABCD(及其内部)以AB边所在直线为旋转轴旋转120°得到的,G是的中点.(Ⅰ)设P是上的一点,且AP⊥BE,求∠CBP的大小;(Ⅱ)当AB=3,AD=2时,求二面角E﹣AG﹣C的大小.8.如图,在四棱锥P﹣ABCD中,AB∥CD,且∠BAP=∠CDP=90°.(1)证明:平面PAB⊥平面PAD;(2)若PA=PD=AB=DC,∠APD=90°,求二面角A﹣PB﹣C的余弦值.9.如图,在三棱锥P﹣ABC中,PA⊥底面ABC,∠BAC=90°.点D,E,N分别为棱PA,PC,BC的中点,M是线段AD的中点,PA=AC=4,AB=2.(Ⅰ)求证:MN∥平面BDE;(Ⅱ)求二面角C﹣EM﹣N的正弦值;(Ⅲ)已知点H在棱PA上,且直线NH与直线BE所成角的余弦值为,求线段AH的长.10.如图所示,在四棱锥P﹣ABCD中,底面ABCD为矩形,PA⊥平面ABCD,点E在线段PC上,PC⊥平面BDE,设PA=1,AD=2.(1)求平面BPC的法向量;(2)求二面角B﹣PC﹣A的正切值.11.在三棱柱ABC﹣A1B1C1中,侧面ABB1A1为矩形,AB=,AA1=2,D为AA1的中点,BD与AB1交于点O,CO⊥侧面ABB1A1.(1)证明:CD⊥AB1;(2)若OC=OA,求直线C1D与平面ABC所成角的正弦值.12.如图,三棱柱ABC﹣A1B1C1中,CA=CB,AB=AA1,∠BAA1=60°.(Ⅰ)证明:AB⊥A1C;(Ⅱ)若平面ABC⊥平面AA1B1B,AB=CB,求直线A1C与平面BB1C1C所成角的正弦值.13.如图,平行四边形ABCD中,BC=2AB=4,∠ABC=60°,PA⊥AD,E,F分别为BC,PE的中点,AF⊥平面PED.(1)求证:PA⊥平面ABCD;(2)求直线BF与平面AFD所成角的正弦值.14.如图,在四棱锥P﹣ABCD中,底面ABCD是平行四边形,∠BCD=135°,侧面PAB⊥底面ABCD,∠BAP=90°,AB=AC=PA=2,E,F分别为BC,AD的中点,点M在线段PD上.(Ⅰ)求证:EF⊥平面PAC;(Ⅱ)如果直线ME与平面PBC所成的角和直线ME与平面ABCD所成的角相等,求的值.15.如图,在四棱锥中P﹣ABCD,PA⊥平面ABCD,AD∥BC,AD⊥CD,且AD=CD=2,BC=4,PA=2.(1)求证:AB⊥PC;(2)在线段PD上,是否存在一点M,使得二面角M﹣AC﹣D的大小为45°,如果存在,求BM与平面MAC所成角的正弦值,如果不存在,请说明理由.16.如图,在多面体ABCDM中,△BCD是等边三角形,△CMD是等腰直角三角形,∠CMD=90°,平面CMD⊥平面BCD,AB⊥平面BCD.(Ⅰ)求证:CD⊥AM;(Ⅱ)若AM=BC=2,求直线AM与平面BDM所成角的正弦值.17.如图,四棱锥P﹣ABCD中,底面ABCD为菱形,PD=AD,∠DAB=60°,PD⊥底面ABCD.(1)求证AC⊥PB;(2)求PA与平面PBC所成角的正弦值.18.如图所示,已知斜三棱柱ABC﹣A1B1C1的各棱长均为2,侧棱与底面所成角为,且侧面ABB1A1垂直于底面.(1)判断B1C与C1A是否垂直,并证明你的结论;(2)求四棱锥B﹣ACC1A1的体积.19.在三棱柱ABC﹣A1B1C1中,CA=CB,侧面ABB1A1是边长为2的正方形,点E,F分别在线段AA1、A1B1上,且AE=,A1F=,CE⊥EF.(Ⅰ)证明:平面ABB1A1⊥平面ABC;(Ⅱ)若CA⊥CB,求直线AC1与平面CEF所成角的正弦值.20.如图,四棱锥E﹣ABCD中,平面EAD⊥平面ABCD,DC∥AB,BC⊥CD,EA ⊥ED,且AB=4,BC=CD=EA=ED=2.(1)求证:BD⊥平面ADE;(2)求直线BE和平面CDE所成角的正弦值.21.如图,在以A,B,C,D,E,F为顶点的多面体中,AF⊥平面ABCD,DE⊥平面ABCD,AD∥BC,AB=CD,∠ABC=60°,BC=AF=2AD=4DE=4.(Ⅰ)请在图中作出平面α,使得DE⊂α,且BF∥α,并说明理由;(Ⅱ)求直线EF与平面BCE所成角的正弦值.22.如图,在四棱锥中S﹣ABCD中,AB⊥AD,AB∥CD,CD=3AB=3,平面SAD⊥平面ABCD,E是线段AD上一点,AE=ED=,SE⊥AD.(1)证明:平面SBE⊥平面SEC(2)若SE=1,求直线CE与平面SBC所成角的正弦值.23.如图,在四棱锥A﹣BCED中,AD⊥底面BCED,BD⊥DE,∠DBC=∠BCE═60°,BD=2CE.(1)若F是AD的中点,求证:EF∥平面ABC;(2)若AD=DE,求BE与平面ACE所成角的正弦值.24.在四边形ABCD中,对角线AC,BD垂直相交于点O,且OA=OB=OD=4,OC=3.将△BCD沿BD折到△BED的位置,使得二面角E﹣BD﹣A的大小为90°(如图).已知Q为EO的中点,点P在线段AB上,且.(Ⅰ)证明:直线PQ∥平面ADE;(Ⅱ)求直线BD与平面ADE所成角θ的正弦值.25.如图所示,在三棱柱ABC﹣A1B1C1中,AA1B1B为正方形,BB1C1C为菱形,B1C ⊥AC1.(Ⅰ)求证:平面AA1B1B⊥平面BB1C1C;(Ⅱ)若D是CC1中点,∠ADB是二面角A﹣CC1﹣B的平面角,求直线AC1与平面ABC所成角的余弦值.26.等腰三角形ABC,E为底边BC的中点,沿AE折叠,如图,将C折到点P的位置,使P﹣AE﹣C为120°,设点P在面ABE上的射影为H.(1)证明:点H为EB的中点;(2))若,求直线BE与平面ABP所成角的正弦值.27.圆O上两点C,D在直径AB的两侧(如图甲),沿直径AB将圆O折起形成一个二面角(如图乙),若∠DOB的平分线交弧于点G,交弦BD于点E,F为线段BC的中点.(Ⅰ)证明:平面OGF∥平面CAD;(Ⅱ)若二面角C﹣AB﹣D为直二面角,且AB=2,∠CAB=45°,∠DAB=60°,求直线FG与平面BCD所成角的正弦值.28.如图,在四棱锥P﹣ABCD中,AB⊥平面BCP,CD∥平面ABP,AB=BC=CP=BP=2CD=2.(Ⅰ)证明:平面BAP⊥平面DAP;(Ⅱ)点M为线段AB(含端点)上一点,设直线MP与平面DCP所成角为α,求sinα的取值范围.29.如图所示,四棱锥P﹣ABCD的底面是梯形,且AB∥CD,AB⊥平面PAD,E 是PB中点,CD=PD=AD=AB.(Ⅰ)求证:CE⊥平面PAB;(Ⅱ)若CE=,AB=4,求直线CE与平面PDC所成角的大小.30.如图,多面体ABCDE中,AB⊥面ACD,DE⊥面ACD;三角形ACD是正三角形,且AD=DE=2,AB=1(1)求直线AE和面CDE所成角的正切值;(2)求多面体ABCDE的体积;(3)判断直线CB和AE能否垂直,证明你的结论.理科立体几何计算题参考答案与试题解析一.解答题(共30小题)1.(2017•天津)如图,在四棱锥P﹣ABCD中,AD⊥平面PDC,AD∥BC,PD⊥PB,AD=1,BC=3,CD=4,PD=2.(Ⅰ)求异面直线AP与BC所成角的余弦值;(Ⅱ)求证:PD⊥平面PBC;(Ⅲ)求直线AB与平面PBC所成角的正弦值.【解答】解:(Ⅰ)如图,由已知AD∥BC,故∠DAP或其补角即为异面直线AP与BC所成的角.因为AD⊥平面PDC,所以AD⊥PD.在Rt△PDA中,由已知,得,故.所以,异面直线AP与BC所成角的余弦值为.证明:(Ⅱ)因为AD⊥平面PDC,直线PD⊂平面PDC,所以AD⊥PD.又因为BC∥AD,所以PD⊥BC,又PD⊥PB,所以PD⊥平面PBC.解:(Ⅲ)过点D作AB的平行线交BC于点F,连结PF,则DF与平面PBC所成的角等于AB与平面PBC所成的角.因为PD⊥平面PBC,故PF为DF在平面PBC上的射影,所以∠DFP为直线DF和平面PBC所成的角.由于AD∥BC,DF∥AB,故BF=AD=1,由已知,得CF=BC﹣BF=2.又AD⊥DC,故BC⊥DC,在Rt△DCF中,可得.所以,直线AB与平面PBC所成角的正弦值为.2.(2017•浙江)如图,已知四棱锥P﹣ABCD,△PAD是以AD为斜边的等腰直角三角形,BC∥AD,CD⊥AD,PC=AD=2DC=2CB,E为PD的中点.(Ⅰ)证明:CE∥平面PAB;(Ⅱ)求直线CE与平面PBC所成角的正弦值.【解答】证明:(Ⅰ)取AD的中点F,连结EF,CF,∵E为PD的中点,∴EF∥PA,在四边形ABCD中,BC∥AD,AD=2DC=2CB,F为中点,∴CF∥AB,∴平面EFC∥平面ABP,∵EC⊂平面EFC,∴EC∥平面PAB.解:(Ⅱ)连结BF,过F作FM⊥PB于M,连结PF,∵PA=PD,∴PF⊥AD,推导出四边形BCDF为矩形,∴BF⊥AD,∴AD⊥平面PBF,又AD∥BC,∴BC⊥平面PBF,∴BC⊥PB,设DC=CB=1,则AD=PC=2,∴PB=,BF=PF=1,∴MF=,又BC⊥平面PBF,∴BC⊥MF,∴MF⊥平面PBC,即点F到平面PBC的距离为,∵MF=,D到平面PBC的距离应该和MF平行且相等,为,E为PD中点,E到平面PBC的垂足也为垂足所在线段的中点,即中位线,∴E到平面PBC的距离为,在,由余弦定理得CE=,设直线CE与平面PBC所成角为θ,则sinθ==.3.(2017•新课标Ⅱ)如图,四棱锥P﹣ABCD中,侧面PAD为等边三角形且垂直于底面ABCD,AB=BC=AD,∠BAD=∠ABC=90°,E是PD的中点.(1)证明:直线CE∥平面PAB;(2)点M在棱PC 上,且直线BM与底面ABCD所成角为45°,求二面角M﹣AB﹣D的余弦值.【解答】(1)证明:取PA的中点F,连接EF,BF,因为E是PD的中点,所以EF AD,AB=BC=AD,∠BAD=∠ABC=90°,∴BC∥AD,∴BCEF是平行四边形,可得CE∥BF,BF⊂平面PAB,CE⊄平面PAB,∴直线CE∥平面PAB;(2)解:四棱锥P﹣ABCD中,侧面PAD为等边三角形且垂直于底面ABCD,AB=BC=AD,∠BAD=∠ABC=90°,E是PD的中点.取AD的中点O,M在底面ABCD上的射影N在OC上,设AD=2,则AB=BC=1,OP=,∴∠PCO=60°,直线BM与底面ABCD所成角为45°,可得:BN=MN,CN=MN,BC=1,可得:1+BN2=BN2,BN=,MN=,作NQ⊥AB于Q,连接MQ,所以∠MQN就是二面角M﹣AB﹣D的平面角,MQ==,二面角M﹣AB﹣D的余弦值为:=.4.(2017•江苏)如图,在平行六面体ABCD﹣A1B1C1D1中,AA1⊥平面ABCD,且AB=AD=2,AA1=,∠BAD=120°.(1)求异面直线A1B与AC1所成角的余弦值;(2)求二面角B﹣A1D﹣A的正弦值.【解答】解:在平面ABCD内,过A作Ax⊥AD,∵AA1⊥平面ABCD,AD、Ax⊂平面ABCD,∴AA1⊥Ax,AA1⊥AD,以A为坐标原点,分别以Ax、AD、AA1所在直线为x、y、z轴建立空间直角坐标系.∵AB=AD=2,AA1=,∠BAD=120°,∴A(0,0,0),B(),C(,1,0),D(0,2,0),A1(0,0,),C1().=(),=(),,.(1)∵cos<>==.∴异面直线A1B与AC1所成角的余弦值为;(2)设平面BA1D的一个法向量为,由,得,取x=,得;取平面A1AD的一个法向量为.∴cos<>==.∴二面角B﹣A1D﹣A的正弦值为,则二面角B﹣A1D﹣A的正弦值为.5.(2017•新课标Ⅲ)如图,四面体ABCD中,△ABC是正三角形,△ACD是直角三角形,∠ABD=∠CBD,AB=BD.(1)证明:平面ACD⊥平面ABC;(2)过AC的平面交BD于点E,若平面AEC把四面体ABCD分成体积相等的两部分,求二面角D﹣AE﹣C的余弦值.【解答】(1)证明:如图所示,取AC的中点O,连接BO,OD.