关于单芯电力电缆接地方式
- 格式:doc
- 大小:23.50 KB
- 文档页数:2
津成电线电缆内部专用
单芯电缆和三芯电缆的接地方式
金属屏蔽层两端基本上没有感应电压。
(一般为35kV及以下电压等级的电缆)。
而单芯电缆(一般为35kV及以上电压等级的电缆)一般不能采取两端直接接地方式。
原因是:当单芯电缆线芯通过电流时金属屏蔽层会产生感应电流,电缆的两端会产生感应电压。
感应电压的高低与电缆线路的长度和流过导体的电流成正比,当电缆线路发生短路故障、遭受雷电冲击或操作过电压时,屏蔽上会形成很高的感应电压。
将会危及人身安全,甚至可能击穿电缆外护套。
单芯电缆两端直接接地,电缆的金属屏蔽层还可能产生环流,据相关报导单芯电缆两端接地产生的环流可达到电缆线芯正常输送电流的30%--80%,这既降低了电缆的载流量、又浪费电能形成损耗,并加速了电缆绝缘老化,因此单芯电缆不应两端接地。
的接地方式。
一般应按照具体线路选择不同的接地方式,常用的方式有:
1.金属屏蔽层一端直接接地,另一端通过护层保护器接地;
2.金属屏蔽层中点直接接地,两端通过护层保护器接地;
3.金属屏蔽层一端直接接地,电缆中间护层交叉互联接地,另一端通过护层保护器接地;
4.金属屏蔽层一端直接接地,若干个护层交叉互联接地,金属屏蔽层中点直接接地,若干个护层交叉互联接地,另一端金属屏蔽层直接接地。
5.金属屏蔽层两端直接接地(仅适用于短电缆和小负载电缆)。
津成线缆。
66kV及以上三相单芯电缆基本的接地方式简介本文档旨在介绍66kV及以上三相单芯电缆的基本接地方式。
根据电缆的特点和要求,为确保安全和稳定的电力运行,接地是非常重要的环节。
直接接地方式直接接地是最常用的一种接地方式。
具体步骤如下:1. 准备接地电极:将电极埋入地下,通常采用铜或镀锌钢制成。
2. 连接电缆与接地电极:将电缆的金属护套或铠装与接地电极连接。
3. 确保连接可靠:使用合适的接地夹、焊接或螺旋连接等方式,确保电缆与接地电极之间的连接牢固可靠。
绝缘中性点接地方式绝缘中性点接地方式是为了减小故障电流和三相电流不平衡的影响,提高电力系统的可靠性。
具体步骤如下:1. 找到电缆的中性点:对于三相单芯电缆,将三个相导体分别连接到电缆的中性点。
2. 接地中性点:将电缆中性点与地面接地电极连接。
3. 安装故障指示器:在接地线路上安装故障指示器,以监测电缆的故障情况。
电压位移接地方式电压位移接地方式是为了减小故障电流和限制故障电压的影响,提高电力系统的可靠性。
具体步骤如下:1. 根据电缆长度和接线容量,确定适当的电容量。
2. 安装电:将电连接到电缆线路上,使其与地面接地电极相连。
3. 调整电参数:根据实际情况,调整电参数,以达到故障电流和电压限制的要求。
总结根据电缆的特点和要求,选择合适的接地方式非常重要。
直接接地方式简单可靠,而绝缘中性点接地方式和电压位移接地方式可以提高电力系统的可靠性。
在实际应用中,还应考虑具体的场景和要求,选择最合适的接地方式。
第1篇一、引言电缆接地是电力系统中的重要环节,它关系到电力系统的安全稳定运行以及人身安全。
正确的电缆接地不仅可以有效防止雷电、操作过电压等对电缆的损害,还可以降低故障发生时的故障电流,保障电力系统的安全运行。
以下是关于电缆接地的一些安全规定。
二、电缆接地原则1. 电缆接地应遵循“先接后装、先装后接”的原则,即先完成接地工作,再进行电缆安装。
2. 电缆接地应保证接地电阻符合规定,以降低接地电流,确保接地效果。
3. 电缆接地应采用符合国家标准的接地材料和接地装置。
4. 电缆接地应定期检查、维护,确保接地系统处于良好状态。
三、电缆接地方式1. 电缆接地方式分为直接接地和经保护器接地。
(1)直接接地:将电缆金属护套、铠装层等直接接地,适用于电压等级较低、线路较短的电缆。
(2)经保护器接地:将电缆金属护套、铠装层等通过接地保护器接地,适用于电压等级较高、线路较长的电缆。
