实验五 信号的采样与恢复
- 格式:pdf
- 大小:356.68 KB
- 文档页数:9
电气学科大类级《信号与控制综合实验》课程实验报告(基本实验一:信号与系统基本实验)姓名学号专业班号同组者1 学号专业班号同组者2 学号专业班号指导教师日期实验成绩评阅人综合实验和实验报告要求信号与控制综合实验,是集多门技术基础课程以及其它延伸课程理论于一体的综合性实验课程,需要综合多门学科理论知识和实验方法来体现,因此,实验目的不是简单的课程理论验证和练习,而是综合应用、研究开发、设计创新。
应采用尽可能好的设计,使所设计的电路和系统达到要实现的功能,步骤和方案自行拟定,实现对设计思路的实验验证。
完成多个实验项目的,应将实验内容整理综合后写成一份总报告,以利于锻炼整理归纳和总结能力,在总报告中以第二级标题形式依次写下所完成的实验项目、内容及实验设计过程。
实验报告按“题目、目录、正文(分所完成的各实验项目)、结论、心得与自我评价、参考文献”6个部分撰写;正文主要包括以下几个内容:任务和目标、总体方案设计(原理分析与方案设计特点,选择依据和确定)、方案实现和具体设计(过程)、实验设计与实验结果、结果分析与讨论。
(格式方面请注意:每个图应该有图号和图名,位于图的下方,同一图号的分图应在同一页,不要跨页;每个表应该有表号和表名,位于表的上方,表号表名与表(数据)也应在同一页,不要跨页;建议各部分题目采用四号黑体、设计报告内容文字采用小四号宋体)注:报告中涉及实验指导书或教材内容,只需注明引用位置,不必在报告中再加以阐述。
不得不加引用标记地抄袭任何资料。
每一基本实验部分按计划学时100分成绩计算(100%),需要完成60分的实验项目;实验报告、设计部分和创新研究内容另外计分(分别为10%、20%和10%)。
再按照学时比例与本课程其它部分实验综合成为总实验成绩。
每一部分实验均为:基本实验:0~60分,考核基本理论的掌握和基本操作技能、实验室道德规范;实验报告:0~10分,考核思考和总结表述能力;完成设计性实验:0~20分,评价设计能力;完成创新性实验:0~10分,鼓励创新。
信号的采样与恢复实验一、任务与目的1. 熟悉信号的采样与恢复的过程。
2. 学习和掌握采样定理。
3. 了解采样频率对信号恢复的影响。
二、原理(条件)PC机一台,TD-SAS系列教学实验系统一套。
1. 采样定理采样定理论述了在一定条件下,一个连续时间信号完全可以用该信号在等时间间隔上的瞬时值表示。
这些值包含了该连续信号全部信息,利用这些值可以恢复原信号。
采样定理是连续时间信号与离散时间信号之间的桥梁。
采样定理:对于一个具有有限频谱,且最高频率为ωmax的连续信号进行采样,当采样频率ωs满足ωs>=ωmax时,采样信号能够无失真地恢复出原信号。
三角波信号的采样如图4-1-1所示。
图4-1-1信号的采样2. 采样信号的频谱连续周期信号经过周期矩形脉冲抽样后,抽样信号的频谱为它包含了原信号频谱以及重复周期为的原信号频谱的搬移,且幅度按规律变化。
所以抽样信号的频谱便是原信号频谱的周期性拓延。
某频带有限信号被采样前后频谱如图4-1-2。
图4-1-2 限带信号采样前后频谱从图中可以看出,当ωs ≥2Bf 时拓延的频谱不会与原信号的频谱发生重叠。
这样只需要利用截止频率适当的滤波器便可以恢复出原信号。
3. 采样信号的恢复将采样信号恢复成原信号,可以用低通滤波器。
低通滤波器的截止频率f c 应当满足f max ≤f c ≤f x -f max 。
实验中采用的低通滤波器原理图如图4-1-3所示,其截止频率固定为1802f Hz RCπ=≈图4-1-3 滤波器电路4. 单元构成本实验电路由脉冲采样电路和滤波器两个部分构成,滤波器部分不再赘述。
其中的采样保持部分电路由一片CD4052完成。
此电路由两个输入端,其中IN1端输入被采样信号,Pu 端输入采样脉冲,经过采样后的信号如图4-1-1所示。
