篮球计分器程序
- 格式:doc
- 大小:103.00 KB
- 文档页数:8
#include<reg52.h>#define uint unsigned int#define uchar unsigned charuchar code table[]=".. Play ball! ....";uchar code table1[]="Welcome to here!" ;sbit key_ST=P1^5; //功能键(开始/暂停)sbit key_A1=P1^0; //功能键(A队分数加1)sbit key_A2=P1^3; //功能键(A队分数加2)sbit key_1A=P1^6; //功能键(A队分数减1)sbit key_B1=P1^1; //功能键(B队分数加1)sbit key_B2=P1^4; //功能键(B队分数加2)sbit key_1B=P1^7; //功能键(B队分数减1)sbit key_EX=P1^2; //功能键(交换场地,A/B两队分数交换)sbit key_JS=P3^0; //功能键(比赛节数加1)sbit FMQ=P3^3; //蜂鸣器sbit lcdrs=P3^5; //LCD显示的数据/命令选择端sbit lcden=P3^4; //LCD显示的使能信号uchar flag,ms,mg,ss,sg,ags,agg,bgs,bgg,num,num1,num2,js=1,C,D,t,min=0,time_fmq;int sec=12;void delayms(uint xms) //定义延时函数{uint i,j;for(i=xms;i>0;i--)for(j=110;j>0;j--);}void write_data(uchar date) //定义为数据模式{lcdrs=1;P0=date;delayms(5);lcden=1;delayms(5);lcden=0;}void write_com(uchar com) //定义为命令模式{lcdrs=0;P0=com;delayms(5);lcden=1;delayms(5);lcden=0;}void lcd_init() //LCD显示屏的初始化{lcden=0;write_com(0x38);write_com(0x0c);write_com(0x06);write_com(0x01);}void init() //LCD显示屏的初始化2(即输出“T-”、“Q-”、“A:”、“B:”){lcden=0;write_com(0x82);write_data('T');write_data('-');write_com(0x8a);write_data('Q');write_data('-');write_com(0x80+0x43);write_data('A');write_data(':');write_com(0x80+0x49);write_data('B');write_data(':');}void init_start() //LCD显示屏的初始化2(即输出“T-”、“Q-”、“A:”、“B:”){lcden=0;write_com(0x80+0x10);for(num2=0;num2<16;num2++){write_data(table1[num2]);delayms(5);}write_com(0x80+0x50);for(num2=0;num2<17;num2++){write_data(table[num2]);delayms(5);}for(num2=0;num2<16;num2++){write_com(0x18);delayms(400);}}void display(uchar min,int sec,uchar C,uchar D,uchar js) //显示函数{ss=sec/10;sg=sec%10;ms=min/10;mg=min%10;ags=C/10;agg=C%10;bgs=D/10;bgg=D%10;write_com(0x84);write_data(0x30+ms);write_data(0x30+mg);write_data(':');write_data(0x30+ss);write_data(0x30+sg);write_com(0x8d-1);write_data(0x30+js);write_com(0x80+0x45);write_data(0x30+ags);write_data(0x30+agg);write_com(0x80+0x4b);write_data(0x30+bgs);write_data(0x30+bgg);}void main(){TMOD=0x11;//定义定时器0的工作方式为0001TH0=(65536-45872)/256; //装初值TL0=(65536-45872)%256;TH1=(65536-45872)/256; //装初值TL1=(65536-45872)%256;EA=1;//打开总中断ET0=1;//打开定时器0的中断TR0=0;ET1=1;TR1=0;lcd_init();init_start();while(1){TR1=0;if(key_ST==0){delayms(5);if(key_ST==0){FMQ=0;if(flag==0){lcd_init();init();}flag=1;TR0=~TR0;}while(!key_ST)display(min,sec,C,D,js);FMQ=1;}if(key_A1==0){delayms(5);if(key_A1==0){FMQ=0;C++;}while(!key_A1)display(min,sec,C,D,js);FMQ=1;}if(key_A2==0){delayms(5);if(key_A2==0){FMQ=0;C+=2;}while(!key_A2)display(min,sec,C,D,js);FMQ=1;}if(key_1A==0){delayms(5);if(key_1A==0){FMQ=0;C--;}while(!key_1A)display(min,sec,C,D,js);FMQ=1;}if(key_B1==0){delayms(5);if(key_B1==0){FMQ=0;D++;}while(!key_B1)display(min,sec,C,D,js);FMQ=1;}if(key_B2==0){delayms(5);if(key_B2==0){FMQ=0;D+=2;}while(!key_B2)display(min,sec,C,D,js);FMQ=1;}if(key_1B==0){delayms(5);if(key_1B==0){FMQ=0;D--;}while(!key_1B)display(min,sec,C,D,js);FMQ=1;}while(min==0&&sec==0){TR0=0;TR1=1;if(key_ST==0){if(key_ST==0){FMQ=0;min=11;sec=60;TR0=~TR0;}while(!key_ST)display(min,sec,C,D,js);FMQ=1;}if((key_EX==0)&&(js==2)){delayms(10);if((key_EX==0)&&(js=2)){FMQ=0;write_com(0x80+0x43);write_data('B');write_com(0x80+0x49);write_data('A');t=C;C=D;D=t;}while(!key_EX)display(min,sec,C,D,js);FMQ=1;}if(key_JS==0){delayms(10);if(key_JS==0){FMQ=0;js++;}while(!key_JS)display(min,sec,C,D,js);FMQ=1;}}display(min,sec,C,D,js);}}void T0_time()interrupt 1 //中断0控制晶码管显示时间{TH0=(65536-45872)/256; // 重装初值TL0=(65536-45872)%256;num++;if(num==20){num=0;sec--;if(sec<0){sec=59;min--;}}}void T1_time()interrupt 3 //中断0控制晶码管显示时间{TH1=(65536-45872)/256; // 重装初值TL1=(65536-45872)%256;num1++;if(num1==20){num1=0;time_fmq++;if(time_fmq>=4)FMQ=1;elseFMQ=0;}}。
摘要本设计是采用AT89C51单片机为核心设计的一个用于赛场的篮球计时计分器。
本设计采用定时器T0中断计时,显示部分分为计时和计分显示两部分,均采用共阴极LED显示。
计时部分计时范围宽,而且可定时设定与小时、分钟调整;计分部分调节灵活,显示范围宽,足以满足各种规模赛程需要。
两个显示模块均采用动态扫描方式显示。
在本设计中P3口(P3.0—P3.5)是计时计分显示共用的扫描口,P0口是计时数据输出口,P2口计分数据输出口,计时计分均设有显示缓冲区(40H—45H 计分显示缓冲区,30H—35H计时显示缓冲区)。
本设计共有K1—K6六个设置按键,K1是甲加分键(按一次加一分),K2是乙加分键(按一次加一分),K3是定时切换键(定时设置与计时调时切换),K4是小时调整键(计时与定时小时调整),K5是分钟调整键(计时与定时分钟调整),K6分数位置交换键(交换甲、乙两队比分的位置)。
按键与P1口相接,低电平输入有效,另外还有一个复位按键K7。
报警部分由555与扬声器组成,当计时时间到时,输出低电平,由555构成的电路工作输出脉冲信号驱动扬声器发出声音。
计时定时的原理与定时闹钟相同,为定时设置定时小时和定时分钟计数单元,通过比较定时与计时的时分计数单元判断比赛是否结束是否报警,定时与计时共用一个显示缓冲区,通过K3(定时切换键)进行显示切换,本设计可通过定时显示的秒位判断定时是否有效,如果秒位显示00说明无效(上次用过的定时),显示11说明有效(本次定时)。
定时时间到,扬声器报警,比赛结束,按K3键可停止报警(否则一直报警)。
本次设计的篮球计时计分器具有以下的功能:[I]能记录整个赛程的比赛时间,并能修改比赛时间。
[II]能随时刷新甲、乙两队在整个比赛过程中的比分。
[III]中场交换比赛场地时,能交换甲、乙两队比分的位置。
[IV]比赛结束时,能发出报警声。
目录1概述- 3 -1.1 单片机简介- 3 -1.2 单片机发展前景- 4 -1.3 课程设计的意义- 5 -1.4 任务与要求- 5 -2系统总体方案及硬件设计- 6 -2.1 系统总体方案设计- 6 -2.2 硬件系统设计- 6 -2.2.1 单片机选择- 6 -2.2.2 时钟电路模块- 7 -2.2.3 复位电路模块- 8 -2.2.4按键控制键盘模块- 8 -2.2.5 显示模块和定时报警模块- 9 -3 软件设计 - 11 -3.1 软件总体设计方案- 11 -3.2 程序模块设计- 11 -3.2.1 中断入口程序- 12 -3.2.2 主程序模块与定时设置子程序- 13 -3.2.3 定时器T0中断服务程序和计时加1秒的子程序- 15 -3.2.4计时定时值与计分转换到显示缓冲区子程序- 15 -3.2.5报警服务子程序与延时子程序- 16 -4 PROTEUS软件仿真- 17 -5 课程设计体会- 20 -参考文献- 21 -附1 源程序代码- 22 -附2 系统原理图- 30 -1 概述1.1 单片机简介单片机,亦称单片微电脑或单片微型计算机。
#include <reg51.h>#include "intrins.h" //_nop_();延时函数用#define uchar unsigned char#define uint unsigned int#define Lcd_Port P3 //定义数据端口#define KEY_IO P0 //键盘接口sbit RS = P2^1; //定义和LCM的连接端口sbit RW = P2^2;sbit E = P2^5;sbit Busy = P3^7;uchar data keytemp,key;uchar L=0;uchar k=0;uchar c =0;uchar b=0;uchar j=0;uchar e=1;uchar d =0;uchar hour1=24;uchar min = 11;uchar sec = 59; //赋初值uchar data flag=0x00;bit flag_key=0;uchar code Lcddata[] = {"0123456789:"};uchar h1='A';uchar h2='B';uchar sub,abj;/****************************************************************************** ************* 函数名称:Timer0Init* 功能描述:定时器0初始化******************************************************************************* ***********/void Timer0Init(void){TMOD=0x11;TH0 = 0x3c;TL0 = 0xb0; //50ms定时初值TH1=0x3c;TL1=0xb0; //10MS定时初值(T1计时用)ET0=1;ET1=1;TR0=1;TR1=1;EA=1;}/****************************************************************************** ************* 函数名称:IsrTimer0* 功能描述:T0 50mS中断程序******************************************************************************* ***********/void IsrTimer0(void) interrupt 1 using 1 //T0 50mS中断程序{ static uchar count = 0;uchar i=0,b=0;TH0 = 0x3c;TL0 = 0xb0;count++;if(count ==20) //定时1s时间到{count = 0;sec--;if(sec == 0) //1分钟时间到{if(min == 0) //12分钟时间到{min = 11;sec = 59;TR0=0;for(i=1000;i<=0;i--) //延时5秒{for(b=1000;b<=0;b--){_nop_();_nop_();_nop_();_nop_();_nop_();}}}else{sec = 59;min--;}}}}/****************************************************************************** ************* 函数名称:Delay* 功能描述:延时子程序,延时(1MS*t) S******************************************************************************* ***********/void Delay(uchar t){uchar a;while(t-- != 0){for(a = 0; a < 125; a++);}}/****************************************************************************** ************* 