2. 单芯电缆接地方式:单芯电缆的金属护套应至少有一点直接接地,其余部分可通过接地保护器接地。
3. 三芯电缆接地方式:三芯电缆的金属护套、铠装层等应在电缆线路两端直接接地。
四、电缆接地安全规定1. 接地电阻(1)直接接地:接地电阻应小于4Ω。
(2)经保护器接地:接地电阻应小于10Ω。
2. 接地线截面(1)接地线截面应满足接地电流的要求,一般不应小于接地电阻的1/20。
(2)接地线截面应满足接地装置的热稳定性和机械强度要求。
3. 接地装置(1)接地装置应采用符合国家标准的接地材料和接地装置。
(2)接地装置应安装牢固,确保接地效果。
4. 接地检查(1)接地检查应定期进行,一般每年不少于1次。
(2)接地检查应包括接地电阻、接地线截面、接地装置等方面。
5. 接地保护(1)接地保护器应选用符合国家标准的接地保护器。
(2)接地保护器应定期检查、维护,确保保护器处于良好状态。
6. 接地标识(1)接地装置应设置明显的接地标识。
(2)接地标识应清晰、醒目,便于检查、维护。
单芯矿物电缆的接地线截面标准规范1.电动力的影响为了预防由于短路而产生的电动力的作用,单芯电缆必须用足够强度的支撑件结实的固定,使其能承受与预期的短路电流相应的电动力。
2.高压交流单芯电缆的特殊预防措施高压交流线路尽量采用多芯电缆,当工作电流较大的回路必须用单芯电缆时,需采取以下预防措施:2.1电缆应是无铠装的或是用非磁性材料铠装的。
为了防止形成环流,金属屏蔽层应仅在一点接地。
2.2在同一回路中的所有导线应安置在同一管子、导线管或线槽,或者用线夹将所有相的导线安装固定在一起,除非它们是非磁性材料制成的。
2.3在安装两根、三根或四根单芯电缆分别构成单相回路、三相回路或三相和中性线回路时,电缆应尽可能相互接触。
在所有情况下两根相邻电缆的外护层之间的距离应不大于一根电缆的直径。
2.4当通以额定电流大于250A的单芯电缆必须靠近钢质货舱壁安装时,电缆与舱臂之间的间隙应至少为50mm。
属于同一交流回路的电缆敷设成三叶形的除外。
2.5磁性材料不应用于同一组的单芯电缆间,在电缆穿过钢板时,同一回路的所有导线都应一起穿过钢板或填料函,这样在电缆之间就不存在磁性材料,而且在电缆与磁性材料之间的间隙应不小于75mm。
属于同一交流回路的电缆敷设成三叶形的除外。
2.6为使导体截面等于或大于185mm2的单芯电缆所组成的相当长度的三相回路的阻抗大约相等,应在间隙不超过15m处各相换位一次。
或者,电缆可呈三叶形敷设。
当电缆敷设长度小于30m时,那么可不必采取上述措施。
2.7在线路中每一相包括几根单芯电缆并联使用时,所有电缆应具有一样的路径和相等的截面。
而且属于同一相的电缆应尽量同其他相的电缆交替敷设,以免使电流的分配不均匀。
例如,本次工程中,每相中有两根500mm2单芯高压电缆,其正确的排列次序是:单层或或两层而不是单层或根据工程特殊性,采取三叶形双层布置,三相电缆采用塑料扎带定距离捆扎。
3电缆的支持与固定3.1 一般规定3.1.1 电缆明敷时,应沿全长采用电缆支架、桥架、挂钩或吊绳等支持与固定。
中低压单芯电缆接地方式的合理选择新区部分单芯高压电力电缆在设计时因未考虑合理的接地方式,曾接连发生电缆接地短路事故,通过对高压单芯电缆接地方式优化改造,采用金属护套交叉互联或中间直接接地、两端保护接地等措施,使电缆屏蔽层可靠合理接地,且安装时按照经济合理的原则在护套的一定位置采用特殊的连接和接地方式、装设护层绝缘保护器等,较好地解决了金属护套感应电压高、环流大等问题,大大降低了线损,提高了电缆安全运行的可靠、经济性。
标签:单芯电缆;接地方式;感应电压;线损一、项目概况按照《电力工程电缆设计规程》的要求,单芯电缆线路的金属护套只有一点接地时,金属护套任一点的感应电压不应超过50-100V(未采取不能任意接触金属护套的安全措施时不大于50V;如采取了有效措施时,不得大于100V),并应对地绝缘。
