地铁控制测量技术
- 格式:ppt
- 大小:553.00 KB
- 文档页数:32
地铁隧道控制测量技术地铁隧道是固定建筑物中一个非常重要的组成部分,它为城市的发展和交通运输提供了基础支持。
在地铁隧道的建设中,要注意到与它相关的各种技术问题,其中地铁隧道的测量技术是至关重要的。
随着地铁建设规模的越来越大,地铁隧道的测量技术也在不断的发展和改进。
本文将介绍地铁隧道控制测量技术分解。
包括地面控制测量、联系测量和洞内控制测量。
地面控制测量地面控制测量是在地铁隧道建设的初期,早期建立起来的一项测量技术,它采用的是地面控制测量不同的地点的高度和位置,从而最终确定出地铁隧道建设中各种测量、制图和施工的数据。
地面控制测量技术的测量精度高,操作简单且易于掌握,不需要特殊的设备和工具就可完成测量与记录。
其主要测量点位于地面上,需要严格的保护和管理,以免在地铁隧道的建设过程中产生误差。
联系测量联系测量是地铁隧道建设过程中的一个重要环节,通过联系测量可以获取地铁隧道内部的各种数据和参数,从而对铁路隧道的建设和运营提供必要的数据支持。
联系测量分为钢轨联系测量和导线联系测量两种类型。
钢轨联系测量是通过在隧道的钢轨上安装测量仪器对钢轨的位置和高度进行测量;导线联系测量是通过在隧道内设置测量导线实现。
联系测量的精度要求较高,需要专门的设备和技术人员进行测量。
洞内控制测量洞内控制测量是在地铁隧道建设过程中的一个重要环节,洞内控制测量主要是指在地铁隧道内部进行测量和记录的技术。
洞内控制测量可以获取隧道内部的各种数据和参数,从而指导隧道建设的质量和效率。
洞内控制测量主要应用于隧道施工时前推孔位置的确定、地层介质特性的分析和隧道变形状态的监测等。
洞内测量需要高精度的仪器设备和技术人员进行操作,在操作过程中需要做好洞内人员安全保护工作。
地铁隧道的控制测量技术是一个非常重要的技术环节,在隧道建设过程中起到了关键性的作用。
地铁隧道的控制测量技术主要分为地面控制测量、联系测量和洞内控制测量。
每种测量技术的应用都需要各自特定的仪器、设备和技术人员进行操作。
施工控制测量技术规定1目的为了统一天津市地铁工程施工控制测量的技术要求,使测量工作规范化、标准化,特制定本规定。
2适用范围2.1本技术规定适用于地铁丄程的地面控制网(包括GPS、精密导线、二等水准)测量、检测及维护;施匸阶段各标段控制测量检测、联系测量测量、线路中线调整测量、铺轨基标测量、设备安装测量和竣工测量等其他与地铁施工有关的测量作业。
2.2关于施丄放样、定线、监控量测及其它零星工程的测量工作各承包商可根据地铁公司提供的已知控制点(使用前必须复测)按《地下铁道、轻轨交通工程测量规范》进行放样和测量。
3依据规范《地下铁道、轻轨交通工程测量规范》《地下铁道工程施工及验收规范》《工程测量规范》《城市测量规范》《GPS全球定位系统测量规范》《国家一、二等水准测量规范》《新建铁路工程测量技术规则》《全球定位系统(GPS)铁路测量规范》4地铁线路贯通测量主要精度指标天津地铁施工控制测量的精度设讣要以保证隧道和线路的正确贯通为LI标, 满足线路定线和放线的要求以及施工期间变形监测的要求为基本原则。
暗挖(矿山法或盾构法)隧道横向贯通中误差应在±50mm之内,高程贯通中误差应在±25mm之内(《地下铁道、轻轨交通工程测量规范》第1.0.6条)。
根据测量误差理论,考虑各个测量环节实际容易达到的精度情况,将贯通中误差配赋到地铁控制测量的主要环节如下表:2. L为贯通段(洞口之间)的距离。
上表所列精度指标是各等级测量,包括地面GPS控制网、精密导线网、山地面向地下传递测量、地下导线测量及洞内外高程测量的设讣依据,最终必须满足总贯通中误差的要求。
5地面平面控制测量5.1首级GPS平面控制网5.1. 1 GPS控制网的平面基准采用1990年天津市任意直角坐标系。