函数名称:Read_Busy* 功能描述:读忙信号判断******************************************************************************* ***********/void Read_Busy(void){uchar i=50;Lcd_Port=0xff;RS = 0;RW = 1;E = 1;while((i--)&&Busy);E=0;}/****************************************************************************** ************* 函数名称:Write_Comm* 功能描述:写指令函数ok******************************************************************************* ***********/void Write_Comm(uchar lcdcomm){Read_Busy();RS = 0;RW = 0;E = 1;Lcd_Port=lcdcomm;E = 0;}/****************************************************************************** ************* 函数名称:Write_Char* 功能描述:写字符函数ok******************************************************************************* ***********/void Write_Char(uint num)//写字符函数{Read_Busy();RS = 1;RW = 0;E = 1;Lcd_Port = Lcddata[num];E = 0;}/****************************************************************************** ************* 函数名称:Write_Data* 功能描述:写数据函数ok******************************************************************************* ***********/void Write_Data(uchar lcddata){Read_Busy();RS = 1;RW = 0;E = 1;Lcd_Port = lcddata;E = 0;}/****************************************************************************** ************* 函数名称:Init_LCD* 功能描述:初始化LCD******************************************************************************* ***********/void Init_LCD(void){Delay(400); //稍微延时,等待LCM进入工作状态Write_Comm(0x38); //8位2行5*8Write_Comm(0x0c); //显示开/关,光标开闪烁开Write_Comm(0x01); //清显示Write_Comm(0x06); //文字不动,光标右移Write_Comm(0x02); //光标归位}/****************************************************************************** ************* 函数名称:Show_Time* 功能描述:LCD上显示当前时间******************************************************************************* ***********/void Show_Time(void){Lcd_Port = 0xa0;Write_Comm(0x80+0x08); //显示首地址Write_Char( hour1 / 10 );//显示分Write_Char( hour1 % 10 );Write_Comm(0x80+0x4b);Write_Char( min / 10 ); //显示倒计时分钟Write_Char( min % 10 );Write_Char( 10 ); //显示“:”Write_Char( sec / 10 ); //显示倒计时秒Write_Char( sec % 10 );Write_Comm(0x80+0x0d);Write_Char(e%10);Write_Data('S');Write_Data('t');Write_Comm(0x80+0x43);Write_Char( c /10 );Write_Char( c % 10 );Write_Comm(0x83);Write_Char(d /10 );Write_Char(d % 10 );}//***************按键扫描函数/*************void keyscan(){uchar i,t=0xef; //1110 1111KEY_IO=0x0f;keytemp=(~KEY_IO)&0x0e;if(keytemp!=0) //0000 0000 ;0000 1000; 0000 0100; 0000 0010; 0000 0001;{Delay(20);for(i=0;i<4;i++){KEY_IO=t;keytemp=(~KEY_IO)&0x0e;if(keytemp!=0&flag_key==0){flag_key=1;switch(keytemp){case 0x08:key=0*4+i;break;case 0x04:key=1*4+i;break;case 0x02:key=2*4+i;break;case 0x01:key=3*4+i;break;default:break;}switch(key){case0:{d++;j=1;if(d>=99){ Write_Comm(0x84);Write_Data('1');d=0;}b=0;}break;case1:{d++;d++;j=1;if(d>=99){ Write_Comm(0x84);Write_Data('1');d=0;}b=0;}break;case2:{d++;d++;d++;if(d>=99){ Write_Comm(0x84);Write_Data('1');d=0;} j=1;b=0;}break;case 3:{d--;if(d==0)d=0;}break;case4:{c++;if(c>=99){ Write_Comm(0x80+0x44);Write_Data('1');c=0;};b=1;j=0;}break;case5:{c++;c++;if(c>=99){ Write_Comm(0x80+0x44);Write_Data('1');c=0;}b=1;j=0;}break;case6:{c++;c++;c++;if(c>=99){ Write_Comm(0x80+0x44);Write_Data('1');c=0;}b=1;j=0;}break;case 7: {c--;if(c==0)c=0;}break;case 8:TR0=~TR0;TR1=~TR1;L=0;k=0;break;case 9:e++;if (e==5)e=1;Write_Comm(0x80+0x0d);Write_Char(e%10); break;case 0x0a: hour1=24;b=1;break;case 0x0b: abj=h1;h1=h2;h2=abj;RS=0;RW=0;P3=0x80+0x43;Delay(5);E=1;E=0;RS=1;RW=0;P3=h1;Delay(5);E=1;E=0;RS=0;RW=0;P3=0x83;Delay(5);E=1;E=0;RS=1;RW=0;P3=h2;Delay(5);E=1; E=0;sub=c;c=d;d=sub;b=1;break;//case 0x0c:TR0=1;TR1=1;break;default:break;}}t=(t<<1)|0x01;}}else flag_key=0;}void IsrTimer1(void) interrupt 3 using 3//T1 50mS中断程序{uchar i=0,m=0,a=0;static uchar ta20ms= 24;TH1=0x3c;TL1=0xb0;ta20ms--;if(ta20ms==0){ta20ms=24;hour1--;if(hour1==0)hour1=24 ;}k=1;L=1;}/****************************************************************************** ************* 函数名称:main* 功能描述:主函数******************************************************************************* ***********/void main(void){Init_LCD(); //初始化LCMTimer0Init(); //初始化定时器TR0=0;TR1=0;while(1){Show_Time(); //显示时间keyscan();Write_Comm(0x80);Write_Data(h1);Write_Data(':');Write_Comm(0x80+0x40);Write_Data(h2);Write_Data(':');}}。
篮球计分器F P G A附程序单片机接口实验篮球计分器的设计姓名: 苗茂宇班级: 14级12班学号: 1408202007 导师: 党选举专业: 控制科学与工程成绩评定目录摘要 (1)Abstract (1)1. FPGA及系统设计概述 (2)1.1. EDA简介 (2)1.1.1. EDA定义 (2)1.1.2. EDA发展概述 (2)1.1.3. HDL概述 (3)1.1.4. 总结 (4)1.2. FPGA简介 (4)1.2.1. FPGA概述 (4)1.2.2. FPGA原理 (5)1.3. LCD1602 (6)1.4. 产品现状及发展 (7)1.5. 总体设计要求 (8)1.5.1. 设计流程 (8)1.5.2. 设计要求 (8)1.6. 本章小结 (8)2. 实验方案设计 (9)2.1. 分频模块 (9)2.2. 计时模块 (10)2.3. 24秒计时模块 (12)2.4. 计分模块 (14)2.5. lcd驱动模块 (15)2.6. 本章小结 (22)3. 实验结论 (22)4. 结束语 (23)参考文献 (24)附录 1 (25)摘要FPGA(现场可编程逻辑器件)以其体积小、功耗低、稳定性高等优点被广泛应用于各类电子产品的设计中。
FPGA是基于硬件可编程的器件,设计者需要掌握硬件描述语言,Verilog HDL就是一种硬件描述语言。
Verilog HDL语言是在C语言的基础上发展而来的,语法结构上与C语言有很多相似之处,继承了C语言的语法结构,但是其与C语言有着本质上的区别。
本设计是基于FPGA 的篮球计时计分系统的设计,结合篮球比赛的实际过程,对系统进行了模块化设计,最终组合调试。
硬件实验表明本系统计时计分准确,实时性好,能够很好的反应比赛进度,此次设计达到了设计预期。
关键词:FPGA;Verilog HDL;计时计分;模块化AbstractFPGA (field programmable logic device) with its small size, low power consumption, high stability has been widely used in various types of electronic products design. FPGA is a programmable device based on hardware, designers need to master the hardware description language, Verilog HDL is a hardware description language. Verilog HDL language is developed on the basis of C language, grammar structure and C language have many similarities, inherited the grammar structure of C language and C language, but there's a difference between. This design is the design of FPGA basketball timing and scoring system based on the actual process, combined with the game of basketball, the system of modular design, the final assembly debugging. Hardware experiments show that the system timing accuracy, good real-time performance, can very good response competition schedule, the design achieves the expected design.Keywords: FPGA;Verilog HDL ; timing and scoring; modular1.FPGA及系统设计概述1.1.EDA简介1.1.1.EDA定义EDA是电子设计自动化(Electronic Design Automation)的缩写。
单片机微机原理及应用课目:篮球记分牌的设计学院:电气工程学院班级:自动化08-2姓名:库万古丽(20082102427)麦地楠木(20082102426)指导教师:帕子来提完成时间:2011年12月11日篮球赛计时计分器一设计目的设计并制作一个用于赛场的篮球赛计时计分器,实现如下基本功能:(1)能记录整个赛程的比赛时间,并能修改比赛时间,暂停比赛时间。
(2)能随时刷新甲,乙两队在整个赛程中的比分。
(3)中场交换场地时,能交换甲,乙两队比分的位置。
(4)比赛时间结束时,能发出报警指令。
二设计意义通过篮球计分计时器的制作,可以使我熟悉,了解单片机开发设计实例的过程,并能使读者加深对单片机的理解和运用以及掌握单片机与外围接口的一些方法和技巧,这主要表现在以下的一些方面:(1)篮球计分计时器包含了8051系列单片机的最小应用系统的构成,同时在此基础上扩展了一些实用性强的外围接口。
(2)掌握键盘接口原理,能正确地把键盘使用到单片机系统中,可以了解到LED显示器的结构,工作原理以及这种显示器的接口实例。
(3)学会调试电路,分析电路故障,积累电路调试经验。
三具体设计内容1 系统框图构成基于单片机系统的篮球计分计时器的系统构成框图如下所示:2硬件电路改进:由于原来的电路比较复杂,用了很多芯片,浪费成本,而且给后期调试的调试会带来较多麻烦,故对原来的硬件电路进行了改动。