∵△ABC是等边三角形,∴OB⊥AC.△ABD与△CBD中,AB=BD=BC,∠ABD=∠CBD,∴△ABD≌△CBD,∴AD=CD.∵△ACD是直角三角形,∴AC是斜边,∴∠ADC=90°.∴DO=AC.∴DO2+BO2=AB2=BD2.∴∠BOD=90°.∴OB⊥OD.又DO∩AC=O,∴OB⊥平面ACD.又OB⊂平面ABC,∴平面ACD⊥平面ABC.(2)解:设点D,B到平面ACE的距离分别为h D,h E.则=.∵平面AEC把四面体ABCD分成体积相等的两部分,∴===1.∴点E是BD的中点.建立如图所示的空间直角坐标系.不妨取AB=2.则O(0,0,0),A(1,0,0),C(﹣1,0,0),D(0,0,1),B(0,,0),E.=(﹣1,0,1),=,=(﹣2,0,0).设平面ADE的法向量为=(x,y,z),则,即,取=.同理可得:平面ACE的法向量为=(0,1,).∴cos===﹣.∴二面角D﹣AE﹣C的余弦值为.6.(2017•北京)如图,在四棱锥P﹣ABCD中,底面ABCD为正方形,平面PAD ⊥平面ABCD,点M在线段PB上,PD∥平面MAC,PA=PD=,AB=4.(1)求证:M为PB的中点;(2)求二面角B﹣PD﹣A的大小;(3)求直线MC与平面BDP所成角的正弦值.【解答】(1)证明:如图,设AC∩BD=O,∵ABCD为正方形,∴O为BD的中点,连接OM,∵PD∥平面MAC,PD⊂平面PBD,平面PBD∩平面AMC=OM,∴PD∥OM,则,即M为PB的中点;(2)解:取AD中点G,∵PA=PD,∴PG⊥AD,∵平面PAD⊥平面ABCD,且平面PAD∩平面ABCD=AD,∴PG⊥平面ABCD,则PG⊥AD,连接OG,则PG⊥OG,由G是AD的中点,O是AC的中点,可得OG∥DC,则OG⊥AD.以G为坐标原点,分别以GD、GO、GP所在直线为x、y、z轴距离空间直角坐标系,由PA=PD=,AB=4,得D(2,0,0),A(﹣2,0,0),P(0,0,),C(2,4,0),B(﹣2,4,0),M(﹣1,2,),,.设平面PBD的一个法向量为,则由,得,取z=,得.取平面PAD的一个法向量为.∴cos<>==.∴二面角B﹣PD﹣A的大小为60°;(3)解:,平面PAD的一个法向量为.∴直线MC与平面BDP所成角的正弦值为|cos<>|=||=| |=.7.(2017•山东)如图,几何体是圆柱的一部分,它是由矩形ABCD(及其内部)以AB边所在直线为旋转轴旋转120°得到的,G是的中点.(Ⅰ)设P是上的一点,且AP⊥BE,求∠CBP的大小;(Ⅱ)当AB=3,AD=2时,求二面角E﹣AG﹣C的大小.【解答】解:(Ⅰ)∵AP⊥BE,AB⊥BE,且AB,AP⊂平面ABP,AB∩AP=A,∴BE⊥平面ABP,又BP⊂平面ABP,∴BE⊥BP,又∠EBC=120°,因此∠CBP=30°;(Ⅱ)解法一、取的中点H,连接EH,GH,CH,∵∠EBC=120°,∴四边形BECH为菱形,∴AE=GE=AC=GC=.取AG中点M,连接EM,CM,EC,则EM⊥AG,CM⊥AG,∴∠EMC为所求二面角的平面角.又AM=1,∴EM=CM=.在△BEC中,由于∠EBC=120°,由余弦定理得:EC2=22+22﹣2×2×2×cos120°=12,∴,因此△EMC为等边三角形,故所求的角为60°.解法二、以B为坐标原点,分别以BE,BP,BA所在直线为x,y,z轴建立空间直角坐标系.由题意得:A(0,0,3),E(2,0,0),G(1,,3),C(﹣1,,0),故,,.设为平面AEG的一个法向量,由,得,取z1=2,得;设为平面ACG的一个法向量,由,可得,取z 2=﹣2,得.∴cos<>=.∴二面角E﹣AG﹣C的大小为60°.8.(2017•新课标Ⅰ)如图,在四棱锥P﹣ABCD中,AB∥CD,且∠BAP=∠CDP=90°.(1)证明:平面PAB⊥平面PAD;(2)若PA=PD=AB=DC,∠APD=90°,求二面角A﹣PB﹣C的余弦值.【解答】(1)证明:∵∠BAP=∠CDP=90°,∴PA⊥AB,PD⊥CD,∵AB∥CD,∴AB⊥PD,又∵PA∩PD=P,且PA⊂平面PAD,PD⊂平面PAD,∴AB⊥平面PAD,又AB⊂平面PAB,∴平面PAB⊥平面PAD;(2)解:∵AB∥CD,AB=CD,∴四边形ABCD为平行四边形,由(1)知AB⊥平面PAD,∴AB⊥AD,则四边形ABCD为矩形,在△APD中,由PA=PD,∠APD=90°,可得△PAD为等腰直角三角形,设PA=AB=2a,则AD=.取AD中点O,BC中点E,连接PO、OE,以O为坐标原点,分别以OA、OE、OP所在直线为x、y、z轴建立空间直角坐标系,则:D(),B(),P(0,0,),C().,,.设平面PBC的一个法向量为,由,得,取y=1,得.∵AB⊥平面PAD,AD⊂平面PAD,∴AB⊥PD,又PD⊥PA,PA∩AB=A,∴PD⊥平面PAB,则为平面PAB的一个法向量,.∴cos<>==.由图可知,二面角A﹣PB﹣C为钝角,∴二面角A﹣PB﹣C的余弦值为.9.(2017•天津)如图,在三棱锥P﹣ABC中,PA⊥底面ABC,∠BAC=90°.点D,E,N分别为棱PA,PC,BC的中点,M是线段AD的中点,PA=AC=4,AB=2.(Ⅰ)求证:MN∥平面BDE;(Ⅱ)求二面角C﹣EM﹣N的正弦值;(Ⅲ)已知点H在棱PA上,且直线NH与直线BE所成角的余弦值为,求线段AH的长.【解答】(Ⅰ)证明:取AB中点F,连接MF、NF,∵M为AD中点,∴MF∥BD,∵BD⊂平面BDE,MF⊄平面BDE,∴MF∥平面BDE.∵N为BC中点,∴NF∥AC,又D、E分别为AP、PC的中点,∴DE∥AC,则NF∥DE.∵DE⊂平面BDE,NF⊄平面BDE,∴NF∥平面BDE.又MF∩NF=F.∴平面MFN∥平面BDE,则MN∥平面BDE;(Ⅱ)解:∵PA⊥底面ABC,∠BAC=90°.∴以A为原点,分别以AB、AC、AP所在直线为x、y、z轴建立空间直角坐标系.∵PA=AC=4,AB=2,∴A(0,0,0),B(2,0,0),C(0,4,0),M(0,0,1),N(1,2,0),E (0,2,2),则,,设平面MEN的一个法向量为,由,得,取z=2,得.由图可得平面CME的一个法向量为.∴cos<>=.∴二面角C﹣EM﹣N的余弦值为,则正弦值为;(Ⅲ)解:设AH=t,则H(0,0,t),,.∵直线NH与直线BE所成角的余弦值为,∴|cos<>|=||=||=.解得:t=或t=.∴当H与P重合时直线NH与直线BE所成角的余弦值为,此时线段AH的长为或.10.(2017•吴江区三模)如图所示,在四棱锥P﹣ABCD中,底面ABCD为矩形,PA⊥平面ABCD,点E在线段PC上,PC⊥平面BDE,设PA=1,AD=2.(1)求平面BPC的法向量;(2)求二面角B﹣PC﹣A的正切值.【解答】解:(1)∵PA⊥平面ABCD,BD⊂平面ABCD,∴PA⊥BD.∵PC⊥平面BDE,BD⊂平面BDE,∴PC⊥BD.又PA∩PC=P,∴BD⊥平面PAC,AC⊂平面PAC,∴BD⊥AC.又底面ABCD为矩形,∴ABCD为正方形.建立如图所示的空间直角坐标系.A(0,0,0),B(2,0,0),C(2,2,0),P(0,0,1),D(0,2,0).=(0,2,0),=(﹣2,0,1),设平面BPC的法向量为=(x,y,z),∴,∴,取=(1,0,2.).∴平面BPC的一个法向量为=(1,0,2.).(2)平面PAC的法向量为:=(﹣2,2,0).设二面角B﹣PC﹣A=θ,由图可知:θ为锐角.则cos===﹣.∴cosθ=.∴sinθ=.∴tanθ==3.即二面角B﹣PC﹣A的正切值为3.11.(2017•虎林市模拟)在三棱柱ABC﹣A1B1C1中,侧面ABB1A1为矩形,AB=,AA1=2,D为AA1的中点,BD与AB1交于点O,CO⊥侧面ABB1A1.(1)证明:CD⊥AB1;(2)若OC=OA,求直线C1D与平面ABC所成角的正弦值.【解答】证明:(1)由题意可知,在Rt△ABD中,tan∠ABD==,在Rt△ABB1中,tan∠AB1B==.又因为0<∠ABD,∠AB1B,所以∠ABD=∠AB1B,所以∠ABD+∠BAB1=∠AB1B+∠BAB1=,所以AB1⊥BD.又CO⊥侧面ABB1A1,且AB1⊂侧面ABB1A1,∴AB1⊥CO.又BD与CO交于点O,所以AB1⊥平面CBD.又因为BC⊂平面CBD,所以BC⊥AB1.(6分)解:(2)如图所示,以O为原点,分别以OD,OB1,OC所在的直线为x轴,y 轴,z轴,建立空间直角坐标系,则A(0,﹣,0),B(﹣,0,0),C(0,0,),B1(0,,0),D(,0,0).又因为=2,所以C1(,,).所以=(﹣,,0),=(0,,),=(,,).设平面ABC的法向量为=(x,y,z),则由,得令y=,则z=﹣,x=1,=(1,,﹣)是平面ABC的一个法向量.设直线C1D与平面ABC所成的角为α,则sin α==.故直线C1D与平面ABC所成角的正弦值为.(12分)12.(2017•广西一模)如图,三棱柱ABC﹣A1B1C1中,CA=CB,AB=AA1,∠BAA1=60°.(Ⅰ)证明:AB⊥A1C;(Ⅱ)若平面ABC⊥平面AA1B1B,AB=CB,求直线A1C与平面BB1C1C所成角的正弦值.【解答】(Ⅰ)证明:取AB中点,连接OC,OA1,∵CA=CB,AB=A1A,∠BAA1=60°∴OC⊥AB,OA1⊥AB,∵OC∩OA1=O,∴AB⊥平面OCA1,∵CA1⊂平面OCA1,∴AB⊥A1C;(Ⅱ)解:由(Ⅰ)知OC⊥AB,OA1⊥AB,又平面ABC⊥平面AA1B1B,交线为AB,所以OC⊥平面AA1B1B,故OA,OA1,OC两两垂直.以O为坐标原点,的方向为x轴的正向,建立如图所示的坐标系,可得A(1,0,0),A1(0,,0),C(0,0,),B(﹣1,0,0),则=(1,0,),==(﹣1,,0),=(0,﹣,),设=(x,y,z)为平面BB1C1C的法向量,则,可取y=1,可得=(,1,﹣1),故cos<,>=﹣,又因为直线与法向量的余弦值的绝对值等于直线与平面的正弦值,故直线A1C与平面BB1C1C所成角的正弦值为:.13.(2017•徐水县模拟)如图,平行四边形ABCD中,BC=2AB=4,∠ABC=60°,PA⊥AD,E,F分别为BC,PE的中点,AF⊥平面PED.(1)求证:PA⊥平面ABCD;(2)求直线BF与平面AFD所成角的正弦值.【解答】解:(1)连接AE,∵AF⊥平面PED,ED⊂平面PED,∴AF⊥ED,在平行四边形ABCD中,BC=2AB=4,∠ABC=60°,∴AE=2,,∴AE2+ED2=AD2,∴AE⊥ED,又∵AF∩AE=A,AF⊂平面PAE,PA⊂平面PAE,∴ED⊥平面PAE,∵PA⊂平面PAE,∴ED⊥PA,又PA⊥AD,AD∩ED=D,AE⊂平面ABCD,AD⊂平面ABCD,∴PA⊥平面ABCD.(2)以E为坐标原点,以EA,ED为x轴,y轴建立如图所示的空间直角坐标系,则A(0,2,0),,,∵AF⊥平面PED,所以AF⊥PE,又F为PE中点,∴PA=AE=2,∴P(0,2,2),F(0,1,1),∴,,,设平面AFD的法向量为,由,得,,令x=1,得.设直线BF与平面AFD所成的角为θ,则:,即直线BF与平面AFD所成角的正弦值为.14.(2017•葫芦岛模拟)如图,在四棱锥P﹣ABCD中,底面ABCD是平行四边形,∠BCD=135°,侧面PAB⊥底面ABCD,∠BAP=90°,AB=AC=PA=2,E,F分别为BC,AD的中点,点M在线段PD上.