从数据库到数据仓库
- 格式:ppt
- 大小:397.50 KB
- 文档页数:49
数据仓库的介绍(数据仓库和数据库的区别)数据仓库的介绍⼀、数据仓库的基本概念数据仓库,英⽂名称为Data Warehouse,可简写为DW或DWH。
数据仓库顾名思义,是⼀个很⼤的数据存储集合,出于企业的分析性报告和决策⽀持⽬的⽽创建,对多样的业务数据进⾏筛选与整合。
它为企业提供⼀定的BI(商业智能)能⼒,指导业务流程改进、监视时间、成本、质量以及控制。
数据仓库的输⼊⽅是各种各样的数据源,最终的输出⽤于企业的数据分析、数据挖掘、数据报表等⽅向。
⼆、数据仓库的主要特征数据仓库是⾯向主题的(Subject-Oriented )、集成的(Integrated)、稳定的(Non-Volatile)和时变的(Time-Variant )数据集合,⽤以⽀持管理决策。
1.主题性不同于传统数据库对应于某⼀个或多个项⽬,数据仓库根据使⽤者实际需求,将不同数据源的数据在⼀个较⾼的抽象层次上做整合,所有数据都围绕某⼀主题来组织。
这⾥的主题怎么来理解呢?⽐如对于城市,“天⽓湿度分析”就是⼀个主题,对于淘宝,“⽤户点击⾏为分析”就是⼀个主题。
2.集成性数据仓库中存储的数据是来源于多个数据源的集成,原始数据来⾃不同的数据源,存储⽅式各不相同。
要整合成为最终的数据集合,需要从数据源经过⼀系列抽取、清洗、转换的过程。
3.稳定性数据仓库中保存的数据是⼀系列历史快照,不允许被修改。
⽤户只能通过分析⼯具进⾏查询和分析。
这⾥说明⼀点,数据仓库基本上是不许允许⽤户进⾏修改,删除操作的。
⼤多数的场景是⽤来查询分析数据。
4.时变性数据仓库会定期接收新的集成数据,反应出最新的数据变化。
这和稳定特点并不⽭盾。
三、数据仓库与数据库区别1、数据库数据库是⾯向交易的处理系统,它是针对具体业务在数据库联机的⽇常操作,通常对记录进⾏查询、修改。
⽤户较为关⼼操作的响应时间、数据的安全性、完整性和并发⽀持的⽤户数等问题。
传统的数据库系统作为数据管理的主要⼿段,主要⽤于操作型处理,也被称为联机事务处理 OLTP(On-Line Transaction Processing)。
数据库与数据仓库的区别与联系在信息时代的背景下,数据处理已经成为各行各业的核心工作。
数据库和数据仓库作为两个常见的数据管理工具,在实践中有着不同的应用场景和特点。
本文将对数据库和数据仓库的区别与联系进行探讨,以帮助读者更好地理解它们的不同之处和相互关系。
一、数据库的概念和特点数据库是指为了满足用户需求而设计、构建和维护的一系列数据集合。
数据库通过数据结构与数据管理系统,实现对数据的存储、查询、更新和删除等基本操作。
其特点主要包括以下几个方面:1. 数据持久化:数据库中的数据可以长期保留,并在需要时进行读取和修改。
2. 数据共享:数据库可以实现多个用户对数据进行共享和协作,提高数据利用效率。
3. 数据一致性:数据库通过事务机制保证数据的一致性和完整性,避免数据冗余和不一致的问题。
4. 高效查询:数据库通过索引等技术快速定位和获取用户需要的数据,提高查询效率。
二、数据仓库的概念和特点数据仓库是指按照时间顺序、面向主题和集成的方式,将多个异构的数据源进行统一整合和管理的大型数据存储库。
它主要用于支持决策分析和业务智能,具有以下特点:1. 面向主题:数据仓库基于企业的业务需求,以主题为中心组织和存储数据,方便用户进行专题分析和决策支持。
2. 集成统一:数据仓库通过数据抽取、转换和加载等技术整合来自不同来源的数据,保证数据的一致性和可信度。
3. 历史存储:数据仓库会长期保留历史数据,以支持用户对过去事务和趋势的分析和判断。
4. 复杂分析:数据仓库提供了复杂的分析功能,如数据切片、切块、钻取等,为决策提供更全面和深入的支持。
三、数据库与数据仓库的区别1. 定义和目的:数据库是为了满足用户的日常业务操作需求而设计的,而数据仓库则是为了支持决策分析和业务智能而构建的。