改动方面主要关于数码管显示的驱动和位选的,前期的电路设计采用了大量的CD4511和CD4094来进行数码管显示的驱动和位选,而这次的电路设计只用了8个三极管就实现了这项功能。
下面前期电路设计的计时部分的原理图,还有更为复杂的计分原理图未给出a b c d e f gLEDa b c d e f gLEDa b c d e f gLEDa b c d e f gLEDCD4511a b c d e f gVCCAB C D LELTGNDBICD4511a b c d e f gVCCAB C D LELTGNDBICD4511a b c d e f gVCCAB C D LELTGNDBICD4511a b c d e f gVCCAB C D LELTGNDBI123a1a2a32526271641234a4a1a2a3a4a1a2a3a412349181920RESET X TAL2X TAL1GNDP2.4P2.5P2.6P3.6VCC8765b1b2b3b4b1b2b3b45678EAb3P1.0P1.1P1.2P1.3P2.0P2.1P2.2P2.3b4403171234212223248GNDK5K6K7调时启动\暂停\交换C130pF C230pFU112MHZ C322uF R11k¦¸GNDVDD5VVDD5V调时VSS5V蜂鸣器GND后期改进的整体原理图:(3)软件调试及组装软件的编程调试首先要抓住计分和计时两大模块,在这两大模块成功的基础上再进行其他细小模块的组装和完善。
3.12 篮球计时计分器设计(8学时)一、设计原理该篮球计时计分器,由九个功能模块组成: 时钟产生模块、按键输入模块、系统的计时模块、24秒计时模块、数码管输出模块、led输出模块、计分模块、lcd输出模块、比分交换模块实现的主要功能:S1、S2分别用于两队比分的减1,S3、S4分别用于两队比分的加1,S5用于控制比赛的开始和暂停,S6用于24秒的重新置位,和进入下一节的显示切换,S7用于系统的复位,S8用于对比赛总时间减一分(调试时用,实际中不需要这个按键)。
液晶屏显示比分,数码管显示一节时间和24秒倒计时;当按下S7时,系统复位,液晶屏显示000:000 1st,数码管显示12 00 24;当按下S5时系统开始计时,若再按下S5则处于暂停状态;当24秒倒计时剩余时间小于一秒时,则显示为秒表计时方式;当24秒时间到了,则8个led灯全亮,比赛暂停,此时先按下S5再按S6则重新从24秒开始倒计时;当一节比赛结束时,8个led灯全亮,比赛暂停,此时先按下S5再按S6则进入下一节;当比赛进行到第三节时,则比分交换显示。
二、设计1、顶层图:2、各子模块及对应程序:(1)数码管输出模块library ieee;use ieee.std_logic_1164.all;use ieee.std_logic_arith.all;use ieee.std_logic_unsigned.all;entity shumaguan isport( clk : in std_logic;ledag : out std_logic_vector(7 downto 0);del : out std_logic_vector(2 downto 0);m10 : in std_logic_vector(3 downto 0);m : in std_logic_vector(3 downto 0);s10 : in std_logic_vector(3 downto 0);s : in std_logic_vector(3 downto 0);s24_10 : in std_logic_vector(3 downto 0);s24 : in std_logic_vector(3 downto 0)); end shumaguan;architecture rtl of shumaguan issignal cq: std_logic_vector(3 downto 0);signal dount : std_logic_vector(2 downto 0);beginprocess(clk) --数码管动态扫描beginif(clk'event and clk='1' )thendount<=dount+1;end if;del<=dount;end process;process(dount,s24,s24_10,s,s10,m,m10)beginif(dount=0)thencq<=m10;elsif(dount=1)thencq<=m;elsif(dount=2)thencq<=s10;elsif(dount=3)thencq<=s;elsif(dount=4)thencq<="1111";elsif(dount=5)thencq<="1111";elsif(dount=6)thencq<=s24_10;elsif(dount=7)thencq<=s24;end if;end process;process(cq)--数码管显示begincase cq iswhen "0000" => ledag <="11000000";when "0001" => ledag <="11111001";when "0010" => ledag <="10100100";when "0011" => ledag <="10110000";when "0100" => ledag <="10011001";when "0101" => ledag <="10010010";when "0110" => ledag <="10000010";when "0111" => ledag <="11111000";when "1000" => ledag <="10000000";when "1001" => ledag <="10010000";when "1010" => ledag <="11111111";when "1011" => ledag <="11111111";when "1100" => ledag <="11111111";when "1101" => ledag <="11111111";when "1110" => ledag <="11111111";when "1111" => ledag <="11111111";when others => null;end case;end process;end rtl;(2)时钟产生模块library ieee;use ieee.std_logic_1164.all;use ieee.std_logic_unsigned.all;use ieee.std_logic_arith.all;entity shizhong isport(clk:in std_logic;beep:out bit;clk_25hz,clk_100hz,clk_1khz:out std_logic); end shizhong;architecture rtl of shizhong issignal clk_100hz_s:std_logic;beginprocess(clk_100hz_s)variable q2:integer range 0 to 9;beginif(clk_100hz_s='1'and clk_100hz_s'event)then if(q2=3)thenclk_25hz<='1';q2:=q2+1;elsif(q2=4)thenclk_25hz<='0';q2:=0;else clk_25hz<='0';q2:=q2+1;end if;end if;end process;process(clk)variable q3:integer range 0 to 499999; beginif(clk='1'and clk'event)thenif(q3=499999)thenq3:=0;elseif(q3<250000)thenclk_100hz<='0';clk_100hz_s<='0';else clk_100hz<='1';clk_100hz_s<='1';end if;q3:=q3+1;end if;end if;end process;process(clk)variable q4:integer range 0 to 49999;beginif(clk='1'and clk'event)thenif(q4=49999)thenq4:=0;elseif(q4<25000)thenclk_1khz<='0';else clk_1khz<='1';end if;q4:=q4+1;end if;end if;end process;beep<='1';end rtl;(3)led输出模块library ieee;use ieee.std_logic_1164.all;entity led isport(ledin:in std_logic;ledout:out std_logic_vector(7 downto 0));end led;architecture rtl of led isbeginprocess(ledin)beginif(ledin='0')thenledout<="00000000";else ledout<="11111111";end if;end process;end rtl;(4)lcd输出模块library IEEE;use IEEE.STD_LOGIC_1164.ALL;use IEEE.STD_LOGIC_ARITH.ALL;use IEEE.STD_LOGIC_UNSIGNED.ALL;entity lcd isPort ( Clk : in std_logic; --状态机时钟信号,同时也是液晶时钟信号,其周期应该满足液晶数据的建立时间Aout_100,Aout_10,Aout,Bout_100,Bout_10,Bout: in std_logic_vector(3 downto 0);period:in std_logic_vector(2 downto 0);LCD_RS : out std_logic; --寄存器选择信号LCD_RW : out std_logic; --液晶读写信号LCD_EN : out std_logic; --液晶时钟信号LCD_Data : out std_logic_vector(7 downto 0)); --液晶数据信号end lcd;architecture Behav of lcd istype STATE_TYPE is (START,write_C,write_D,WRITE_BYTE_C,WRITE_BYTE_D,wait_3m1,wait_3m2,wa it_5m1,wait_5m2,wait_100m); --12个状态,START:初始化各信号量,write_C(write_D):判断初始化指令(显示数据)是否输出完毕,WRITE_BYTE_C (WRITE_BYTE_D):输出一个指令(数据),wait_3m1,wait_3m2,wait_5m1,wait_5m2,wait_100m:延时type MY_ARRAY_C is array(0 to 4) of std_logic_vector(7 downto 0); --初始化的数据(控制指令)type MY_ARRAY_D is array(0 to 11) of std_logic_vector(7 downto 0);constant c_d: MY_ARRAY_C:=(x"38",x"0c",x"06",x"01",x"C3");signal d_d: MY_ARRAY_D;signal STATE: STATE_TYPE:=START;signal w_c_flag : integer range 0 to 2:=0; --写指令时用到的标志 signal w_d_flag : integer range 0 to 2:=0; --写数据时用到的标志signal write_c_cnt : integer range 0 to 5:=0; --指令的指针signal write_d_cnt : integer range 0 to 12:=0; --数据的指针signal cnt : integer range 0 to 100:=0; --延时用到的计数器beginLCD_RW <= '0' ; --写数据d_d(0)<="0000"&Aout_100+x"30";d_d(1)<="0000"&Aout_10+x"30";d_d(2)<="0000"&Aout+x"30";d_d(3)<="00111010";d_d(4)<="0000"&Bout_100+x"30";d_d(5)<="0000"&Bout_10+x"30";d_d(6)<="0000"&Bout+x"30";d_d(7)<="00100000";d_d(8)<="00100000";d_d(9)<="00000"&period+x"31";d_d(10)<="01110011";d_d(11)<="01110100";process(Clk,STATE) --液晶驱动控制器beginif rising_edge(Clk) thencase STATE iswhen START=>LCD_EN<='0';w_c_flag<=0;w_d_flag<=0;write_c_cnt<=0;write_d_cnt<=0;STATE<=WRITE_C; --下一个状态(即要执行的)是WRITE_C(相当于跳转)when WRITE_C=>case write_c_cnt iswhen 0 to 4=> --小于5,五个初始化指令未输出完,则要输出STATE<=WRITE_BYTE_C;when 5=>write_c_cnt<=0; --等于5,五个初始化指令已输出完,转入数据输出STATE<=WRITE_D; --转入数据输出end case;when WRITE_BYTE_C=>if(w_c_flag=0) then --w_c_flag=0,通道选择,数据输出LCD_RS<='0';LCD_Data<=c_d(write_c_cnt);w_c_flag<=1;STATE<=wait_3m1; --延时elsif(w_c_flag=1) then --w_c_flag=1,使能en='1' LCD_EN<='1';w_c_flag<=2;STATE<=wait_5m1; --延时elsif(w_c_flag=2) then --w_c_flag=2,使能en='0' LCD_EN<='0';w_c_flag<=0;write_c_cnt<=write_c_cnt+1; --当前数据已输出完,write_c_cnt加一指向下一个数据,并转入下一个数据输出WRITE_CSTATE<=WRITE_C;end if;when WRITE_D=>case write_d_cnt iswhen 0 to 11=>STATE<=WRITE_BYTE_D;when 12=>write_d_cnt<=0;STATE<=wait_100m; --所有数据输出完毕 end case;when WRITE_BYTE_D=>if(w_d_flag=0) thenLCD_RS<='1';LCD_Data<=d_d(write_d_cnt);w_d_flag<=1;STATE<=wait_3m2;elsif(w_d_flag=1) thenLCD_EN<='1';w_d_flag<=2;STATE<=wait_5m2;elsif(w_d_flag=2) thenLCD_EN<='0';w_d_flag<=0;write_d_cnt<=write_d_cnt+1;STATE<=WRITE_D;end if;when wait_3m1=>if (cnt>=3) thenSTATE<=WRITE_BYTE_C;cnt<=0;elsecnt<=cnt+1;STATE<=wait_3m1;end if;when wait_5m1=>if (cnt>=5) thenSTATE<=WRITE_BYTE_C;cnt<=0;elsecnt<=cnt+1;STATE<=wait_5m1;end if;when wait_3m2=>if (cnt>=3) thenSTATE<=WRITE_BYTE_D;cnt<=0;elsecnt<=cnt+1;STATE<=wait_3m2;end if;when wait_5m2=>if (cnt>=5) thenSTATE<=WRITE_BYTE_D;cnt<=0;elsecnt<=cnt+1;STATE<=wait_5m2;end if;when wait_100m=>if (cnt>=100) thenSTATE<=START; --该轮次的所有数据(指令,显示)都已输出,回到START,开始新一轮的输出cnt<=0;elsecnt<=cnt+1;STATE<=wait_100m;end if;end case;end if;end process;end Behav;(5)24秒计时模块LIBRARY IEEE;USE IEEE.STD_LOGIC_1164.ALL;USE IEEE.STD_LOGIC_ARITH.ALL;ENTITY jishi24_cnt10 ISPORT(res,en,clk: IN STD_LOGIC;reset:IN STD_LOGIC;borrow:OUT STD_LOGIC;dataout:OUT STD_LOGIC_VECTOR(3 DOWNTO 0));END jishi24_cnt10;ARCHITECTURE rtl OF jishi24_cnt10 ISBEGINPROCESS(res,en,clk)VARIABLE q:INTEGER RANGE 0 TO 9;BEGINIF(res='1')THENq:=0;borrow<='0';ELSIF(reset='1'AND en='0')THENq:=0;borrow<='0';ELSIF(en='1')THENIF(clk='1'AND clk'EVENT)THENIF(q=0)THENq:=9;borrow<='1';ELSEq:=q-1;borrow<='0';END IF;END IF;END IF;dataout<=CONV_STD_LOGIC_VECTOR(q,4);END PROCESS;END rtl;LIBRARY IEEE;USE IEEE.STD_LOGIC_1164.ALL;USE IEEE.STD_LOGIC_ARITH.ALL;ENTITY cnt1_10 ISPORT(res,en,clk: IN STD_LOGIC;reset:IN STD_LOGIC;borrow:OUT STD_LOGIC;dataout:OUT STD_LOGIC_VECTOR(3 DOWNTO 0)); END cnt1_10;ARCHITECTURE rtl OF cnt1_10 ISBEGINPROCESS(res,en,clk)VARIABLE q:INTEGER RANGE 0 TO 9;BEGINIF(res='1')THENq:=4;borrow<='0';ELSIF(reset='1'AND en='0')THENq:=4;borrow<='0';ELSIF(en='1')THENIF(clk='1'AND clk'EVENT)THENIF(q=0)THENq:=9;borrow<='1';ELSEq:=q-1;borrow<='0';END IF;END IF;END IF;dataout<=CONV_STD_LOGIC_VECTOR(q,4);END PROCESS;END rtl;LIBRARY IEEE;USE IEEE.STD_LOGIC_1164.ALL;USE IEEE.STD_LOGIC_ARITH.ALL;ENTITY cnt_2 ISPORT(res,en,clk: IN STD_LOGIC;reset:IN STD_LOGIC;borrow:OUT STD_LOGIC;dataout:OUT STD_LOGIC_VECTOR(3 DOWNTO 0)); END cnt_2;ARCHITECTURE rtl OF cnt_2 ISBEGINPROCESS(res,en,clk)VARIABLE q:INTEGER RANGE 0 TO 2;BEGINIF(res='1')THENq:=2;borrow<='0';ELSIF(reset='1'AND en='0')THENq:=2;borrow<='0';ELSIF(en='1')THENIF(clk='1'AND clk'EVENT)THENIF(q=0)THENq:=2;borrow<='1';ELSEq:=q-1;borrow<='0';END IF;END IF;END IF;dataout<=CONV_STD_LOGIC_VECTOR(q,4);END PROCESS;END rtl;library ieee;use ieee.std_logic_1164.all;use ieee.std_logic_unsigned.all;entity mux1 isport(s1_10,s1,sec1_10,sec1,s10,s,sec10,sec:in std_logic_vector(3 downto 0);s10_out:out std_logic_vector(3 downto 0);s_out:out std_logic_vector(3 downto 0);ctrl_1,ctrl_2:in std_logic;pause:out std_logic;res:in std_logic);end mux1;architecture rtl of mux1 isbeginprocess(s1_10,s1,sec1_10,sec1,s10,s,sec10,sec,ctrl_1,ctrl_2)beginif(ctrl_1='1')thenif((s1_10<s10)or(s1_10=s10 and s1<=s))thens10_out<=s1_10;s_out<=s1;elses10_out<=s10;s_out<=s;end if;elsif(ctrl_2='1') thens10_out<=sec10;s_out<=sec;elseif(s1_10=0 and s1=0)thens10_out<=sec1_10;s_out<=sec1;elses10_out<=s1_10;s_out<=s1;end if;end if;end process;process(s1_10,s1,sec1_10,sec1,s10,s,sec10,sec,ctrl_1,ctrl_2)beginif(res='1')thenpause<='1';elsif((s1_10=0 and s1=0 and sec1_10=0 and sec1=0)or((ctrl_1='1'orctrl_2='1')and s10=0 and s=0 and sec10=0 and sec=0))then pause<='0';else pause<='1';end if;end process;end rtl;(6)计分模块library ieee;use ieee.std_logic_1164.all;use ieee.std_logic_unsigned.all;entity jifen_cnt10 isport(res,decA,decB,incA,incB:in std_logic;Aout,Bout:buffer std_logic_vector(3 downto 0);b_decA,b_incA,b_incB,b_decB:out std_logic);end jifen_cnt10;architecture rtl of jifen_cnt10 issignal alter_A,alter_B:std_logic;beginalter_A<=decA or incA;alter_B<=decB or incB;process(res,decA,incA)beginif(res='1')thenAout<="0000";b_decA<='0';elsif(alter_A='1'and alter_A'event)thenif(decA='1')thenif(Aout="0000")thenAout<="1001";b_decA<='1';elseAout<=Aout-1;b_decA<='0';end if;elsif(incA='1')thenif(Aout="1001")thenAout<="0000";b_incA<='1';elseAout<=Aout+1;b_incA<='0';end if;end if;end if;end process;process(res,decB,incB)beginif(res='1')thenBout<="0000";b_decB<='0';elsif(alter_B='1'and alter_B'event)thenif(decB='1')thenif(Bout="0000")thenBout<="1001";b_decB<='1';elseBout<=Bout-1;b_decB<='0';end if;elsif(incB='1')thenif(Bout="1001")thenBout<="0000";b_incB<='1';elseBout<=Bout+1;b_incB<='0';end if;end if;end if;end process;end rtl;(7)系统计时模块library ieee;use ieee.std_logic_1164.all;use ieee.std_logic_unsigned.all;entity dectect isport(datain_m10:IN STD_LOGIC_VECTOR(3 DOWNTO 0); datain_m:IN STD_LOGIC_VECTOR(3 DOWNTO 0);datain_s10:IN STD_LOGIC_VECTOR(3 DOWNTO 0);datain_s:IN STD_LOGIC_VECTOR(3 DOWNTO 0);datain_sec10:IN STD_LOGIC_VECTOR(3 DOWNTO 0);datain_sec:IN STD_LOGIC_VECTOR(3 DOWNTO 0);discon:out std_logic;resetin:in std_logic;res:in std_logic;resetout:out std_logic;extra:out std_logic);end dectect;architecture rtl of dectect isbeginprocess(datain_m10,datain_m,datain_s10,datain_s,datain_sec10,datain_s ec,resetin)beginif(res='1')thenresetout<='0';elsif(datain_m10="0000" and datain_m="0000" and datain_s10="0000" and datain_s="0000" and datain_sec10="0000" and datain_sec="0000")then resetout<=resetin;else resetout<='0';end if;end process;process(datain_m10,datain_m,datain_s10,datain_s,datain_sec10,datain_s ec,resetin)beginif(res='1')thenextra<='0';elsif(datain_m10="0000" and datain_m="0000" and datain_s10="0000" and datain_s="0000" and datain_sec10="0000" and datain_sec="0000")then if(resetin='1'and resetin'event)thenextra<='1';end if;end if;end process;process(datain_m10,datain_m,datain_s10,datain_s,datain_sec10,datain_s ec,resetin)beginif(res='1')thendiscon<='0';elsif(((datain_m10="0010" ANDdatain_m="0100")or(datain_m10="0011" AND datain_m="0110")or(datain_m10="0001" AND datain_m="0010")) and datain_s10="0000" and datain_s="0000" and datain_sec10="0000" and datain_sec="0000")thenif(resetin='1' and resetin'event)thendiscon<='1';end if;elsif(((datain_m10="0010" AND datain_m="0011")or(datain_m10="0011" AND datain_m="0101")or(datain_m10="0001" AND datain_m="0001")) and datain_s10="0000" and datain_s="0000" and datain_sec10="0000" and datain_sec="0000")thendiscon<='0';end if;end process;end rtl;LIBRARY IEEE;USE IEEE.STD_LOGIC_1164.ALL;USE IEEE.STD_LOGIC_ARITH.ALL;ENTITY cnt4 ISPORT(res,en,clk: IN STD_LOGIC;reset:IN STD_LOGIC;borrow:OUT STD_LOGIC;dataout:OUT STD_LOGIC_VECTOR(3 DOWNTO 0));END cnt4;ARCHITECTURE rtl OF cnt4 ISBEGINPROCESS(res,en,clk)VARIABLE q:INTEGER RANGE 0 TO 4;BEGINIF(res='1')THENq:=4;borrow<='0';ELSIF(reset='1')THENq:=0;borrow<='0';ELSIF(en='1')THENIF(clk='1'AND clk'EVENT)THENIF(q=0)THENq:=4;borrow<='1';ELSEq:=q-1;borrow<='0';END IF;END IF;END IF;dataout<=CONV_STD_LOGIC_VECTOR(q,4);END PROCESS;END rtl;LIBRARY IEEE;USE IEEE.STD_LOGIC_1164.ALL;USE IEEE.STD_LOGIC_ARITH.ALL;ENTITY cnt6 ISPORT(res,en,clk: IN STD_LOGIC;borrow:OUT STD_LOGIC;dataout:OUT STD_LOGIC_VECTOR(3 DOWNTO 0)); END cnt6;ARCHITECTURE rtl OF cnt6 