(Ⅰ)求证:EF⊥平面PAC;(Ⅱ)如果直线ME与平面PBC所成的角和直线ME与平面ABCD所成的角相等,求的值.【解答】(Ⅰ)证明:∵在平行四边形ABCD中,∠BCD=135°,∴∠ABC=45°,∵AB=AC,∴AB⊥AC.∵E,F分别为BC,AD的中点,∴EF∥AB,∴EF⊥AC.∵侧面PAB⊥底面ABCD,且∠BAP=90°,∴PA⊥底面ABCD.又EF⊂底面ABCD,∴PA⊥EF.又∵PA∩AC=A,PA⊂平面PAC,AC⊂平面PAC,∴EF⊥平面PAC.(Ⅱ)解:∵PA⊥底面ABCD,AB⊥AC,∴AP,AB,AC两两垂直,以A为原点,分别以AB,AC,AP为x轴、y轴和z轴建立空间直角坐标系如图:则A(0,0,0),B(2,0,0),C(0,2,0),P(0,0,2),D(﹣2,2,0),E(1,1,0),∴=(2,0,﹣2),=(﹣2,2,﹣2),,=(1,1,﹣2).设=λ(0≤λ≤1),则=(﹣2λ,2λ,﹣2λ),∴==(1+2λ,1﹣2λ,2λ﹣2),显然平面ABCD的一个法向量为=(0,0,1).设平面PBC的法向量为=(x,y,z),则,即令x=1,得=(1,1,1).∴cos<,>==,cos<>==.∵直线ME与平面PBC所成的角和此直线与平面ABCD所成的角相等,∴||=||,即,解得,或(舍).∴.15.(2017•腾冲县校级一模)如图,在四棱锥中P﹣ABCD,PA⊥平面ABCD,AD ∥BC,AD⊥CD,且AD=CD=2,BC=4,PA=2.(1)求证:AB⊥PC;(2)在线段PD上,是否存在一点M,使得二面角M﹣AC﹣D的大小为45°,如果存在,求BM与平面MAC所成角的正弦值,如果不存在,请说明理由.【解答】解:(1)证明:∵四边形ABCD是直角梯形,AD=CD=2,BC=4,∴AC=4,AB===4,∴△ABC是等腰直角三角形,即AB⊥AC,∵PA⊥平面ABCD,AB⊂平面ABCD,∴PA⊥AB,∴AB⊥平面PAC,又PC⊂平面PAC,∴AB⊥PC.(2)假设存在符合条件的点M,过点M作MN⊥AD于N,则MN∥PA,∴MN⊥平面ABCD,∴MN⊥AC.过点M作MG⊥AC于G,连接NG,则AC⊥平面MNG,∴AC⊥NG,即∠MGN是二面角M﹣AC﹣D的平面角.若∠MGN=45°,则NG=MN,又AN=NG=MN,∴MN=1,即M是线段PD的中点.∴存在点M使得二面角M﹣AC﹣D的大小为45°.=S△ABC•MN==,在三棱锥M﹣ABC中,V M﹣ABC=,设点B到平面MAC的距离是h,则V B﹣MAC===2,∵MG=MN=,∴S△MAC∴=,解得h=2.在△ABN中,AB=4,AN=,∠BAN=135°,∴BN==,∴BM==3,∴BM与平面MAC所成角的正弦值为=.16.(2017•五模拟)如图,在多面体ABCDM中,△BCD是等边三角形,△CMD 是等腰直角三角形,∠CMD=90°,平面CMD⊥平面BCD,AB⊥平面BCD.(Ⅰ)求证:CD⊥AM;(Ⅱ)若AM=BC=2,求直线AM与平面BDM所成角的正弦值.【解答】(Ⅰ)证明:取CD的中点O,连接OB,OM.∵△BCD是等边三角形,∴OB⊥CD.∵△CMD是等腰直角三角形,∠CMD=90°,∴OM⊥CD.∵平面CMD⊥平面BCD,平面CMD∩平面BCD=CD,OM⊂平面CMD,∴OM⊥平面BCD.又∵AB⊥平面BCD,∴OM∥AB.∴O,M,A,B四点共面.∵OB∩OM=O,OB⊂平面OMAB,OM⊂平面OMAB,∴CD⊥平面OMAB.∵AM⊂平面OMAB,∴CD⊥AM.(Ⅱ)作MN⊥AB,垂足为N,则MN=OB.∵△BCD是等边三角形,BC=2,∴,CD=2.在Rt△ANM中,.∵△CMD是等腰直角三角形,∠CMD=90°,∴.∴AB=AN+NB=AN+OM=2.以点O为坐标原点,以OC,BO,OM为坐标轴轴建立空间直角坐标系O﹣xyz,则M(0,0,1),,D(﹣1,0,0),.∴,,.设平面BDM的法向量为=(x,y,z),由n•,n•,∴,令y=1,得=.设直线AM与平面BDM所成角为θ,则==.∴直线AM与平面BDM所成角的正弦值为.17.(2017•香坊区校级二模)如图,四棱锥P﹣ABCD中,底面ABCD为菱形,PD=AD,∠DAB=60°,PD⊥底面ABCD.(1)求证AC⊥PB;(2)求PA与平面PBC所成角的正弦值.【解答】(1)证明∵底面ABCD为菱形,∴AC⊥BD,∵PD⊥底面ABCD,∴AC⊥PD,∵BD∩PD=D,∴AC⊥面PDB,∵PB⊂面PDB∴AC⊥PB.(2)解:设PD=AD=1,设A到平面PBC的距离为h,==则由题意PA=PB=PC=,S△ABC在等腰△PBC中,可求S==△PBC=V P﹣ABC,=,h=∴V A﹣PBC∴sinθ===18.(2017•徐汇区校级模拟)如图所示,已知斜三棱柱ABC﹣A1B1C1的各棱长均为2,侧棱与底面所成角为,且侧面ABB1A1垂直于底面.(1)判断B1C与C1A是否垂直,并证明你的结论;(2)求四棱锥B﹣ACC1A1的体积.【解答】解:(1)B1C⊥C1A证明如下:在平面BA1内,过B1作B1D⊥AB于D,∵侧面BA1⊥平面ABC,∴B1D⊥平面ABC,∠B1BA是BB1与平面ABC所成的角,∴∠B1BA=π﹣=,连接BC1,∵BB1CC1是菱形,∴BC1⊥B1C,CD⊥平面A1B,B1D⊥AB,∴B1C⊥AB,∴B1C⊥平面ABC1,∴B1C⊥C1A.(2)解:由题意及图,答:四棱锥B﹣ACC1A1的体积为219.(2017•焦作二模)在三棱柱ABC﹣A1B1C1中,CA=CB,侧面ABB1A1是边长为2的正方形,点E,F分别在线段AA1、A1B1上,且AE=,A1F=,CE⊥EF.(Ⅰ)证明:平面ABB1A1⊥平面ABC;(Ⅱ)若CA⊥CB,求直线AC1与平面CEF所成角的正弦值.【解答】证明:(I)取AB的中点D,连结CD,DF,DE.∵AC=BC,D是AB的中点,∴CD⊥AB.∵侧面ABB1A1是边长为2的正方形,AE=,A1F=.∴A1E=,EF==,DE==,DF==,∴EF2+DE2=DF2,∴DE⊥EF,又CE⊥EF,CE∩DE=E,CE⊂平面CDE,DE⊂平面CDE,∴EF⊥平面CDE,又CD⊂平面CDE,∴CD⊥EF,又CD⊥AB,AB⊂平面ABB1A1,EF⊂平面ABB1A1,AB,EF为相交直线,∴CD⊥平面ABB1A1,又CD⊂ABC,∴平面ABB1A1⊥平面ABC.(II)∵平面ABB1A1⊥平面ABC,∴三棱柱ABC﹣A1B1C1是直三棱柱,∴CC1⊥平面ABC.∵CA⊥CB,AB=2,∴AC=BC=.以C为原点,以CA,CB,CC1为坐标轴建立空间直角坐标系,如图所示:则A(,0,0),C(0,0,0),C1(0,0,2),E(,0,),F(,,2).∴=(﹣,0,2),=(,0,),=(,,2).设平面CEF的法向量为=(x,y,z),则,∴,令z=4,得=(﹣,﹣9,4).∴=10,||=6,||=.∴sin<>==.∴直线AC1与平面CEF所成角的正弦值为.20.(2017•秦州区校级模拟)如图,四棱锥E﹣ABCD中,平面EAD⊥平面ABCD,DC∥AB,BC⊥CD,EA⊥ED,且AB=4,BC=CD=EA=ED=2.(1)求证:BD⊥平面ADE;(2)求直线BE和平面CDE所成角的正弦值.【解答】解:(1)∵EA=ED=2,EA⊥ED,∴AD=2.∵BC=CD=2,BC⊥CD,∴BD=2又AB=4,∴AD2+BD2=AB2,∴AD⊥BD.又平面EAD⊥平面ABCD,平面EAD∩平面ABCD=AD,BD⊂平面ABCD,∴BD⊥平面ADE.(2)取AD的中点F,连接EF,则EF⊥平面ABCD,EF=.过D点作直线Oz∥EF,则Oz⊥平面ABCD.以D为坐标原点,以DA,DB,Dz为坐标轴建立空间直角坐标系D﹣xyz,∴D(0,0,0),C(﹣,,0),B(0,2,0),E(,0,),∴=(,﹣2,),=(,0,),=(﹣,,0).设平面CDE的一个法向量为=(x,y,z),则,∴,设x=1得=(1,1,﹣1).∴cos<>===﹣.∴直线BE和平面CDE所成角的正弦值为.21.(2017•泉州一模)如图,在以A,B,C,D,E,F为顶点的多面体中,AF⊥平面ABCD,DE⊥平面ABCD,AD∥BC,AB=CD,∠ABC=60°,BC=AF=2AD=4DE=4.(Ⅰ)请在图中作出平面α,使得DE⊂α,且BF∥α,并说明理由;(Ⅱ)求直线EF与平面BCE所成角的正弦值.【解答】解:(Ⅰ)取BC的中点G,连接EG,DG,则平面EDG为所求.∵AD=2,BG=2,AD∥BC,∴四边形ADGB是平行四边形,∴AB∥DG,∵AB⊄平面EDG,DG⊂平面EDG,∴AB∥平面EDG.同理AF∥平面EDG,∵AB∩AF=A,∴平面ABF∥平面EDG,∵FB⊂平面ABF,∴BF∥平面EDG;(Ⅱ)以点A为坐标原点,AD为y轴,AF为z轴,过A垂直于AD的直线为x 轴,建立如图所示的坐标系,则F(0,0,4),E(0,2,1),B(,﹣1,0),C(,3,0),∴=(0,﹣2,3),=(0,4,0),=(﹣,3,1),设平面BCE的法向量为=(x,y,z),则,取=(,0,3),则直线EF与平面BCE所成角的正弦值==.22.(2017•乃东县校级三模)如图,在四棱锥中S﹣ABCD中,AB⊥AD,AB∥CD,CD=3AB=3,平面SAD⊥平面ABCD,E是线段AD上一点,AE=ED=,SE⊥AD.(1)证明:平面SBE⊥平面SEC(2)若SE=1,求直线CE与平面SBC所成角的正弦值.【解答】解:(1)证明:∵平面SAD⊥平面ABCD,平面SAD∩平面ABCD=AD,SE⊂平面SAD,SE⊥AD,∴SE⊥平面ABCD,…(2分)∵BE⊂平面ABCD,∴SE⊥BE.∵CD=3AB=3,AE=ED=,∴∠AEB=30°,∠CED=60°.所以∠BEC=90°即BE⊥CE.…(4分)结合SE∩CE=E得BE⊥平面SEC,∵BE⊂平面SBE,∴平面SBE⊥平面SEC.…(6分)(2)由(1)知,直线ES,EB,EC两两垂直.如图,以EB为x轴,以EC为y轴,以ES为z轴,建立空间直角坐标系.则,∴.设平面SBC的法向量为,则解得一个法向量,…(9分)设直线CE与平面SBC所成角为θ,又,则.所以直线CE与平面SBC所成角的正弦值.…(12分)23.(2017•邯郸二模)如图,在四棱锥A﹣BCED中,AD⊥底面BCED,BD⊥DE,∠DBC=∠BCE═60°,BD=2CE.(1)若F是AD的中点,求证:EF∥平面ABC;(2)若AD=DE,求BE与平面ACE所成角的正弦值.【解答】证明:(1)取DB中点G,连结EG、FG.∵F是AD的中点,∴FG∥AB.∵BD=2CE,∴BG=CE.∵∠DBC=∠BCE∴E、G到直线BC的距离相等,则BG∥CB,∵EG∩FG=G∴面EGF∥平面ABC,则EF∥平面ABC.解:(2)以点D为原点,建立如图所示的直角坐标系D﹣xyz,设EC=1,则DB=2,取BC中点C,则EG∥BC,∴BC=3,∵AD=DE,则A(0,0,),E(0,,0),B(2,0,0),C(,,0).,.设平面ACE的法向量,=x+y=0令y=1,则,|cos|=.∴BE与平面ACE所成角的正弦值为:24.(2017•湘潭三模)在四边形ABCD中,对角线AC,BD垂直相交于点O,且OA=OB=OD=4,OC=3.将△BCD沿BD折到△BED的位置,使得二面角E﹣BD﹣A的大小为90°(如图).已知Q为EO的中点,点P在线段AB上,且.(Ⅰ)证明:直线PQ∥平面ADE;(Ⅱ)求直线BD与平面ADE所成角θ的正弦值.