(完整word版)形常数和载常数表.doc
- 格式:doc
- 大小:489.05 KB
- 文档页数:6
位移法是计算超静定结构的基本方法之一
图1
如图1所示结构,力法计算,9个基本未知量
位移法计算,1个基本未知量
单跨超静定梁的形常数与载常数
1. 杆端力的正、负号规定
杆端弯矩:对杆件而言,当杆端弯矩绕杆件顺时针方向旋转为正,反之为负。
对结点而言,当杆端弯矩绕结点(或支座)逆时针方向旋转为正,反之为负。
杆端剪力:使所研究的分离体有顺时针转动趋势为正,有逆时针转动趋势为负。
2. 杆端位移的正、负号规定
杆端转角(角位移):以顺时针方向转动为正,反之为负。
杆端相对线位移:指杆件两端垂直于杆轴线方向的相对线位移,正负号则以使整个杆件顺时针方向转动规定为正,反之为负。
3. 等截面梁的形常数
杆端单位位移引起的杆端内力称为形常数•
i=EI/l——线刚度
4. 等截面梁的载常数
荷载引起的杆端内力称为载常数.
下图是在不同支承条件下的载常数和形常数
一端固定一端定向滑动的单跨超静定梁的载常数和形常数。
形常数和载常数表在结构力学的领域中,形常数和载常数表是非常重要的工具。
它们帮助工程师和学者们更有效地分析和设计各种结构。
首先,让我们来理解一下什么是形常数。
形常数是指在杆件结构中,由于杆件的位移引起的内力与变形之间的关系所确定的常数。
简单来说,就是当杆件发生某种特定的变形时,所产生的内力的大小是由形常数决定的。
比如说,对于一个两端固定的梁,当它在中间受到一个集中力作用时,梁的弯曲变形就与某些特定的形常数相关。
形常数的确定通常需要通过对结构的力学分析和计算来得到。
不同的杆件结构和边界条件,其形常数也会有所不同。
常见的形常数包括弯曲形常数、拉伸形常数、扭转形常数等等。
接下来再谈谈载常数。
载常数则是指在杆件结构中,由于外部荷载作用引起的内力与荷载之间的关系所确定的常数。
比如,在一个简支梁上作用一个均布荷载,梁内产生的弯矩、剪力等内力与这个均布荷载之间的关系就由载常数来描述。
载常数的确定也需要基于结构力学的原理和计算方法。
它与荷载的类型、大小、作用位置以及结构的形式和边界条件等因素密切相关。
为了更直观地应用形常数和载常数,人们通常会将它们整理成表格的形式,这就是形常数和载常数表。
这些表格中详细列出了各种常见结构形式和荷载情况下的形常数和载常数的值。
在实际工程应用中,形常数和载常数表具有很大的价值。
比如在设计桥梁时,工程师可以通过查阅形常数和载常数表,快速地确定在不同的荷载作用下桥梁各个部位的内力和变形情况,从而评估桥梁的安全性和稳定性。
在对建筑物进行结构分析时,也能利用这些表格来简化计算过程,提高设计效率。
而且,形常数和载常数表不仅仅在传统的土木工程领域有用,在机械工程、航空航天工程等领域也有着广泛的应用。
比如在设计飞机机翼的结构时,就需要考虑各种载荷情况下的形变量和内力分布,这时形常数和载常数表就能提供重要的参考。
然而,需要注意的是,在使用形常数和载常数表时,必须要确保所选用的表格与实际的结构形式和荷载情况相匹配。
形常数和载常数表-互联网类哎呀,说到形常数和载常数表,这在互联网领域里还真是个有点特别的存在呢!咱先来说说啥是形常数和载常数。
简单来讲,形常数就是结构在单位位移下产生的内力或位移,载常数呢,则是在单位荷载作用下产生的内力或位移。
我想起之前有一次参加一个互联网技术交流大会,遇到了一位年轻的工程师小李。
他在分享自己的项目经验时,就提到了形常数和载常数表的应用。
他说他们在开发一个大型在线游戏的时候,游戏中的人物动作设计就用到了这些概念。
比如说,人物跳跃的高度、奔跑的速度,这些都需要通过计算形常数和载常数来确定,以保证游戏的流畅性和真实感。
在互联网的世界里,形常数和载常数表的应用可广泛啦!比如说在网页设计中,页面元素的布局和响应式设计就离不开对它们的考虑。
你想啊,如果一个网页在不同的设备上显示得乱七八糟,那用户体验得多差呀!这时候,通过分析形常数和载常数,就能让网页在各种屏幕尺寸上都能完美呈现。
还有在网络通信中,数据的传输速度和稳定性也与形常数和载常数有关。
就好比一条高速公路,车流量(数据量)大的时候,如果道路的承载能力(载常数)不够,就容易堵车(数据拥堵),影响传输效率。
在软件开发中,算法的优化也会用到形常数和载常数表。
比如说,一个搜索算法要在海量的数据中快速找到目标,就需要对各种操作的时间和空间复杂度(形常数和载常数的一种体现)进行分析,从而选择最优的方案。
我还记得当时在交流会上,小李讲完后,台下的听众纷纷提问,那场面可热闹了。