5. 1.2布设GPS平面控制网的精度等级为C级。
所有控制点均用非同步独立观测边组成闭合环或附合路线。
5. 1. 3 GPS控制网的主要技术指标:(《地下铁道、轻轨交通工程测量规范》表3. 2. 2)5.1.4GPS网施测的内外业作业及成果,须满足《地下铁、轻轨交通工程测量规范》GB50308-1999的有关要求。
地铁轨道工程施工测量控制方法摘要:随着经济的快速发展,城市化进程不断加快,给城市交通带来了巨大的压力,地铁工程的建设可以有效环节城市交通压力,推动城市经济的发展。
为保障地铁轨道工程的建设质量,需要高度重视施工测量工作,减少测量误差,提高工程施工的科学性和专业性,保障工程施工质量。
关键词:地铁;轨道工程;施工测量引言地铁作为城市轨道交通的主要形式,具有运量大、速度快、安全准时、无污染、不干扰地面交通等诸多优势。
轨道作为直接承受列车荷载的载体,其施工质量直接影响到运营的安全性和乘坐的舒适性。
为满足运营及后期提速要求,轨道必须要有较高的平顺性和精确的几何尺寸,轨道施工测量控制就显得尤为重要。
1地铁工程施工测量特点1.1地下铁道测量内容多,比较困难和复杂地下铁道通过城市,高楼林立,街道狭小,车水马龙,地质复杂多变,隧道较浅(约13-20m深)引起地面形变,给测量工作尤其向隧道内传递三维坐标带来很大困难.除施工测量、贯通测量等项外,还有地面与地下变形监测、车辆段测量及特殊测量(如托换桩测量等)。
1.2区间隧道短并与车站贯通,贯通测量严格地下铁道建设往往是许多车站与区间隧道(长度约700-1500m)同时开工,车站(长度约200-280m)多数采用明挖法或盖挖法,区间隧道未打通前,车站可能已经修成并打了站台板,区间隧道采用矿山法或盾构法开挖,除少数区间贯通外,一般是单向掘进,即由一个车站向另一个车站掘进,并与车站轴线贯通一方轴线已固定(车站土建竣工),另一方掘进中已衬砌(尤其是盾构段),因此双方施工中线于车站端的贯通要求是很严格的,测量工作要保证万无一失。
由于结构内安装多种设备,净空限界较地面铁路更严。
1.3整体规划和分期建设,测量保证各条线路准确衔接地下铁道投资大、建设工期长,因此一个大城市地铁建设根据客流量先作总体规划,设计若干条线路,分期建设,全部完成需10年以上。
测量工作既要考虑整体,又要考虑局部,不仅沿每条线路独立布设控制网,而且在线路相交又地方,有一定数量的控制点相重合,保证各条线路的准确衔接。
第1篇摘要:随着城市化进程的加快,城市轨道交通建设成为城市发展的关键基础设施。
地铁测量技术在城市轨道交通建设中扮演着至关重要的角色,本文将对地铁测量技术的应用进行综述,并展望其未来发展趋势。
一、引言城市轨道交通建设是一项复杂的系统工程,涉及土建、机电、信号等多个专业。
其中,地铁测量技术作为城市轨道交通建设的基础,为工程顺利进行提供了可靠的技术保障。
本文将对地铁测量技术的应用进行综述,并探讨其未来发展趋势。
二、地铁测量技术概述1. 地铁测量技术分类地铁测量技术主要包括以下几类:(1)平面控制测量:主要包括GPS控制网、精密导线网、施工控制导线等。
(2)高程控制测量:主要包括水准测量、三角高程测量等。
(3)联系测量:主要包括洞内联系测量、地面联系测量等。
(4)导向系统:主要包括盾构姿态控制、轨道精调等。
2. 地铁测量技术特点(1)精度高:地铁测量技术要求高精度,以满足工程建设的精度要求。
(2)实时性:地铁测量技术要求实时监控,以保证工程建设的顺利进行。
(3)自动化:地铁测量技术应具备自动化特点,提高工作效率。
三、地铁测量技术在城市轨道交通建设中的应用1. 施工控制(1)平面控制:通过GPS控制网、精密导线网等手段,为工程提供高精度的平面控制基础。
(2)高程控制:通过水准测量、三角高程测量等手段,为工程提供高精度的垂直控制基础。
