中考数学模拟试题(2)
- 格式:docx
- 大小:295.34 KB
- 文档页数:5
江苏南京中考数学模拟测试题(2)一.选择题(共6小题,满分12分,每小题2分)1.(2分)将61700000这个数用科学记数法表示为()A.6.17×107B.6.17×106C.6.17×105D.0.617×108 2.(2分)在有理数1,2,﹣1,0中,最大的数是()A.1B.2C.﹣1D.03.(2分)要判断一个四边形的窗框是否为矩形,可行的测量方案是()A.测量两组对边是否相等B.测量对角线是否相等C.测量对角线是否互相平分D.测量对角线交点到四个顶点的距离是否都相等4.(2分)若实数x的平方等于3,则实数x为()A.B.9C.或﹣D.9或﹣95.(2分)对于一组数据x1,x2,x3,…,x n,用算式S2=[(x1﹣5)2+(x2﹣5)2+(x3﹣5)2+…+(x n﹣5)2]计算方差,其中“5”是这组数据的()A.最小值B.众数C.中位数D.平均数6.(2分)甲地和乙地之间有一条长为3km的直路,A、B两辆小汽车都在该条直路上,目的地都是乙地,且速度分别为15m/s和20m/s.行驶前,B车在甲地,A车在B车前面500m 处,若两车同时行驶,则从开始行驶到其中一辆车先到达乙地的过程中,两车之间的距离s(m)与时间t(s)之间的函数图象是()A.B.C.D.二.填空题(共10小题,满分20分,每小题2分)7.(2分)将代数式化为只含有正整数指数幂的形式.8.(2分)代数式有意义时,x应满足的条件为.9.(2分)计算:(2+)2021•(2﹣)2021=.10.(2分)若关于x的一元二次方程x2+2x﹣k=0的一个根为1,则另一个根为.11.(2分)如图,双曲线y=(k1为常数,k1≠0)与直线y=k2x(k2为常数,k2≠0)相交于A、B两点,如果A点的坐标是(1,2),那么B点的坐标为.12.(2分)如图,菱形ABCD的对角线交于点O,点M为AB的中点,连接OM.若AC=4,BD=8,则OM的长为.13.(2分)如图,已知点C为两条相互平行的直线AB,ED之间一点,∠ABC和∠CDE的角平分线相交于F,若,则∠BCD的度数是.14.(2分)用一个平面去截下列几何体:A球体、B圆锥、C圆柱、D正三棱柱、E长方体,得到的截面形状可能是三角形的有(写出正确序号).15.(2分)如图,已知∠EOF=90°,△ABC中,AC=BC=10,AB=12,点A、B分别在边OE、OF上运动,△ABC的形状大小始终保持不变.在运动的过程中,点C到点O的最大距离为.16.(2分)设x≥0,y≥0,且2x+y=6,则μ=x2+2xy+y2﹣3x﹣2y的最小值是.三.解答题(共11小题,满分88分)17.(7分)计算:(1)﹣x;(2)﹣.18.(8分)解不等式组,并在数轴上表示其解集.19.(8分)阅读下列材料,并回答问题:若一个正整数x能表示成a2﹣b2(a,b是正整数,且a>b)的形式,则正整数x称为“明礼崇德数”.例如:因为7=2×3+1=32+2×3+1﹣32=(3+1)2﹣32=42﹣32,所以7是“明礼崇德数”;再如:因为12=4×3=32+2×3+1﹣32+2×3﹣1=(3+1)2﹣(32﹣2×3+1)=(3+1)2﹣(3﹣1)2=42﹣22,所以12是“明礼崇德数”;再如:M=x2+2xy=x2+2xy+y2﹣y2=(x+y)2﹣y2(x,y是正整数),所以M也是“明礼崇德数”.问题1:2019是“明礼崇德数”吗?说明理由;问题2:2020是“明礼崇德数”吗?说明理由;问题3:已知N=x2﹣y2+4x﹣6y+k(x,y是正整数,k是常数,且x>y+1),要使N是“明礼崇德数”,试求出符合条件的一个k值,并说明理由.20.(8分)如图,△ABC中,BA=BC,∠ABC=40°,∠ABC的平分线与BC的垂直平分线交于点O,E在BC边上,F在AC边上,将∠A沿直线EF翻折,使点A与点O恰好重合,求∠OEF的度数.21.(8分)如图,电路图上有A,B,C,D4个开关和1个小灯泡,同时闭合开关A,B,或同时闭合开关C,D都可以使小灯泡发亮.(1)在开关A闭合的条件下,任意闭合开关B,C,D中的一个,小灯泡发亮的概率为;(2)任意闭合开关A,B,C,D中的两个,求小灯泡发亮的概率(请用列表或画树状图的方法求概率).22.(8分)为了解某校八年级学生每天干家务活的平均时间,小颖同学在该校八年级每班随机调查5名学生,统计这些学生2016年2月每天干家务活的平均时间(单位:min).干家务活平均时间频数百分比A(0﹣10min)1025%B(11﹣20min)a62.5%C(21﹣30min)5b合计c100%(1)统计表中的a=;b=;c=;(2)从上表的“频数”、“百分比”两列数据中选择一列,用适当的统计图表示;(3)该校八年级共有240名学生,求每天干家务活的平均时间在11﹣20min的学生人数.23.(8分)已知如图,在平面直角坐标系中,A(﹣1,﹣3),OB=,OB与x轴所夹锐角是45°(1)求B点坐标;(2)判断三角形ABO的形状;(3)求三角形ABO的AO边上的高.24.(8分)某工程队准备修建一条长1200米的道路,由于采用新的施工方式,实际每天修建道路的速度比原计划快20%,结果提前2天完成任务.原计划每天修建道路多少米?25.(8分)如图,在▱ABCD中,连接AC,⊙O是△ABC的外接圆,⊙O交AD于点E.