光纤光学基础知识
- 格式:ppt
- 大小:275.50 KB
- 文档页数:27
一、名词解释1.光纤光栅(P144):通过一定方法使光纤纤芯的折射率发生轴向周期性调制而形成的衍射光栅2.数值孔径:入射媒质折射率与最大入射角的正弦之积3.基模模场半径(P101):基模场在光纤的横截面分布曲线中心最大值e-1处所对应的半径。
4.子午光线:子午面上传播的光线5.光隔离器(P140):是一种基于法拉第旋转的非互易性的传输器件,只允许光波沿着一个方向传输(光信号沿着指定正方向传输时损耗低,光路被接通),而另一个方向的传输是禁止的。
6.平均能流密度(P20):在足够长的观测时间内平均单位时间内通过单位面积的能量。
能流密度(百度):在一定的空间范围内,单位面积所取得的或单位重量能源所能产生的某种能源的能量或功率。
7.相速度(P19):场的等相位面沿Z轴的传播速度。
群速度(P19):光脉冲或波包的中心或光能量沿Z轴的传播速度,也即场的等幅面沿z 轴的传播速度。
8.群速度色散:在高速大容量的光纤通信中,由于光纤介质表现出非线性,光脉冲包络的形状会发生变化,这种影响光信号的接收的变化成为群速度色散9.光无源器件(P122):有光纤式和光纤耦合分立元件两种,前者利用自身特性直接实现功能,后者利用光学元件对光的传播特性进行交换,并用透镜奖器件和光纤耦合。
10.自聚焦透镜(P122):芯径大,长度短,数值孔径大,光线在其中的传播轨迹为正弦曲线。
由一点发出的不同角度的光线经过一周期的传播后又汇聚到另一点的类似平方律折射率分布光纤。
11.模式色散:在多模光纤中,传输的模式很多,不同的模式,其传输路径不同,所经过的路程就不同,到达终点的时间也就不同,这就引起了脉冲的展宽12.传播常数(P17具体看书):纵向传播常数β:导模的相位在Z轴单位长度上的变化量,波矢在Z轴上的投影β=K·e z=nk0cosθz;横向传播常数:波矢k的横向分量,U和W分别反映了导模在芯区中的驻波场的横向振荡频率,W值则反映了导模在包层中的消逝场的衰减速度二、简答题1.光纤导光的基本原理全反射原理2.什么是光纤的色散?光纤的色散主要有几种?其对光纤通信有何影响?在光纤中传输的光信号(脉冲)的不同频率成分或不同的模式分量以不同的速度传播到达一定距离后必然产生信号失真(脉冲展宽),这种现象叫做光纤的色散。
光纤光学基础知识嘿,朋友们!今天咱们来唠唠光纤光学,这可是个超级有趣又神秘的玩意儿呢。
你可以把光纤想象成超级高速的光滑梯。
光就像一个个调皮的小小孩,哧溜一下就沿着这个滑梯跑下去了,速度那叫一个快啊,比火箭还火箭。
光纤呢,就负责把这些小光孩安全地送到目的地,而且这个滑梯特别细,细得就像一根超级超级瘦的面条,感觉一阵微风就能把它吹断,但实际上它可坚韧着呢。
光纤里面的全反射现象就更有趣了。
这就好比光在光纤里玩反弹球游戏。
光碰到光纤的壁,就像球碰到墙壁一样,弹回来继续跑,而且每次都弹得特别精准,一点都不跑偏。
要是人能有这么厉害的反射能力,那打篮球都不用愁投篮不准啦,光靠反弹就能把球弄进篮筐。
光纤的传输带宽啊,大得就像宇宙一样。
可以想象它是一个超级大的货车,能拉好多好多数据这个“货物”。
不管是视频、音频还是各种复杂的信息,在它眼里都像小蚂蚁一样轻松就能运输。
而那些传统的传输方式呢,就像小三轮,拉不了多少东西,还跑得慢。
说到光纤的材料,那也是相当讲究的。
就像给光做一个豪华的住宅,既要透明又要坚韧。
这材料就像超级英雄的铠甲,保护着里面的光,让光可以在里面无忧无虑地奔跑,不会受到外界的干扰。
要是这个材料有一点点瑕疵,就像房子漏了个洞,光可能就跑丢了,那可就麻烦大了。
光纤的弯曲也很神奇。
你以为它弯了光就过不去了?错!光纤就像一个柔软的小蛇,不管怎么弯曲,光都能顺着它的身体走。