(3)施工控制导线:通过施工控制导线,确保工程在施工过程中的精度。
2. 盾构施工(1)盾构姿态控制:通过实时监测盾构姿态,确保盾构施工精度。
(2)管环检测:通过管环检测,保证盾构施工质量。
3. 轨道施工(1)轨道精调:通过轨道精调技术,保证轨道高平顺性和高稳定性。
(2)道床轨排粗调、精调:通过道床轨排粗调、精调技术,保证轨道施工质量。
四、未来发展趋势1. 高精度测量技术:随着我国科技的不断发展,高精度测量技术将得到进一步应用,为城市轨道交通建设提供更加精确的测量数据。
2. 智能化测量技术:通过引入人工智能、大数据等技术,实现地铁测量技术的智能化,提高测量效率和质量。
如何进行地铁线路测绘地铁线路测绘是建设和运营地铁系统的重要环节。
准确测绘地铁线路对于确保施工质量、保障乘客安全以及优化网络设计具有至关重要的作用。
本文将从测绘方法、设备需求以及数据处理等方面进行探讨,介绍如何进行地铁线路测绘。
1. 测绘方法地铁线路测绘方法通常包括地面控制测量和特殊测量两种形式。
地面控制测量是通过在地面上设置测量控制点,并采用全站仪、GPS等测量设备进行测量,以确定地铁线路的空间位置和地形地貌。
特殊测量是在人行隧道、车站站台等特殊环境下进行的,主要采用激光测距仪、测距仪等工具进行测量。
地铁线路测绘通常采用综合测量方法,结合地形地貌特点和具体需求,灵活选择不同的测量手段。
2. 设备需求地铁线路测绘需要一系列专业的测量设备。
其中,全站仪是常用的测量设备之一,可以测量角度和距离,提供高精度的空间坐标数据。
全站仪通过定位和测量,能够快速获取地铁线路的位置信息,并将其转化为数字化的测量数据。
此外,激光测距仪、测距仪等设备也是必备工具,用于特殊环境下的测量。
除了测量设备,地铁线路测绘中还需要使用计算机、地理信息系统(GIS)等软件进行数据处理和分析。
3. 数据处理地铁线路测绘完成后,需要对测量数据进行处理。
首先,需要对原始数据进行清洗和筛选,排除异常测量数据。
然后,利用测量数据进行地形地貌建模,生成地铁线路的三维模型。
在此基础上,可以进行线路的通视性分析和断面分析,以评估线路的可行性和安全性。
同时,还可以利用地理信息系统(GIS)进行线路的空间分析和网络优化,优化线路的布局和设计,提高线路的运营效率。
4. 准确性与精度控制在地铁线路测绘中,准确性和精度控制是非常重要的。
为了确保测量结果的准确性,需要合理规划控制点的布设和选择,并采用合适的坐标系进行测量。
此外,还需要定期检校测量设备,保持其良好运行状态。
在数据处理过程中,要进行多次数据校验和重测,以确保测量结果的一致性和可靠性。
只有控制准确性和精度,才能获得高质量的测绘数据,为地铁线路的建设和运营提供可靠的支持。
地铁施工控制测量技术分析一、地铁施工控制测量技术的基本原理和应用场景地铁施工控制测量技术的基本原理是通过使用现代计算机辅助设计(CAD)软件,在数字地图上建立地铁工程的三维模型,然后将其转换为二维图形,进行精准的空间数据计算和定位,以确保地铁工程的准确施工和质量监管。
地铁施工控制测量技术的应用场景主要包括以下几个方面:1、地铁基础工程的定位和测量。
地铁的基础工程包括地铁的基础底板、基坑和地下结构等部分,这些工程的定位和测量是地铁施工的第一步,通过地铁施工控制测量技术的应用,可以精确定位地铁基础的坐标和高度,确保地铁基础工程的施工质量。
3、地铁站台和设备的定位和测量。
地铁站台和设备的定位和测量是地铁工程中非常重要的一部分,这些设备的定位和测量直接影响地铁的使用效果和安全性。
通过地铁施工控制测量技术的应用,可以精确定位地铁站台和设备的中心线、坡度和高度等参数,并能对其进行精确的监控和分析,确保地铁站台和设备的施工质量和安全性。