ISBEGINPROCESS(res,en,clk)VARIABLE q:INTEGER RANGE 0 TO 5;BEGINIF(res='1')THENq:=0;borrow<='0';ELSIF(en='1')THENIF(clk='1'AND clk'EVENT)THENIF(q=0)THENq:=5;borrow<='1';ELSEq:=q-1;borrow<='0';END IF;END IF;END IF;dataout<=CONV_STD_LOGIC_VECTOR(q,4);END PROCESS;END rtl;LIBRARY IEEE;USE IEEE.STD_LOGIC_1164.ALL;USE IEEE.STD_LOGIC_ARITH.ALL;ENTITY cnt10 ISPORT(res,en,clk: IN STD_LOGIC;borrow:OUT STD_LOGIC;dataout:OUT STD_LOGIC_VECTOR(3 DOWNTO 0)); END cnt10;ARCHITECTURE rtl OF cnt10 ISBEGINPROCESS(res,en,clk)VARIABLE q:INTEGER RANGE 0 TO 9;BEGINIF(res='1')THENq:=0;borrow<='0';ELSIF(en='1')THENIF(clk='1'AND clk'EVENT)THENIF(q=0)THENq:=9;borrow<='1';ELSEq:=q-1;borrow<='0';END IF;END IF;END IF;dataout<=CONV_STD_LOGIC_VECTOR(q,4);END PROCESS;END rtl;LIBRARY IEEE;USE IEEE.STD_LOGIC_1164.ALL;USE IEEE.STD_LOGIC_UNSIGNED.ALL;ENTITY conv ISPORT( discon:IN STD_LOGIC;datain_m10:IN STD_LOGIC_VECTOR(3 DOWNTO 0);datain_m:IN STD_LOGIC_VECTOR(3 DOWNTO 0);dataout_m10:OUT STD_LOGIC_VECTOR(3 DOWNTO 0);dataout_m:OUT STD_LOGIC_VECTOR(3 DOWNTO 0);extra:IN STD_LOGIC);END conv;ARCHITECTURE rtl OF conv ISBEGINPROCESS(datain_m10,datain_m)BEGINIF(extra='1')THENdataout_m10<=datain_m10;dataout_m<=datain_m;ELSIF((datain_m10="0001" AND datain_m<2)OR(datain_m10="0000")OR(datain_m10="0001" AND datain_m=2 AND discon='1'))THENdataout_m10<=datain_m10;dataout_m<=datain_m;ELSIF((datain_m10="0010" AND datain_m<4 AND datain_m>=2)OR(datain_m10="0001" AND datain_m>=2)OR(datain_m10="0010" AND datain_m=4 AND discon='1'))THENdataout_m10<=datain_m10-1;dataout_m<=datain_m-2;ELSIF(datain_m10="0010" AND datain_m<2)THENdataout_m10<="0000";dataout_m<=10+datain_m-2;ELSIF((datain_m10="0011" AND datain_m<6 AND datain_m>=4)OR(datain_m10="0010" AND datain_m>=4)OR(datain_m10="0011" AND datain_m=6 AND discon='1'))THENdataout_m10<=datain_m10-2;dataout_m<=datain_m-4;ELSIF(datain_m10="0011" AND datain_m<4)THENdataout_m10<="0000";dataout_m<=10+datain_m-4;ELSIF((datain_m10="0100" AND datain_m<=8 AND datain_m>=6)OR(datain_m10="0011" AND datain_m>=6))THENdataout_m10<=datain_m10-3;dataout_m<=datain_m-6;ELSIF(datain_m10="0100" AND datain_m<6)THENdataout_m10<="0000";dataout_m<=10+datain_m-6;END IF;END PROCESS;END rtl;LIBRARY IEEE;USE IEEE.STD_LOGIC_1164.ALL;USE IEEE.STD_LOGIC_UNSIGNED.ALL;ENTITY ctrl ISPORT(res:IN STD_LOGIC;datain_m10:IN STD_LOGIC_VECTOR(3 DOWNTO 0);datain_m:IN STD_LOGIC_VECTOR(3 DOWNTO 0);datain_s10:IN STD_LOGIC_VECTOR(3 DOWNTO 0);datain_s:IN STD_LOGIC_VECTOR(3 DOWNTO 0);ctrl_1:OUT STD_LOGIC;ctrl_2:OUT STD_LOGIC);END ctrl;ARCHITECTURE rtl OF ctrl ISBEGINPROCESS(res,datain_m10,datain_m,datain_s10,datain_s)BEGINIF(res='1')THENctrl_1<='0';ctrl_2<='0';ELSIF((datain_m10="0000" AND datain_m="0000" )AND ((datain_s10="0010" AND datain_s<=4)OR(datain_s10="0001")OR(datain_s10="0000" AND datain_s>=1)))THENctrl_1<='1';ctrl_2<='0';ELSIF((datain_m10="0000" AND datain_m="0000" )AND (datain_s10="0000" AND datain_s="0000"))THENctrl_1<='0';ctrl_2<='1';ELSEctrl_1<='0';ctrl_2<='0';END IF;END PROCESS;END rtl;LIBRARY IEEE;USE IEEE.STD_LOGIC_1164.ALL;USE IEEE.STD_LOGIC_UNSIGNED.ALL;ENTITY period ISPORT(res:IN STD_LOGIC;reset:IN STD_LOGIC;discon:IN STD_LOGIC;datain_m10:IN STD_LOGIC_VECTOR(3 DOWNTO 0);datain_m:IN STD_LOGIC_VECTOR(3 DOWNTO 0);period:out std_logic_vector(2 downto 0);extra:IN STD_LOGIC);END period;ARCHITECTURE rtl OF period ISSIGNAL period_s:STD_LOGIC_VECTOR(2 downto 0);BEGINPROCESS(res,datain_m10,datain_m,extra,discon,RESET)BEGINIF(res='1')THENperiod_s<="000";ELSIF(extra='0')THENIF((datain_m10=1 AND datain_m<2)OR(datain_m10=0)OR(datain_m10=1 AND datain_m=2 AND discon='1'))THENperiod_s<="011";ELSIF((datain_m10=2 AND datain_m<4)OR(datain_m10=1 AND datain_m>=2)OR(datain_m10=2 AND datain_m=4 AND discon='1'))THENperiod_s<="010";ELSIF((datain_m10=3 AND datain_m<6)OR(datain_m10=2 AND datain_m>=4)OR(datain_m10=3 AND datain_m=6 AND discon='1'))THENperiod_s<="001";ELSIF((datain_m10=4 AND datain_m<=8)OR(datain_m10=3 AND datain_m>=6))THENperiod_s<="000";END IF;ELSIF(reset='0'AND reset'EVENT)THENperiod_s<=period_s+1;END IF;period<=period_s;END PROCESS;END rtl;(8)交换模块library ieee;use ieee.std_logic_1164.all;use ieee.std_logic_unsigned.all;use ieee.std_logic_arith.all;entity jiaohuan isport(Ain_100:in std_logic_vector(3 downto 0); Ain_10:in std_logic_vector(3 downto 0);Ain:in std_logic_vector(3 downto 0);Bin_100:in std_logic_vector(3 downto 0); Bin_10:in std_logic_vector(3 downto 0);Bin:in std_logic_vector(3 downto 0);period:in std_logic_vector(2 downto 0);Aout_100:out std_logic_vector(3 downto 0); Aout_10:out std_logic_vector(3 downto 0); Aout:out std_logic_vector(3 downto 0);Bout_100:out std_logic_vector(3 downto 0); Bout_10:out std_logic_vector(3 downto 0); Bout:out std_logic_vector(3 downto 0));end jiaohuan;architecture behav of jiaohuan isbeginprocess(Ain_100,Ain_10,Ain,Bin_100,Bin_10,Bin,period)beginif(period<=1)thenAout_100<=Ain_100;Aout_10<=Ain_10;Aout<=Ain;Bout_100<=Bin_100;Bout_10<=Bin_10;Bout<=Bin;elseAout_100<=Bin_100;Aout_10<=Bin_10;Aout<=Bin;Bout_100<=Ain_100;Bout_10<=Ain_10;Bout<=Ain;end if;end process;end behav;(9)按键输入模块LIBRARY IEEE;USE IEEE.STD_LOGIC_1164.ALL;ENTITY anjian ISPORT(S1,S2,S3,S4,S5,S6,S7,S8,clk2: IN STD_LOGIC;dec,pause,res,reset,decA,decB,incA,incB: OUT STD_LOGIC); END anjian;ARCHITECTURE behav OF anjian ISSIGNALres2,res1,re,incA2,incA1,incB2,incB1,decA2,decA1,decB2,decB1,pause2,p ause1,pause_s,pause_s1,reset2,reset1,dec1,dec2:STD_LOGIC;BEGINPROCESS(S7,clk2)BEGINIF(clk2='1' AND clk2'EVENT) THENres2<=res1;res1<=S7;END IF;re<=res1 AND (NOT res2) AND clk2;END PROCESS;PROCESS(S1,clk2)BEGINIF(clk2='1' AND clk2'EVENT) THENincA2<=incA1;incA1<=S1;END IF;incA<=incA1 AND (NOT incA2) AND clk2; END PROCESS;PROCESS(S2,clk2)BEGINIF(clk2='1' AND clk2'EVENT) THENincB2<=incB1;incB1<=S2;END IF;incB<=incB1 AND (NOT incB2) AND clk2; END PROCESS;PROCESS(S3,clk2)BEGINIF(clk2='1' AND clk2'EVENT) THENdecA2<=decA1;decA1<=S3;END IF;decA<=decA1 AND (NOT decA2) AND clk2; END PROCESS;PROCESS(S4,clk2)BEGINIF(clk2='1' AND clk2'EVENT) THENdecB2<=decB1;decB1<=S4;END IF;decB<=decB1 AND (NOT decB2) AND clk2; END PROCESS;PROCESS(S5,clk2)BEGINIF(clk2='0' AND clk2'EVENT) THENpause2<=pause1;pause1<=S5;pause_s<=pause1 AND (NOT pause2) AND clk2; END PROCESS;PROCESS(pause_s)BEGINIF(re='1')THENpause_s1<='0';ELSIF(pause_s='1'AND pause_s'EVENT) THEN pause_s1<=NOT pause_s1;END IF;pause<=pause_s1;END PROCESS;PROCESS(S6,clk2)BEGINIF(clk2='1' AND clk2'EVENT) THENreset2<=reset1;reset1<=S6;END IF;reset<=reset1 AND (NOT reset2) AND clk2; END PROCESS;PROCESS(S8,clk2)BEGINIF(clk2='1' AND clk2'EVENT) THENdec2<=dec1;dec1<=S8;END IF;dec<=dec1 AND (NOT dec2) AND clk2;END PROCESS;END behav;三、引脚分配表四、设计结果当按下S7时,系统复位,液晶屏显示000:000 1st,数码管显示12 00 24当24秒时间到了,则16个led灯全亮,比赛暂停:。