(1)求证:CE=CD;(2)若∠ACB=∠DCE,⊙O的半径为5,BC长为4,求AE的长.26.(9分)如图,AB是一条笔直的长为500m的滑雪坡道,某运动员从坡顶A滑出,沿直线滑向坡底B,她的滑行距离y(单位:m)与滑行时间x(单位:s)的部分对应值如下表.x01234…y0 4.51428.548…(1)用所学过的函数知识猜想y是x的什么函数,并求出y与x之间的函数表达式;(2)一架无人机在AB上空距地面292m的P处悬停,此时在A处测得无人机的仰角为53°.无人机和该运动员同时开始运动,无人机以6.3m/s的速度匀速水平飞行拍摄,离A处越来越远.已知无人机(看成一个点)与AB(看成一条线段)所确定的平面始终垂直于地面,AB与地面MN的夹角为26°.求该运动员滑行多久时,她恰在无人机的正下方.(参考数据:tan53°≈,sin26°≈0.44,cos26°≈0.90,tan26°≈0.49.)27.(8分)定义:一组邻边相等且对角互补的四边形叫做“等补四边形”.如图1,四边形ABCD中,AD=CD,∠A+∠C=180°,则四边形ABCD叫做“等补四边形”.(1)概念理解①在以下四种图形中,一定是“等补四边形”的是.A.平行四边形B.菱形C.矩形D.正方形②等补四边形ABCD中,若∠B:∠C:∠D=2:3:4,则∠A=.(2)知识运用如图1,在四边形ABCD中,BD平分∠ABC,AD=CD,BC>BA.求证:四边形ABCD 是等补四边形.(3)探究发现如图2,在等补四边形ABCD中,AB=AD,连接AC,AC是否平分∠BCD?请说明理由.。
中考数学模拟试题一、选择题(每题3分,共30分) 1、-2 021的相反数等于( )A .2 021B .-2 021 C.12 021D .-12 0212、下列图形中,既可以看作是轴对称图形,又可以看作是中心对称图形的为( )3、下列运算正确的是( )A .(-m 2n)3=-m 6n 3B .m 5-m 3=m 2C .(m +2)2=m 2+4D .(12m 4-3m)÷3m=4m 34、由一些大小相同的小正方体搭成的几何体的主视图和俯视图,如图所示,则搭成该几何体的小正方体最多是( )个. A.4 B.5 C.6 D.75、关于x 的一元二次方程(a +2)x 2-3x +1=0有实数根,则a 的取值范围是( )A .a <14且a≠-2B .a≤14C .a≤14且a≠-2D .a <146、我国古代某数学著作中有“多人共车”问题:“今有三人共车,二车空;二人共车,九人步.问:人与车各几何?”其大意如下:有若干人要坐车,如果每3人坐一辆车,那么有2辆空车;如果每2人坐一辆车,那么有9人需要步行,问人与车各多少?设共有x 人,y 辆车,则可列方程组为( ) A.{3(y −2)=x2y −9=xB.{3(y +2)=x2y +9=xC.{3(y −2)=x 2y +9=x D.{3(y +2)=x2y −9=x7、如图,D ,E ,F 分别是△ABC 各边中点,则以下说法错误的是( ) A .△BDE 和△DCF 的面积相等 B .四边形AEDF 是平行四边形 C .若AB =BC ,则四边形AEDF 是菱形D .若∠A =90°,则四边形AEDF 是矩形( 第7题图)8、关于x 的不等式组{x −m <0,3x −1>2(x −1)无解,那么m 的取值范围为( )A. m ≤-1B.m<-1C.-1<m ≤0D.-1≤m<09、如图所示,已知点A,B 分别在反比例函数y= 1x (x>0), y=- 4x (x>0))的图象上,且OA ⊥OB,则OBOA 的值为( ) A.√2 B.4 C.√3 D.2( 第9题图)10、如图所示,△ABC 是等腰直角三角形,∠A=90°,BC=4,点P 是 △ABC 边上一动点,沿B →A →C 的路径移动,过点P 作PD ⊥BC 于点D,设 BD=x,△BDP 的面积为y,则下列能大致反映y 与x 函数关系图象的是( )二、填空题(每题3分,共21分)11、我国某探测器距离地球约3.2亿千米.数据3.2亿千米用科学记数法可以表示为 km.12、一组数据5,2,x,6,4的平均数是4,这组数据的方差_____.13、动物学家通过大量的调查,估计某种动物活到20岁的概率为0.8,活到25岁的概率为0.5,据此若设刚出生的这种动物共有a 只,则现年20岁的这种动物活到25岁的概率是 ________. 14、如图所示,在平行四边形ABCD 中,按以下步骤作图: ①以A 为圆心,任意长为半径作弧,分别交AB,AD 于点 M,N;②分别以M,N 为圆心,以大于12MN 的长为半径作弧, 两弧相交于点P;③作射线AP,交边CD 于点Q,若DQ=2QC,( 第14题图)BC=3,则平行四边形ABCD 的周长为 .15、某校学生志愿服务小组在“学雷锋”活动中购买了一批牛奶到敬老院慰问老人.如果分给每位老人 4盒牛奶,那么剩下28盒牛奶;如果分给每位老人 5盒牛奶,那么最后一位老人分得的牛奶不足4盒,但至少1盒.则这个敬老院的老人最少有__________人.16、如图,在矩形ABCD 中,AB =3,AD =4,E ,F 分 别是边BC ,CD 上一点,EF⊥AE,将△ECF 沿EF 翻折 得△EC′F,连接AC′,当BE =________时,△AEC′是以AE 为腰的等腰三角形. (第16题图)17、如图,已知正方形ABCD 的边长为6,点F 是正方形内一点,连接CF ,DF ,且∠ADF=∠DCF,点E 是AD 边上一动点,连接EB ,EF ,则EB +EF 长度的最小值为 ________________.