有人问:“那在实际项目中,怎么准确地测量和计算这些常数呢?”小李笑着回答:“这可就得靠我们的专业知识和经验啦,还有各种测试工具和数据分析方法。
”总之啊,形常数和载常数表在互联网领域虽然听起来有点专业和抽象,但其实它们就像幕后的英雄,默默地为我们带来更好的互联网体验。
从网页浏览的顺畅,到游戏的精彩,再到软件的高效运行,都离不开它们的功劳。
所以呀,下次当你在享受互联网带来的便捷和乐趣时,说不定背后就有形常数和载常数表在发挥作用呢!。
表1—载常数表(固端弯矩以顺时针方向为正;固端剪力以使杆件顺时针转动为正)2序号计算简图及挠度图弯矩图及固端弯矩固端剪力F QABF QBA1 √2ql (↑)2ql (↑)2ql 203 (↑)ql 207 (↑)332)2(l a l b F P +(↑)32)2(l b l a F P +(↑)4 √2PF (↑)2PF (↑)5 √0 06 √85ql(↑)83ql(↑)752ql(↑)10ql (↑)8409ql(↑)4011ql(↑)93222)3(l b l b F P -(↑)322)3(la l a F P - (↑)表1—载常数表(固端弯矩以顺时针方向为正;固端剪力以使杆件顺时针转动为正)序号计算简图及挠度图弯矩图及固端弯矩固端剪力F QABF QBA10√P F 1611 (↑)P F 165 (↑)11√hltEI 23∆α (↑)hltEI 23∆α (↓)12√ql(↑) 013P F(↑)14√P F(↑)15√P F(↑)P L QBA F F =(↓)0=R QBA F16√17M lab36 (↓)M lab36 (↑)18√lM23 (↓) lM23 (↑)表1—载常数表(固端弯矩以顺时针方向为正;固端剪力以使杆件顺时针转动为正)序号计算简图及挠度图弯矩图及固端弯矩固端剪力F QABF QBA193222)(3lMb l - (↓)3222)(3lMb l - (↑)20√lM89 (↓)lM89 (↑)21√lM23 (↓)lM23 (↑)220 023√0 0242ql (↑)252ql (↑)26-332(2l lqa )232a la +(↑))2(233a l lqa - (↑)使杆件顺时针转动为正)序号计算简图及挠度图弯矩图及固端弯矩固端剪力F QAB F QBA27-qa)4(83alq-ξ(↑))4(83alq--ξ(↑)28qa(↑)29αcos2ql(↑)αcos2ql(↑)30αcos2PF(↑)αcos2PF(↑)31αcos85ql(↑)αcos83ql(↑)32αcos1611PF(↑)αcos165PF(↑)33αcos2ql(↑)αcos2ql(↑)34αcos2PF(↑)αcos2PF(↑)使杆件顺时针转动为正)序号计算简图及挠度图弯矩图及固端弯矩固端剪力F QABF QBA1 √212l i(↑)212l i(↓)2 √li 6 (↑)li 6 (↓)3 √23li (↑)23li (↓)4 √li 3 (↑)li 3 (↓)5 √0 0时间:2021.03.12创作:欧阳文。
第八章位移法本章的问题:A.什么是位移法的基本未知量?B.为什么求内力时可采用刚度的相对值,而求位移时则需采用刚度的真值?C.在力法和位移法中,各以什么方式来满足平衡条件和变形连续条件?D.位移法的基本体系和基本结构有什么不同?它们各自在位移法的计算过程中起什么作用?E.直接平衡法和典型方程法有何异同?F.力法和位移法的优缺点?G.在位移法中如何运用结构的对称性?§8-1位移法概述对图8-1所示单跨梁,象力法[例题7-4]-[例题 7-6]那样进行求解,从而可建立表8-1所示杆端内力。
需要指出的是,对于斜杆除表中所示弯矩、剪力外,还有轴力。
由位移引起的杆端内力称为“形常数”(shape constant)。
由“广义荷载”产生的杆端内力称为“载常数”(load constant),其中外荷载产生的杆端内力称为固端内力(internal force of fixed-end)。
杆端内力的符号及正、负规定见第3章。
两端固定一固一铰一固一定向图8-1 位移法基本单跨梁示意图*P。
P 。
P 有了表8-1,则图8-2 所示的两端固定单跨梁,利用形、载常数和叠加原理可得杆端内力。
例如A 端杆端弯矩为F4322122646ABAB M l EI lEI l EI l EI M ++-+=∆∆∆∆ (a ) A 端杆端剪力为图8-2单跨梁杆段位移和荷载作用AB3∆4∆2∆1∆FQ 42332213Q 612612AB AB F l EI l EI l EI l EI F ++-+=∆∆∆∆ (b )式(a )和式(b )中FAB M 和F Q AB F 为荷载引起的固端弯矩和固端剪力。