三、内容与步骤本实验在脉冲采样与恢复单元完成。
1. 信号的采样(1)使信号发生器第一路输出幅值3V、频率10Hz的三角波信号;第二路输出幅值5V,频率100Hz、占空比50%的脉冲信号。
实验五:抽样定理一、实验目的1、了解用MA TLAB 语言进行时域、频域抽样及信号重建的方法。
2、进一步加深对时域、频域抽样定理的基本原理的理解。
3、观察信号抽样与恢复的图形,掌握采样频率的确定方法和内插公式的编程方法。
二、实验内容及步骤1、阅读并输入实验原理中介绍的例题程序,观察输出的数据和图形,结合基本原理理解每一条语句的含义。
2、已知一个连续时间信号f(t)=sinc(t),取最高有限带宽频率f m =1Hz 。
(1)分别显示原连续信号波形和F s =f m 、F s =2f m 、F s =3f m 三种情况下抽样信号的波形;dt=0.1;f0=1;T0=1/f0; fm=1;Tm=1/fm; t=-2:dt:2; f=sinc(t);subplot(4,1,1);plot(t,f);axis([min(t),max(t),1.1*min(f),1.1*max(f)]); title('原连续信号和抽样信号'); for i=1:3;fs=i*fm;Ts=1/fs; n=-2:Ts:2; f=sinc(n);subplot(4,1,i+1);stem(n,f,'filled');axis([min(n),max(n),1.1*min(f),1.1*max(f)]);课程名称 数字信号处理 实验成绩 指导教师实 验 报 告院系 信息工程学院 班级 学号 姓名 日期end-2-1.5-1-0.50.511.5200.51原连续信号和抽样信号(2)求解原连续信号和抽样信号的幅度谱; dt=0.1;f0=1;T0=1/f0; fm=1;Tm=1/fm; t=-2:dt:2; N=length(t); f=sinc(t); wm=2*pi*fm; k=0:N-1; w1=k*wm/N; F1=f*exp(-j*t'*w1)*dt;subplot(4,1,1);plot(w1/(2*pi),abs(F1));axis([0,max(4*fm),1.1*min(abs(F1)),1.1*max(abs(F1))]); for i=1:3;if i<=2 c=0;else c=1;end fs=(i+c)*fm;Ts=1/fs; n=-2:Ts:2; N=length(n); f=sinc(n); wm=2*pi*fs; k=0:N-1; w=k*wm/N; F=f*exp(-j*n'*w)*Ts;subplot(4,1,i+1);plot(w/(2*pi),abs(F));axis([0,max(4*fm),1.1*min(abs(F)),1.1*max(abs(F))]); end00.511.522.533.540.20.40.60.811.200.511.522.533.54012(3)用时域卷积的方法(内插公式)重建信号。
信号与系统实验四-信号的采样及恢复实验四信号的采样及恢复⼀、实验⽬的1、加深理解连续时间信号离散化过程中的数学概念和物理概念;2、掌握对连续时间信号进⾏抽样和恢复的基本⽅法;3、通过实验验证抽样定理。
⼆、实验内容1、为了观察连续信号时域抽样时,抽样频率对抽样过程的影响,在[0,0.1]区间上以50Hz 的抽样频率对下列3个信号分别进⾏抽样,试画出抽样后序列的波形,并分析产⽣不同波形的原因,提出改进措施。
(1))102cos()(1t t x ?=π(2))502cos()(2t t x ?=π(3))1002cos()(3t t x ?=π2、产⽣幅度调制信号)200cos()2cos()(t t t x ππ=,推导其频率特性,确定抽样频率,并绘出波形。
3、对连续信号)4cos()(t t x π=进⾏抽样以得到离散序列,并进⾏重建。