( 第17题图) 三、解答题(共9小题,计69分)18、(5分)(12)-1-√−83+|√3-2|+2sin 60°.19、(5分)先化简,再求值:(3a+1-a+1)÷a 2−4a 2+2a+1,其中a 从-1,2,3中取一个你认为合适的数代入求值.20、(6分)将正面分别写着数字1,2,3的三张卡片(注:这三张卡片的形状、大小、质地、颜色等其他方面完全相同,若背面朝上放在桌面上,这三张卡片看上去无任何差别)洗匀后,背面朝上放在桌面上,甲从中随机抽取一张卡片,记该卡片上的数字为m,然后放回洗匀,背面朝上放在桌面上,再由乙从中随机抽取一张卡片,记该卡片上的数字为n,组成一数对(m,n).(1)请写出(m,n)所有可能出现的结果;(2)甲、乙两人玩游戏,规则如下:按上述要求,两人各抽一次卡片,卡片上数字之和为奇数则甲赢,数字之和为偶数则乙赢.你认为这个游戏公平吗?请说明理由.21、(6分)如图所示,某测量小组为了测量山BC的高度,在地面A处测得山顶B的仰角为45°,然后沿着坡度为1∶3的坡面AD走了200 m达到D处,此时在D处测得山顶B的仰角为60°,求山BC的高度.(结果保留根号)22、(7分))某校从全体学生中随机抽取部分学生,调查他们平均每周的劳动时间t(单位:h),按劳动时间分为四组:A组“t<5”,B组“5≤t<7”,C组“7≤t<9”,D 组“t≥9”.将收集的数据整理后,绘制成如图所示的两幅尚不完整的统计图.根据以上信息,解答下列问题:(1)这次抽样调查的样本容量是,C组所在扇形的圆心角的大小是;(2)将条形统计图补充完整;(3)该校共有1 500名学生,请估计该校平均每周劳动时间不少于7 h的学生人数.23、(9分)某乡镇对河道进行整治,由甲乙两工程队合做 20天可完成.已知甲工程队单独整治需60天完成.(1)乙工程队单独完成河道整治需多少天?(2)若甲乙两工程队合做a天后,再由甲工程队单独做天(用含a 的代数式表示)可完成河道整治任务;(3)如果甲工程队每天施工费为5 000元,乙工程队每天施工费为1.5万元,先由甲乙两工程队合做,剩余工程由甲工程队单独完成,要使支付两工程队费用最少,并且确保河道在40天内(含 40天)整治完毕,问需支付两工程队费用最少多少万元?24、(9分)如图所示,在Rt△ABC中,∠ABC=90°,以AB 为直径作⊙O,点D 为⊙O上一点,且CD=CB,连接DO并延长交CB的延长线于点E.(1)判断直线CD与⊙O的位置关系,并说明理由;(2)若BE=2,DE=4,求圆的半径及AC的长.25.(10分)已知在△ABC中,O为BC边的中点,连接AO,将△AOC绕点O顺时针方向旋转(旋转角为钝角),得到△EOF,连接AE,CF.(1)如图1,当∠BAC=90°且AB=AC时,则AE与CF满足的数量关系是;(2)如图2,当∠BAC=90°且AB≠AC时,(1)中的结论是否仍然成立?若成立,请写出证明过程;若不成立,请说明理由.(3)如图3,延长AO到点D,使OD=OA,连接DE,当AO=CF=5,BC =6时,求DE的长.26.(12分)已知,抛物线y=x2+bx+c与x轴交点为A(﹣1,0)和点B,与y轴交点为C(0,﹣3),直线L:y=kx﹣1与抛物线的交点为点A和点D.(1)求抛物线和直线L的解析式;(2)如图,点M为抛物线上一动点(不与A、D重合),当点M在直线L下方时,过点M作MN∥x轴交L于点N,求MN的最大值;(3)点M为抛物线上一动点(不与A、D重合),M'为直线AD上一动点,是否存在点M,使得以C、D、M、M′为顶点的四边形是平行四边形?如果存在,请直接写出点M的坐标,如果不存在,请说明理由.。
江苏省中考数学模拟试卷(2)一.选择题(共8小题)1.下列各数中,相反数是的是()A.﹣B.C.﹣2D.22.如图,从边长为a+5的正方形纸片中剪去一个边长为a+1的正方形,将剩余部分沿虚线剪拼成一个不重叠、无缝隙的长方形,那么该长方形的长为()A.2a+10B.2a+2C.2a+6D.2a+83.如图是由5个大小相同的小正方体摆成的几何体,它的左视图是()A.B.C.D.4.在下列对称图形中,对称轴的条数最多的图形是()A.圆B.等边三角形C.正方形D.正六边形5.某学习小组的5名同学在一次数学竞赛中的成绩分别是94分、98分、90分、94分、89分,则下列结论正确的是()A.平均分是91B.众数是94C.中位数是90D.极差是86.下列说法不正确的是()A.经过有交通信号的路口遇到红灯是随机事件B.方程2x2﹣2x=1有两个不相等的实数根,并且两根的积等于C.将抛物线y=x2向左平移1个单位再向下平移1个单位得到抛物线y=(x+1)2﹣1D.平面直角坐标系中,点M(1,2)与点N(﹣1,﹣2)关于原点对称7.在“我为灾区献爱心”的募捐活动中,某班40位同学捐款金额统计如表:则在这次活动中,该班同学捐款金额的众数和中位数是()金额(元)3040506080100学生数(人)37111432A.55、55B.60、55C.60、50D.50、508.如图,在△ABC中,AC=BC,∠ACB=90°,AB=2.动点P沿AB从点A向点B移动(点P不与点A,点B重合),过点P作AB的垂线,交折线A﹣C﹣B于点Q.记AP=x,△APQ的面积为y,则y关于x的函数图象大致是()A.B.C.D.二.填空题(共8小题)9.