【解答】(Ⅰ)证明:如图,取OD的中点R,连接PR,QR,则DE∥RQ,由题知,又,故AB:AP=4:1=DB:DR,因此AD∥PR,因为PR,RQ⊄平面ADE,且AD,DE⊂平面ADE,故PR∥平面ADE,RQ∥平面ADE,又PR∩RQ=R,故平面PQR∥平面ADE,从而PQ∥平面ADE.…6分(Ⅱ)解:由题EA=ED=5,,设点O到平面ADE的距离为d,则由等体积法可得,故,因此.…12分.25.(2017•城厢区校级模拟)如图所示,在三棱柱ABC﹣A1B1C1中,AA1B1B为正方形,BB1C1C为菱形,B1C⊥AC1.(Ⅰ)求证:平面AA1B1B⊥平面BB1C1C;(Ⅱ)若D是CC1中点,∠ADB是二面角A﹣CC1﹣B的平面角,求直线AC1与平面ABC所成角的余弦值.【解答】解:(Ⅰ)证明:连接BC1,因为BB1C1C为菱形,所以B1C⊥BC1,又B1C⊥AC1,AC1∩BC1=C1,所以B1C⊥面ABC1.故B1C⊥AB.因为AB⊥BB1,且BB1∩BC1,所以AB⊥面BB1C1C.而AB⊂平面ABB1A1,所以平面AA1B1B⊥平面BB1C1C;(Ⅱ)因为∠ADB是二面角A﹣CC1﹣B的平面角,所以BD⊥CC1,又D是CC1中点,所以BD=BC1,所以△C1BC为等边三角形.如图所示,分别以BA,BB1,BD为x,y,z轴建立空间直角坐标系,不妨设AB=2,则A(2,0,0),,,).设是平面ABC的一个法向量,则,即,取z=1得.所以=,所以直线AC1与平面ABC所成的余弦值为.26.(2017•湖北模拟)等腰三角形ABC,E为底边BC的中点,沿AE折叠,如图,将C折到点P的位置,使P﹣AE﹣C为120°,设点P在面ABE上的射影为H.(1)证明:点H为EB的中点;(2))若,求直线BE与平面ABP所成角的正弦值.【解答】(1)证明:依题意,AE⊥BC,则AE⊥EB,AE⊥EP,EB∩EP=E.∴AE⊥面EPB.故∠CEP为二面角C﹣AE﹣P的平面角,则点P在面ABE上的射影H在EB上.由∠CEP=120°得∠PEB=60°.…(3分)∴EH=EP=.∴H为EB的中点.…(6分)(2)解:过H作HM⊥AB于M,连PM,过H作HN⊥PM于N,连BN,则有三垂线定理得AB⊥面PHM.即面PHM⊥面PAB,∴HN⊥面PAB.故HB在面PAB上的射影为NB.∴∠HBN为直线BE与面ABP所成的角.…(9分)依题意,BE=BC=2,BH=BE=1.在△HMB中,HM=,在△EPB中,PH=,∴在Rt△PHM中,HN=.∴sin∠HBN=.…(12分)27.(2017•山东二模)圆O上两点C,D在直径AB的两侧(如图甲),沿直径AB将圆O折起形成一个二面角(如图乙),若∠DOB的平分线交弧于点G,交弦BD于点E,F为线段BC的中点.(Ⅰ)证明:平面OGF∥平面CAD;(Ⅱ)若二面角C﹣AB﹣D为直二面角,且AB=2,∠CAB=45°,∠DAB=60°,求直线FG与平面BCD所成角的正弦值.【解答】证明:(Ⅰ)∵OF为△ABC的一条中位线∴OF∥AC,又OF⊄平面ACD,AC⊂平面ACD,∴OF∥平面ACD.又∵OG为∠DOB的平分线,∴OG⊥BD,∵AB是⊙O的直径,∴AD⊥BD,∴OG∥AD,又OG⊄平面ACD,AD⊂平面ACD,∴OG∥平面ACD,又∵OG,OF为平面OGF内的两条相交直线,∴平面OGF∥平面CAD(Ⅱ)∵O为AB的中点,∴CO⊥AB,∵平面CAB⊥平面DAB,平面CAB∩平面DAB=AB,OC⊂平面ABC,∴CO⊥平面DAB,又Rt△DAB中,AB=2,∠DAB=60°,∴AD=1,又OG∥AD,OG=1,OA=1,∴四边形ADGO为菱形,∠AOG=120°,设DG中点为M,则∠AOM=90°,即OM⊥OB,∴直线OM,OB,OC两两垂直,以O为原点,以OM,OB,OC为坐标轴建立如图所示的空间直角坐标系O﹣xyz.则B(0,1,0),C(0,0,1),D(,,G(,,F(0,,).∴=(,,=(0,﹣1,1),=(,﹣,0).设平面BCD的法向量为=(x,y,z),则,∴,令y=1,=(,1,1).∴=1,||=1,=.∴=.∴直线FG与平面BCD所成角的正弦值为.28.(2017•上饶县模拟)如图,在四棱锥P﹣ABCD中,AB⊥平面BCP,CD∥平面ABP,AB=BC=CP=BP=2CD=2.(Ⅰ)证明:平面BAP⊥平面DAP;(Ⅱ)点M为线段AB(含端点)上一点,设直线MP与平面DCP所成角为α,求sinα的取值范围.【解答】证明:(I)取PA的中点E,PB的中点O,连接DE,OE,OC.∵OE是△PAB的中位线,∴OE,∵CD∥平面PAB,CD⊂平面ABCD,平面ABCD∩平面PAB=AB,∴CD∥AB,又CD=,∴OE OE,∴四边形CDEO是平行四边形,∴DE∥OC.∵AB⊥平面PBC,OC⊂平面PBC,∴AB⊥OC,∵BC=PC,∴OC⊥PB,又PB⊂平面PAB,AB⊂平面PAB,AB∩PB=B,∴OC⊥平面PAB,又OC∥DE,∴DE⊥平面PAB,∵DE⊂平面PAD,∴平面PAD⊥平面PAB.(II)∵OE∥AB,AB⊥平面PBC,∴OE⊥平面PBC.以O为原点,以OC,OB,OE为坐标轴建立空间直角坐标系,如图所示:则P(0,﹣1,0),C(,0,0),D(,0,1),设M(0,1,a)(0≤a≤2),则=(0,2,a),=(0,0,1),=(,1,0).设平面PCD的法向量为=(x,y,z),则,∴,令x=1得=(1,﹣,0).∴cos<>==.∴sinα=.∴当a=0时,sinα取得最大值,当a=2时,sinα取得最小值.∴sinα的取值范围是[,].。
高考数学立体几何计算题选择题1. 下面关于立体几何的描述正确的是:A. 棱柱是立体图形B. 圆柱的底面是圆C. 圆锥的侧面展开图是扇形D. 所有棱柱的底面都是平行四边形2. 一个正方体的棱长是4cm,那么这个正方体的对角线长度是多少?3. 下面关于圆柱的描述错误的是:A. 圆柱的底面是圆形B. 圆柱的侧面展开图是矩形C. 圆柱的底面周长等于侧面的周长D. 圆柱的底面半径等于侧面半径4. 一个长方体的长是6cm,宽是4cm,高是3cm,那么这个长方体的对角线长度是多少?5. 下面关于圆锥的描述错误的是:A. 圆锥的底面是圆形B. 圆锥的侧面展开图是扇形C. 圆锥的底面半径等于侧面半径D. 圆锥的底面周长等于侧面的周长6. 下面关于球体的描述正确的是:A. 球体的表面积等于球体的体积B. 球体的直径等于球的半径的两倍C. 球体的体积等于球的表面积的两倍D. 球体的体积等于球的表面积的三倍7. 一个正方体的棱长是a,那么这个正方体的对角线长度是多少?8. 下面关于棱柱的描述错误的是:A. 棱柱的底面是平行四边形B. 棱柱的侧面是矩形C. 棱柱的底面和侧面垂直D. 棱柱的底面和侧面平行9. 一个圆柱的底面半径是3cm,高是5cm,那么这个圆柱的体积是多少?10. 一个圆锥的底面半径是2cm,高是4cm,那么这个圆锥的体积11. 一个球的半径是r,那么这个球的表面积是多少?12. 一个球的半径是r,那么这个球的体积是多少?13. 一个长方体的长是a,宽是b,高是c,那么这个长方体的对角线长度是多少?14. 一个棱柱的底面是矩形,那么这个棱柱的底面面积是多少?15. 一个圆柱的底面半径是r,高是h,那么这个圆柱的体积是多少?16. 一个圆锥的底面半径是r,高是h,那么这个圆锥的体积是多少?17. 一个球的半径是r,那么这个球的表面积是多少?18. 一个球的半径是r,那么这个球的体积是多少?19. 一个长方体的长是a,宽是b,高是c,那么这个长方体的体20. 一个棱柱的底面是三角形,那么这个棱柱的底面面积是多少?21. 一个圆柱的底面半径是r,高是h,那么这个圆柱的侧面积是多少?22. 一个圆锥的底面半径是r,高是h,那么这个圆锥的侧面积是多少?23. 一个球的半径是r,那么这个球的表面积是多少?24. 一个球的半径是r,那么这个球的体积是多少?25. 一个长方体的长是a,宽是b,高是c,那么这个长方体的表面积是多少?26. 一个棱柱的底面是矩形,那么这个棱柱的侧面积是多少?27. 一个圆柱的底面半径是r,高是h,那么这个圆柱的底面积是多少?28. 一个圆锥的底面半径是r,高是h,那么这个圆锥的底面积是多少?29. 一个球的半径是r,那么这个球的体积是多少?30. 一个球的半径是r,那么这个球的表面积是多少?31. 一个长方体的长是a,宽是b,高是c,那么这个长方体的对角线长度是多少?32. 一个棱柱的底面是三角形,那么这个棱柱的侧面积是多少?33. 一个圆柱的底面半径是r,高是h,那么这个圆柱的侧面积是多少?34. 一个圆锥的底面半径是r,高是h,那么这个圆锥的侧面积是多少?35. 一个球的半径是r,那么这个球的体积是多少?36. 一个球的半径是r,那么这个球的表面积是多少?37. 一个长方体的长是a,宽是b,高是c,那么这个长方体的体积是多少?38. 一个棱柱的底面是三角形,那么这个棱柱的体积是多少?39. 一个圆柱的底面半径是r,高是h,那么这个圆柱的体积是多少?40. 一个圆锥的底面半径是r,高是h,那么这个圆锥的体积是多少?41. 一个球的半径是r,那么这个球的体积是多少?42. 一个球的半径是r,那么这个球的表面积是多少?43. 一个长方体的长是a,宽是b,高是c,那么这个长方体的表面积是多少?44. 一个棱柱的底面是矩形,那么这个棱柱的体积是多少?45. 一个圆柱的底面半径是r,高是h,那么这个圆柱的侧面积是多少?46. 一个圆锥的底面半径是r,高是h,那么这个圆锥的侧面积是多少?47. 一个球的半径是r,那么这个球的体积是多少?48. 一个球的半径是r,那么这个球的表面积是多少?49. 一个长方体的长是a,宽是b,高是c,那么这个长方体的对角线长度是多少?50. 一个棱柱的底面是三角形,那么这个棱柱的侧面积是多少?。
衡水中学内部资料群:591993305,高中各科学霸资料群:680662798,专题08 立体几何中的计算1、【2019年江苏数】.如图,长方体1111ABCD A B C D 的体积是120,E 为1CC 的中点,则三棱锥E -BCD 的体积是_____.2、【2018年高考江苏数】.如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为________.3、【2019年高考全国Ⅰ卷文数】已知∠ACB=90°,P 为平面ABC 外一点,PC =2,点P 到∠ACB 两边AC ,BCP 到平面ABC 的距离为___________.4、【2019年高考全国Ⅱ卷文数】中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48衡水中学内部资料群:591993305,高中各科学霸资料群:680662798,的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1.则该半正多面体共有________个面,其棱长为_________.(本题第一空2分,第二空3分.)5、【2019年高考全国Ⅲ卷文数】学生到工厂劳动实践,利用3D 打印技术制作模型.如图,该模型为长方体1111ABCD A B C D -挖去四棱锥O −EFGH 后所得的几何体,其中O 为长方体的中心,E ,F ,G ,H 分别为所在棱的中点,16cm 4cm AB =BC =AA =,,3D 打印所用原料密度为0.9 g/cm 3,不考虑打印损耗,制作该模型所需原料的质量为___________g.6、【2019年高考北京卷文数】已知l ,m 是平面α外的两条不同直线.给出下列三个论断:①l ⊥m ;②m ∥α;③l ⊥α.以其中的两个论断作为条件,余下的一个论断作为结论,写出一个正确的命题:__________.7、【2019.