设计任务:1、显示内容,队名用英文名,3个大写字母20分队名1-A:队名2-B =xxx:xxx第x节剩余时间:XX分XX秒2、串口控制20分A+1% A队加1分,%为结束符A+2% A队加2分,%为结束符A+3% A队加3分,%为结束符B+1% B队加1分,%为结束符以此类推3、串口控制交换场地5分A-B% AB队交换4、20 分PAUSE% 计时暂停按键1-定义为PAUSE按键用ZLG7290RESTART%重新计时按键2-定义为RESTARTRESET%重新比赛按键3-定义为RESET5、存储近5场的成绩到AT24C02 格式:1-队名1队名2=90:100类推20分RECALL1% 提取存储的第1场成绩,在数码管上显示,只显示比分,串口传回队名+比分&整场结束,提示是否保存成绩,按键4-存储键按键5-放弃键15分源代码:接线说明:PSB-VCC RS-P1.0 RW-P1.1 P1.3-E INT-P3.2 TXD-P3.1 RXD-P3.0 SDA-P1.6 SCL-P1.7 I2C 总线的ABC》别接键盘的ABCD以程序为准凭记忆写出来的)主程序#include<reg51.h>#include<intrins.h>#include<string.h>#include<I2C.h>#include <ZLG7290.h>#define unchar unsigned char #define unit unsigned int #define Lcd_Bus P0#define unchar unsigned char unsigned char KeyValue,FlagINT; int ney;// 纪录第及场比赛sbit RS=P1A0;//LCD 显示屏sbit RW=P1A1;sbit E=P1A3;unchar code lcddata[]={"0123456789:"};unchar code duiming[]={'1','H','O','U',':','2','C','H','I','='};unchar bifen[7];unchar fen1;unchar fen2;unchar jie;unchar min;unchar sec;unchar control;unchar table[10];************** 延时函数***********************void delay(unsigned int t) { unsigned int i,j;for(i=0;i<t;i++) for(j=0;j<10;j++)/* ------------ 写命令到LCD ---------------------- */void write_com(unsigned char cmdcode) {//chk_busy();RS = 0; // 置零RW = 0;E = 1;Lcd_Bus = cmdcode;delay(10); // 在数据写入的时候加入适当的延时 E = 0;}/* ------------ 写数据到LCD ---------------------- */void write_data(unsigned char Dispdata){//chk_busy();RS = 1; // 写数据RW = 0;E = 1;Lcd_Bus = Dispdata;delay(10); // 在数据写入的时候加入适当的延时 E = 0;/******* 函数名称:Write_Char* 功能描述:写字符******/ void write_char(unsigned int num){// chk_busy();RS = 1;RW = 0;E = 1;Lcd_Bus = lcddata[num];E = 0;}/* ------------ 显示字符串----------------- */void hzkdis(unsigned char code *s){ while(*s>0){ write_data(*s);// 选择基本指令集 (30H )// 点设定,游标右移// 开显示控制 (无游标、不反白 )// 清除显示,并且设定地址指针为 00H //unchar duiming[]= "1-HOU:2-CHI";// 队名数组//unchar bifen[7];// 比分数组unchar k;// 记录第几场比赛void timer0init(void) {TMOD=0X21;TH0=0X31;TL0=0XB0;ET0=1;EA=1;TR0=1;//IT0=1;// EX0=1;}/***** 用作串口通信 ****/ void timer1init(void){TH1=0xf3;TL1=0XF3;SCON=0X50;EA=1;ES=1;TR1=1;}/**** 保存成绩 */void save(int ney){ s++;/* ------------ 初始化 LCD 屏 ----------------- */ /*** 用作计时***/void lcdreset() { write_com(0x30);delay(16); write_com(0x04);delay(16);write_com(0x0f); delay(16);write_com(0x01);delay(16);}(同时地址归为 )int i;unchar buff[7];// ney++;ZLG7290_Download(i,0,0,0X0A); bifen[2]=fen2/100;bifen[1]=(fen2%100-fen2%10)/10;bifen[0]=fen2%10;bifen[3]=0X1F;bifen[6]=fen1/100;bifen[5]=(fen1%100-fen1%10)/10;bifen[4]=fen1%10;for(i=0;i<7;i++){x24c02_write(i+7*ney,bifen[i]);}for(i=0;i<7;i++){buff[i]=x24c02_read(i+7*ney); delay(12);}for(i=0;i<7;i++){ZLG7290_Download(i,0,0,buff[i]);}/********** 将存储在at24c02 的数据通过串口通信发还给电脑**/ void fahuan(unsigned char k){unchar buff[7],i;for(i=0;i<10;i++){SBUF=duiming[i];while(!TI){;}TI=0;}for(i=0;i<7;i++){buff[i]=x24c02_read(i+7*k);delay(12);}for(i=0;i<7;i++){ZLG7290_Download(i,0,0,buff[i]);}for(i=6;i>3;i--){SBUF=buff[i]+48;while(!TI){;}TI=0;}SBUF=':';while(!TI){;}TI=0;SBUF=buff[2]+48;while(!TI){;}TI=0;SBUF=buff[1]+48; while(!TI){;} TI=0;SBUF=buff[0]+48; while(!TI){;} TI=0;P2=0xf0;}/**** 定时器中断用作计时**/ void timer0(void) interrupt 1 using 1 {static unchar count=0; unchar i;TH0=0X3C;TL0=0XB0; count++;if(count==20){count=0;sec--;if(sec==-1){sec=59; min--; if(min==-1) {if(jie<=3) {write_com(0x01); jie++;min=1; } else { // TR0=0;control=0; //save();}}}}/**** 主要用作显示比分**/void show_fen1(void){ write_com(0x80); hzkdis("2-CHI:1-HOU=");write_com(0x90); delay(16);write_char(fen2/ 100); delay(16);write_char((fen2%100-fen2% 10)/10); delay(16);write_char(fen2% 10); delay(16);write_char( 10 ); delay(16) ;write_char(fen1/ 100); delay(16);write_char((fen1%100-fen1% 10)/10); delay(16);write_char(fen1% 10); delay(16);}/**** 显示比分队名顺序相反**/void show_fen0(void){write_com(0x80);hzkdis("1-HOU:2-CHI=");write_com(0x90); delay(16);write_char(fen1/ 100); delay(16);write_char((fen1%100-fen1% 10)/10); delay(16);write_char(fen1% 10);write_char( 10 ); delay(16) ;write_char(fen2/ 100); delay(16); write_char((fen2%100-fen2%10)/10); delay(16);write_char(fen2% 10); delay(16);}/*** 显示时间**/void show_time(void){write_com(0x88);if(jie%10==1)hzkdis("第 1 节”);if(jie%10==2)hzkdis("第 2 节");if(jie%10==3)hzkdis("第 3 节");if(jie%10==4)hzkdis("第 4 节");write_com(0x8c);hzkdis("剩余时间");write_com(0x9a);delay(16);write_char( min / 10 );delay(16);write_char( min % 10 );delay(16);write_char( 10 );delay(16);write_char( sec / 10 );delay(16);write_char( sec % 10 );}void show(){write_com(0x80);hzkdis("是否保存成绩?”);write_com(0x90);hzkdis("y press butter 4"); write_com(0x88);hzkdis("n press butter 5 "); write_com(0x98);hzkdis(" ");}/***** 串口中断处理来自串口助手的命令*/ void chuanko() interrupt 4 {unchar i=0;unchar buff[]="wrong";while(1){ while(!RI);RI=0; if(SBUF=='%') break; table[i]=SBUF;i++;} if(table[0]=='A'&&table[1]=='+'&&table[2]=='1') fen1++;else if(table[0]=='A'&&table[1]=='+'&&table[2]=='2') {fen1++;fen1++;}else if(table[0]=='A'&&table[1]=='+'&&table[2]=='3') {fen1++;fen1++;fen1++;}else if(table[0]=='B'&&table[1]=='+'&&table[2]=='1')fen2++;else if(table[0]=='B'&&table[1]=='+'&&table[2]=='2'){fen2++;fen2++;}else if(table[0]=='B'&&table[1]=='+'&&table[2]=='3'){fen2++;fen2++;fen2++;}else if(table[0]=='A'&&table[1]=='-'&&table[2]=='B'){control=2;// 交换场地}elseif(table[0]=='P'&&table[1]=='A'&&table[2]=='U'&&table[3]=='S'&&table[4]=='E'){TRO=(~TRO);〃暂停}elseif(table[0]=='R'&&table[1]=='E'&&table[2]=='S'&&table[3]=='T'&&table[4]=='A'&&table[5]==' R'& &table[6]=='T'){TR0=0;min=11;sec=59;TR0=1;〃重新计时}elseif(table[0]=='R'&&table[1]=='E'&&table[2]=='S'&&table[3]=='E'&&table[4]=='T'){ timer0init();// TR0=0;min=11;sec=59;jie=1;fen1=0;fen2=0;TR0=1;〃重新开始write_com(0x01);control=1;}elseif(table[0]=='R'&&table[1]=='E'&&table[2]=='C'&&table[3]=='A'&&table[4]=='L'&&table[5]==' L'& &table[6]=='1'){ ZLG7290_Download(i,0,0,0X0E);fahuan(0);//shuma(1);}elseif(table[0]=='R'&&table[1]=='E'&&table[2]=='C'&&table[3]=='A'&&table[4]=='L'&&table[5]=='L'& &table[6]=='2'){ fahuan(1);//shuma(2);}elseif(table[0]=='R'&&table[1]=='E'&&table[2]=='C'&&table[3]=='A'&&table[4]=='L'&&table[5]==' L'& &table[6]=='3'){ fahuan(2);//shuma(3);}elseif(table[0]=='R'&&table[1]=='E'&&table[2]=='C'&&table[3]=='A'&&table[4]=='L'&&table[5]==' L'& &table[6]=='4'){ fahuan(3);//shuma(4);}elseif(table[0]=='R'&&table[1]=='E'&&table[2]=='C'&&table[3]=='A'&&table[4]=='L'&&table[5]==' L'& &table[6]=='5'){ fahuan(4);//shuma(5);}else{ for(i=0;i<6;i++) {SBUF=buff[i]; while(!TI); TI=0;/**** 外部中断初始化响应按键中断**/void SystemInit(){I2C_Init();EA = 0;IT0 = 1; // 负边沿触发中断EX0 = 1; // 允许外部中断EA = 1; // 等待ZLG7290 复位完毕}/***** 外部中断函数响应各个按键**/void INT0_SVC() interrupt 0 {unchar i; ZLG7290_ReadReg(ZLG7290_Key,&KeyValue);// 显示键值DispValue(0,KeyValue); if(KeyValue==0x09) {TRO=(~TRO);//暂停} if(KeyValue==0x0a){TR0=0;min=11;sec=59;TR0=1;//重新计时} if(KeyValue==0x0b)timer0init(); write_com(0x01);TR0=0;min=11;sec=59;jie=1;fen1=0;fen2=0;control=1;TR0=1;〃重新开始} if(KeyValue==0x0c) { save(ney);ney++;timer0init();// 响应完中断记得重新初始化不然可能会出错timer1init();SystemInit();}main(){min=11;sec=59;fen1=0;fen2=0;jie=1;control=1;ney=0;timer0init();timer1init();lcdreset();SystemInit();//系统初始化while(1){if(control==1){show_fen0(); show_time();}if(control==0){show();// 比赛结束提示}if(control==2){show_fen1();// 交换场地show_time();}I2C.C标准80C51单片机模拟I2C总线的主机程序Copyright (c) 2005,广州周立功单片机发展有限公司All rights reserved.