冬天已经到来,请同学们一定要注意保暖.东明气象站预报某天的最高气温为12℃,最低气温是﹣3℃,那么这天的温差是.10.若x=,y=,则=.11.若y=﹣3,则x y=.12.3.280×107精确到位,有个有效数字,32845676保留5个有效数字为.13.如图,OC是∠AOB的平分线,OD平分∠AOC,且∠COD=18°,则∠AOB=°.14.如果一个多边形的每个外角都是60°,那么这个多边形内角和的度数为.15.如图,将周长为14的△ABC向右平移1个单位后得到△DEF,则四边形ABFD的周长=.16.如图,△ABC外的一点P到三边所在直线的距离相等,若∠BAC=80°,则∠CPB =°.三.解答题(共9小题)17.(1)计算:()﹣1+3tan30°+|﹣2|(2)解不等式组18.解下列方程:(1)x2﹣6x﹣4=0;(2)﹣=1.19.某校为了了解七年级1000名学生的身体健康情况,从该年级随机抽取了若干名学生,将他们按体重(均为整数,单位:kg)分成五组:A;37.5~42.5,B:42.5~47.5,C:47.5~52.5,D:52.5~57.5,E:57.5~62.5,并依据统计数据绘制了两幅尚不完整的统计图.解答下列问题:(1)这次抽样调查的样本容量是,并补全频数分布直方图;(2)C组学生的占调查人数的百分比为,在扇形统计图中D组的圆心角是度;(3)请你估计该校七年级体重超过57kg的学生大约有多少名?20.不透明的盒子中有四个形状、大小、质地完全相同的小球,标号分别为1,2,3,4.(1)从盒子中随机摸出一个小球,标号是奇数的概率是;(2)先从盒子中随机摸出一个小球,放回后摇匀,再随机摸出一个小球,记两次摸出球的标号之和为m,则m可能取2~8中的任何一个整数,分析哪个整数出现的可能性最大.21.如图,在四边形ABCD中,AD∥BC,∠B=90°,AB=8cm,AD=24cm,BC=26cm,点P从点A出发,以1cm/s的速度向点D运动;点Q从点C同时出发,以3cm/s的速度向点B运动,规定其中一个动点到达端点时,另一个动点也随之停止运动.设运动时间为ts.(1)当t为何值时,四边形ABQP是矩形?(2)当t为何值时,PQ=CD?为什么?22.某商场于今年年初以每件25元的进价购进一批商品,当商品售价为每件40元时,一月份销售64件.二、三两个月该商品十分畅销,销售量持续走高,在售价不变的基础上,三月份的销售量达到100件.(1)求二、三两月销售量的月平均增长率;(2)从四月份起,为了减少库存,商场采用降价促销的方式回馈顾客,经调查发现,在三月份销售量的基础上,该商品每降价1元,销售量增加5件.当商品降价多少元时,商场获利1250元?23.已知:如图,AB是半圆O的直径,C是AB延长线上的一点,AE⊥CD,交CD的延长线于点E,交半圆O于点F,且D为弧BF的中点.(1)求证:CE是半圆O的切线;(2)若BC=12,CD=12,求AE的长.24.“十一”期间,许多露营爱好者在南溪湿地露营,为遮阳和防雨会搭建一种“天幕”,其截面示意图是轴对称图形,对称轴是垂直于地面的支杆AB,用绳子拉直AD后系在树干EF上的点E处,使得A,D,E在一条直线上,通过调节点E的高度可控制“天幕”的开合,AC=AD=3m,BF=4m.(1)天晴时打开“天幕”,若∠a=60°,求遮阳宽度CD(结果精确到0.1m):(2)下雨时收拢“天幕”,∠a从60°减少到45°,求点E下降的高度(结果精确到0.1m).(参考数据:≈1.73,≈1.41)25.已知点M为关于x的二次函数y=ax2﹣2amx+am2﹣2m+2(a≠0,m为常数)的顶点.(1)若此二次函数与x轴只有一个交点,试确定m的值;(2)已知以坐标原点O为圆心的圆半径是,试判断点M与⊙O的位置关系,若能确定,请说明理由,若不能确定,也请分类讨论之;(3)对于任意实数m,点M都是直线l上一点,直线l与该二次函数相交于A、B两点,a是以3、4、5为边长的三角形内切圆的半径长,点A、B在以O为圆心的圆上.①求⊙O的半径;②求该二次函数的解析式.。
浙江省台州市三门县中考数学模拟试卷(二)一.选择题(共10小题)1.﹣5的绝对值是()A.B.5 C.﹣5 D.﹣2.函数中,自变量x的取值范围是()A.x≠3 B.x≥3 C.x>3 D.x≤33.已知一次函数y=kx+k﹣1和反比例函数y=,则这两个函数在同一平面直角坐标系中的图象不可能是()A. B.C.D.4.二次函数的图象如图所示,当﹣1≤x≤0时,该函数的最大值是()A.3.125 B.4 C.2 D.05.如图,一只花猫发现一只老鼠溜进了一个内部连通的鼠洞,鼠洞只有三个出口A,B,C,要想同时顾及这三个出口以防老鼠出洞,这只花猫最好蹲守在()A.△ABC的三边高线的交点P处B.△ABC的三角平分线的交点P处C.△ABC的三边中线的交点P处D.△ABC的三边中垂线的交点P处6.北海到南宁的铁路长210千米,动车运行后的平均速度是原来火车的1.8倍,这样由北海到南宁的行驶时间缩短了1.5小时.设原来火车的平均速度为x千米/时,则下列方程正确的是()A. +1.8=B.﹣1.8=C. +1.5=D.﹣1.5=7.正方形网格中,∠AOB如图放置,则cos∠AOB的值为()A.B. C. D.8.如图,在平面直角坐标系xOy中,以原点O为圆心的圆过点A(13,0),直线y=kx﹣3k+4与⊙O交于B、C两点,则弦BC的长的最小值为()A.22 B.24 C.10D.129.