若圆柱的一个底衡水中学内部资料群:591993305,高中各科学霸资料群:680662798,面的圆周经过四棱锥四条侧棱的中点,另一个底面的圆心为四棱锥底面的中心,则该圆柱的体积为__________.8、【2018年高考全国II 卷文数】已知圆锥的顶点为S ,母线SA ,SB 互相垂直,SA 与圆锥底面所成角为30 ,若SAB △的面积为8,则该圆锥的体积为__________.一、柱、锥、台和球的侧面积和体积注意:(1)分的处理.(2)圆柱、圆锥、圆台的侧面是曲面,计算侧面积时需要将这个曲面展为平面图形计算,而表面积是侧面积与底面圆的面积之和.衡水中学内部资料群:591993305,高中各科学霸资料群:680662798,二、在求解一些不规则的几何体的体积以及两个几何体的体积之比时,常常需要用到分割法.在求一个几何体被分成两部分的体积之比时,若有一部分为不规则几何体,则可用整个几何体的体积减去规则几何体的体积求出其体积.(1)解决空间几何体表面上的最值问题的根本思路是“展开”,即将空间几何体的“面”展开后铺在一个平面上,将问题转化为平面上的最值问题.(2)如果已知的空间几何体是多面体,则根据问题的具体情况可以将这个多面体沿多面体中某条棱或者两个面的交线展开,把不在一个平面上的问题转化到一个平面上.如果是圆柱、圆锥则可沿母线展开,把曲面上的问题转化为平面上的问题. 三、方法与技巧(1)棱柱、棱锥要掌握各部分的结构特征,计算问题往往转化到一个三角形中进行解决.旋转体要抓住“旋转”特点,弄清底面、侧面及展开图形状. (2)要注意将空间问题转化为平面问题.(3)求几何体的体积,要注意分割与补形.将不规则的几何体通过分割或补形将其转化为规则的几何体求解. (4)一些几何体表面上的最短距离问题,常常利用几何体的展开图解决. 四、失误与防范(1)几何体展开、折叠问题,要抓住前后两个图形间的联系,找出其中的量的关系.(2)与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.题型一 多面体的表面积与体积求多面体的表面积与体积常用方法:1、公式法:可以运用规则的几何体;2、割补法:把不规则的图衡水中学内部资料群:591993305,高中各科学霸资料群:680662798,形分割成规则的图形,或者把几何体补成熟悉的几何体。
立体几何中的计算问题1.三视图——是观察者从三个不同位置观察同一个空间几何体而画出的图形;2.直观图——是观察着站在某一点观察一个空间几何体而画出的图形。
直观图通常是在平行投影下画出的空间图形。
3斜二测法:1.画直观图时,把它画成对应的轴'',''o x o y ,取'''45(135)x o y o r ∠=︒︒,它们确定的平面表示水平平面;2.在坐标系'''x o y 中画直观图时,已知图形中平行于数轴的线段保持平行性不变,平行于x 轴(或在x 轴上)的线段保持长度不变,平行于y 轴(或在y 轴上)的线段长度减半。
结论:一般地,采用斜二测法作出的直观图面积是原平面图形面积的4倍. 例1.下列命题:①如果一个几何体的三视图是完全相同的,那么这个几何体是正方体;②如果一个几何体的主视图和俯视图都是矩形,那么这个几何体是长方体; ③如果一个几何体的三视图都是矩形,那么这个几何体是长方体;④如果一个几何体的主视图和左视图都是等腰梯形,那么这个几何体是圆台.其中正确的是( )A .①②B .③C .②③D .④ 2、异面直线所成的角(1)定义:a 、b 是两条异面直线,经过空间任意一点O ,分别引直线a′∥a,b′∥b,则a′和b′所成的锐角(或直角)叫做异面直线a 和b 所成的角.(2)取值范围:0°<θ≤90°. (3)求解方法①根据定义,通过平移,找到异面直线所成的角θ; ②解含有θ的三角形,求出角θ的大小.例2.在长方体1111ABCD A B C D -中,11BC CC ==,13AD B π∠=,则直线1AB 与1BC 所成角的余弦值为( )ABCD【答案】D例3.直三棱柱ABC ﹣A 1B 1C 1中,若∠BAC=90°,AB=AC=AA 1,则异面直线 BA 1与AC 1所成的角为( ) A .60°B .90°C .120°D .150°例4.在四面体ABCD 中,AC 与BD 的夹角为30°,2AC =,BD =M ,N 分别是AB ,CD 的中点,则线段MN 的长度为________. 【答案】13.二面角 找(或作)二面角的平面角的主要方法.(i)定义法(ii)垂面法 (iii)三垂线法(Ⅳ)根据特殊图形的性质 (4)求二面角大小的常见方法先找(或作)出二面角的平面角θ,再通过解三角形求得θ的值.例5.已知正三棱锥底面边长为2,侧棱长为3,则它的侧面与底面所成二面角的余弦值为________.【答案】12例6.如图,在三棱柱111ABC A B C -中,1AA ⊥平面ABC ,E .F 分别为1A B ,1A C 的中点,D 为11B C 上的点,且11A D B C ⊥.(1)求证://EF 平面ABC . (2)求证:平面1A FD ⊥平面11BCC B .(3)若三棱柱所有棱长都为a ,求二面角111A B C C --的平面角的余弦值.【答案】(1)见解析;(2)见解析;(3)74.空间几何体的表面积、体积棱柱、棱锥的表面积:各个面面积之和圆柱的表面积 :222S rl r ππ=+ 圆锥的表面积:2S rl r ππ=+圆台的表面积:22Srl r Rl Rππππ=+++扇形的面积公式2211=36022n R S lr r πα==扇形(其中l 表示弧长,r 表示半径,α表示弧度) 空间几何体的体积柱体的体积 :V S h =⨯底,锥体的体积 :13V S h =⨯底台体的体积 :1)3V S S h =+⨯下上( ,球体的体积:343V R π= 点到平面的距离(1)定义 面外一点引一个平面的垂线,这个点和垂足间的距离叫做这个点到这个平面的距离.(2)求点面距离常用的方法: 1)直接利用定义求①找到(或作出)表示距离的线段; ②抓住线段(所求距离)所在三角形解之.2)体积法其步骤是:①在平面内选取适当三点,和已知点构成三棱锥;②求出此三棱锥的体积V 和所取三点构成三角形的面积S ;③由V=31S·h ,求出h 即为所求.这种方法的优点是不必作出垂线即可求点面距离.难点在于如何构造合适的三棱锥以便于计算.例8.在长、宽、高分别为a b c ,,的长方体中,以它的各面的中心为顶点可得到一个八面体,则该八面体的体积为________.【答案】16abc例9.如图,在上、下底面对应边的比为1:2的三棱台中,过上底面的一边作一个平行于棱的平面11A B EF ,则这个平面分三棱台成两部分的体积之比为( ).A .1:2B .2:3C .3:4D .4:5【答案】C例10.如图,在四棱锥P —ABCD 中,底面ABCD 是矩形,PA ⊥平面ABCD ,PA=AD=4,AB=2,以BD 的中点O 为球心、BD 为直径的球面交PD 于点M.⑴求证:平面ABM ⊥平面PCD ; (2)求点O 到平面ABM 的距离.【答案】(1)见解析(2)3例11.如图,已知多面体EABCDF的底面ABCD是边长为2的正方形,EA⊥底面ABCD,//FD EA,且112FD EA==.(1)求多面体EABCDF的体积;(2)记线段BC的中点为K,在平面ABCD内过点K作一条直线与平面ECF平行,要求保留作图痕迹,但不要求证明.【答案】(1)103V=多面体;(2)见解析.5.与球有关的组合体7-2 球的结构特征⑴球心与截面圆心的连线垂直于截面;⑵截面半径等于球半径与截面和球心的距离的平方差:r2 = R2– d2★7-3 球与其他多面体的组合体的问题球体与其他多面体组合,包括内接和外切两种类型,解决此类问题的基本思路是:⑴根据题意,确定是内接还是外切,画出立体图形;⑵找出多面体与球体连接的地方,找出对球的合适的切割面,然后做出剖面图;⑶将立体问题转化为平面几何中圆与多边形的问题;例11.已知棱长为a的正四面体,其内切球的半径为r,外接球的半径为R,则:r R= ________.【答案】1:3例12.已知棱长为a的正方体,甲球是正方体的内切球,乙球是正方体的外接球,丙球与正方体的各棱都相切,则甲、乙、丙三球的表面积之比为().A.91:3:4B.1:3:2C.D.31:2【答案】B例13.已知,,,S A B C是球O表面上的点,SA⊥平面,,1,ABC AB BC SA AB BC⊥===则球O的体积为__________.例14.已知一个高为16的圆锥内接于一个体积为972π的球,在圆锥内又有一个内切球.求:圆锥内切球的体积.(2)2563Vπ=立体几何中的计算问题一、三视图1.将正方形(如图1所示)截去两个三棱锥,得到图2所示的几何体,则该几何体的左视图为()A.B.C.D.【答案】B2.如图所示,A O B '''∆表示水平放置的AOB ∆的直观图,B '在x '轴上,A O ''与x '轴垂直,且2A O ''=,则AOB ∆的OB 边上的高为______.【答案】二、线线角3.已知直三棱柱111ABC A B C -的所有棱长都相等,M 为11A C 的中点,则AM 与1BC 所成角的余弦值为( ) A.3B.3C.4D.4【答案】D4.如图所示为一个正方体的展开图.对于原正方体,给出下列结论: ①AB 与EF 所在直线平行; ②AB 与CD 所在直线异面; ③MN 与BF 所在直线成60︒角;④MN 与CD 所在直线互相垂直. 其中正确结论的序号是________. 【答案】②④5.如图,在三棱柱111ABC A B C -中,1AA ⊥平面ABC ,1AA AB AC ==,AB AC ⊥,M 是1CC 的中点,Q 是BC 的中点,点P 在11A B 上,则直线PQ 与直线AM 所成的角为( ). A .30° B .45︒C .60︒D .90︒【答案】D 三、二面角问题二面角:关键是找出二面角的平面角。
立体几何与体积计算的实际问题立体几何是数学中的一个分支,研究具有长度、宽度和高度的空间图形。
而在实际生活中,我们经常会遇到需要计算物体体积的问题,立体几何的概念和方法在解决这类实际问题时发挥了重要作用。
本文将从几何体的体积计算方法、实际问题中的应用以及计算体积的实例等三个方面进行论述。
一、几何体的体积计算方法在立体几何中,我们常见的几何体包括立方体、长方体、圆柱体、圆锥体以及球体等。
每种几何体的体积计算方法有所不同。
1. 立方体和长方体的体积计算立方体的所有边长相等,而长方体的两个相邻面都是矩形。
计算这两种几何体的体积非常简单,只需要将底面积与高度相乘即可。
例如,一个边长为5厘米的立方体,其体积为5 × 5 × 5 = 125立方厘米。
2. 圆柱体的体积计算圆柱体由一个底面和与底面平行的侧面构成。
计算圆柱体的体积需要用到圆的面积公式,即底面积乘以高度。
例如,一个半径为3厘米、高度为6厘米的圆柱体,其体积为π × 3 × 3 × 6 = 54π立方厘米。
3. 圆锥体的体积计算圆锥体由一个底面和与底面共顶点的侧面构成。
计算圆锥体的体积同样需要用到圆的面积公式,即底面积乘以高度再除以3。
例如,一个半径为4厘米、高度为8厘米的圆锥体,其体积为π × 4 × 4 × 8 / 3 = 128π / 3立方厘米。
4. 球体的体积计算球体是一个完全由曲面构成的几何体,其体积计算需要用到球的体积公式,即四分之三乘以半径的立方。
例如,一个半径为2厘米的球体,其体积为4/3 × π × 2 × 2 × 2 = 32/3π立方厘米。
二、实际问题中的应用立体几何和体积计算在实际生活中有着广泛的应用。
以下是其中一些实际问题的应用场景。