本程序仅供学习参考,不提供任何可靠性方面的担保;请勿用于商业目的*/#i nclude "I2C.h"//定义延时变量,用于宏l2C_Delay()un sig ned char data I2C_Delay_t;/*宏定义:I2C_Delay()功能:延时,模拟I2C总线专用*/#defi ne I2C_Delay()\{\I2C_Delay_t = (I2C_DELAY_VALUE);\ while ( --I2C_Delay_t != 0 );\/*函数:I2C_I nit()功能:I2C总线初始化,使总线处于空闲状态说明:在main()函数的开始处,通常应当要执行一次本函数*/void I2C_I nit(){I2C_SCL = 1;I2C_Delay();I2C_SDA = 1;I2C_Delay();/*函数:I2C_Start()功能:产生I2C 总线的起始状态说明:SCL处于高电平期间,当SDA出现下降沿时启动I2C总线不论SDA和SCL处于什么电平状态,本函数总能正确产生起始状态本函数也可以用来产生重复起始状态本函数执行后,I2C总线处于忙状态*/void I2C_Start(){I2C_SDA = 1;I2C_Delay();I2C_SCL = 1;I2C_Delay();I2C_SDA = 0;I2C_Delay();I2C_SCL = 0;I2C_Delay();} /* 函数:I2C_Write()功能:向I2C总线写1个字节的数据参数:dat:要写到总线上的数据*/ void I2C_Write(char dat){unsigned char t = 8;do{I2C_SDA = (bit)(dat & 0x80);dat <<= 1;I2C_SCL = 1;I2C_Delay();I2C_SCL = 0;I2C_Delay();} while ( --t != 0 );/*函数:I2C_Read() 功能:从从机读取 1 个字节的数据返回:读取的一个字节数据*/char I2C_Read(){char dat;unsigned char t = 8;I2C_SDA = 1; //在读取数据之前,要把SDA拉高do {I2C_SCL = 1;I2C_Delay();dat <<= 1;if ( I2C_SDA ) dat |= 0x01;I2C_SCL = 0;I2C_Delay();} while ( --t != 0 ); return dat;}/*函数:I2C_GetAck() 功能:读取从机应答位返回:0:从机应答1 :从机非应答说明:从机在收到每个字节的数据后,要产生应答位从机在收到最后 1 个字节的数据后,一般要产生非应答位*/bit I2C_GetAck(){bit ack;I2C_SDA = 1;I2C_Delay();I2C_SCL = 1;I2C_Delay();ack = I2C_SDA; I2C_SCL = 0;I2C_Delay();return ack;/*函数:I2C_PutAck() 功能:主机产生应答位或非应答位参数:ack=O:主机产生应答位ack=1 :主机产生非应答位说明:主机在接收完每一个字节的数据后,都应当产生应答位主机在接收完最后一个字节的数据后,应当产生非应答位*/void I2C_PutAck(bit ack){I2C_SDA = ack;I2C_Delay();I2C_SCL = 1;I2C_Delay();I2C_SCL = 0;I2C_Delay();}/*函数:I2C_Stop()功能:产生I2C 总线的停止状态说明:SCL处于高电平期间,当SDA出现上升沿时停止I2C总线不论SDA和SCL处于什么电平状态,本函数总能正确产生停止状态本函数执行后,I2C总线处于空闲状态*/void I2C_Stop(){unsigned int t = I2C_STOP_WAIT_VALUE;I2C_SDA = 0;I2C_Delay();I2C_SCL = 1;I2C_Delay();I2C_SDA = 1;I2C_Delay();while ( --t != 0 ); // 在下一次产生Start 之前,要加一定的延时} /*函数:I2C_Puts()功能:I2C总线综合发送函数,向从机发送多个字节的数据参数:SlaveAddr:从机地址(7位纯地址,不含读写位)SubAddr:从机的子地址SubMod:子地址模式,0—无子地址,1 —单字节子地址,2—双字节子地址*dat :要发送的数据Size:数据的字节数返回:0:发送成功1 :在发送过程中出现异常说明:本函数能够很好地适应所有常见的I2C 器件,不论其是否有子地址当从机没有子地址时,参数SubAddr 任意,而SubMod 应当为0*/bit I2C_Puts(unsigned char SlaveAddr, unsigned int SubAddr, unsigned char SubMod, char *dat, unsigned int Size){// 定义临时变量unsigned char i;char a[3];// 检查长度if ( Size == 0 ) return 0;// 准备从机地址a[0] = (SlaveAddr << 1);// 检查子地址模式if ( SubMod > 2 ) SubMod = 2;// 确定子地址switch ( SubMod ){case 0: break;case 1:a[1] = (char)(SubAddr);break;case 2:a[1] = (char)(SubAddr >> 8);a[2] = (char)(SubAddr);break;default: break;}// 发送从机地址,接着发送子地址(如果有子地址的话) SubMod++;I2C_Start();for ( i=0; i<SubMod; i++ ){I2C_Write(a[i]);if ( I2C_GetAck() ){I2C_Stop(); return 1;}}// 发送数据do{I2C_Write(*dat++);if ( I2C_GetAck() ) break;} while ( --Size != 0 );//发送完毕,停止I2C总线,并返回结果I2C_Stop();if ( Size == 0 ){return 0;}else{return 1;}}/*函数:I2C_Gets()功能:I2C总线综合接收函数,从从机接收多个字节的数据参数:SlaveAddr:从机地址(7位纯地址,不含读写位)SubAddr:从机的子地址SubMod:子地址模式,0—无子地址,1 —单字节子地址, *dat :2—双字节子地址保存接收到的数据Size:数据的字节数返回:0:接收成功1 :在接收过程中出现异常说明:本函数能够很好地适应所有常见的I2C 器件,不论其是否有子地址当从机没有子地址时,参数SubAddr 任意,而SubMod 应当为0 */bit I2C_Gets(unsigned char SlaveAddr, unsigned int SubAddr, unsigned char SubMod, char *dat, unsigned int Size){// 定义临时变量unsigned char i; char a[3];// 检查长度if ( Size == 0 ) return 0;// 准备从机地址a[0] = (SlaveAddr << 1);// 检查子地址模式if ( SubMod > 2 ) SubMod = 2;// 如果是有子地址的从机,则要先发送从机地址和子地址if ( SubMod != 0 ){//确定子地址if ( SubMod == 1 ){a[1] = (char)(SubAddr);}else{a[1] = (char)(SubAddr >> 8); a[2] = (char)(SubAddr);} //发送从机地址,接着发送子地址SubMod++;I2C_Start();for ( i=0; i<SubMod; i++ ){ I2C_Write(a[i]); if ( I2C_GetAck() ) {I2C_Stop();return 1;}}//这里的l2C_Start()对于有子地址的从机是重复起始状态//对于无子地址的从机则是正常的起始状态l2C_Start();// 发送从机地址l2C_Write(a[0]+1);if ( l2C_GetAck() ){l2C_Stop();return 1;}//接收数据for (;;){*dat++ = l2C_Read();if ( --Size == 0 ){ l2C_PutAck(1); break;} l2C_PutAck(0);}//接收完毕,停止I2C总线,并返回结果l2C_Stop();return 0;}/*ZLG7290.c数码管显示与键盘管理芯片ZLG7290的标准80C51驱动程序C文件Copyright (c) 2005,广州周立功单片机发展有限公司All rights reserved.本程序仅供学习参考,不提供任何可靠性方面的担保;请勿用于商业目的*/ #include "I2C.h"#include "ZLG7290.h" /*函数:ZLG7290_WriteReg()功能:向ZLG7290的某个内部寄存器写入数据参数:RegAddr:ZLG7290的内部寄存器地址dat :要写入的数据返回:0:正常1:访问ZLG7290时出现异常*/bit ZLG7290_WriteReg(unsigned char RegAddr, char dat){bit b;b = I2C_Puts(ZLG7290_I2C_ADDR,RegAddr,1,&dat,1); return b;}/*函数:ZLG7290_ReadReg()功能:从ZLG7290的某个内部寄存器读出数据参数:RegAddr:ZLG7290的内部寄存器地址*dat :保存读出的数据返回:0:正常1:访问ZLG7290时出现异常*/bit ZLG7290_ReadReg(unsigned char RegAddr, char *dat){bit b;b = I2C_Gets(ZLG7290_I2C_ADDR,RegAddr,1,dat,1); return b;}/*函数:ZLG7290_cmd()功能:向ZLG7290发送控制命令参数:cmdO :写入CmdBufO寄存器的命令字(第1字节) cmdl :写入CmdBufl寄存器的命令字(第2字节) 返回:0:正常1:访问ZLG7290时出现异常*/bit ZLG7290_cmd(char cmd0, char cmd1){bit b;char buf[2];buf[0] = cmd0;buf[1] = cmd1;b = I2C_Puts(ZLG7290_I2C_ADDR,ZLG7290_CmdBuf,1,buf,2); return b; }/* 函数:ZLG7290_SegOnOff()功能:段寻址,单独点亮或熄灭数码管(或LED)中的某一段参数:seg:取值0〜63,表示数码管(或LED)的段号b:0 表示熄灭, 1 表示点亮返回:0:正常1:访问ZLG7290时出现异常说明:在每一位数码管中,段号顺序按照“ a,b,c,d,e,f,g,dp ”进行*/bit ZLG7290_SegOnOff(char seg, bit b){char cmd;cmd = seg & 0x3F;if ( b ) cmd |= 0x80;return ZLG7290_cmd(0x01,cmd);}/*函数:ZLG7290_Download() 功能:下载数据并译码参数:addr :取值0〜7,显示缓存DpRamO〜DpRam7的编号dp:是否点亮该位的小数点,0 —熄灭,1—点亮flash:控制该位是否闪烁,0—不闪烁,1—闪烁dat :取值0〜31,表示要显示的数据返回:0:正常1:访问ZLG7290时出现异常说明:显示数据具体的译码方式请参见ZLG7290的数据手册*/bit ZLG7290_Download(char addr, bit dp, bit flash, char dat){char cmd0;char cmd1;cmd0 = addr & 0x0F;cmd0 |= 0x60;cmd1 = dat & 0x1F;if ( dp ) cmd1 |= 0x80;if ( flash ) cmd1 |= 0x40;return ZLG7290_cmd(cmd0,cmd1);} /*I2C.h标准80C51单片机模拟I2C总线的主机程序头文件Copyright (c) 2005,广州周立功单片机发展有限公司All rights reserved. 本程序仅供学习参考,不提供任何可靠性方面的担保;请勿用于商业目的*/#ifndef _I2C_H_ #define _I2C_H_#include <reg51.h>//模拟I2C总线的引脚定义sbit I2C_SCL = P1A6;sbit I2C_SDA = P"7;//定义I2C总线时钟的延时值,要根据实际情况修改,取值1〜255//SCL信号周期约为(I2C_DELAY_VALUE*4+15个机器周期#define I2C_DELAY_VALUE 12//定义I2C总线停止后在下一次开始之前的等待时间,取值1〜65535〃等待时间约为(I2C_STOP_WAIT_VALUE*8个机器周期//对于多数器件取值为 1 即可;但对于某些器件来说,较长的延时是必须的#defineI2C_STOP_WAIT_VALUE 120//I2C 总线初始化,使总线处于空闲状态void I2C_Init();void x24c02_write(unsigned char address,unsigned char info); unsigned charx24c02_read(unsigned char address); //unsigned char x24c02_read(unsigned char address);//I2C 总线综合发送函数,向从机发送多个字节的数据bit I2C_Puts(unsigned char SlaveAddr,unsigned int SubAddr,unsigned char SubMod, char *dat, unsigned int Size);//I2C 总线综合接收函数,从从机接收多个字节的数据bit I2C_Gets(unsigned char SlaveAddr,unsigned int SubAddr,unsigned char SubMod, char *dat, unsigned int Size);#endif //_I2C_H_/*ZLG7290.h数码管显示与键盘管理芯片ZLG7290的标准80C51驱动程序头文件Copyright (c) 2005,广州周立功单片机发展有限公司All rights reserved. 