但在2011年5月份以前,我公司应用的十几路高压单芯电力电缆均未考虑合理的接地方式,线路较长、负荷较大的单芯电缆线路外护套的感应电压实测发现最多高达154V,感应电流最高到12A,已严重超出电力系统运行及设计规定,多次了发生运行电缆因单相接地而导致的短路事故,严重影响整个电力系统的安全运行,为避免类似事故再次发生,决定对长距离单芯电缆的接地方式进行统一的优化改造。
二、单芯电缆金属护套的连接与接地的方式1、护套两端接地大家都知道,单芯电缆金属护套上的感应电压与电缆的长度和负荷电流成正比。
当电缆线路较短,负荷较小时,护套上的感应电压较小,护套两端接地形成通路后,护套中的环流也比较小.损耗较低,对电缆的正常载流量影响不是很大,这样的电缆线路可以采用护套两端直接接地,不需要装设接地保护箱,可以减少维护工作。
2、护套一端接地当电缆线路长度大约在500m—700m及以下时,电缆护套可以采用一端直接接地(通常在终端头位置接地),另一端经护层保护箱接地,护套的其他部位对地绝缘,这样接地后因护套内金属屏蔽层没有构成回路,基本上可以消除护套上的环形电流,提高电缆的载流量。
0引言高压单芯电缆被广泛应用于输电线路、变电站及工业和商业建筑等领域,传输和分配大量的电能[1],在电力系统中起着重要的作用。
然而,高压单芯电缆的护层由于老化、火灾、机械损坏等多种原因,可能会发生接地故障,对电力系统的安全性和稳定性产生负面影响。
因此,研究和应用高压单芯电缆护层的接地方式成为当今电力工程领域的一个重要课题。
曾含等[2]基于优化包覆层结构,提出高压单芯电缆暂态热路建模方法,将复杂的3层结构统一化处理,并通过实验获取热容和热阻参数。
王航等[3]进行波纹金属护套高压单芯电缆线芯护层互感的研究,使用比奥—萨伐尔定律解算高压电缆线芯电流的磁感应强度,运用高斯定理求解波纹护套截面的磁通量;建立环形纹和螺纹护套的参数方程,并确定内外曲面作为磁通量积分边界,推导出线芯与波纹护套互感和等效直径方法误差的解析公式。
刘日朗[4]采用电磁暂态计算软件(ATP-EMTP )进行输电电缆护层多点接地故障研究,使用仿真软件模拟电缆护层多点接地故障及其他故障情况,比较不同因素对护层环流值产生的影响。
电力系统规划不断扩大,对电气化专用电缆的需求越来越大,电缆作为电力系统中的重要组成部分,是电气绝缘组合电气设备开关柜的进出线,也是电力系统输电、配电导线。
由于电力系统中变电低压设备主要采用全封闭组合电气设备,所有线路导线全部采用高压单芯电缆,而且高压单芯电缆成本低、高压耐受性能强,具有普通电缆不可代替的优势,因此得到广泛应用和批量化生产。
然而,高压单芯电缆在电力系统中的大量应用带来了许多新的故障,如单线接地故障、高压单芯电缆护层套被烧融、高压单芯电缆终端头被击穿等,电缆金属护层的保护功能无法充分发挥,严重威胁电力系统巡视查验人员的生命安全。
经查验,出现这些现象的主要原因在于高压单芯电缆护层的接地方式不合理。
现行的接地方式仍沿用普通电缆接地方式,为两端分别并联接地,这种方式在实际应用中不仅电缆护层感应电势较大,而且电缆接地故障率较高。
单芯电缆金属屏蔽层接地方法摘要:单芯电力电缆在运行中金属和铠装层两端接地,会在金属屏蔽和铠装层中形成环流,引起电缆发热,影响电缆载流量;但如果一端接地,则另一端就会出现感应电压,危及人身和设备安全。
针对这两种情况,介绍了实际运行中采取的方法和措施。
关键词:单芯电缆金属屏蔽层接地随着我国电网改造的深入,大量的架空线被电力电缆取代。
电力电缆跟架空线不同,它被埋在地下,运行维护较困难,正确使用电缆,是降低工程投资,保证安全可靠供电的重要条件。
在城市配电网络中,应用最广的是交联聚乙烯铠装三芯电缆与单芯电缆。