(1)⽣成信号)(t x ,时间t=0:0.001:4,画出)(t x 的波形。
(2)以10=sam f Hz 对信号进⾏抽样,画出在10≤≤t 范围内的抽样序列)(k x ;利⽤抽样内插函数)/1()(sam r f T T t Sa t h =??=π恢复连续信号,画出重建信号)(t x r 的波形。
)(t x 与)(t x r 是否相同,为什么?(3)将抽样频率改为3=sam f Hz ,重做(2)。
4、利⽤MATLAB 编程实现采样函数Sa 的采样与重构。
三、实验仪器及环境计算机1台,MATLAB7.0软件。
四、实验原理对连续时间信号进⾏抽样可获得离散时间信号,其原理如图8-1。
采样信号)()()(t s t f t f s ?=,)(t s 是周期为s T 的冲激函数序列,即)()()(∑∞-∞=-==n sT nT t t t s sδδ则该过程为理想冲激抽样。
其中s T 称为采样周期,ss T f 1=称为抽样频率, ss s T f π⼤于等于2倍的原信号频率m f 时,即m s f f 2≥(抽样时间间隔满⾜ms f T 21≤),抽样信号的频谱才不会发⽣混叠,可⽤理想低通滤波器将原信号从采样信号中⽆失真地恢复。
实验五抽样定理实验一、实验目的1、了解抽样定理在通信系统中的重要性。
2、掌握自然抽样及平顶抽样的实现方法。
3、理解低通采样定理的原理。
4、理解实际的抽样系统。
5、理解低通滤波器的幅频特性对抽样信号恢复的影响。
6、理解低通滤波器的相频特性对抽样信号恢复的影响。
7、理解带通采样定理的原理。
二、实验器材1、主控&信号源、3号模块各一块2、双踪示波器一台3、连接线若干三、实验原理1、实验原理框图图1-1 抽样定理实验框图2、实验框图说明抽样信号由抽样电路产生。
将输入的被抽样信号与抽样脉冲相乘就可以得到自然抽样信号,自然抽样的信号经过保持电路得到平顶抽样信号。
平顶抽样和自然抽样信号是通过开关S1切换输出的。
抽样信号的恢复是将抽样信号经过低通滤波器,即可得到恢复的信号。
这里滤波器可以选用抗混叠滤波器(8阶3.4kHz的巴特沃斯低通滤波器)或FPGA数字滤波器(有FIR、IIR两种)。
反sinc滤波器不是用来恢复抽样信号的,而是用来应对孔径失真现象。
要注意,这里的数字滤波器是借用的信源编译码部分的端口。
在做本实验时与信源编译码的内容没有联系。
四、实验步骤实验项目一抽样信号观测及抽样定理验证概述:通过不同频率的抽样时钟,从时域和频域两方面观测自然抽样和平顶抽样的输出波形,以及信号恢复的混叠情况,从而了解不同抽样方式的输出差异和联系,验证抽样定理。
信号源:MUSIC 模块3:TH1(被抽样信号)将被抽样信号送入抽样单元信号源:A-OUT 模块3:TH2(抽样脉冲)提供抽样时钟模块3:TH3(抽样输出)模块3:TH5(LPF-IN) 送入模拟低通滤波器2、开电,设置主控菜单,选择【主菜单】→【通信原理】→【抽样定理】。
调节主控模块的W1使A-out输出峰峰值为3V。
3、此时实验系统初始状态为:被抽样信号MUSIC为幅度4V、频率3K+1K正弦合成波。
抽样脉冲A-OUT为幅度3V、频率9KHz、占空比20%的方波。
连续信号的采样与恢复实验报告实验报告:连续信号的采样与恢复一、实验目的:1.了解连续信号的采样原理和采样定理;2.理解采样后信号的频谱特性;3.掌握信号恢复的方法。
二、实验原理:采样定理:对于频谱带宽有限的信号,为了保证采样信号不发生混叠现象,必须满足采样频率大于信号频谱的最高分量频率的两倍。
三、实验器材:1.信号发生器;2.示波器;3.编码器;4.数字示波器;5.连接线。