2. 数据类型和时效性:数据库主要存储操作性数据,如订单、库存等,具有实时性要求;数据仓库存储分析型数据,如销售趋势、市场调研等,具有较长的历史时效性。
面向应用领域的数据库新技术数据库技术被应用到特定的领域中,出现了工程数据库,地理数据库,统计数据库、科学数据库、空间数据库等多种数据库,使数据库领域中新的技术内容层出不穷。
一、数据仓库传统的数据库技术是以单一的数据资源为中心,进行各种操作型处理。
操作型处理也叫事务处理,是指对数据库联机地日常操作,通常是对一个或一组记录的查询和修改,主要是为企业的特定应用服务的,人们关心的是响应时间,数据的安全性和完整性。
分析型处理则用于管理人员的决策分析。
例如:DSS,EIS和多维分析等,经常要访问大量的历史数据。
于是,数据库由旧的操作型环境发展为一种新环境:体系化环境。
体系化环境由操作型环境和分析型环境(数据仓库级,部门级,个人级)构成。
数据仓库是体系化环境的核心,它是建立决策支持系统(DSS)的基础。
1.从数据库到数据仓库具体来说,有以下原因使得事务处理环境不适宜DSS应用⑴事务处理和分析处理的性能特性不同在事务处理环境中,用户的行为特点是数据的存取操作频率高而每次操作处理的时间短,因此,系统可以允许多个用户按分时方式使用系统资源,同时保持较短的响应时间,OLTP (联机事务处理)是这种环境下的典型应用。
在分析处理环境中,某个DSS应用程序可能需要连续运行几个小时,从而消耗大量的系统资源。
将具有如此不同处理性能的两种应用放在同一个环境中运行显然是不适当的。
⑵数据集成问题DSS需要集成的数据。
全面而正确的数据是有效的分析和决策的首要前提,相关数据收集得越完整,得到的结果就越可靠。
因此,DSS不仅需要整个企业内部各部门的相关数据,还需要企业外部、竞争对手等处的相关数据。
而事务处理的目的在于使业务处理自动化,一般只需要与本部门业务有关的当前数据,对整个企业范围内的集成应用考虑很少。
当前绝大部分企业内数据的真正状况是分散而非集成的,这些数据不能成为一个统一的整体。
对于需要集成数据的DSS应用来说,必须自己在应用程序中对这些纷杂的数据进行集成。
10分钟带你了解数据库、数据仓库、数据湖、数据中台的区别与联系(一)作为一名数据小白,在日常讲授和杂务工作中经常会接触到数据。
随着用户数据与金融业务数据的不断累加,数据管理与处理愈发重要。
本篇文章中,无名氏将一文说明数据库、数据仓库、数据湖、数据中台的区别与联系。
作为数据相关的产品小白,在日常学习工作中经常能或者听到大家在讨论数据库,数据仓库,数据集市,数据库数据湖还有最近比较火的数据中台,似乎这些名词都与数据存在着联系,查阅各类相关书籍,大部分书籍中的内容过于专业晦涩难懂。
那么这结合我积累的相关方面知识,向大家介绍一下上述这些名词的与联系,以及在各类企业及业务范围上的适用范围,如有不准确的地方,希望大家进行指正。
相信大部分有些许技术背景的都对数据库有一定的了解,数据库是“按照数据结构来组织、存储和管理数据的仓库”,一般分为“关系型数据库”与“非关系型数据库”。
1.关系型数据库实际上回顾过去的数据库一共有三种模型,即层次模型,网状模型,关系模型。
(1)首先层次模型的数据结构为树状结构,即是一种上下级的社团组织层级关系组织数据的一种方式:(2)带状模型的数据结构为网状网状结构,即将每个数据节点与其他很多节点都连接起来:(3)关系模型的数据结构可以看做是一个二维表格,任何数据都可以通过行号与列号来唯一确定:由于相比于层次模型和网状模型,关系模型理解和使用最简单,最终基于关系型最后数据库在各行各业应用了起来。
关系模型的数学方法第一卷涉及到关系,元组,属性,笛卡尔积,域等等令人头秃的高等数学术语,这里大家如果感兴趣可以看看相关的文献,我就不放出来催眠大家了,尽管数学原理比较复杂,但如果用事务平时学习工作的具体事务举例,就相对容易理解。
我们以某公司的员工信息表为例,该公司的员工信息可以用一个表格存起来。
并且定义如下:同时部门ID对应这另一个职能部门表:我们可以通过给定一个政府部门部门名称,查到一条部门的记录,根据部门ID,又可以记述查到该部门下的员工记录,这样三维的表格就通过ID映射建立了“一对多”的关系。