如图,过y轴上任意一点P,作x轴的平行线,分别与反比例函数的图象交于A 点和B点,若C为x轴上任意一点,连接AC,BC,则△ABC的面积为()A.3 B.4 C.5 D.610.一张圆心角为45°的扇形纸板和圆形纸板按如图方式分别剪成一个正方形,边长都为1,则扇形和圆形纸板的面积比是()A.5:4 B.5:2 C.:2 D.:二.填空题(共6小题)11.因式分解:x3﹣xy2=.12.正十边形的一个外角为度.13.有50个数据,共分成6组,第1~4组的频数分别为10,8,7,11.第5组的频率是0.16,则第6组的频数是.14.如图所示,半径为1的圆心角为60°的扇形纸片OAB在直线L上向右做无滑动的滚动.且滚动至扇形O′A′B′处,则顶点O所经过的路线总长是.15.如图,直角坐标系中,点P(t,0)是x轴正半轴上的一个动点,过点P作y轴的平行线,分别与直线,直线y=﹣x交于A,B两点,以AB为边向右侧作正方形ABCD.当点(3,0)在正方形ABCD内部时,t的取值范围是.16.如图,在矩形ABCD中,AD=6,AB=4,点E、G、H、F分别在AB、BC、CD、AD上,且AF=CG=2,BE=DH=1,点P是直线EF、GH之间任意一点,连接PE、PF、PG、PH,则△PEF和△PGH的面积和等于.三.解答题(共7小题)17.计算:18.解方程:x2﹣5x﹣6=0.19.如图,在边长为1的正方形组成的网格中,△AOB的顶点均在格点上,其中点A(5,4),B (1,3),将△AOB绕点O逆时针旋转90°后得到△A1OB1.(1)画出△A1OB1;(2)在旋转过程中点B所经过的路径长为;(3)求在旋转过程中线段AB、BO扫过的图形的面积之和.20.如图,⊙O中,FG、AC是直径,AB是弦,FG⊥AB,垂足为点P,过点C的直线交AB的延长线于点D,交GF的延长线于点E,已知AB=4,⊙O的半径为.(1)分别求出线段AP、CB的长;(2)如果OE=5,求证:DE是⊙O的切线;(3)如果tan∠E=,求DE的长.21.在东西方向的海岸线l上有一长为1km的码头MN(如图),在码头西端M的正西19.5km处有一观察站A.某时刻测得一艘匀速直线航行的轮船位于A的北偏西30°,且与A相距40km的B 处;经过1小时20分钟,又测得该轮船位于A的北偏东60°,且与A相距km的C处.(1)求该轮船航行的速度(保留精确结果);(2)如果该轮船不改变航向继续航行,那么轮船能否正好行至码头MN靠岸?请说明理由.22.我县实施新课程后,学生的自主字习、合作交流能力有很大提高.张老师为了了解所教班级学生自主学习、合作交流的具体情况,对本班部分学生进行了为期半个月的跟踪调査,并将调査结果分成四类,A:特别好;B:好;C:一般;D:较差;并将调査结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:(1)本次调查中,张老师一共调査了名同学,其中C类女生有名,D 类男生有名;(2)将上面的条形统计图补充完整;(3)为了共同进步,张老师想从被调査的A类和D类学生中分别选取一位同学进行“一帮一”互助学习,请用列表法或画树形图的方法求出所选两位同学恰好是一位男同学和一位女同学的概率.23.如图,已知抛物线y=ax2+bx+c经过 A(0,4),B(4,0),C(﹣1,0)三点.过点A作垂直于y轴的直线l.在抛物线上有一动点P,过点P作直线PQ平行于y轴交直线l于点Q.连接AP.(1)求抛物线y=ax2+bx+c的解析式;(2)是否存在点P,使得以A、P、Q三点构成的三角形与△AOC相似?如果存在,请求出点P的坐标;若不存在,请说明理由;(3)当点P位于抛物线y=ax2+bx+c的对称轴的右侧.若将△APQ沿AP对折,点Q的对应点为点M.求当点M落在坐标轴上时直线AP的解析式.浙江省台州市三门县中考数学模拟试卷(二)参考答案与试题解析一.选择题(共10小题)1.﹣5的绝对值是()A.B.5 C.﹣5 D.﹣【考点】绝对值.【分析】利用绝对值的定义求解即可.【解答】解:﹣5的绝对值是5,故选:B.【点评】本题主要考查了绝对值,解题的关键是熟记绝对值的定义.2.函数中,自变量x的取值范围是()A.x≠3 B.x≥3 C.x>3 D.x≤3【考点】函数自变量的取值范围.【分析】根据二次根式有意义的条件,即根号下大于等于0,求出即可.【解答】解:∵有意义的条件是:x﹣3≥0.∴x≥3.故选:B.【点评】此题主要考查了函数变量的取值范围,此题是中考考查重点,同学们应重点掌握,特别注意根号下可以等于0这一条件.3.已知一次函数y=kx+k﹣1和反比例函数y=,则这两个函数在同一平面直角坐标系中的图象不可能是()A. B.C.D.【考点】反比例函数的图象;一次函数的图象.【分析】因为k的符号不确定,所以应根据k﹣1的符号及一次函数与反比例函数图象的性质解答.【解答】解:当k<0时,k﹣1<0,反比例函数y=的图象在二,四象限,一次函数y=kx+k﹣1的图象过二、三、四象限,故选项C错误,符合题意;而选项D正确,不合题意;当k>0时,k﹣1的符号不确定,则反比例函数y=的图象在一、三象限,一次函数y=kx+k﹣1的图象过一、三、四象限或一、二、三象限故选项A,B正确,不符合题意.故选C.【点评】本题主要考查了反比例函数和一次函数的图象性质,正确掌握它们的性质才能灵活解题.4.