四、实验步骤及结果:1.首先使用信号发生器产生频率为1kHz、幅值为5V的正弦信号作为待采样信号;2.将信号发生器输出的信号连接至示波器进行观察;3.将示波器输出信号连接至编码器进行信号的采样;4.将编码器的输出信号连接至数字示波器,观察离散采样值;5.对离散采样值进行信号恢复,使用零阶保持、线性插值和兰特尔-曼豪姆插值三种恢复方法;6.将恢复后的信号与原信号进行比较,观察恢复的效果。
实验结果:在示波器上观察到频率为1kHz、幅值为5V的正弦信号。
数字示波器上显示出了一系列离散的采样值。
通过零阶保持、线性插值和兰特尔-曼豪姆插值三种方法进行信号恢复后,观察到恢复的信号与原信号基本一致。
五、实验分析:1.信号恢复的效果受到采样频率和采样幅值的影响,采样频率过低或采样幅值过小都会造成信号失真;2.零阶保持方法可以保持离散信号的幅值不变,但是无法恢复信号的高频分量;3.线性插值可以恢复少量的高频分量,但是如果信号存在高频噪声或非线性失真,会导致恢复后信号的质量下降;4.兰特尔-曼豪姆插值是一种高阶插值方法,能够更好地恢复信号的高频分量,但是计算量较大。
六、实验总结:通过本次实验,我了解了连续信号的采样原理和恢复方法,掌握了采样频率的要求和恢复过程中常用的插值方法。
实验中,我观察到了采样信号和恢复信号的特性,并进行了比较分析。
实验结果表明,在合适的采样条件和恢复方法下,可以有效地采样和恢复信号。
信号与系统实验报告一、信号的时域基本运算1.连续时间信号的时域基本运算两实验之一实验分析:输出信号值就等于两输入信号相加(乘)。
由于b=2,故平移量为2时,实际是右移1,符合平移性质。
两实验之二心得体会:时域中的基本运算具有连续性,当输入信号为连续时,输出信号也为连续。
平移,伸缩变化都会导致输出结果相对应的平移伸缩。
2.离散时间信号的时域基本运算两实验之一实验分析:输出信号的值是对应输入信号在每个n值所对应的运算值,当进行拉伸变化后,n值数量不会变,但范围会拉伸所输入的拉伸系数。
两实验之二心得体会:离散时间信号可以看做对连续时间信号的采样,而得到的输出信号值,也可以看成是连续信号所得之后的采样值。
二、连续信号卷积与系统的时域分析1.连续信号卷积积分两实验之一实验分析:当两相互卷积函数为冲激函数时,所卷积得到的也是一个冲激函数,且该函数的冲激t值为函数x,函数y冲激t值之和。
两实验之二心得体会:连续卷积函数每个t值所对应的卷积和可以看成其中一个在k值取得的函数与另外一个函数相乘得到的一个分量函数,并一直移动k值直至最后,最后累和出来的最终函数便是所得到的卷积函数。
3.RC电路时域积分两实验之一实验分析:全响应结果正好等于零状态响应与零输入响应之和。
两实验之二心得体会:具体学习了零状态,零输入,全响应过程的状态及变化,与之前所学的电路知识联系在一起了。
三、离散信号卷积与系统的时域分析1.离散信号卷积求和两实验之一实验分析:输出结果的n值是输入结果的k号与另一个n-k的累和两实验之二心得体会:直观地观察到卷积和的产生,可以看成连续卷积的采样形式,从这个方面去想,更能深入地理解卷积以及采样的知识。
2.离散差分方程求解两实验之一实验分析:其零状态响应序列为0 0 4 5 7.5,零输入响应序列为2 4 5 5.5 5.75,全状态响应序列为2 4 9 10.5 13.25,即全状态=零输入+零状态。
两实验之二心得体会:求差分方程时,可以根据全状态响应是由零输入输入以及零状态相加所得,分开来求,同时也加深了自己对差分方程的求解问题的理解。
摘要数字信号处理是一门理论与实践紧密结合的课程。
做大量的习题和上机实验,有助于进一步理解和巩固理论知识,还有助于提高分析和解决实际问题的能力。
过去用其他算法语言,实验程序复杂,在有限的实验课时内所做的实验内容少。
MATLAB强大的运算和图形显示功能,可使数字信号处理上机实验效率大大提高。
特别是它的频谱分析和滤波器分析与设计功能很强,使数字信号处理工作变得十分简单、直观。
本实验设计的题目是:信号的采样与恢复。