大数据的发展历程大数据的发展历程是一个跨越了数十年的漫长旅程,它见证了从数据的初步收集到如今数据驱动决策的转变。
这个历程可以大致分为几个阶段:1. 早期数据收集与处理在计算机和信息技术的早期,数据的收集和处理非常有限。
数据主要来源于手工记录和简单的自动化系统。
这个阶段的数据量相对较小,处理速度慢,主要用于基本的统计分析。
2. 数据库和数据仓库的出现随着计算机技术的发展,数据库管理系统(DBMS)和数据仓库开始出现。
这些技术使得数据的存储、检索和分析变得更加高效。
企业开始利用这些工具来管理大量的数据,并从中提取有价值的信息。
3. 互联网的兴起与数据量的爆炸式增长20世纪90年代末,互联网的普及带来了数据量的爆炸式增长。
网页、社交媒体、在线交易等都成为了数据的重要来源。
这个阶段,数据的收集和分析开始变得更加复杂,需要更先进的技术和算法来处理。
4. 大数据技术的诞生21世纪初,随着数据量的不断增加,传统的数据处理技术已经无法满足需求。
这时,大数据技术应运而生,包括分布式存储系统(如Hadoop)、实时数据处理框架(如Apache Storm)和非传统数据库(如NoSQL数据库)。
这些技术的出现,使得处理大规模数据集成为可能。
5. 机器学习和人工智能的融合近年来,大数据与机器学习、人工智能技术的结合越来越紧密。
通过机器学习算法,可以从大量数据中自动学习和发现模式,而人工智能则进一步使得数据分析更加智能和自动化。
这不仅提高了数据处理的效率,也使得数据驱动的决策更加精准。
6. 数据治理和隐私保护随着大数据应用的广泛,数据治理和隐私保护成为了重要的议题。
企业和组织需要确保数据的安全、合规和道德使用。
数据治理框架和隐私保护法规的建立,对于保护个人隐私和数据安全至关重要。
7. 数据驱动的决策和业务模式如今,大数据已经成为许多企业和组织决策的核心。
通过分析数据,企业能够更好地理解市场趋势、消费者行为和业务流程,从而做出更加明智的决策。
大家都知道,我们在进行数据分析工作的时候会用到数据库这一工具,可能大家还听说过数据仓库这个工具,数据库和数据仓库很容易被大家混淆。
很多人认为数据库和数据仓库是一类事物,其实并不只是这样的,那么大家知不知道数据库和数据仓库的区别是什么呢?下面我们就为大家介绍一下数据库和数据仓库的相关知识。
一般来说,传统数据库是为存储而生,而数据仓库很明显,是为分析而生。
实现目的的不同一开始就注定它们的差异。
传统数据库包括增删改查,但数据仓库注重查询。
而传统数据库的主要任务是执行联机事务处理。
主要负责日常操作。
而数据仓库系统在数据分析和决策方面为用户或“知识工人”提供服务,可以以不同的格式组织和提供数据,以便应付不同的需求,这种系统称作联机分析处理。
这就是数据库和数据仓库的相关知识。
那么数据仓库和数据库的区别是什么呢?首先需要我们考虑用户和系统的面向对象,数据库是面向顾客的,用户操作员,客户和信息技术人员的事务和查询处理。
数据仓库是面向市场的,用于知识工人的数据分析。
从中我们可以发现数据库和数据仓库的面向对象是不一样的。
当然,在数据内容中两者也是有很大的区别的,一般来说数据库管理当前数据。
但是一般这种数据比较琐碎,很难用于决策。
数据仓库系统管理大量历史数据,提供汇总和聚集机制,而且在不同的粒度层上存储和管理信息。
在数据库设计设计中,数据库和数据仓库也是有区别的,数据库系统采用实体联系数据模型和面向应用的数据库设计。
而数据仓库系统采用星形或雪花模型和面向主题的数据库设计。
而在视图中,二者也是有所区别的,数据库关注一个企业或部门内部的当前数据,不涉及历史数据或不同单位的数据。
数据仓库经常需要跨域数据库模式的不同版本。
在访问模式中,数据库和数据仓库也是有所区别的,数据库系统主要由短的原子事务组成,一般需要并发控制和恢复机制。
而数据仓库系统的访问大部分是只读操作。