地铁施工控制测量技术的技术难点主要集中在以下几个方面:1、地铁施工环境的复杂性。
地铁施工环境千变万化,施工条件复杂,地形地貌不规则,需要对施工环境进行精准的计算和分析,以保证施工的准确性。
2、地铁建筑物的多样性。
地铁建筑物具有多样性,不同地铁建筑物的施工控制测量技术方法也不尽相同,因此需要灵活运用现代测量技术,根据地铁建筑物的不同特点、不同施工环境和要求,制定不同的测量方案。
3、施工时间紧、任务重。
地铁工程施工时间紧、任务重,需要在有限的时间内完成大量的测量工作,因此需要精通现代测量技术,快速准确地完成施工任务。
2、应用智能化测量设备。
智能化测量设备是指通过计算机辅助技术将现代测量仪器与工作现场连接,实时监控地铁工程施工过程,快速准确地获取地铁工程的施工数据和测量结果。
通过智能化测量设备的应用,可以大大提高地铁施工控制测量技术的效率和实用性,实现地铁工程的高效施工和质量监管。
总之,地铁施工控制测量技术是地铁工程中非常重要的一部分,对地铁工程的质量和安全性有着至关重要的作用。
地铁轨道工程施工测量控制技术摘要:随着经济的不断发展,社会的不断进步,地铁作为城市轨道交通的主要形式,具有运量大、速度快、安全准时、无污染、不干扰地面交通等诸多优势。
轨道作为直接承受列车荷载的载体,其施工质量直接影响到运营的安全性和乘坐的舒适性。
为满足运营及后期提速要求,轨道必须要有较高的平顺性和精确的几何尺寸,轨道施工测量控制就显得尤为重要。
关键词:地铁;轨道;施工测量;控制技术引言随着我国现阶段市场经济的迅猛发展,城镇化进程也不断加快,我们已经完成了初步的现代化建设。
随着城市规模的不断扩大和主城区人口的不断激增,交通拥堵问题已经成为一个亟待解决的社会问题摆在我们面前。
和欧美国家不同的是,我国是近十年才开始大兴城市地铁工程,缓解了日益突出的城市人口交通矛盾,为人们的工作、生活出行都带来了极大地便利。
因此,本文将主要针对现阶段我国的城市地铁现状进行简要说明,从而提出城市地铁施工测量的现状,最终针对城市地铁施工测量技术与方法的改进测量进行详细阐述,并且提出测量误差消除的具体办法。
1城市地铁施工测量的现状在市场经济飞速发展的今天,交通运输行业也获得了蓬勃发展,相应的施工过程中安全生产也成为人们的有一个关注点。
在实际的城市地铁施工测量的过程中,由于我国地铁发展的时间还比较短,所以其测量技术还比较单一,一般来说,我们可以通过调研报告和数据显示发现,大多数的研究只是针对单一测量环节,同时也缺乏深入的研究探讨。
实际施工中还只是运用到GPS、激光投点仪、双支导线等等,相对来说技术层面的支持就显得不够了。
而在理论研究阶段,我国的城市地铁施工测量技术研究还是停留在采用不同的平差模型平差条件的研究。
尽管在实际中我们能够看到部分项目已经开始针对距离大的区间进行复核检验,但是这种检验也仅仅是导线边方位与陀螺方位的简单比较,从长远的宏观角度来看,深入的探讨和研究却呈现出一种空白状态。
另外,在针对实际的测量误差,现阶段的测量技术人员在考虑时往往只能进行逐一排除考虑,很少可以做到三位一体、同时考虑,那么这就对于误差的最小化有着消极影响,从而很难实现在城市地铁施工测量中的绝对精准。
关于地铁工程测量的控制要点分析摘要:地铁工程测量是确保地铁线路建设准确和安全的重要步骤。
本文对地铁工程测量的控制要点进行了分析。
在分析中,我们探讨了地铁工程测量的坐标控制、垂直控制、水平控制等要点,通过合理的控制和调整,可以保证地铁工程的质量和安全性。
关键词:地铁工程测量;控制要点;分析一、地铁工程测量特点复杂性:地铁工程通常涉及复杂的地形和地貌环境,包括地下、地面和高架等各种工程形式。
因此,地铁工程测量需要考虑到不同的工程地貌,需要使用多种测量方法和工具进行测量和控制。
大范围性:地铁线路通常在城市范围内延伸,涉及到大片区域的测量和控制。