这就好比你在一个弯弯曲曲的迷宫里,有个超级厉害的导航(光),不管迷宫怎么拐,导航都能准确带你找到出口(目的地)。
光纤光学在通信领域的地位那可是相当高啊。
它就像通信界的国王,统治着整个数据传输的王国。
没有它,我们现在的网络世界就会变得乱糟糟的,就像一群没头的苍蝇到处乱撞。
光纤还有一个厉害的地方就是保密性好。
这就像给数据穿上了一层隐身衣,别人想偷看都看不到。
光在光纤里就像一个神秘的特工,悄悄地传递着重要信息,外面那些想搞破坏的“坏蛋”根本找不到它的踪迹。
光学基础知识培训内容一、目标:1.1了解相关光学基础知识,认识所接触/采购产品的名称内容及型号。
确保公司所采购产品的性能完好,稳定产品的质量且能满足客的要求。
二、光学基础知识2.1 1962年美籍华人高锟向全世界第一次提出光通讯概念,并拉出了第一条可进行信息数据传播的光纤。
2.1.1光是一种波长从零点几毫米到大约零点一微米甚至更短波长范围内的电磁波。
2.1.2波长小于390nm的光称为紫光,波长大于760nm的光称为红外光,我们日常生活中可见光的波长范围是390nm-760nm。
红橙黄绿青蓝紫红光波长最长,频率最低紫光波长最短,频率最高2.1.3在光通信系统中以850nm、1310nm、1550nm三种波长通过光纤时所产生的损耗最小。
2.2 光纤规格:2.2.1光纤由折射较高的纤芯和折率较低的包层组成,纤芯和包层的主体材料是:石英玻璃。
2.2.2 按在光纤中的传播模式光纤又可分为单模光纤(SM)多模光纤(MM)。
2.2.2.1单模光纤的模间色散小,适用于远程通讯。
但存在材料色散和波导色散,正常情况下在波长1310nm时其材料色散和波导色散一为正,一为负,且加总色散为零。
2.2.2.2多模光纤的模间色散较大,限制了传输数字信号的频率,并会随距离的增加而更加严重,例:600MB/KM光纤在2KM时只有300MB带宽了。
2.2.3常用光纤的纤芯和包层规格有:单模:8/125u,9/125u,10/125u, 多模:50/125u,62.5/125u。
2.2.4光纤的传播窗口:2.2.4.1早期的光纤通信系统传输所用的是多模光纤,其工作波长是850nm,这是光纤传播的第一工作窗口。
2.2.4.2 1983年出现非色散位移单模光纤(传码:G.652)其工作波长在1310nm附近,这是光纤传播的第二个工作窗口。
2.2.4.2.1 G..652光纤在1310nm处色散为零,光损耗系数典型值为<0.35db/km。
光纤原理:光纤实际是指由透明材料做成的纤芯和在它周围采用比纤芯的折射率稍低的材料做成的包层,并将射入纤芯的光信号,经包层界面反射,使光信号在纤芯中传播前进的媒体。
一般是由纤芯、包层和涂敷层构成的多层介质结构的对称圆柱体。
光纤有两项主要特性:即损耗和色散。
光纤每单位长度的损耗或者衰减(dB/km),关系到光纤通信系统传输距离的长短和中继站间隔的距离的选择。
光纤的色散反应时延畸变或脉冲展宽,对于数字信号传输尤为重要。
每单位长度的脉冲展宽(ns/km),影响到一定传输距离和信息传输容量。
光纤的结构:光纤的结构:纤芯材料的主体是二氧化硅,里面掺极微量的其他材料,例如二氧化锗、五氧化二磷等。
掺杂的作用是提高材料的光折射率。
纤芯直径约5~~75μm。
光纤外面有包层,包层有一层、二层(内包层、外包层)或多层(称为多层结构),但是总直径在100~200μm上下。
包层的材料一般用纯二氧化硅,也有掺极微量的三氧化二硼,最新的方法是掺微量的氟,就是在纯二氧化硅里掺极少量的四氟化硅。
掺杂的作用是降低材料的光折射率。
这样,光纤纤芯的折射率略高于包层的折射率。
两者席位的区别,保证光主要限制在纤芯里进行传输。
包层外面还要涂一种涂料,可用硅铜或丙烯酸盐。