二次函数的图象如图所示,当﹣1≤x≤0时,该函数的最大值是()A.3.125 B.4 C.2 D.0【考点】二次函数的最值.【分析】由图可知,x≤1.5时,y随x的增大而减小,可知在﹣1≤x≤0范围内,x=0时取得最大值,然后进行计算即可得解.【解答】解:∵x≤1.5时,y随x的增大而减小,∴当﹣1≤x≤0时,x=0取得最大值,为y=2.故选C.【点评】本题考查了二次函数的最值问题,主要利用了二次函数的增减性求最值,准确识图是解题的关键.5.如图,一只花猫发现一只老鼠溜进了一个内部连通的鼠洞,鼠洞只有三个出口A,B,C,要想同时顾及这三个出口以防老鼠出洞,这只花猫最好蹲守在()A.△ABC的三边高线的交点P处B.△ABC的三角平分线的交点P处C.△ABC的三边中线的交点P处D.△ABC的三边中垂线的交点P处【考点】三角形的外接圆与外心.【专题】应用题;压轴题.【分析】根据题意,知猫应该到三个洞口的距离相等,则此点就是三角形三边垂直平分线的交点.【解答】解:三角形三边垂直平分线的交点到三个顶点的距离相等.故选D.【点评】考查了三角形的外心的概念和性质.要熟知三角形三边垂直平分线的交点到三个顶点的距离相等.6.北海到南宁的铁路长210千米,动车运行后的平均速度是原来火车的1.8倍,这样由北海到南宁的行驶时间缩短了1.5小时.设原来火车的平均速度为x千米/时,则下列方程正确的是()A. +1.8=B.﹣1.8=C. +1.5=D.﹣1.5=【考点】由实际问题抽象出分式方程.【分析】设原来火车的平均速度为x千米/时,则动车运行后的平均速度为1.8x,根据题意可得:由北海到南宁的行驶时间动车比原来的火车少用1.5小时,列方程即可.【解答】解:设原来火车的平均速度为x千米/时,则动车运行后的平均速度为1.8x,由题意得,﹣1.5=.故选:D.【点评】本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列出方程.7.正方形网格中,∠AOB如图放置,则cos∠AOB的值为()A.B. C. D.【考点】锐角三角函数的定义;勾股定理的逆定理.【专题】常规题型.【分析】找出OB边上的格点C,连接AC,利用勾股定理求出AO、AC、CO的长度,再利用勾股定理逆定理证明△AOC是直角三角形,然后根据余弦=计算即可得解.【解答】解:如图,C为OB边上的格点,连接AC,根据勾股定理,AO==2,AC==,OC==,所以,AO2=AC2+OC2=20,所以,△AOC是直角三角形,cos∠AOB===.故选B.【点评】本题考查了锐角三角函数的定义,勾股定理,勾股定理逆定理,找出格点C并作辅助线构造出直角三角形是解题的关键.8.如图,在平面直角坐标系xOy中,以原点O为圆心的圆过点A(13,0),直线y=kx﹣3k+4与⊙O交于B、C两点,则弦BC的长的最小值为()A.22 B.24 C.10D.12【考点】圆的综合题.【分析】易知直线y=kx﹣3k+4过定点D(3,4),运用勾股定理可求出OD,由条件可求出半径OB,由于过圆内定点D的所有弦中,与OD垂直的弦最短,因此只需运用垂径定理及勾股定理就可解决问题.【解答】解:对于直线y=kx﹣3k+4,当x=3时,y=4,故直线y=kx﹣3k+4恒经过点(3,4),记为点D.过点D作DH⊥x轴于点H,则有OH=3,DH=4,OD==5.∵点A(13,0),∴OA=13,∴OB=OA=13.由于过圆内定点D的所有弦中,与OD垂直的弦最短,如图所示,因此运用垂径定理及勾股定理可得:BC的最小值为2BD=2=2×=2×12=24.故选:B.【点评】本题主要考查了直线上点的坐标特征、垂径定理、勾股定理等知识,发现直线恒经过点(3,4)以及运用“过圆内定点D的所有弦中,与OD垂直的弦最短”这个经验是解决该选择题的关键.9.如图,过y轴上任意一点P,作x轴的平行线,分别与反比例函数的图象交于A 点和B点,若C为x轴上任意一点,连接AC,BC,则△ABC的面积为()A.3 B.4 C.5 D.6【考点】反比例函数综合题.【专题】计算题.【分析】先设P(0,b),由直线AB∥x轴,则A,B两点的纵坐标都为b,而A,B分别在反比例函数的图象上,可得到A点坐标为(﹣,b),B点坐标为(,b),从而求出AB的长,然后根据三角形的面积公式计算即可.【解答】解:设P(0,b),∵直线AB∥x轴,∴A,B两点的纵坐标都为b,而点A在反比例函数y=﹣的图象上,∴当y=b,x=﹣,即A点坐标为(﹣,b),又∵点B在反比例函数y=的图象上,∴当y=b,x=,即B点坐标为(,b),∴AB=﹣(﹣)=,∴S△ABC=•AB•OP=•b=3.故选:A.【点评】本题考查了点在函数图象上,点的横纵坐标满足函数图象的解析式.也考查了与坐标轴平行的直线上的点的坐标特点以及三角形的面积公式.10.一张圆心角为45°的扇形纸板和圆形纸板按如图方式分别剪成一个正方形,边长都为1,则扇形和圆形纸板的面积比是()A.5:4 B.5:2 C.:2 D.:【考点】正多边形和圆;勾股定理.【专题】计算题;压轴题.【分析】先画出图形,分别求出扇形和圆的半径,再根据面积公式求出面积,最后求出比值即可.【解答】解:如图1,连接OD,∵四边形ABCD是正方形,∴∠DCB=∠ABO=90°,AB=BC=CD=1,∵∠AOB=45°,∴OB=AB=1,由勾股定理得:OD==,∴扇形的面积是=π;如图2,连接MB、MC,∵四边形ABCD是⊙M的内接四边形,四边形ABCD是正方形,∴∠BMC=90°,MB=MC,∴∠MCB=∠MBC=45°,∵BC=1,∴MC=MB=,∴⊙M的面积是π×()2=π,∴扇形和圆形纸板的面积比是π÷(π)=.