因此,地铁工程测量需要覆盖大面积区域,需要建立完善的测量控制网络,保证各个测点之间的数据一致性和衔接性。
二、地铁工程测量工作发展现状技术手段的更新和变革:随着技术的不断发展,地铁工程测量的技术手段也在不断更新和变革。
传统的测量仪器如水准仪、全站仪在精度和效率方面已经有了巨大的提升,同时,出现了许多新兴的测量技术和仪器,如激光测距仪、机器人测量系统等,使地铁工程测量的精度和效率更高。
自动化与数字化的应用:自动化和数字化技术的应用已经成为地铁工程测量的趋势。
通过使用自动化测量系统和数据处理软件,可以实现地铁工程测量的自动化操作和快速数据处理。
数字化技术的应用也使得测量数据的存储、管理和共享更加方便和高效。
多学科合作与信息共享:地铁工程测量涉及多个学科的知识和技术,需要与工程设计、地质勘探、土木工程等学科进行紧密的合作。
同时,为了提高效率和准确性,需要实现与其他相关部门的信息共享,如地理信息系统、施工管理系统等,以实现测量数据的共享和一体化分析[1]。
三、地铁工程测量的控制要点分析1.基准控制要点基准点选择:在地铁工程测量中,选择适当的基准点至关重要。
基准点应具备稳定性、易于获取和测量的特点。
通常情况下,可以选择地质结构稳定、不易变形的地点作为基准点,如岩石或混凝土基座。
地铁工程测量的方法及控制要点导言地铁是现今我们生活中极为重要的交通工具,建设地铁可不是件简单的事情。
地铁是高密度、特大型、综合性轨道交通运输系统,涉及至少40个技术专业,得花好几年的时间才能完全建成。
今天我们就来说说地铁建设工程中的测量。
地铁测量工作的特点分析(1)地铁建设工程所需时间较长,需要大金额投入,工程的起始、结束均与测量工作密切相关。
(2)该项工程的界限规定非常严格,如果界限不明确,很容易引发选取的施工材料、测量方案问题,导致成本加大。
为了有效控制成本,采取三维坐标解析法施工,但是这种方法对施工测量精准度的要求特别高。
(3)地铁隧道内部的轨道结构使用的是整体道床,这对铺轨基准测量的精度要求特别高。
(4)车站与隧道内部的控制点数量比较多,使用非常频繁,需要做好标志,加大维护力度,将不同阶段地铁施工的基本信息记录下来,作为后期测量工作开展的主要依据。
地质勘探方法1.钻孔取样勘探使用地质钻机在地表下钻出深深的孔,然后用空心钻头将岩土样带出地面进行取样分析。
一般钻孔间距为几十米,遇到地下溶洞、孤石等复杂地质,钻孔间距缩减为几米。
2.电法勘探根据各类岩土电学性质的差异来分析地质情况。
3.磁法勘探通过观测和分析由岩土的磁性差异所引起的磁异常,进行地质研究。
4.声波法勘探通过在两孔间发射声波,然后根据不同岩土分界面上反射回来的声波进行地质分析。
地铁测量的控制要点1.新线建设和已有线路之间的结合部位控制点较差处理在地铁线路设计的交汇处,所有新建的地面控制网都必须要和原有的控制网进行结合,然后进行联测,这时候就会出现同一个点因为处于不同时期以及不同的控制网下,具有不同的坐标,在此时就需要进行坐标的较差处理。
坐标较差的处理方法有:选择高等级起算点要保持一致,进而减少误差。
除此之外,当较差较小时,原有线采用原有的坐标,新线采用新的坐标,而对于施工加密点以及隧道内的控制点则要进行强制性的平差。
2.平面控制网布设形式的探讨近些年,随着测量设计技术的不断发展以及施工方法的不断进步,因此使测量设备的更新换代速度也逐渐加快,在进行平面控制网的布设时,根据具体的情况不同,控制网的形式也不一样,所以导致了许多的指标突破了规范的要求。
施工测量的主要任务是将图纸上的设计内容放样到实地上。
对于地铁工程来说,主要是保证对向开挖的隧道能按照规定的精度贯通,并使各建筑物按照设计的位置修建。
放样过程中,仪器所安置的方向、距离都是依据控制网计算出来的。