涂料的作用是保护光纤不受外来的损害,增加光纤的机械强度。
光纤的最外层是套层,它是一种塑料管,也是起保护作用的,不同颜色的塑料管还可以用来区别各条光纤。
光纤的折射率:光纤的结构一般用折射率沿光纤径向的分布函数来表征,这种分布函数成为光纤的折射率刨面。
在圆柱坐标系(λ、Φ、z)中n(λ)来表示。
在理论分析中,折射率剖面n(r)就是光纤的数学模型:对于单包层光纤,纤芯直径为d,设纤芯轴心处的折射率n(0)=n1,包层折射率为n2,为了简略地表示的剖面特征,引入纤芯包层相对折射率差作为剖面参数Δ,其中定义为n1 2 ─n22 n1─ n2Δ = ──────≈─────2 n1 2 n1射线理论认为,光在光纤中传播主要是依据全反射原理。
第一部分.光纤光学需要掌握的基本概念与重要结论第一章.绪论(4学时)1.光纤的优缺点优点:大容量;低损耗;抗干扰能力强;保密性好;体积小重量轻;材料取之不竭;抗腐蚀耐高温。
缺点:易折断;连接分路困难;怕水;怕弯曲。
2.光纤的分类重点掌握(1)光纤的结构,纤芯、包层、涂覆层的特点与作用(2)阶跃折射率分布光纤(SIOF)与渐变折射率分布光(GIOF)的特点与区别,折射率分布形式。
一些基本参数的意义与其表达式:相对折射差∆的意义与表达式;折射率分布参数g的意义(当g=∞时为SIOF,当g=2时为平方率分布光纤,当g=1时为三角分布光纤)。
(3)单模光纤与多模光纤的特点与区别(传输的模式数,芯径的大小,归一化频率);归一化频率的意义与表达式(阶跃单模光纤的判据:V<2.405,渐变单模光纤的判据:V<3.508。
注意我们经常见到的2.405 是对阶跃光纤而言的)。
简单了解其它种类的光纤,例如保偏光纤与有源光纤(后面的课程会学到)。
3.光纤的制备工艺简单的了解一下。
第二章.光纤光学的基本方程(2学时)1.分析光纤波导的两种理论“几何光学方法”与“波动光学理论”的应用条件(几何光学方法:芯径远大于光波长;波动光学理论:芯径与波长可比例)与特点。
2.由麦克斯韦方程组出发推导波导场方程(1)“三次分离”,基本过程以及能够这样分离的依据“电磁”分离:由麦克斯韦方程组到波动方程“时空”分离:由波动方程到亥姆霍兹方程“横纵”分离:由亥姆霍兹方程到波到场方程(2)SIOF与GIOF中光线方程的意义,即SIOF与GIOF中光线的传播形式3.模式及其基本性质(1)模式的基本概念与定义(2)TEM、TE、TM、HE、EH模式的特点(3)纵向传播常数β横向传播常数W、U的意义(重点了解W的意义),以及W、U、V之间的关系(4)截止与远离截止的概念与基本条件(W=0截止,W=∞远离截止)(5)相速度、群速度、群延时的基本概念(6)线偏振模的概念第三章.阶跃折射率分布光纤(6学时)1.几何光学分析方法主要掌握一些基本的概念,“子午光线”与“偏斜光线”的定义;数值孔径的表达式,以及其物理意义(标志着光纤收光能力以及与光源耦合时偶和效率的大小),数值孔径与传输带宽的关系(成反比)。
光纤光学知识总结1. 引言光纤光学是一门研究光传输和操控的学科,它是现代通信、医学和工业等领域中不可或缺的关键技术。
光纤光学利用光纤作为传输介质,通过光的折射和全反射实现信号传输。
本文将对光纤光学的基本原理、传输性能和应用领域进行总结和介绍。
2. 光纤的基本原理光纤是一种通过内部光的全反射实现光信号传输的介质。
它由一个中心芯和一个外包层组成。
中心芯是光信号传输的主要部分,通常由高折射率的玻璃或塑料材料构成。
外包层则是低折射率的材料,用于包裹和保护中心芯。
光纤通过光的折射和全反射,实现将光信号沿着光纤传输的目的。
3. 光纤的传输性能3.1 传输带宽光纤的传输带宽是指光纤能够传输的最大频率信号的能力。
它受到光纤的材料特性、设计和制造工艺等因素的影响。