同理,也可叠加得到B 端的杆端内力BA M 和BA F Q 。
这些将杆端位移和杆端内力联系起来的式子,称为两端固定单跨梁的转角位移方程(slope-deflection equation )或刚度方程(stiffness equation )。
形常数和载常数表在结构力学中,形常数和载常数表是非常重要的工具,它们对于分析和计算结构的内力与变形起着关键作用。
首先,让我们来了解一下什么是形常数。
形常数指的是在杆件仅发生单位位移(例如单位转角或单位线位移)时,杆件内部所产生的内力(例如弯矩、剪力等)。
这些内力的大小和分布规律是固定的,只与杆件的几何形状和约束条件有关。
比如说,对于两端固定的梁,当在其中一端发生单位转角时,所产生的弯矩分布就是一种形常数。
通过对各种常见杆件结构的分析和计算,可以得到相应的形常数表。
这些形常数表通常以表格的形式呈现,清晰地列出了不同杆件结构在不同单位位移下的内力值。
接下来,我们再看看载常数。
载常数是指在杆件上作用单位荷载(集中力、均布力等)时,杆件内部所产生的内力。
与形常数类似,载常数也只与杆件的几何形状和约束条件有关。
以简支梁为例,当在梁上作用单位集中力时,梁内产生的弯矩和剪力就是载常数。
同样,各种不同类型的杆件结构在不同单位荷载作用下的载常数也可以整理成表格形式,方便我们在结构分析和计算中直接查阅和使用。
那么,形常数和载常数表有什么实际用途呢?在结构力学的计算中,我们常常需要求解复杂结构在各种荷载作用下的内力和变形。
通过利用形常数和载常数表,可以将复杂的结构分解为简单的杆件单元,然后根据各杆件单元的连接方式和荷载情况,运用叠加原理,快速准确地计算出整个结构的内力和变形。
比如说,对于一个由多个梁和柱组成的框架结构,我们可以先分别确定每个梁和柱的形常数和载常数,然后根据它们在框架中的位置和连接关系,将各个杆件单元的内力和变形进行叠加,从而得到整个框架结构的内力和变形。
在实际工程中,形常数和载常数表的应用非常广泛。
无论是建筑结构的设计、桥梁的建造,还是机械结构的分析,都离不开对形常数和载常数的准确掌握和运用。
然而,需要注意的是,在使用形常数和载常数表时,必须要确保所分析的结构与表中所列的杆件结构类型和约束条件相符。
如果结构存在特殊的情况或者与标准的杆件结构有较大的差异,就不能简单地直接套用形常数和载常数表,而需要进行专门的分析和计算。
形常数和载常数表-互联网类关键信息项:1、形常数和载常数表的定义和范围:____________________________2、形常数和载常数表的用途和应用场景:____________________________3、形常数和载常数表的数据来源和准确性:____________________________4、形常数和载常数表的更新频率和机制:____________________________5、对形常数和载常数表的使用限制和授权:____________________________6、违反使用规定的责任和处罚:____________________________7、数据安全和保密措施:____________________________8、争议解决方式:____________________________11 协议范围本协议旨在规范和明确关于形常数和载常数表在互联网领域的相关事宜,包括其定义、用途、获取、使用、更新、安全以及责任等方面。
111 形常数和载常数表的定义形常数和载常数表是一组特定的数据集合,用于描述互联网相关系统或架构中的某些固定参数和变量的数值及其变化规律。
112 适用范围本协议适用于所有在互联网环境中涉及到形常数和载常数表的获取、使用、传播等活动。
12 形常数和载常数表的用途和应用场景形常数和载常数表可用于互联网系统的设计、优化、性能评估、故障诊断等方面。
例如,在网络架构设计中,用于确定最佳的链路配置和节点布局;在系统性能评估中,作为基准数据来衡量实际运行效果。
121 具体应用场景举例包括但不限于:网络流量预测、服务器负载均衡、云计算资源分配等。
13 形常数和载常数表的数据来源和准确性131 数据来源形常数和载常数表的数据来源于经过严格验证和测试的实验数据、实际运行监测数据、权威研究报告以及行业标准。
132 准确性保证数据提供方应采取合理的措施确保数据的准确性,但不承担因数据使用方对数据的误解或不当使用而导致的任何后果。