故选:A.【点评】本题考查了正方形性质,圆内接四边形性质,扇形的面积公式的应用,解此题的关键是求出扇形和圆的面积,题目比较好,难度适中.二.填空题(共6小题)11.因式分解:x3﹣xy2=x(x﹣y)(x+y).【考点】提公因式法与公式法的综合运用.【分析】先提取公因式x,再对余下的多项式利用平方差公式继续分解.【解答】解:x3﹣xy2=x(x2﹣y2)=x(x﹣y)(x+y).故答案为:x(x﹣y)(x+y).【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.12.正十边形的一个外角为36度.【考点】多边形内角与外角.【分析】利用正十边形的外角和是360度,并且每个外角都相等,即可求出答案.【解答】解:正十边形的一个外角为360÷10=36度.【点评】本题主要考查了正多边形的性质:正多边形的各个外角相等,外角和是360度.13.有50个数据,共分成6组,第1~4组的频数分别为10,8,7,11.第5组的频率是0.16,则第6组的频数是6.【考点】频数与频率.【分析】首先根据频率=频数÷数据总数求得第5组的频数,然后根据6个组的频数和等于数据总数即可求得第6组的频数.【解答】解:∵有50个数据,共分成6组,第5组的频率是0.16,∴第5组的频数为50×0.16=8;又∵第1~4组的频数分别为10,8,7,11,∴第6组的频数为50﹣(10+8+7+11+8)=6.故答案为:6.【点评】本题是对频率、频数灵活运用的综合考查,各小组频数之和等于数据总数,各小组频率之和等于1.频率、频数的关系:频率=频数÷数据总数.14.如图所示,半径为1的圆心角为60°的扇形纸片OAB在直线L上向右做无滑动的滚动.且滚动至扇形O′A′B′处,则顶点O所经过的路线总长是π.【考点】弧长的计算;旋转的性质.【分析】仔细观察顶点O经过的路线可得,顶点O到O′所经过的路线可以分为三段,分别求出三段的长,再求出其和即可.【解答】解:顶点O经过的路线可以分为三段,当弧AB切直线l于点B时,有OB⊥直线l,此时O点绕不动点B转过了90°;第二段:OB⊥直线l到OA⊥直线l,O点绕动点转动,而这一过程中弧AB始终是切于直线l的,所以O与转动点的连线始终⊥直线l,所以O点在水平运动,此时O点经过的路线长=BA′=AB的弧长;第三段:OA⊥直线l到O点落在直线l上,O点绕不动点A转过了90°.所以,O点经过的路线总长S=π+π+π=π.故答案是:.【点评】本题考查了旋转的性质,弧长的计算,根据题意,准确分析得到三段的运动过程是解题的关键.15.如图,直角坐标系中,点P(t,0)是x轴正半轴上的一个动点,过点P作y轴的平行线,分别与直线,直线y=﹣x交于A,B两点,以AB为边向右侧作正方形ABCD.当点(3,0)在正方形ABCD内部时,t的取值范围是<t<3.【考点】正方形的性质;一次函数图象上点的坐标特征.【分析】根据点P的横坐标表示出AB,由点C的横坐标大于3列出不等式求解即可.【解答】解:∵点P(t,0),AB∥y轴,∴点A(t, t),B(t,﹣t),∴AB=|t﹣(﹣t)|=|t|,∵t>0时,点C的横坐标为t+t=t,∵点(2,0)在正方形ABCD内部,∴t>3,且t<3,解得t>且t<3,∴<t<3;故答案为:<t<3.【点评】本题是一次函数综合题型,主要利用了一次函数图象上点的坐标特征,正方形的性质;由点C的横坐标大于3列出不等式求解是解题的关键.16.如图,在矩形ABCD中,AD=6,AB=4,点E、G、H、F分别在AB、BC、CD、AD上,且AF=CG=2,BE=DH=1,点P是直线EF、GH之间任意一点,连接PE、PF、PG、PH,则△PEF和△PGH的面积和等于7.【考点】矩形的性质;平行四边形的判定与性质.【专题】计算题;压轴题.【分析】连接EG,FH,根据题目数据可以证明△AEF与△CGH全等,根据全等三角形对应边相等可得EF=GH,同理可得EG=FH,然后根据两组对边相等的四边形是平行四边形可得四边形EGHF是平行四边形,所以△PEF和△PGH的面积和等于平行四边形EGHF的面积的一半,再利用平行四边形EGHF的面积等于矩形ABCD的面积减去四周四个小直角三角形的面积即可求解.【解答】解:∵在矩形ABCD中,AD=6,AB=4,AF=CG=2,BE=DH=1,∴AE=AB﹣BE=4﹣1=3,CH=CD﹣DH=4﹣1=3,∴AE=CH,在△AEF与△CGH中,,∴△AEF≌△CGH(SAS),∴EF=GH,同理可得,△BGE≌△DFH,∴EG=FH,∴四边形EGHF是平行四边形,∵△PEF和△PGH的高的和等于点H到直线EF的距离,∴△PEF和△PGH的面积和=×平行四边形EGHF的面积,平行四边形EGHF的面积=4×6﹣×2×3﹣×1×(6﹣2)﹣×2×3﹣×1×(6﹣2),=24﹣3﹣2﹣3﹣2,=14,∴△PEF和△PGH的面积和=×14=7.故答案为:7.【点评】本题考查了矩形的性质,平行四边形的判定与性质,作出辅助线并证明出四边形EGHF是平行四边形是解题的关键.三.解答题(共7小题)17.计算:【考点】实数的运算.【分析】本题涉及绝对值、负整数指数幂、特殊角的三角函数值、二次根式化简四个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=2=.