本程序仅供学习参考,不提供任何可靠性方面的担保;请勿用于商业目的*/#ifndef _ZLG7290_H_#define _ZLG7290_H_#include <reg51.h> //ZLG7290 中断请求信号的引脚定义sbit ZLG7290_pi nINT = P3A2;II定义ZLG7290在I2C总线协议中的从机地址// 这是7 位纯地址,不含读写位#define ZLG7290_I2C_ADDR 0x38II定义ZLG7290内部寄存器地址(子地址)#define ZLG7290_SystemReg 0x00 II系统寄存器#define ZLG7290_Key 0x01 II 键值寄存器II#define ZLG7290_RepeatCnt 0x02 II 连击次数寄存器II#define ZLG7290_FunctionKey 0x03 II 功能键寄存器#define ZLG7290_CmdBuf 0x07 II 命令缓冲区起始地址#define ZLG7290_CmdBuf0 0x07 II 命令缓冲区0#define ZLG7290_CmdBuf1 0x08 //命令缓冲区 1//#define ZLG7290_FlashOnOff 0x0C //闪烁控制寄存器#define ZLG7290_ScanNum 0x0D //扫描位数寄存器#define ZLG7290_DpRam 0x10 // 显示缓存起始地址#define ZLG7290_DpRam0 0x10 //显示缓存0/#define ZLG7290_DpRam10x11 //显示缓存 1#define ZLG7290_DpRam2 0x12 //显示缓存 2#define ZLG7290_DpRam3 0x13 //显示缓存 3#define ZLG7290_DpRam5 0x15 //显示缓存 5#define ZLG7290_DpRam6 0x16 //显示缓存 6#define ZLG7290_DpRam7 0x17 //显示缓存7//向ZLG7290的某个内部寄存器写入数据bit ZLG7290_WriteReg(unsigned char RegAddr, char dat);//从ZLG7290的某个内部寄存器读出数据bit ZLG7290_ReadReg(unsigned char RegAddr, char *dat);//向ZLG7290发送控制命令bit ZLG7290_cmd(char cmd0, char cmd1);//段寻址,单独点亮或熄灭数码管(或LED)中的某一段bit ZLG7290_SegOnOff(char seg, bit b);//下载数据并译码bit ZLG7290_Download(char addr, bit dp, bit flash, char dat);〃闪烁控制指令(Fn应当是字节型)//Fn 的8 个位分别控制数码管的8 个位是否闪烁,0-不闪烁,1-闪烁#define ZLG7290_Flash(Fn) ZLG7290_cmd(0x70,(Fn))#endif //_ZLG7290_H_#include <reg51.h>#include <intrins.h>#include <I2C.h>//sbit dula=P2A6;//sbit wela=P2A7; unsigned char j,c;void de(unsigned char i) // 延时程序{for(j=i;j>0;j--)for(c=125;c>0;c--);}/*24C02 读写驱动程序*/void flash()// 短时间的延时,几微秒左右{ ; ;}void init() //24c02 初始化子程序{I2C_SCL=1;flash();I2C_SDA=1;flash();}void start() // 启动I2C 总线{I2C_SDA=1;flash();I2C_SCL=1;flash();I2C_SDA=0;flash();// scl=0;// flash();}void stop() // 停止I2C 总线{I2C_SDA=0;flash();I2C_SCL=1;flash();I2C_SDA=1;flash();}void writex(unsigned char j) // 写一个字节{ unsigned char i,temp;temp=j;for (i=0;i<8;i++){ temp=temp<<1; I2C_SCL=0; flash(); I2C_SDA=CY; flash(); I2C_SCL=1; flash();}I2C_SCL=0;flash();I2C_SDA=1;flash();} unsigned char readx() // 读一个字节{unsigned char i,z;I2C_SCL=0;flash();I2C_SDA=1;for (i=0;i<8;i++){ flash(); I2C_SCL=1; flash();if (I2C_SDA==1) j=1; else j=0;z=(z<<1)|j;// 先左移,然后在最低位读入值I2C_SCL=0;}flash();return(z);}void clock() //I2C 总线时钟响应{unsigned char i=0;I2C_SCL=1;flash();while ((I2C_SDA==1)&&(i<255))i++;I2C_SCL=0;flash();//////// 从24c02 的地址address 中读取一个字节数据///// unsigned charx24c02_read(unsigned char address) {unsigned char i; start();writex(0xa8);//A1 A2 A3 全部低电平// clock();writex(address);clock();start(); writex(0xa9);clock(); i=readx();stop(); de(10);return(i); }////// 向24c02 的address 地址中写入一字节数据info///// void x24c02_write(unsigned char address,unsigned char info) {EA=0;start(); writex(0xa8);clock(); writex(address);clock(); writex(info);clock();stop();de(50);。
目录一设计任务 (4)二设计要求 (4)三系统设计方案 (4)系统构成框图 (4)四器件选择 (4)五球赛计时计分器的工作原理过程 (5)六各部件基本功能介绍 (6)计时电路的工作原理 (6)计分电路的工作原理 (7)赛程结束报警 (8)各部件功能图 (9)七篮球赛计时计分器原理图及程序 (9)篮球赛计时计分器程序流程图 (10)计分电路原理图 (11)计时电路原理图 (12)篮球赛计时计分器程序代码 (13)二篮球计时计分器设计一 设计任务设计并制作一个用于赛场的篮球赛计时计分器。
二 设计要求1 能记录整个赛程的比赛时间,并能修改比赛时间﹑暂停比赛时间。
2 能随时刷新甲﹑乙两队在整个赛程中的比分。
3 中场交换比赛场地时,能交换甲﹑乙两队比分的位置。
4 比赛时间结束时,能发出报警指令。
三 系统设计方案系统构成框图基于单片机系统的篮球赛计时计分器的系统构成框图如图所示。
四 器件选择本系统在设计过程中主要选取了以下一些器件: 单片机:8751计时显示复位晶振赛程时间 设置键盘8751CD4094 计分显示74ls21赛程比分 调整键盘球赛计时计分器系统图4511●四—七段BCD译码芯片:CD4511●并行/串行转换芯片:CD4094●四输入与门:74LS21●显示器件:7段共阴LED显示器五球赛计时计分器的工作原理过程整个篮球赛计时计分器的工作过程如下:首先在比赛之前,接通电源,系统自动复位此时计时电路与计分电路的共阴极数码管全部显示为0000和000 000;任何我们按计时电路中的K5按键来设置比赛时间的十位数,例如比赛时间上半场为20分钟,则通过K5键,使数码管1显示“2”即可;再按K6键,设置比赛时间的个位数,使数码管2显示“0”即可。
一般比赛时间为40分钟,所示只需按K5显示4,按K6显示0即可。
时间设置好时,等待赛程开始,当裁判吹响开始哨声时,立即按K7键,启动计时,这时计时电路便工作,计时采用倒计时方式,即从20分钟减为0分钟表示上半场结束。
/******************** //版权和版本声明
* 文件标识:
* 摘要:
* 当前版本:
* 作者:输入作者(或修改者)名字
* 完成日期:2013年3月25日
**********************************/
#include <> //头文件
unsigned char code Tab[12]={0xc0,0xf9,0xa4,0xb0,0x99,0x92,0x82,0xf8,0x80,0x90,0x08,0x03}; //段码表
unsigned char dat[6]={0,0,0,0,0,0};
sbit key1=P1^0; //位定义
sbit key2=P1^1;
sbit key3=P1^2;
sbit key4=P1^3;
sbit key5=P1^4;
sbit key6=P1^5;
sbit key7=P1^6;
sbit key8=P1^7;
sbit key9=P3^0;
sbit key10=P3^2;
/****************************
* 函数名称:延时函数
* 函数功能:
* 输入/输出参数:
* 返回值:
***************************************/
void delay(unsigned int xms)
{ unsigned int i,j;
for(i=0;i<xms;i++)
{ for(j=0;j<115;j++)
{;}
}
}
/****************************
* 函数名称:显示函数
* 函数功能:
* 输入/输出参数:
* 返回值:
***************************************/
unsigned int h,h1,j,j1,m,k,k1;
void fenli()
{ //一队分离
dat[0]=k/100; // 取百位
dat[1]=k%100/10; // 取十位
dat[2]=k%100%10; // 取个位
//二队分离
dat[3]=k1/100; // 取百位
dat[4]=k1%100/10; // 取十位
dat[5]=k1%100%10; // 取个位
/**********************显示**************************************/ if(key10==1) // 两队中场切换
{
h=0x01; //A队队名
P2=Tab[10];
P0=h;
delay(1);
P2=0xff;
h1=0x02;
for(m=0;m<3;m++)
{
P2=Tab[dat[m]]; //送段码
P0=h1; //送位码
delay(1); //延时
P2=0xff; //关断
h1=h1<<1; //左移
}
j=0x10; // b队队名
P2=Tab[11];
P0=j;
delay(1);
P2=0xff;
j1=0x20;
for(m=3;m<6;m++)
{
P2=Tab[dat[m]];
P0=j1;
delay(1);
P2=0xff;
j1=j1<<1;
}
}
/****************************切换**************************************************/
else
{
h=0x01; // 队名
P2=Tab[11];
P0=h;
delay(1);
P2=0xff;
h1=0x02;
for(m=3;m<6;m++)
{
P2=Tab[dat[m]];//送段码
P0=h1; //送位码
delay(1); //延时
P2=0xff; //关断
h1=h1<<1; //左移
}
j=0x10; // 队名
P2=Tab[10];
P0=j;
delay(1);
P2=0xff;
j1=0x20; //送初值
for(m=0;m<3;m++)
{
P2=Tab[dat[m]];// 送段码
P0=j1; //送位码
delay(1); // 延时
P2=0xff; // 关断
j1=j1<<1; // 左移
}
}
}
/****************************
* 函数名称:指示灯函数
* 函数功能:
* 输入/输出参数:
* 返回值:
***************************************/ void lingsheng()
{
P3_7=0X00;
delay(200);
P3_7=0x01;
}
/****************************
* 函数名称:按键输入函数
* 函数功能:
* 输入/输出参数:
* 返回值:
***************************************/ void anjian()
{
if (key1==0) //减一
{
delay(40);
if (key1==0)
{
k--;
if(k>835)
{
k=0;
}
lingsheng();
}
}
if (key2==0) //加一
{
delay(40);
if (key2==0)
{
k++;
lingsheng();
}
}
if (key3==0) //加二
delay (40);
if (key3==0)
{
k=k+2;
lingsheng();
}
}
if (key4==0) //加三
{
delay(40);
if (key4==0)
{
k=k+3;
lingsheng();
}
}
if (key5==0) //减一
{
delay(40);
if (key5==0)
{
k1--;
if(k1>835)
{
k1=0;
}
lingsheng();
}
}
if (key6==0) //加一
{
delay (40);
if (key6==0)
{
k1++;
lingsheng();
}
}
if (key7==0) //加二
{
delay(40);
if (key7==0)
k1=k1+2;
lingsheng();
}
}
if (key8==0) //加三
{
delay(40);
if (key8==0)
{
k1=k1+3;
lingsheng();
}
}
/**************清零*******************/
if (key9==0)
{
delay(40);
if (key9==0)
{
k1=0; k=0;
lingsheng();
}
}
}
/****************************
* 函数名称:主函数
* 函数功能:
* 输入/输出参数:
* 返回值:
***************************************/
void main()
{
while (1)
{
fenli();
anjian();
}
}
/************************** ***********************/。