1. 装箱问题装箱问题是指如何在给定大小的容器中放置物体使得利用空间最大化。
习题范例解决立体几何中的表面积问题在立体几何中,我们常常会遇到计算各种形状的表面积的问题。
本文将通过习题范例的方式,帮助读者解决立体几何中的表面积问题。
习题一:计算长方体表面积已知一个长方体的长、宽、高分别为a、b、c,请计算长方体的表面积。
解答:长方体的表面积可以通过计算各个面的面积之和得到。
长方体有六个面,分别是底面、顶面、前面、后面、左面和右面。
底面和顶面的面积相等,等于a*b;前面和后面的面积相等,等于a*c;左面和右面的面积相等,等于b*c。
所以长方体的表面积等于2ab + 2ac + 2bc。
习题二:计算圆柱体的表面积已知圆柱体的底面直径为d,高为h,请计算圆柱体的表面积。
解答:圆柱体的表面积由三个部分组成,上底面、下底面和侧面。
上底面和下底面的面积都等于π * (d/2)^2,即π * (d^2)/4;侧面的面积等于圆周长乘以高,即2π * (d/2) * h = πdh。
所以圆柱体的表面积等于2 * (π * (d^2)/4) + πdh = (πd/2) * (d/2 + h)。
习题三:计算球体的表面积已知球体的半径为r,请计算球体的表面积。
解答:球体的表面积等于4πr^2。
习题四:计算锥体的表面积已知锥体的底面半径为r,母线长度为l,请计算锥体的表面积。
解答:锥体的表面积等于底面的面积加上锥面的面积。
底面的面积等于πr^2;锥面的面积等于πrl。
所以锥体的表面积等于πr^2 + πrl = πr(r + l)。
通过以上习题范例,我们可以看到计算不同形状立体几何的表面积时,可以根据不同的公式进行计算,而不同形状的表面积计算公式也有一定的规律可循。
在实际应用中,掌握这些表面积的计算方法可以帮助我们更好地理解和解决立体几何问题。
同时,熟练掌握这些计算方法也有助于我们在解决实际问题时更加便捷和准确地计算出表面积。
例如在装修房间时,需要计算墙面的面积;在包装物品时,需要计算包装盒的表面积等等。
专题13 立体几何中的计算问题【自主热身,归纳总结】1、若正三棱锥的底面边长为2,侧棱长为1,则此三棱锥的体积为 . 【答案】:61【解析】:设此正三棱锥的高为h ,则,所以312=h ,33=h , 故此三棱锥的体积.2、 如图,在长方体ABCDA 1B 1C 1D 1中,AB =AD =3 cm ,AA 1=2 cm ,则三棱锥AB 1D 1D 的体积为________cm 3.【答案】 3【解析】VAB 1D 1D =VB 1AD 1D =13S △ADD 1×A 1B 1=13×12×AD ×D 1D ×A 1B 1=13×12×3×2×3=3.3、将一个正方形绕着它的一边所在的直线旋转一周,所得圆柱的体积为27π cm 3,则该圆柱的侧面积为________cm 2. 【答案】:18π【解析】:设正方形的边长为x cm ,则圆柱的体积为πx 2·x =27π,解得x =3,所以该圆柱的侧面积为2π×3×3=18π(cm 2).4、如图,正四棱锥PABCD 的底面一边AB 的长为2 3 cm ,侧面积为8 3 cm 2,则它的体积为________cm 3.【答案】 4【解析】:如图,过点P 作PO 垂直于底面ABCD ,且垂足为O ,在平面ABCD 中,过点O 作直线AB 的垂线,垂足为E ,连结PE.由正四棱锥的性质知,PE ⊥AB ,所以S 侧=(12×23×PE )×4=83,解得PE =2,在Rt △POE 中,PO =PE 2-EO 2=22-3=1,所以正四棱锥的体积为13×(23)2×1=4.5、已知正四棱柱的底面边长为3 cm ,侧面的对角线长是35cm ,则这个正四棱柱的体积是________cm 3. 【答案】54【解析】:设该正四棱柱的侧棱长为h cm ,则(35)2=32+h 2,解得h =6(负值舍去),从而这个正四棱柱的体积是V =32×6=54(cm 3).6、若圆锥的侧面展开图是面积为3π且圆心角为2π3的扇形,则此圆锥的体积为________.【答案】 223π7、现有一正四棱柱形铁块,底面边长为高的8倍,将其熔化锻造成一个底面积不变的正四棱锥形铁件(不计材料损耗).设正四棱柱与正四棱锥的侧面积分别为1S ,2S ,则12S S 的值为 . 【答案】25【解析】设正四棱柱得高为a ,所以底面边长为8a ,根据体积相等,且高相等,所以正四棱锥的高为3a ,则正棱锥侧面的高为,所以.8、以一个圆柱的下底面为底面,并以圆柱的上底面圆心为顶点作圆锥,若所得的圆锥底面半径等于圆锥的高,则圆锥的侧面积与圆柱的侧面积之比为________. 【答案】22【解析】:如图,由题意可得圆柱的侧面积为S 1=2πrh =2πr 2.圆锥的母线l =h 2+r 2=2r ,故圆锥的侧面积为S 2=12×2πr ×l =2πr 2,所以S 2∶S 1=2∶2.9、如图,正三棱柱ABCA 1B 1C 1中,AB =4,AA 1=6.若E ,F 分别是棱BB 1,CC 1上的点,则三棱锥AA 1EF 的体积是________.【答案】:23【解法1】过B 点作BE AC ⊥,垂足为E ,平面ABC ⊥平面11ACC A ,且平面ABC ⋂平面11ACC A =AC ,所以BE ⊥平面11ACC A ,又因为梯形1ACC D 的面积为=6,所以.【解法2】,而=1323⨯⨯,所以四棱锥1B ACC D -的体积为23.【关联1】、如图,铜质六角螺帽毛坯是由一个正六棱柱挖去一个圆柱所构成的.已知正六棱柱的底面边长、高都为4 cm ,圆柱的底面积为9 3 cm 2.若将该螺帽熔化后铸成一个高为6 cm 的正三棱柱零件,则该正三棱柱的底面边长为________cm (不计损耗).【答案】. 210 由题意知,熔化前后的体积相等,熔化前的体积为6×34×42×4-93×4=603,设所求正三棱柱的底面边长为x cm ,则有34x 2·6=603,解得x =210,所以所求边长为210cm .【关联2】、在棱长为2的正四面体P ABC -中,M ,N 分别为PA ,BC 的中点,点D 是线段PN 上一点,且2PD DN =,则三棱锥D MBC -的体积为 . 【答案】:29思路分析:解决空间几何体的体积计算问题常常有两个途径:一是直接利用体积公式求解,另一种是利用等体积转化的思想进行计算.解题过程:连结MB ,MC ,MN ,过点D 作MN DH ⊥于H ,因为BP BA =,M 为PA 的中点,所以BM PA ⊥,同理CM PA ⊥,又因为,所以,又因为,所以MN PA ⊥,又因为MN DH ⊥,所以PA DH //,从而,故DH 为点D 到平面MBC 的高.在MBC ∆中,MC MB =,N 为BC 的中点,则,MBC ∆的面积,在NPM ∆中,因为PM DH //,2PD DN =,所以,从而三棱锥D MBC -的体积.【关联3】、如图,在正三棱柱中,已知,点P 在棱1CC 上,则三棱锥1P ABA -的体积为 .【答案】.439 【解析】: 因为正三棱柱中,11//CC AA ,因为,,所以,因为点P 在棱1CC 上,所以点C 到平面B B AA 11的距离就是点P 到平面B B AA 11的距离.作AB CD ⊥,垂直为点D ,因为正三棱柱中,⊥1AA 面ABC ,⊂CD 面ABC ,所以1AA CD ⊥,而,,,所以.因为正三棱柱中,,所以233=CD ,1ABA ∆的面积,所以三棱锥1ABA P -的体积.例2、已知矩形ABCD 的边AB =4,BC =3,若沿对角线AC 折叠,使平面DAC ⊥平面BAC ,则三棱锥DABC 的体积为________. 【答案】. 245【解析】:在平面DAC 内作DO ⊥AC ,垂足为点O ,因为平面DAC ⊥平面BAC ,且平面DAC ∩平面BAC =AC ,所以DO ⊥平面BAC ,因为AB =4,BC =3,所以DO =125,S △ABC =12×3×4=6,所以三棱锥DABC 的体积为V =13×6×125=245.【变式1】、.已知一个空间几何体的所有棱长均为1 cm ,其表面展开图如图所示,则该空 间几何体的体积V= cm 3.【答案】216+【解析】空间几何体为一正方体和一正四棱锥的组合体,显然,正方体的体 积为1,正四棱锥的底面边长为1,侧棱长为1,所以,棱锥的高为22,所以,正四棱锥的体积为26,即组合体的体积为216+【变式2】、已知△ABC 为等腰直角三角形,斜边BC 上的中线AD = 2,将△ABC 沿AD 折成60°的二面角,连结BC ,则三棱锥CABD 的体积为 .【答案】:233易错警示 由于二面角平面角的概念在必做部分考查较少形成了复习中的知识盲点在边长为4的正方形ABCD 内剪去四个全等的等腰三角形(如图1中阴影部分),【关联1】、折叠成底面边长为2的正四棱锥SEFGH(如图2),则正四棱锥SEFGH 的体积为________.(图1)(图2)【答案】:. 43【解析】:连结EG ,HF ,交点为O ,正方形EFGH 的对角线EG =2,EO =1,则点E 到线段AB 的距离为1,EB =12+22= 5.SO =SE 2-OE 2=5-1=2,故正四棱锥SEFGH 的体积为13×(2)2×2=43.【关联2】、已知圆锥的底面半径和高相等,侧面积为42 ,过圆锥的两条母线作截面,截面为等边三角形,则圆锥底面中心到截面的距离为【答案】233【解析】设底面半径为r ,由题意可得:母线长为2r .又侧面展开图面积为,所以2r =.又截面三角形ABD 为等边三角形,故,又,故BOD 为等角直角三角形.设圆锥底面中心到截面的距离为d ,又,所以.又,2OBDS=,2AO r ==,故.【关联3】、 如图,在圆锥VO 中,O 为底面圆心,半径OA ⊥OB ,且OA =VO =1,则O 到平面VAB 的距离为________.【答案】:33思路分析 在立体几何求点到平面的距离问题中,往往有两种途径:(1) 利用等体积法,这种方法一般不需要作出高线;(2) 利用面面垂直的性质作出高线,再进行计算.解法1 因为VO ⊥平面AOB ,OA ⊂平面AOB ,所以VO ⊥OA ,同理VO ⊥OB ,又因为OA ⊥OB ,OA =VO =OB =1,所以VA =VB =AB =2,所以S △VAB =12VA ×AB sin60°=32.设O 到平面VAB 的距离为h ,由V VAOB =V OVAB ,得13S△AOB×VO =13S △VAB ×h ,得12OA ×OB ×VO =32h ,解得h =33.解法2 取AB 中点M ,连结VM ,过点O 作OH ⊥VM 于H .因为OA =OB ,M 是AB 中点,所以OM ⊥AB ,因为VO ⊥平面AOB ,AB ⊂平面AOB ,所以VO ⊥AB ,又因为OM ⊥AB ,VO ∩OM =O ,所以AB ⊥平面VOM ,又因为AB ⊂平面VAB ,所以面VAB ⊥平面VOM ,又因为OH ⊥VM ,OH ⊂平面VOM ,平面VAB ∩平面VOM =VH ,所以OH ⊥平面VAB ,所以OH 为点O 到平面VAB 的距离,且OH =VO ×OM VM =33.例3、如图,在直三棱柱A 1B 1C 1ABC 中,AB ⊥BC ,E ,F 分别是A 1B ,AC 1的中点. (1) 求证:EF ∥平面ABC ; (2) 求证:平面AEF ⊥平面AA 1B 1B ;(3) 若A 1A =2AB =2BC =2a ,求三棱锥FABC 的体积.)【解析】 (1) 连结A 1C .因为直三棱柱A 1B 1C 1ABC 中,四边形AA 1C 1C 是矩形,所以点F 在A 1C 上,且为A 1C 的中点.