通过产生一个连续时间信号并生成其频谱,然后对该连续信号抽样,并对采样后的频谱进行分析,实验中,原连续信号的频谱由于无法实现真正的连续,所以通过扩大采样点的数目来代替,理论上当采样点数无穷多的时候即可实现连续,基于此尽可能增加采样点数并以此来产生连续信号的频谱。
信号采样过程中,通过采样点的不同控制采样频率实现大于或小于二倍最高连续信号的频率,从而可以很好的验证采样定理。
关键词:信号采样恢复MATLAB 傅里叶变换一、设计目的与要求1、设计目的通过本课程设计,主要训练和培养学生综合应用所学过的信号及信息处理等课程的相关知识,独立完成信号仿真及信号处理的能力。
包括:查阅资料、合理性的设计、分析和解决实际问题的能力,数学仿真软件Matlab和C语言程序设计的学习和应用,培养规范化书写说明书的能力。
2、设计要求设有一信号Xa(t)=EXP-1000|t|,计算傅立叶变换,分析其频谱,并在精度为1/1000的条件下,分别取采样频率为F=5000Hz,F=1000Hz,绘出对应的采样信号的时域信号波形频谱图。
(1)实现信号时域分析和频谱分析以及滤波器等有关Matlab函数。
(2)写好总结、程序、图表、原理、结果分析。
二、设计原理框图三、设计原理本次课程设计主要涉及采样定理、傅里叶变换、信号时域分析和频谱分析的相关内容的相关知识。
1.采样定理设连续信号)(t x a 属带限信号,最高截止频率为c Ω,如果采样角频率c s Ω≥Ω2,那么让采样性信号)(t x a ∧通过一个增益为T 、截止频率为2/s Ω的理想低通滤波器,可以唯一地恢复出原连续信号)(t x a 。
实验六、连续信号得采样与恢复一、实验目得1.加深理解采样对信号得时域与频域特性得影响;2.加深对采样定理得理解与掌握,以及对信号恢复得必要性;3.掌握对连续信号在时域得采样与重构得方法。
二、实验原理(1)信号得采样ﻫ信号得采样原理图如下图所示,其数学模型表示为:=ﻫ其中得f(t)为原始信号,为理想得开关信号(冲激采样信号)δTs(t) =,fs(t)为采样后得到得信号称为采样信号。
由此可见,采样信号在时域得表示为无穷多冲激函数得线性组合,其权值为原始信号在对应采样时刻得定义值。
ﻫ令原始信号f(t)得傅立叶变换为F(jw)=FT(f(t)),则采样信号fs(t) 得傅立叶变换Fs(jw)=FT(fs(t))=。
由此可见,采样信号fs(t)得频谱就就是将原始信号f(t)得频谱在频率轴上以采样角频率ws为周期进行周期延拓后得结果(幅度为原频谱得1/Ts)。
如果原始信号为有限带宽得信号,即当|w|>|wm|时,有F(jw)=0,则有:如果取样频率ws≥2wm时,频谱不发生混叠;否则会出现频谱混叠。
(2)信号得重构ﻫ设信号f(t)被采样后形成得采样信号为fs(t),信号得重构就是指由fs(t)经过内插处理后,恢复出原来得信号f(t)得过程。
因此又称为信号恢复。
ﻫ由前面得介绍可知,在采样频率w s≥2wm得条件下,采样信号得频谱Fs(jw)就是以w s为周期得谱线。
选择一个理想低通滤波器,使其频率特性H(jw)满足:H(j w)=式中得wc称为滤波器得截止频率,满足wm≤wc≤ws/2。
将采样信号通过该理想低通滤波器,输出信号得频谱将与原信号得频谱相同。
因此,经过理想滤波器还原得到得信号即为原信号本身。
信号重构得原理图见下图。
通过以上分析,得到如下得时域采样定理:一个带宽为w m得带限信号f(t),可唯一地由它得均匀取样信号fs(n Ts)确定,其中,取样间隔Ts<π/wm,该取样间隔又称为奈奎斯特(Nyquist)间隔。
实验四信号取样与恢复一、实验目的1.了解模拟信号取样及恢复的基本方法。
2.理解和掌握时域取样定理,掌握无混叠和有混叠条件下信号取样与恢复的频域分析方法。
3.了解取样频率、取样脉冲宽度、恢复滤波器截止频率等对取样信号和恢复信号的影响。
4.熟悉DDS-3X25虚拟信号发生器的使用方法。