高质量的光纤能够支持更高的传输带宽,从而实现更高速率、更大容量的数据传输。
3.2 传输损耗传输损耗是光信号在光纤中传输过程中的能量损失。
它由散射、吸收和弯曲等因素引起。
传输损耗通常以每单位长度的衰减值(dB/km)来表示。
光纤的传输损耗越低,传输距离就越长,信号质量就越好。
3.3 色散色散是指光信号在光纤中传输过程中,不同频率的光信号由于折射率的差异而传播速度不同的现象。
色散会导致光脉冲的展宽和失真,限制了光信号的传输距离和速率。
4. 光纤光学的应用领域4.1 光通信光通信是光纤光学的主要应用之一。
光纤光学的高带宽和低损耗特性使得光纤成为主流的长距离通信传输介质。
光纤通信系统通过调制光信号来传输数据,实现了高速率、大容量的信息传输。
4.2 医学影像光纤光学在医学影像领域有广泛的应用。
通过光纤的灵活性和小尺寸,可以将光信号传输到人体内部,实现光学成像和激光手术等应用。
例如,内窥镜和激光手术器械中都使用了光纤。
4.3 工业检测光纤光学在工业检测领域也具有重要的应用价值。
光纤传感器可以通过测量光的强度、相位和波长等参数,实现对温度、压力、液位等物理量的测量。
光纤传感器具有高精度、抗干扰和耐腐蚀等特点,被广泛应用于工业自动化和安全监测等领域。
光纤光学知识点总结第一部分:光的基本特性1. 光的波动特性光是一种电磁波,具有波动和粒子性质。
其中,波动特性表现为光波具有波长、频率、振幅和相位等特性,而粒子性质表现为光子是光的基本粒子,具有动量和能量。
2. 光的传播方式光的传播方式主要有直线传播和曲线传播两种。
直线传播是指光在均匀介质中以直线传播的方式进行传播,而曲线传播是指光在非均匀介质中因受到折射、反射等影响而沿曲线传播。
3. 光的衍射和干涉光的衍射是指光波在遇到缝隙或障碍物时产生偏折现象,而干涉是指两束光波相遇时产生互相干涉的现象。
衍射和干涉是光波的特有现象,是光学研究中重要的现象之一。
第二部分:光纤的基本结构和工作原理1. 光纤的基本结构光纤由芯、包层和外被组成。
其中,芯是光信号传输的核心部分,包层是为了保护芯而设置的,而外被则是为了保护整根光纤而设置的。
2. 光纤的传输特性光纤的传输特性主要包括色散、衰减和非线性失真等。
其中,色散是指不同波长的光波由于折射率的不同而产生的传输延迟差异,衰减是指光在传输过程中能量的损失,而非线性失真是指光波在非线性介质中传输时产生的波形失真现象。
3. 光纤的工作原理光纤的工作原理主要包括全内反射、多模传输和单模传输等。
其中,全内反射是指光在光纤中由于折射率不同而产生的全内反射现象,多模传输是指光纤中可以传输多个模式的光信号,而单模传输是指光纤中只能传输一个模式的光信号。
第三部分:光纤的应用领域1. 通信领域光纤在通信领域有着广泛的应用,主要包括长途通信、城域通信、局域通信和家庭通信等。
其中,长途通信是指利用光纤进行跨国、跨洲的通信传输,城域通信是指利用光纤进行城市范围内的通信传输,局域通信是指利用光纤进行企业或园区内的通信传输,而家庭通信是指利用光纤进行家庭内部的通信传输。
2. 医疗领域光纤在医疗领域有着广泛的应用,主要包括内窥镜、激光治疗和医学影像等。
其中,内窥镜是指利用光纤传输光源,使医生可以在体内进行观察和手术,激光治疗是指利用光纤传输激光能量进行疾病治疗,而医学影像是指利用光纤传输光源,进行医学图像的采集和传输。
光纤基础知识50 光的本质是什么?答 如果问光是什么?那么从物理学角度来说,光是一种电磁波。
在电视,广播和无线通信中所使用的点波,以及用于X光摄影中的x射线,用于放射线治疗的Y射线,这些也都是一种电磁波。
因此,可以说光就是这些电磁波的同类。
电磁波谱中的各种频率(或波长)的波,如固1.3—l所示。