在△A 1BC 中,因为E ,F 分别是A 1B ,A 1C 的中点,所以EF ∥BC .(2分) 又因为BC ⊂平面ABC ,EF ⊄平面ABC ,所以EF ∥平面ABC .(4分) (2) 因为在直三棱柱A 1B 1C 1ABC 中,B 1B ⊥平面ABC ,所以B 1B ⊥BC . 因为EF ∥BC ,AB ⊥BC ,所以AB ⊥EF ,B 1B ⊥EF .(6分) 因为B 1B ∩AB =B ,所以EF ⊥平面ABB 1A 1.(8分) 因为EF ⊂平面AEF ,所以平面AEF ⊥平面ABB 1A 1.(10分) (3) V FABC =12VA 1ABC =12×13×S △ABC ×AA 1(12分)=12×13×12a 2×2a =a36.(14分)【变式1】、如图,在五面体ABCDEF 中,已知DE ⊥平面ABCD ,//AD BC ,o 60BAD ∠=,2AB =,1DE EF ==.(1)求证://BC EF ; (2)求三棱锥B DEF -的体积.【解析】(1)因为//AD BC ,AD ⊂平面ADEF ,BC ⊄平面ADEF , 所以//BC 平面ADEF , (3分) 又BC ⊂平面BCEF ,平面BCEF平面ADEF EF =,所以//BC EF . (6分) (2)如图,在平面ABCD 内过点B 作BH AD ⊥于点H .因为DE ⊥平面ABCD ,BH ⊂平面ABCD ,所以DE BH ⊥.又AD ,DE ⊂平面ADEF ,,所以BH ⊥平面ADEF ,所以BH 是三棱锥B DEF -的高. (9分) 在直角三角形ABH 中,o 60BAD ∠=,2AB =,所以3BH =. 因为DE ⊥平面ABCD ,AD ⊂平面ABCD ,所以DE AD ⊥.又由(1)知,//BC EF ,且//AD BC ,所以//AD EF ,所以DE EF ⊥, (12分) 所以三棱锥B DEF -的体积. (14分)易错警示 在证明线线、线面、面面的位置关系时,一定要注意条件的完备性,不能少写条件.另外,在求几何体的体积时, 一定要证明某条线为高的原因,即证明它与某个平面垂直,否则将导致丢分. 【变式2】、如图,在矩形ABCD 中,AD =2,AB =4,E ,F 分别为边AB ,AD 的中点.现将△ADE 沿DE 折起,得四棱锥ABCDE. (1)求证:EF ∥平面ABC ;(2)若平面ADE ⊥平面BCDE ,求四面体FDCE 的体积.【解析】 (1) 证法1 如图1,取线段AC 的中点M ,连结MF ,MB. 因为F ,M 为AD ,AC 的中点, 所以MF ∥CD ,且MF =12CD.图1在折叠前,四边形ABCD 为矩形,E 为AB 的中点,所以BE ∥CD ,且BE =12CD.所以MF ∥BE ,且MF =BE.所以四边形BEFM 为平行四边形,故EF ∥BM. 又EF ⊄平面ABC ,BM ⊂平面ABC , 所以EF ∥平面ABC.证法2 如图2,延长DE 交CB 的延长线于点N ,连结AN.在折叠前,四边形ABCD 为矩形,E 为AB 的中点,所以BE ∥CD ,且BE =12CD.图2所以∠NBE =∠NCD ,∠NEB =∠NDC. 所以△NEB ∽△NDC.所以NE ND =BE CD =12,即E 为DN 的中点.又F 为AD 的中点,所以EF ∥NA. 又EF ⊄平面ABC ,NA ⊂平面ABC , 所以EF ∥平面ABC.证法3 如图3,取CD 的中点O ,连结OE ,OF.图3(2) 解法1 在折叠前,四边形ABCD 为矩形,AD =2,AB =4,E 为AB 的中点,所以△ADE ,△CBE 都是等腰直角三角形,且AD =AE =EB =BC =2. 所以∠DEA =∠CEB =45°,且DE =EC =2 2.又∠DEA +∠DEC +∠CEB =180°,所以∠DEC =90°,即DE ⊥CE.又平面ADE ⊥平面BCDE ,平面ADE∩平面BCDE =DE ,CE ⊂平面BCDE ,所以CE ⊥平面ADE ,即CE 为三棱锥CEFD 的高.因为F 为AD 的中点,所以 S △EFD =12×12×AD×AE=14×2×2=1.所以四面体FDCE 的体积V =13×S △EFD ×CE=13×1×22=223. 解法2 如图4,过F 作FH ⊥DE ,H 为垂足.图4因为平面ADE ⊥平面BCDE ,平面ADE∩平面BCDE =DE ,FH ⊂平面ADE ,所以FH ⊥平面BCDE ,即FH 为三棱锥FECD 的高.在折叠前,四边形ABCD 为矩形,且AD =2,AB =4,E 为AB 的中点,所以△ADE 是等腰直角三角形. 又F 为AD 的中点,所以DF =1. 所以FH =DF·sin45°=22. 又S △EDC =12×CD×BC=12×4×2=4,所以四面体FDCE 的体积V =13×S △EDC ×FH=13×4×22=223. 解法3 如图5,过A 作AG ⊥DE ,G 为垂足.图5因为平面ADE ⊥平面BCDE ,平面ADE∩平面BCDE =DE ,AG ⊂平面ADE ,所以AG ⊥平面BCDE ,即AG 为三棱锥AECD 的高.在折叠前,四边形ABCD 为矩形,且AD =2,AB =4,E 为AB 的中点, 所以△ADE 是等腰直角三角形. 所以AG =AD·sin45°= 2. 又S △EDC =12×DC×BC=12×4×2=4,所以三棱锥AECD 的体积V AECD =13×S △EDC ×AG=13×4×2=423.因为F 为AD 的中点,所以S △EFD =12S △EAD .所以V CEFD =12V CEAD =12V AECD =223.即四面体FDCE 的体积为223.【关联】、如图,直四棱柱ABCD-A 1B 1C 1D 1的底面ABCD 是菱形,∠ADC =120°,AA 1=AB =1,点O 1,O 分别是上、下底面菱形的对角线的交点.(1)求证:A 1O ∥平面CB 1D 1; (2)求点O 到平面CB 1D 1的距离.【解析】 (1) 因为AA 1∥C C 1且AA 1=C C 1,所以四边形A 1ACC 1是平行四边形,所以AC∥A1C1且AC=A1C1.因为O1,O分别是A1C1,AC的中点,故O C∥A1O1且O C=A1O1. 所以四边形A1O1C O为平行四边形,所以A1O∥O1C.又A1O⊄平面CB1D1,O1C⊂平面CB1D1,所以A1O∥平面CB1D1.(2)解法1 等体积法.设点O到平面CB1D1的距离为h.因为D1D⊥平面ABCD,所以D1D⊥C O.因为AC,BD为菱形ABCD的对角线,所以C O⊥BD.因为D1D∩BD=D,所以C O⊥平面BB1D1D.在菱形ABCD中,BC=1,∠BCD=60°,C O=3 2.解法2 作垂线.因为AA 1⊥平面A 1B 1C 1D 1,所以AA 1⊥B 1D 1.因为A 1C 1,B 1D 1为菱形A 1B 1C 1D 1的对角线,所以B 1D 1⊥A 1C 1. 因为AA 1∩A 1C 1=A 1,所以B 1D 1⊥平面AA 1C 1C. 因为B 1D 1⊂平面CB 1D 1,所以平面CB 1D 1⊥平面AA 1C 1C.在平面AA 1C 1C 内,作OH ⊥C O 1,H 为垂足,而平面CB 1D 1∩平面AA 1C 1C =CO 1, 所以OH ⊥平面CB 1D 1,即线段OH 的长为点O 到平面CB 1D 1的距离. 在矩形AA 1C 1C 中,∠O CH =∠C O 1C 1,sin ∠CO 1C 1=C C 1C O 1=172=27,sin ∠OCH =OH O C =OH 32=2OH 3,所以27=2OH 3,故OH =217.因此,点O 到平面CB 1D 1的距离为217.。
立体几何的计算定理立体几何是研究空间物体的形状、大小、位置和运动等性质的一门数学学科。
在立体几何中,存在着一些重要的计算定理,它们能够帮助我们准确计算立体图形的各种参数和性质。
本文将介绍一些常用的立体几何计算定理。
一、体积计算定理体积是描述立体图形容积大小的量。
在立体几何中,我们常用以下定理来计算体积。
1. 平行四边形棱柱的体积计算定理:平行四边形棱柱的体积等于底面积与高的乘积。
2. 直方体的体积计算定理:直方体的体积等于底面积与高的乘积。
3. 圆柱体的体积计算定理:圆柱体的体积等于底面积与高的乘积。
4. 锥体的体积计算定理:锥体的体积等于底面积与高的乘积的三分之一。
5. 球体的体积计算定理:球体的体积等于四分之三乘以半径的立方。
二、表面积计算定理表面积是描述立体图形外部覆盖的面积的量。
在立体几何中,我们常用以下定理来计算表面积。
1. 正方体的表面积计算定理:正方体的表面积等于底面积的六倍。
2. 矩形长方体的表面积计算定理:矩形长方体的表面积等于底面积的两倍加上底面积形成的四个侧面的面积。
3. 圆柱体的表面积计算定理:圆柱体的表面积等于底面积的两倍加上底面积与高的乘积的两倍。
4. 球体的表面积计算定理:球体的表面积等于四乘以半径的平方。
三、欧拉定理欧拉定理是立体几何中的一个重要定理,它描述了一个立体图形的顶点、棱边和面的关系。
欧拉定理可以表述为:一个立体图形的顶点数加上面的数目,再减去边的数目等于2。
欧拉定理在立体几何的计算中具有重要的作用,可以用来检验计算结果的准确性,或者通过已知的参数来计算未知的参数。
四、平行四边形定理平行四边形定理是立体几何中关于平行四边形的性质和关系的定理。
其中一条重要的定理是平行四边形的对角线等分的定理,即平行四边形的对角线相交于一个点,且该点把对角线分成两段,两段长度相等。
平行四边形定理可以用来证明或计算平行四边形的各种性质,例如四边形的面积、周长、对角线长等。
五、球面上的计算定理在球面上,也存在一些与计算相关的定理。
立体几何的计算总结立体几何是数学的一个重要分支,涉及到三维空间中的图形、体积、表面积等计算问题。
在学习立体几何的过程中,我们需要掌握一些计算方法和公式,以便解决各种几何问题。
本文将对立体几何的常见计算方法进行总结和归纳。
一、长方体的计算长方体是最简单的立体图形之一,其计算公式如下:1. 长方体的体积计算公式:长方体的体积(V)等于长(L)乘以宽(W)乘以高(H),即V = L * W * H。
其中,长、宽、高的单位需保持一致。
2. 长方体的表面积计算公式:长方体的表面积(A)等于长方体的底面积(A底)加上长方体的四个侧面积(A侧)。
A = A底 + A侧,其中 A底 = L * W,A侧 = 2 * (L * H + W * H)。
二、正方体和立方体的计算正方体和立方体是特殊的长方体,其计算公式如下:1. 正方体和立方体的体积计算公式:正方体和立方体的体积(V)等于边长(a)的立方,即V = a^3。
2. 正方体和立方体的表面积计算公式:正方体和立方体的表面积(A)等于正方体或立方体的一个面积(A面)乘以6个,即 A = A面 * 6。
A面 = a * a,其中 a为边长。
三、圆柱体的计算圆柱体是由一个矩形和两个平行圆面组成的立体图形,其计算公式如下:1. 圆柱体的体积计算公式:圆柱体的体积(V)等于底面积(A底)乘以高(H),即 V = A 底 * H。
A底= πr^2,其中 r为底面圆的半径。
2. 圆柱体的表面积计算公式:圆柱体的表面积(A)等于底面积(A底)加上两个底面和侧面的面积和(A侧)。
A = A底+ 2πrh,其中 A底= πr^2,A侧= 2πrh,r为底面圆的半径,h为圆柱体的高。
四、圆锥体的计算圆锥体是由一个圆锥面和一个底面组成的立体图形,其计算公式如下:1. 圆锥体的体积计算公式:圆锥体的体积(V)等于底面积(A底)乘以高(H)再除以3,即 V = (A底 * H) / 3。