因此在施工放样之前,需建立具有一定精度的施工控制网[1]。
地铁施工工法比较固定,一般有明挖法、暗挖法和盾构法,根据不同的施工方法总结出常用的控制测量方法很有必要。
1明挖施工中的控制测量明挖施工中的控制测量形式较为简单,一般有单导线形式、哑铃型导线形式和双导线形式,工作步骤包括纸上选点、编写实施方案、现场踏勘、外业实施、内业数据处理、总结报告[2]。
地面控制测量通常布设成单一附合导线形式。
由于地铁施工场地较为狭小,为满足使用方便的要求,加密导线点一般距离明挖基坑较近,甚至在基坑5m 范围内。
为避免基坑开挖对导线点造成扰动,应定期与距离基坑较远的控制点进行联测,确保导线点布设的准确性。
2暗挖施工中的控制测量1)暗挖施工一般都设有竖井和横通道。
在横通道开挖完毕后,正线开挖之前,需要进行1次联系测量,地下控制点一般选在正线洞口,采用一井定向(即联系三角形法)测量。
现场施测示意图如图1所示。
一井定向是将地面上的坐标和方向通过1个竖井的平面联系测量传递到地下的测量工作,分为投点和连接测量2个环节。
地铁施工中几种常见控制测量方法陈保同(中铁十八局集团轨道交通工程有限公司,北京100044)摘要:在城市地铁施工中,施工控制测量工作占有重要地位。
根据不同的施工工法及现场条件,选择合适的控制测量方法非常重要,本文介绍了几种常见的控制测量方法在不同施工条件下的运用。
关键词:地铁;控制测量;明挖;暗挖;盾构中图分类号:U 452.13文献标志码:B文章编号:1009-7767(2016)S1-0135-04Several Common Methods of Control Survey in Subway ConstructionChen Baotong图1暗挖施工一井定向联系测量示意图投点时,通常采用单重稳定投点、单重摆动投点。
宁波地铁CPⅢ控制测量概述本文档旨在介绍宁波地铁CPⅢ控制测量的相关信息。
宁波地铁CPⅢ控制测量是宁波地铁系统中的一个重要环节,用于对地铁线路进行精确测量和控制,确保地铁系统的安全运行。
CPⅢ控制测量的作用CPⅢ控制测量在宁波地铁系统中起着至关重要的作用。
具体作用如下:1.确保线路平整度:CPⅢ控制测量可以对地铁线路的平整度进行测量和控制,确保地铁车辆在运行过程中的平稳性和舒适性。
2.保证线路几何精度:CPⅢ控制测量可以对地铁线路的几何精度进行测量和控制,包括线路的水平和垂直曲率、线路的斜率等,确保车辆在运行过程中的安全性和稳定性。
3.确定道岔位置:CPⅢ控制测量可以准确测量和控制地铁线路上的道岔位置,确保道岔的正确切换,保证列车的正常运行。
4.实时监控线路状态:CPⅢ控制测量可以实时监控地铁线路的状态,包括线路的振动、位移等,及时发现潜在的安全隐患,保证地铁系统的安全运行。
CPⅢ控制测量的技术原理CPⅢ控制测量主要依靠先进的测量设备和技术来实现。
下面介绍几种常用的CPⅢ控制测量技术:1.全站仪测量:全站仪是一种高精度的测量仪器,可以同时测量目标点的水平角、垂直角和斜距,通过全站仪进行测量可以得到地铁线路各个参考点的空间坐标,从而实现对地铁线路的精确测量和控制。
2.GPS测量:全球定位系统(GPS)是一种基于卫星信号的导航和定位系统,通过接收卫星信号可以确定测量点的经纬度坐标。
在地铁CPⅢ控制测量中,可以使用GPS 测量控制点的经纬度坐标,从而实现对地铁线路的几何精度测量和控制。
3.激光测距仪测量:激光测距仪是一种利用激光束测量目标距离的仪器,可以实现对地铁线路上各个参考点的准确测量。
通过激光测距仪可以获取地铁线路各个参考点的距离信息,从而实现线路的几何精度控制。
CPⅢ控制测量的工作流程CPⅢ控制测量主要包括以下几个步骤:1.测量准备:在进行CPⅢ控制测量之前,需要对测量设备进行校准和准备工作,确保测量设备的精度和稳定性。