通常三芯电缆都采用两端直接接地方式,这是因为这些电缆大多数是在正常运行中,流过三个线芯的电流总和为零,在铝包或金属屏蔽层外基本上没有磁链,这样,在铝包或金属屏蔽层两端就基本上没有感应电压,所以两端接地后不会有感应电流流过铝包或金属屏蔽层。
而单芯电缆的线芯与金属屏蔽的关系,可看作一个变压器的初级绕组,当单芯电力电缆的导体中通过交流电流时,其周围产生的磁场会与金属护套交链,在金属护套上会产生感应电动势。
其感应电动势的大小与导体中的电流大小、电缆的排列和电缆长度有关。
当电缆长度与工作电流较大的情况下,感应电压可能达到很大的数值。
电缆以紧贴三角形布置时,感应电压最小。
当电缆相间距离增加,相对位置改变时,感应电压都会相应地改变。
另外,多回电缆同路径敷设,也会对感应电压产生影响。
出于经济安全考虑,在一些电缆不长,导体中电流不大的场合,环流很小,对电缆载流量影响也不大,是可以将金属护套的两端直接接地的。
如果仅将电缆的金属护套一端直接接地,在正常运行时,电缆的金属护套另一端感应电压应不超过50V(或有安全措施时不超过100V),否则应划分适当的单元设置绝缘接头。
但当电缆很长时,护套上的感应电压叠加起来可达到危及人身安全的程度,在线路发生短路故障、遭受操作过电压或雷电冲击时,屏蔽上会形成很高的感应电压,甚至可能击穿护套绝缘。
10kV单芯XLPE绝缘电缆金属屏蔽层接地方式解说10kV电缆金属屏蔽层通常采用两端直接接地的方式。
这是由于10千伏电缆多数是三芯电缆的缘故。
八十年代中期前,10kV电缆均采用油浸纸绝缘三芯电缆。
结构多为统包型,少量为分相屏蔽型。
八十年代末期开始大量使用交联聚乙烯绝缘分相屏蔽三芯电缆,逐步淘汰了油纸电缆。
九十年代以来,随着大连经济建设的迅猛发展,负荷密度增大,环网开关柜等小型设备的应用,市区变电所出线和电缆网供电主干线电缆开始采用较大截面单芯电缆。
单芯电缆的使用提高了单回电缆的输送能力,减少了接头,短段电缆可以使用,方便了电缆敷设和附件安装。
也由此带来了金属屏蔽接地方式的问题。
一、单芯电缆金属护套工频感应电压计算单芯电缆芯线通过电流时,在交变电场作用下,金属屏蔽层必然感应一定的电动势。
三芯电缆带平衡负荷时,三相电流向量和为零金属屏蔽上的感应电势叠加为零,所以可两端接地。
单芯电缆每相之间存在一定的距离,感应电势不能抵消。
金属屏蔽层感应电压的大小与电缆长度和线芯负荷电流成正比,还与电缆排列的中心距离、金属屏蔽层的平均直径有关。
1、电缆正三角形排列时,金属屏蔽单位长度的感应电压可按下面公式计算:公式1I---负荷电流,S---电缆中心距离,D--电缆金属屏蔽层平均直径以YJSY-8.7/15kV-1×300mm,2单芯电缆为例,电缆屏蔽层平均直径40mm,PVC护套厚度3.6mm,当电缆“品”字形紧贴排列,负荷电流为200A时,算得电缆护层的感应电压为每公里10.7伏。
2、电缆三相水平排列时,设电缆间距相等,金属屏蔽单位长度的感应电压可按下式计算:公式2、3 、4当三相电缆紧贴水平排列,其它条件与1相同时,算得边相的感应电压为每公里16.9伏,中相的感应电压为每公里10.7伏;当电缆间距200mm时,算得边相的感应电压为每公里36.1伏,中相的感应电压为每公里31伏。
边相感应电压高于中相感应电压。
关于单芯电力电缆接地方式
35kV及以下电压等级的电缆都采用两端接地方式,这是因为这些电缆大多数是三芯电缆,在正常运行中,流过三个线芯的电流总和为零,在铅包或金属屏蔽层外基本上没有磁链。
这样,在铅包或金属屏蔽层两端就基本上没有感应电压,所以两端接地后不会有感应电流流过铅包或金属屏蔽层。
但是当电压超过35kV时,绝大多数采用单芯电缆供电,单芯电缆的导体线芯与金属屏蔽层的关系,可看作一个变压器的初级绕组。
当单芯电缆线芯通过电流时就会有磁力线交链铅包(或铝包)或金属屏蔽层,使它的两端出现感应电压。