立体几何求点到面距离问题一、引言在立体几何中,求点到面的距离是一个重要的问题。
这个问题在很多领域都有应用,比如机械工程、建筑设计、计算机图形学等等。
本文将从基础概念开始,逐步深入探讨求点到面距离的方法。
二、基础概念1. 点点是空间中最基本的几何元素,它没有大小和方向,只有位置。
2. 面面是由三个或三个以上的点组成的平面图形。
在空间中,一个面可以看做是无限多个平行于该面的平面叠加而成。
3. 距离距离是两个点之间的长度。
在空间中,两个点之间的距离可以看做是它们连线上最短的长度。
三、求解方法1. 向量法向量法是一种常见且直观的求解方法。
首先将点和面表示为向量形式,然后通过向量运算求出它们之间的距离。
具体步骤如下:(1)设点P(x1, y1, z1)和平面Ax+By+Cz+D=0;(2)设该平面上任意一点Q(x2, y2, z2),则Q到P的向量为v=<x2-x1, y2-y1, z2-z1>;(3)平面的法向量为n=<A, B, C>;(4)点P到平面的距离d=|n·v|/|n|,其中“·”表示向量点积。
向量法的优点是简单易懂,适用于任意维度空间。
但是需要注意的是,如果点在平面上或者与平面非常接近时,计算结果可能会出现误差。
2. 坐标法坐标法是一种基于坐标系的求解方法。
它将点和面都表示为坐标系中的坐标,并通过公式求出它们之间的距离。
具体步骤如下:(1)设点P(x1, y1, z1)和平面Ax+By+Cz+D=0;(2)设该平面上任意一点Q(x2, y2, z2),则Q到P的距离为d=|(A·x1+B·y1+C·z1+D)/(√(A^2+B^2+C^2))|;坐标法的优点是简单易懂,适用于三维空间。
但是需要注意的是,如果点在平面上或者与平面非常接近时,计算结果可能会出现误差。
3. 利用三角形求解利用三角形求解也是一种常见的方法。
它将点和面之间的距离转化为点到平面所在三角形的距离。
立体几何专题2 计算部分3、(2010全国卷2理数)(9)已知正四棱锥S ABCD -中,SA =,那么当该棱锥的体积最大时,它的高为(A )1 (B(C )2 (D )3 【答案】C【命题意图】本试题主要考察椎体的体积,考察告辞函数的最值问题.【解析】设底面边长为a ,则高所以体积,设,则,当y 取最值时,,解得a=0或a=4时,体积最大,此时,故选C.(2010辽宁文数)(11)已知,,,S A B C 是球O 表面上的点,SA ABC ⊥平面,AB BC ⊥,1SA AB ==,BC =O 的表面积等于(A )4π (B )3π (C )2π (D )π解析:选A.由已知,球O 的直径为22R SC ==,∴表面积为244.R ππ=8、(2010全国卷2文数)(8)已知三棱锥S ABC -中,底面ABC 为边长等于2的等边三角形,SA 垂直于底面ABC ,SA =3,那么直线AB 与平面SBC 所成角的正弦值为(A )(C)4 (D) 34【解析】D :本题考查了立体几何的线与面、面与面位置关系及直线与平面所成角。
过A 作AE 垂直于BC 交BC 于E ,连结SE ,过A 作AF 垂直于SE 交SE 于F ,连BF ,∵正三角形ABC ,∴ E 为BC 中点,∵ BC ⊥AE ,SA ⊥BC ,∴ BC ⊥面SAE ,∴ BC ⊥AF ,AF ⊥SE ,∴ AF ⊥面SBC ,∵∠ABCSEFABC DA 1B 1C 1D1OABF 为直线AB 与面SBC 所成角,由正三角形边长3,∴AE =AS=3,∴ SE=AF=32,∴3sin 4ABF ∠=(2010全国卷1文数)(12)已知在半径为2的球面上有A 、B、C 、D 四点,若AB=CD=2,则四面体ABCD 的体积的最大值为(A)3(B)3 (C) 312.B 【命题意图】本小题主要考查几何体的体积的计算、球的性质、异面直线的距离,通过球这个载体考查考生的空间想象能力及推理运算能力.【解析】过CD 作平面PCD ,使AB ⊥平面PCD,交AB 与P,设点P 到CD 的距离为h ,则有ABCD 11222323V h h =⨯⨯⨯⨯=四面体,当直径通过AB 与CD 的中点时,max h =故max V =24、(2010全国卷1文数)(9)正方体ABCD -1111A B C D 中,1BB 与平面1ACD 所成角的余弦值为 (A )(B(C )23(D9.D 【命题意图】本小题主要考查正方体的性质、直线与平面所成的角、点到平面的距离的求法,利用等体积转化求出D 到平面AC 1D 的距离是解决本题的关键所在,这也是转化思想的具体体现.【解析1】因为BB 1//DD 1,所以B 1B 与平面AC 1D 所成角和DD 1与平面AC 1D 所成角相等,设DO ⊥平面AC 1D ,由等体积法得11D ACD D ACD V V --=,即111133ACD ACD S DO S DD∆∆⋅=⋅.设DD 1=a,则122111sin 60)2222ACD S AC AD a ∆==⨯⨯= ,21122ACD S AD CD a ∆== .所以1313A C D A C D S D D D O a S ∆∆==,记DD 1与平面AC 1D 所成角为θ,则1sin DO DD θ==所以cos 3θ=. 【解析2】设上下底面的中心分别为1,O O ;1O O 与平面AC 1D 所成角就是B 1B 与平面AC 1D所成角,1111cos 3O O O OD OD ∠===25、(2010全国卷1文数)(6)直三棱柱111ABC A B C -中,若90BAC ∠=︒,1AB AC AA ==,则异面直线 1BA 与1AC 所成的角等于(A)30° (B)45°(C)60° (D)90°6.C 【命题意图】本小题主要考查直三棱柱111ABC A B C -的性质、异面直线所成的角、异面直线所成的角的求法.【解析】延长CA 到D ,使得AD AC =,则11ADA C 为平行四边形,1DA B ∠就是异面直线1BA 与1AC 所成的角,又三角形1A DB 为等边三角形,0160DA B ∴∠=26、(2010全国卷1理数)(12)已知在半径为2的球面上有A 、B 、C 、D 四点,若AB=CD=2,则四面体ABCD 的体积的最大值为(2013年高考大纲卷(文))已知正四棱锥1111112,ABCD A B C D AA AB CD BDC -=中,则与平面所成角的正弦值等于( )A .23B .3C .3D .13【答案】A(2013年高考辽宁卷(文))已知三棱柱111ABC A B C -的6个顶点都在球O 的球面上,若34AB AC ==,,AB AC ⊥,112AA =,则球O 的半径为( )A .2B .C .132D .【答案】C(2013年高考课标Ⅱ卷(文))已知正四棱锥O-ABCD 的体积为,底面边长为,则以O 为球心,OA 为半径的球的表面积为________.【答案】24π(2013年高考课标Ⅰ卷(文))已知H 是球O 的直径AB 上一点,:1:2AH HB =,AB ⊥平面α,H 为垂足,α截球O 所得截面的面积为π,则球O 的表面积为_______.【答案】92π; (2013年高考大纲卷(文))已知圆O 和圆K 是球O 的大圆和小圆,其公共弦长等于球O 的半径,3602OK O K = ,且圆与圆所在的平面所成角为,则球O 的表面积等于______.【答案】16π(2013年高考天津卷(文))已知一个正方体的所有顶点在一个球面上. 若球的体积为92π, 则正方体的棱长为 ______.。
立体几何的计算立体几何是研究三维空间中的图形和物体的数学学科,它包括了体积、表面积、重心、中心点、形心坐标等方面的计算。
在实际生活和工作中,我们经常会遇到需要计算立体几何的问题,比如建筑设计、机械制造、地质勘探等领域。
本文将介绍一些常见的立体几何计算方法和应用案例。
1. 体积计算体积是指一个立体图形所占据的空间大小。
在立体几何中,计算体积的方法因不同的形状而有所不同。
1.1. 立方体体积计算立方体是一个六个面都是正方形的特殊立体,其体积计算公式为:V = a³,其中V表示体积,a表示立方体的边长。
1.2. 圆柱体体积计算圆柱体则是一个由一个圆形底面和一个平行于底面的圆形顶面相连而组成的立体,其体积计算公式为:V = πr²h,其中V表示体积,r表示底面半径,h表示高度。
2. 表面积计算表面积是指一个立体图形所有面的总面积。
计算立体图形的表面积可以根据不同的形状采用不同的计算公式。
2.1. 立方体表面积计算立方体的表面积计算公式为:S = 6a²,其中S表示表面积,a表示立方体的边长。
2.2. 圆柱体表面积计算圆柱体的表面积包括底面积和侧面积两部分,计算公式为:S = 2πr² + 2πrh,其中S表示表面积,r表示底面半径,h表示高度。
3. 重心计算重心是一个立体图形的平衡点,当一个立体图形被平衡支撑时,其重心处于平衡点上。
计算重心可以帮助我们了解立体图形的平衡性质。
3.1. 线性均匀杆的重心计算对于线性均匀杆来说,其重心就是杆的中点。
3.2. 平面图形的重心计算对于平面图形,其重心的计算方法因不同的形状而有所不同。
例如,对于矩形来说,重心位于矩形的对角线交叉点上。
4. 中心点计算中心点是一个立体图形的中心位置,通过计算中心点可以帮助我们确定立体图形的特定位置。
4.1. 线性杆的中心点计算对于线性杆来说,其中心点就是杆的中点,即位于杆的正中央。
4.2. 圆形的中心点计算对于圆形来说,中心点位于圆形的圆心。
立体几何中的计算问题
1.求底面边长为2,高为1的正三棱锥的全面积.
2.一个正三棱台的上、下底面边长分别是3 cm 和6 cm ,高是32
cm. (1)求三棱台的斜高;
(2)求三棱台的侧面积和表面积.
3.(1) 若一个圆锥的侧面展开图是面积为2π的半圆面,则该圆锥的体积为___
(2)平行四边形ABCD 满足AD=2,AB=4,60BAD ︒
∠=,将平行四边形ABCD 绕边AB 所在的直线旋转一周,由此形
成的几何体是什么?并求出其表面积
4.正三棱锥的棱长为1,侧面等腰三角形的顶角为30度,一只小虫沿从B 出发 ,沿侧面爬行一周后回到B , 求路径的最短距离.
5.若一个正方体的棱长为a ,则
(1)该正方体外接球的体积为 ;(2)该正方体的内切球的表面积为 .
6. 若一个等边圆柱(轴截面为正方形的圆柱)的侧面积与一个球的表面积相等,则这个圆柱与该球的体积之比是 .
7.已知球的半径为R ,在球内作一个内接圆柱,当这个圆柱底面半径与高为何值时,它的侧面积最大?
8.(2012·山东卷)如图,正方体ABCD -A 1B 1C 1D 1的棱长为1,E ,F 分别为线段AA 1,B 1C 上的点,则三棱锥D 1-EDF 的体积为________.
9.已知正方形ABCD 的边长为2,E ,F 分别为BC ,DC 的中点,沿
AE ,EF ,AF 折成一个四面体,使B ,C ,D 三点重合,则这个四面体的体积为 .
10.如图,在长方体1111ABCD A BC D -中,13,2AB AD cm AA cm
===,则四棱锥11A BB D D -的体积为 3cm
11.正三棱柱ABC -A 1B 1C 1的所有棱长均为1,D 为线段AA 1上的点,则三棱锥B 1-BDC 1的体积为________.
12.如图,在三棱锥P -ABC 中,AC =BC =2,∠ACB =90°,AP =BP =AB ,PC ⊥AC .
(1)求证:PC ⊥AB ;
(2)求点C 到平面APB 的距离.
13.若三棱锥S ABC -的所有顶点都在球O 的球面上,SA ⊥平面ABC ,SA =1AB =,2AC =,60BAC ∠=︒,则球O 的表面积为______.。