在这篇文章中我们给大家介绍了关于数据库和数据仓库之间的区别的相关知识,通过对这些知识的了解我们可以更好地区分数据库和数据仓库,也希望大家在学习过程中能够融会贯通,得心应手。
会计信息系统:现状、挑战与展望【摘要】会计信息系统在当今经济形势下得到了迅猛发展,大体经历了从会计核算电算化到财务管理或企业管理电算化,再到决策支持计算机化的过程,当前面临的挑战主要表现在综合化不足、会计软件的缺陷和信息安全等问题,未来发展趋势是从数据库到数据仓库、融入全方位erp系统、建立标准接口与统一接口的结合,即以纵深的网络会计信息系统。
【关键词】会计电算化会计信息系统会计软件网络会计一、会计信息系统发展现状我国的会计电算化工作从20世纪70年代末期开始,至今已20多年,基本上经历了两个发展阶段,即70年代末至80年代末的“缓慢的自发发展阶段”和80年代末至今的“有组织的稳步发展阶段”。
1996年由财政部发布实施的《会计电算化工作规范》明确提出“大力推广会计电算化是当前会计工作的一项重要任务”、“会计电算话是会计工作的发展方向”、“要下大力量抓好会计电算化的普及”,体现了在我国会计电算化发展过程中政府的支持,到目前,已经有相当多的国企、事业单位用电子计算机代替了手工记账,会计信息系统得到了相当程度的发展,就国内的软件市场看来,本土的品牌具有一定优势,占据大部分市场份额,但随着对外开放的深入,一些国际会计软件商的登陆抢滩,使得会计软件市场面临转型与调整。
我国会计电算化的总体发展趋势。
我国会计电算化的总体发展趋势应经历三个大的发展阶段,即会计核算电算化——财会管理或企业管理计算机化一一决策支持计算机化。
二、当前面临的挑战1.会计信息系统的综合化企业的生产经营活动,是一个相互联系相互制约的有机整体,而会计是从价值方面综合反映和监督企业财务状况和经营成果。
企业的供、产、销各项经营业务的好坏,人、财、物的各项消耗的节约与浪费都直接影响企业的财务状况和经营成果。
因此,要管好财务、进行预测、决策、分析,不仅需要财务数据,而且还必须有产、供、销、劳资、物资、设备等多方面的经济业务信息,现有的会计软件在如何更好的综合处理企业业务上程度还不够,一些企业的业务流程有着自身特点,根据不同企业综合程度的不同,有分别对待的处理会计信息,这是一大挑战。
Apache Sqoop是一个用于在Apache Hadoop和结构化数据存储(如关系型数据库)之间传输大规模数据的工具。
以下是Sqoop的一些典型使用场景:数据迁移:Sqoop常常被用于迁移大规模数据,尤其是在从关系型数据库到Hadoop(如HDFS、Hive、HBase)之间。
例如,你可能需要将一个大型企业的数据从传统的关系型数据库迁移到Hadoop,以进行数据分析和机器学习。
数据集成:对于那些需要同时访问关系型数据库和Hadoop数据的企业,Sqoop提供了一个高效的方式来集成这两种数据源。
ETL(提取、转换、加载)任务:Sqoop可以用于ETL流程,特别是那些涉及从关系型数据库提取数据,在Hadoop中处理,然后加载到Hive、HBase或其他Hadoop存储中的任务。
数据备份和恢复:Sqoop可以用来备份关系型数据库中的数据,并将这些数据存储在Hadoop中。
同样,它也可以用于从Hadoop中恢复数据到关系型数据库。
报表生成:对于那些需要从关系型数据库获取数据,然后在Hadoop中进行报表生成的任务,Sqoop提供了一种高效的方法。
大数据应用开发与测试:在开发或测试新的大数据应用时,Sqoop 可以帮助开发者快速地加载数据到Hadoop环境中。
数据仓库扩展:对于那些需要将大量数据从关系型数据库导入到数据仓库的情况,Sqoop提供了一种扩展现有数据仓库能力的解决方案。
然而,Sqoop并不适合所有情况。
例如,它不适合处理事件驱动型数据或流式数据。
对于这些情况,更适合使用如Apache Flume等工具。
同时,如果源系统不能承受Sqoop job执行时的较大压力,或者批处理任务中的数据量特别大,可能会给源系统带来更大的压力,这种情况下也不适合使用Sqoop。
总的来说,Sqoop是一个强大的工具,适用于在关系型数据库和Hadoop之间迁移大规模的结构化数据。