二、实验内容1.无混叠条件下正弦信号取样与恢复测试分析,比较不同取样频率和取样脉冲宽度对取样及恢复信号的影响。
2.有混叠条件下正弦信号的取样与恢复测试分析。
3.非正弦周期信号的取样与恢复测试分析,比较不同恢复滤波器截止频率对恢复信号的影响。
三、实验仪器1.信号与系统实验硬件平台一台2.信号取样与恢复实验电路板一块3.DSO-3064虚拟示波器一台4.DDS-3X25虚拟信号发生器二台5.PC机(含DSO-3064、DDS-3X25驱动及软件)一台四、实验原理1. 信号取样信号取样与恢复实验电路板,如图4.1所示。
该电路板通过背面的两个DB9公头插接到硬件实验平台上使用。
)()()(t s t f t f s =图4.1 信号取样与恢复实验电路板电路板左侧为一个采用模拟开关进行取样的信号取样电路,取样脉冲序列为高电平(高电平对应电压应大于+1V )时模拟开关接通、为低电平(低电平电压应小于-1V )时模拟开关断开。
在“信号输入”端接入被取样模拟信号,通过改变取样脉冲序列(通常为矩形脉冲序列)的频率(该电路取样频率不宜超过256kHz )和占空比,即可在“取样输出”端获得不同频率和不同取样脉冲宽度的取样信号。
取样信号()s f t 可用(4-1)式来描述(4-1)式中()f t 表示被取样模拟信号,()s t 为模拟开关的开关函数,当模拟开关接通时,()1s t =,反之则()0s t =。
电路板右侧是两个用作恢复滤波器的低通滤波器,可根据实验需要选用。
其中“恢复滤波器1”是一个截止频率约为1kHz 、通带增益等于4的二阶低通滤波器,其截止频率不可调节。
信号与系统实验报告在现代科学与工程领域中,信号与系统是一个至关重要的研究方向。
信号与系统研究的是信号的产生、传输和处理,以及系统对信号的响应和影响。
在这个实验报告中,我们将讨论一些关于信号与系统实验的内容,以及实验结果的分析和讨论。
实验一:信号的采集与展示在这个实验中,我们学习了信号的采集与展示。
信号是通过传感器或其他仪器采集的电压或电流的变化,可以是连续的或离散的。
我们使用示波器和数据采集卡来采集信号,并在计算机上进行展示和分析。
实验二:线性时不变系统的特性线性时不变系统是信号与系统中的重要概念。
在这个实验中,我们通过观察系统对不同的输入信号作出的响应来研究系统的特性。
我们使用信号发生器产生不同的输入信号,并观察输出信号的变化。
通过比较输入信号和输出信号的频谱以及幅度响应,我们可以了解系统的频率响应和幅频特性。
实验三:系统的时域特性分析在这个实验中,我们将研究系统的时域特性。
我们使用了冲击信号和阶跃信号作为输入信号,观察输出信号的变化。
通过测量系统的冲击响应和阶跃响应,我们可以了解系统的单位冲激响应和单位阶跃响应。
实验四:卷积与系统的频域特性在这个实验中,我们学习了卷积的概念和系统的频域特性。
卷积是信号与系统中的重要运算,用于计算系统对输入信号的响应。
我们通过使用傅里叶变换来分析系统的频域特性,观察输入信号和输出信号的频谱变化。
实验五:信号的采样与重构在这个实验中,我们研究了信号的采样与重构技术。
信号的采样是将连续时间的信号转换为离散时间的过程,而信号的重构是将离散时间的信号恢复为连续时间的过程。
我们使用数据采集卡来对信号进行采样,并使用数字滤波器来进行信号的重构。
通过观察信号的采样和重构结果,我们可以了解采样率对信号质量的影响。
实验六:系统的稳定性与性能在这个实验中,我们研究了系统的稳定性与性能。
系统的稳定性是指系统对输入信号的响应是否有界,而系统的性能是指系统对不同频率信号的响应如何。
我们使用极坐标图和Nyquist图来分析系统的稳定性和性能,通过观察图形的变化来评估系统的性能。
实验五信号的采样与恢复一、实验目的1.了解电信号的采样方法与过程及信号的恢复。
2.验证采样定理。