其中光波波长范围是从数纳米(1nm:10—9m)到数百微米(1pm=10-6m)。
通常所说的电波是指远比光波波长长的电磁波,而X射线和Y射线是指比光波波长更短的电磁波。
在光谱范围内,如按波长进一步分类,可得到如图1,3-2所示的各种波长的光。
但各类光谱之间没有明确的界线。
作用于人眼井可以引起视觉的光,其波长是从380—400nm附近到76O~800nm附近之间,这区域的光通常称之为可见光.波长不同意味着额色的不同。
可见光中波长长的光呈红色,波长短的光呈蓝色(参照图1,3-3)。
(图见下页)图1.3-1电磁波的种类和名称图1.3-2 各种波长的光图1.3-3 可见光的波长和颜色51 光具有什么性质答:光有如下三大性质:1.直线传播性在同一种介质中,光总是沿着直线前进。
2.反射性在不同介质的交界面上,一部分入射光要产生反射。
3.折射性在不同介质的交界面上,没有产生反射的入射光继续前进而产生折射,行进方向发生了改变。
日常生活中的影子以及人们不能直接看见障碍物后的物体等现象都可说明光的直线传播性。
自然界中湖水倒映着对岸的景色的现是就是反射的一个例子。
光的反射遵循反射定律。
由反射定律可知,入射光线和反射光线在同一个平面内并位于反射界面法线的两侧,光线的入射角i θ和反射角r θ相等。
作为光的折射现象的一个例子,譬如把筷子放入注满水的玻璃杯中,看上去筷子似乎折弯了一样。
在折射现象中,光线的入射角i θ和折射角t θ的关系遵循欺涅尔定律。
如图 1.4-1所示,光线从折射率为的介质以1n i θ入射角射到介质交界面,并以折射角t θ进入折射率为的介质之中,则2n i θ、t θ、n 、有如下关系式12n12sin sin n n t i =θθ 这就是欺涅尔(Snell )定律。
光纤基础知识第一部分光纤理论与光纤结构一、光及其特性1.光是一种电磁波可见光部分波长范围是: 390~760nm(毫微米)。
大于760nm部分是红外光,小于390nm部分是紫外光。
光纤中应用的是: 850,1310,1550三种。
2.光的折射,反射和全反射。
因光在不同物质中的传播速度是不同的,所以光从一种物质射向另一种物质时,在两种物质的交界面处会产生折射和反射。
而且,折射光的角度会随入射光的角度变化而变化。
当入射光的角度达到或超过某一角度时,折射光会消失,入射光全部被反射回来,这就是光的全反射。
不同的物质对相同波长光的折射角度是不同的(即不同的物质有不同的光折射率),相同的物质对不同波长光的折射角度也是不同。
光纤通讯就是基于以上原理而形成的。
二、光纤结构及种类1.光纤结构光纤裸纤一般分为三层: 中心高折射率玻璃芯(芯径一般为50或62.5μm),中间为低折射率硅玻璃包层(直径一般为125μm),最外是加强用的树脂涂层。
2.数值孔径入射到光纤端面的光并不能全部被光纤所传输,只是在某个角度范围内的入射光才可以。
这个角度就称为光纤的数值孔径。
光纤的数值孔径大些对于光纤的对接是有利的。
不同厂家生产的光纤的数值孔径不同(at&t corning)。
3.光纤的种类a.按光在光纤中的传输模式可分为: 单摸光纤和多模光纤。
多模光纤:中心玻璃芯较粗(50或62.5μm),可传多种模式的光。
但其模间色散较大,这就限制了传输数字信号的频率,而且随距离的增加会更加严重。
例如:600mb/km的光纤在2km时则只有300mb的带宽了。
因此,多模光纤传输的距离就比较近,一般只有几公里。
单模光纤: 中心玻璃芯较细(芯径一般为9或10μm),只能传一种模式的光。
因此,其模间色散很小,适用于远程通讯,但其色度色散起主要作用,这样单模光纤对光源的谱宽和稳定性有较高的要求,即谱宽要窄,稳定性要好。
b.按最佳传输频率窗口分:常规型单模光纤和色散位移型单模光纤。