但是,在使用它时,需要考虑到其限制和最佳使用场景。
数据仓库白皮书人们在日常生活中经常会遇到这样的情况:超市的经营者希望将经常被同时购买的商品放在一起,以增加销售;保险公司想知道购买保险的客户一般具有哪些特征;医学研究人员希望从已有的成千上万份病历中找出患某种疾病的病人的共同特征,从而为治愈这种疾病提供一些帮助……对于以上问题,现有信息管理系统中的数据分析工具无法给出答案。
因为无论是查询、统计还是报表,其处理方式都是对指定的数据进行简单的数字处理,而不能对这些数据所包含的内在信息进行提取。
随着信息管理系统的广泛应用和数据量激增,人们希望能够提供更高层次的数据分析功能。
为此,数据仓库应运而生。
数据仓库的概念及特点数据仓库概念始于本世纪80年代中期,首次出现是在号称“数据仓库之父”William H.Inmon的《建立数据仓库》一书中。
随着人们对大型数据系统研究、管理、维护等方面的深刻识认和不断完善,在总结、丰富、集中多行企业信息的经验之后,为数据仓库给出了更为精确的定义,即“数据仓库是在企业管理和决策中面向主题的、集成的、与时间相关的、不可修改的数据集合”。
数据仓库并没有严格的数学理论基础,也没有成熟的基本模式,且更偏向于工程,具有强烈的工程性。
因此,在技术上人们习惯于从工作过程等方面来分析,并按其关键技术部份分为数据的抽取、存储与管理以及数据的表现等三个基本方面。
⑴数据的抽取:数据的抽取是数据进入仓库的入口。
由于数据仓库是一个独立的数据环境,它需要通过抽取过程将数据从联机事务处理系统、外部数据源、脱机的数据存储介质中导入到数据仓库。
数据抽取在技术上主要涉及互连、复制、增量、转换、调度和监控等方面。
数据仓库中的数据并不要求与联机事务处理系统保持实时同步,因此数据抽取可以定时进行,但多个抽取操作执行的时间、相互的顺序、成败对数据仓库中信息的有效性则至关重要。
⑵存储和管理:数据仓库的真正关键是数据的存储和管理。
数据仓库的组织管理方式决定了它有别于传统数据库,同时也决定了其对外部数据的表现形式。
sql server数据迁移方法SQL Server数据迁移是将现有数据库中的数据移动到另一个数据库或数据仓库的过程。
这种迁移可以是在同一台服务器上进行,也可以是在不同的服务器之间进行。
SQL Server提供了多种方法来进行数据迁移,包括使用SQL Server Management Studio (SSMS)、SQL Server Integration Services (SSIS)、复制、以及BCP(Bulk Copy Program) 等工具。
一种常见的数据迁移方法是使用SQL Server ManagementStudio (SSMS)。
通过SSMS,用户可以轻松地将数据从一个数据库导出到另一个数据库。
这可以通过使用导出向导或编写自定义的T-SQL脚本来实现。
导出向导可以帮助用户选择要导出的表、视图或查询,并指定目标数据库。
而编写自定义的T-SQL脚本则可以提供更高级的控制和灵活性。
另一种常见的数据迁移方法是使用SQL Server Integration Services (SSIS)。
SSIS是SQL Server中用于数据集成和工作流自动化的强大工具。
通过SSIS,用户可以创建数据包,将数据从一个数据源提取、转换并加载到另一个数据源。
SSIS提供了丰富的任务和转换,可以满足各种复杂的数据迁移需求。
此外,SQL Server还提供了复制和BCP等工具来进行数据迁移。
复制是一种SQL Server的高可用性和数据分发解决方案,可以将数据实时地复制到另一个数据库中。
而BCP是一个命令行实用程序,可以快速地将大量数据批量导入或导出到SQL Server中。
综上所述,SQL Server提供了多种灵活的方法来进行数据迁移,用户可以根据自己的需求和情况选择合适的方法来完成数据迁移工作。
无论是简单的导出导入,还是复杂的ETL过程,SQL Server都能提供相应的工具和功能来支持数据迁移操作。