二、实验设备1.THBCC-1型信号与系统.控制理论及计算机控制技术实验平台2.PC机(含THBCC-1软件)三、实验内容1 研究正弦信号和三角波信号被采样的过程以及采样后的离散化信号恢复为连续信号的波形。
2.用采样定理分析实验结果。
四、实验原理1.离散时间信号可以从离散信号源获得,也可以从连续时间信号经采样而获得。
采样信号fs(t)可以看成连续信号f(t)和一组开关函数S(t)的乘积。
S(t)是一组周期性窄脉冲。
由对采样信号进行傅立叶级数分析可知,采样信号的频谱包括了原连续信号以及无限多个经过平移的原信号频谱。
平移的频率等于采样频率fs及其谐波频率2fs、3fs· · ·。
当采样后的信号是周期性窄脉冲时,平移后的信号频率的幅度按(sinx)/x规律衰减。
采样信号的频谱是原信号频谱的周期性延拓,它占有的频带要比原信号频谱宽得多。
2.采样信号在一定条件下可以恢复原来的信号,只要用一截止频率等于原信号频谱中最高频率fn 的低通滤波器,滤去信号中所有的高频分量,就得到只包含原信号频谱的全部内容,即低通滤波器的输出为恢复后的原信号。
3.原信号得以恢复的条件是fs≥2B,其中fs 为采样频率,B 为原信号占有的频带宽度。
Fmin=2B 为最低采样频率。
当fs<2B 时,采样信号的频谱会发生混迭,所以无法用低通滤波器获得原信号频谱的全部内容。
在实际使用时,一般取fs=(5-10)B 倍。
实验中选用fs<2B、fs=2B、fs>2B 三种采样频率对连续信号进行采样,以验证采样定理⎯要是信号采样后能不失真的还原,采样频率fs 必须远大于信号频率中最高频率的两倍。
4.用下面的框图表示对连续信号的采样和对采样信号的恢复过程,实验时,除选用足够高的采样频率外,还常采用前置低通滤波器来防止信号频谱的过宽而造成采样后信号频谱的混迭。
一、实验目的1. 理解并掌握无损采样定理的基本概念。
2. 通过实验验证采样定理,观察采样前后信号频谱的变化。
3. 深入理解采样频率与信号恢复之间的关系。
4. 掌握信号采样与恢复的基本方法。
二、实验原理采样定理是信号处理领域的重要理论之一,它表明,如果一个信号x(t)的频谱X(f)满足一定条件,即X(f)在频率域内无间断,且X(f)的频率分量低于某一截止频率fmax,那么x(t)可以通过一个采样频率fs≥2fmax的采样系统进行采样,并通过一个理想低通滤波器恢复出原始信号。
三、实验仪器与设备1. 信号发生器:用于产生不同频率的正弦信号。
2. 示波器:用于观察信号波形和频谱。
3. 采样器:用于对信号进行采样。
4. 低通滤波器:用于恢复原始信号。
四、实验步骤1. 产生信号:使用信号发生器产生一个频率为f的正弦信号,并观察其时域波形和频谱。
2. 设置采样频率:根据采样定理,选择一个合适的采样频率fs≥2f。
3. 采样:使用采样器对产生的信号进行采样,得到采样信号。
4. 观察采样信号:使用示波器观察采样信号的时域波形和频谱。
5. 恢复信号:使用低通滤波器对采样信号进行滤波,得到恢复信号。
6. 比较原始信号与恢复信号:使用示波器比较原始信号和恢复信号的时域波形,观察恢复效果。
五、实验结果与分析1. 时域波形:通过实验观察,采样信号与原始信号在时域波形上存在差异,主要表现为采样信号的间断性和振幅变化。
2. 频谱:通过实验观察,采样信号的频谱在低频部分与原始信号的频谱一致,但在高频部分存在混叠现象。
3. 恢复信号:通过实验观察,恢复信号的时域波形与原始信号基本一致,表明采样定理在实际应用中是有效的。
六、实验结论1. 无损采样定理是信号处理领域的重要理论之一,它为信号的采样与恢复提供了理论依据。
2. 采样频率的选择对信号恢复效果有重要影响,应根据信号的最高频率选择合适的采样频率。
3. 通过实验验证了采样定理的有效性,为实际应用提供了参考。
信号的抽样与恢复实验报告信号的抽样与恢复实验报告引言:信号的抽样与恢复是数字信号处理中的重要概念,它涉及到模拟信号的数字化处理和数字信号的还原。