感应电压的大小与电缆线路的长度和流过导体的电流成正比,电缆很长时,护套上的感应电压叠加起来可达到危及人身安全的程度,当线路发生短路故障、遭受操作过电压或雷电电压冲击时,电缆的金属屏蔽层上会形成很高的感应电压,甚至可能击穿护套绝缘。
此时,如果仍将铝包或金属屏蔽层两端三相互联接地,则铝包或金属屏蔽层将会出现很大的环流,其值可达线芯电流的50%--95%,形成损耗,使铝包或金属屏蔽层发热,这不仅浪费了大量电能,而且降低了电缆的载流量,并加速了电缆绝缘老化,严重情况会导致电缆的护套着火,因此单芯电缆不应两端接地。
个别情况(如短电缆小于100M或轻载运行时)方可将铝包或金属屏蔽层两端三相互联接地。
然而,当铝包或金属屏蔽层有一端不接地后,接着带来了下列问题:
(1)当雷电流或过电压波沿线芯流动时,电缆铝包或金属屏蔽层不接地端就会出现很高的感应性冲击电压;
(2)在系统发生短路时,短路电流流经线芯时,电缆铝包或金属屏蔽层不接地端也会出现较高的工频感应电压,在电缆外护层绝缘不能承受这种过电压的作用而损坏时,将导致出现电缆的金属护层多点接地,并在电缆的长度方向上形成多处环流。
因此,在采用一端互联接地时,必须采取措施限制护层上的过电压,安装时应根据线路的不同情况,按照经济合理的原则在铝包或金属屏蔽层的一定位置采用特殊的连接和接地方式,并同时装设护层保护器,以防止电缆护层绝缘被击穿。
据此,高压电缆线路安装时,应该按照GB50217-1994《电力工程电缆设计规程》的要求,单芯电缆线路的金属护套只有一点接地时,金属护套任一点的感应电压不应超过50-100V(未采取不能任意接触金属护套的安全措施时不大于50V;如采取了有效措施时,不得大于100V),并应对地绝缘。
如果大于此规定电压时,应采取金属护套分段绝缘或绝缘后连接成交叉互联的接线。
为了减小单芯电缆线路对邻近辅助电缆及通信电缆的感应电压,应尽量采用交叉互联接线。
对于电缆长度不长的情况下,可采用单点接地的方式。
为保护电缆护层绝缘,在不接地的一端应加装护层保护器。
由此可见,高压电缆线路的接地方式有下列几种:
(1)金属护套两端直接接地方式---不常用
这种接地方式可以减少工作量,但是在金属外护上存在环流,适用的条件比较苛刻,要求电缆线路较短,传输功率很小,传输功率有很多裕度等,因此一般不宜采用此方法。
(2)护层一端直接接地,另一端通过护层保护接地
电缆线路较短时(500M以内),金属护套一般采用护层一端直接接地,另一端通过护层保护接地方式,对地绝缘没有构成回路,可以减少及消除环流,有利于提高电缆的传输容量和电缆的安全运行,根据GB50217-84要求,非直接接地的一段金属护套上的感应电压不得超过50V,如果与架空线路连接时,直接接地一般装设在架空线路端,保护器装设在另一端。
(3)护层中点直接接地,两端屏蔽通过护层保护接地---常用方式;
电缆线路较长时(1000M以内),若电缆线路采用一端接地,其金属护套的感应电压将不满足设计规范要求,可以再电缆线路的中点将电缆的金属护套进行单点互联接地,而电缆金属护套的两个终端通过保护器接地,因此采用这种接地方式的电缆线路可看做2个“一端直接接地,一端保护接地”的电缆线路连接在一起的安装方式。
如果电缆线路是一整根电缆,则在电缆中点部位仅破开电缆的外护套,直接在铝波纹护套上安装接地装置,并做好防水处理;如果电缆线路是两根电缆,则中间接地点安装一个直通中间头即可。
(4)金属护层交叉互联--效果最好接地方式;
当电缆线路很长时(1000m及以上),电缆金属护套可以采用交叉互联方式安装,这种方式可以减少金属护套的感应电压和环流,有利于提高电缆的传输容量。
交叉互联是电缆线路分成3个等长的小段,在每一段之间安装绝缘接头,金属护套在绝缘接头处用同轴电缆引出并经互联箱进行交叉互联后,通过电缆保护层保护器接地,电缆2个终端的金属护套直接接地,这样形成一个互联段位,每个互联段位之间安装直通中间头,金属护套互联后直接接地。