通过对信号进行抽样,可以将连续的模拟信号转化为离散的数字信号,方便存储、传输和处理。
而信号的恢复则是将离散的数字信号重新转化为连续的模拟信号,以便于人们感知和理解。
本实验旨在通过实际操作,探究信号的抽样与恢复原理,并验证其有效性。
一、实验目的本实验旨在:1. 了解信号的抽样与恢复原理;2. 掌握信号抽样的方法和过程;3. 掌握信号恢复的方法和过程;4. 验证信号抽样与恢复的有效性。
二、实验器材和方法1. 实验器材:- 信号发生器:用于产生模拟信号;- 示波器:用于观测信号波形;- 数字示波器:用于观测数字信号;- 信号恢复电路:用于将数字信号恢复为模拟信号。
2. 实验方法:- 将信号发生器与示波器连接,产生连续的模拟信号;- 将信号发生器与数字示波器连接,观测抽样后的数字信号;- 将数字示波器与信号恢复电路连接,将数字信号恢复为模拟信号;- 通过示波器观测恢复后的信号波形,与原始信号进行对比。
三、实验过程1. 连接实验器材:将信号发生器与示波器连接,设置合适的频率和振幅,产生连续的模拟信号。
将信号发生器与数字示波器连接,设置适当的抽样频率和采样率,观测抽样后的数字信号。
将数字示波器与信号恢复电路连接,将数字信号恢复为模拟信号。
2. 观测信号波形:通过示波器观测连续的模拟信号波形,并记录相关参数,如频率、振幅等。
然后,通过数字示波器观测抽样后的数字信号波形,并记录相关参数,如抽样频率、采样率等。
最后,通过示波器观测恢复后的信号波形,并与原始信号进行对比。
3. 分析实验结果:根据观测到的信号波形,分析信号的抽样与恢复过程。
比较抽样后的数字信号与原始信号的相似性,以及恢复后的信号与原始信号的差异。
根据实验结果,验证信号抽样与恢复的有效性。
四、实验结果与讨论通过实验观测,我们可以发现信号的抽样与恢复过程中存在一定的误差。
实验报告课程名称: 信号分析与处理指导老师: 欢老师 成绩:__________________ 实验名称: 信号的采集与恢复 实验类型: 基础实验 同组学生:第一次实验 信号的采集与恢复一、实验目的1.1了解信号的采样方法与过程以及信号恢复的方法; 1.2验证采样定理。
二、实验原理2.1信号采集与时域采样定理对一个连续时域信号的采集,理论上是用一系列冲激函数与信号做乘积,实际中常用占空比尽可能小的周期矩形脉冲作为开关函数来代替冲激函数。
采样信号的频谱,是由原来信号的频谱进行幅值尺度变换并在频率轴(横轴)上做平移延拓组成的,频率轴上平移延拓的“周期”为开关函数的频率值。
具体推导如下:∑∞-∞=-=n sns n F S F )()(ωωω其中,)(ωs F 是采样信号)(t f s的频谱。
n S 为开关函数s (t )的傅里叶级数的傅里叶系数,)(ωF 为连续信号的频谱。
若理想开关函数可表示为周期为T s 的冲激函数序列∑∞-∞=-=n snT t t s )()(δ于是)()()()()(sn ss nT t nT f t s t f t f -==∑∞-∞=δ∑∞-∞=-=n sss n F T F )(1)(ωωω一个典型的例子:矩形脉冲采样信号s(t),作为理想冲激串的替代。
假设脉冲宽度τ,则s(t)的傅里叶变换)2(Sa τωτs s n n T S ⋅=,于是)()2(Sa )(s n s s s n F n T F ωωτωτω-⋅=∑∞-∞= 装订线平移后的频率幅度按Sa(x )规律衰减。
采样信号的频谱是原信号频谱周期的延拓,它占有的频带要比原信号频谱宽得多。
显然,对于开关函数,若它的频率为f s ,信号的最大频率为f m ,那么为了采样后采样信号的频谱不发生混叠,存在时域采样定理:f s ≥f m (时域采样定理,即香农定理)。
而对于频谱不受限的信号,往往需要先用低通滤波器滤除高频分量,使它近似成为频谱受限的信号,在进行采样。