【点评】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.18.解方程:x2﹣5x﹣6=0.【考点】解一元二次方程-因式分解法.【分析】把方程左边进行因式分解得到(x﹣6)(x+1)=0,则方程就可化为两个一元一次方程x ﹣6=0,或x+1=0,解两个一元一次方程即可.【解答】解:x2﹣5x﹣6=0,∴(x﹣6)(x+1)=0,∴x﹣6=0或x+1=0,∴x1=6,x2=﹣1.【点评】本题考查了运用因式分解法解一元二次方程ax2+bx+c=0(a≠0)的方法:先把方程化为一般式,再把方程左边进行因式分解,然后一元二次方程就可化为两个一元一次方程,解两个一元一次方程即可.19.如图,在边长为1的正方形组成的网格中,△AOB 的顶点均在格点上,其中点A (5,4),B (1,3),将△AOB 绕点O 逆时针旋转90°后得到△A 1OB 1.(1)画出△A 1OB 1;(2)在旋转过程中点B 所经过的路径长为 π ;(3)求在旋转过程中线段AB 、BO 扫过的图形的面积之和.【考点】作图-旋转变换;勾股定理;弧长的计算;扇形面积的计算.【专题】作图题.【分析】(1)根据网格结构找出点A 、B 绕点O 逆时针旋转90°后的对应点A 1、B 1的位置,然后顺次连接即可;(2)利用勾股定理列式求OB ,再利用弧长公式计算即可得解;(3)利用勾股定理列式求出OA ,再根据AB 所扫过的面积=S 扇形A1OA +S △A1B1O ﹣S 扇形B1OB ﹣S △AOB =S 扇形A1OA ﹣S 扇形B1OB 求解,再求出BO 扫过的面积=S 扇形B1OB ,然后计算即可得解. 【解答】解:(1)△A 1OB 1如图所示;(2)由勾股定理得,BO==, 所以,点B 所经过的路径长==π;故答案为:π.(3)由勾股定理得,OA==, ∵AB 所扫过的面积=S 扇形A1OA +S △A1B1O ﹣S 扇形B1OB ﹣S △AOB =S 扇形A1OA ﹣S 扇形B1OB , BO 扫过的面积=S 扇形B1OB ,∴线段AB 、BO 扫过的图形的面积之和=S 扇形A1OA ﹣S 扇形B1OB +S 扇形B1OB ,=S 扇形A1OA , =, =π.【点评】本题考查了利用旋转变换作图,弧长公式,扇形的面积,勾股定理,熟练掌握网格结构准确找出对应点的位置是解题的关键,难点在于(3)表示出两线段扫过的面积之和等于扇形的面积.20.如图,⊙O 中,FG 、AC 是直径,AB 是弦,FG ⊥AB ,垂足为点P ,过点C 的直线交AB 的延长线于点D ,交GF 的延长线于点E ,已知AB=4,⊙O 的半径为.(1)分别求出线段AP 、CB 的长;(2)如果OE=5,求证:DE 是⊙O 的切线;(3)如果tan ∠E=,求DE 的长.【考点】切线的判定.【专题】证明题.【分析】(1)根据圆周角定理由AC为直径得∠ABC=90°,在Rt△ABC中,根据勾股定理可计算出BC=2,再根据垂径定理由直径FG⊥AB得到AP=BP=AB=2;(2)易得OP为△ABC的中位线,则OP=BC=1,再计算出==,根据相似三角形的判定方法得到△EOC∽△AOP,根据相似的性质得到∠OCE=∠OPA=90°,然后根据切线的判定定理得到DE是⊙O的切线;(3)根据平行线的性质由BC∥EP得到∠DCB=∠E,则tan∠DCB=tan∠E=,在Rt△BCD中,根据正切的定义计算出BD=3,根据勾股定理计算出CD=,然后根据平行线分线段成比例定理得=,再利用比例性质可计算出DE=.【解答】(1)解:∵AC为直径,∴∠ABC=90°,在Rt△ABC中,AC=2,AB=4,∴BC==2,∵直径FG⊥AB,∴AP=BP=AB=2;(2)证明∵AP=BP,AO=OC∴OP为△ABC的中位线,∴OP=BC=1,∴=,而==,∴=,∵∠EOC=∠AOP,∴△EOC∽△AOP,∴∠OCE=∠OPA=90°,∴OC⊥DE,∴DE是⊙O的切线;(3)解:∵BC∥EP,∴∠DCB=∠E,∴tan∠DCB=tan∠E=在Rt△BCD中,BC=2,tan∠DCB==,∴BD=3,∴CD==,∵BC∥EP,∴=,即=,∴DE=.【点评】本题考查了切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.也考查了垂径定理、圆周角定理、勾股定理和相似三角形的判定与性质.21.在东西方向的海岸线l上有一长为1km的码头MN(如图),在码头西端M的正西19.5km处有一观察站A.某时刻测得一艘匀速直线航行的轮船位于A的北偏西30°,且与A相距40km的B 处;经过1小时20分钟,又测得该轮船位于A的北偏东60°,且与A相距km的C处.(1)求该轮船航行的速度(保留精确结果);(2)如果该轮船不改变航向继续航行,那么轮船能否正好行至码头MN靠岸?请说明理由.【考点】解直角三角形的应用-方向角问题.【分析】(1)根据∠1=30°,∠2=60°,可知△ABC为直角三角形.根据勾股定理解答.(2)延长BC交l于T,比较AT与AM、AN的大小即可得出结论.【解答】解:(1)∵∠1=30°,∠2=60°,∴△ABC为直角三角形.∵AB=40km,AC=km,∴BC===16(km).∵1小时20分钟=80分钟,1小时=60分钟,∴×60=12(千米/小时).(2)能.理由:作线段BR⊥AN于R,作线段CS⊥AN于S,延长BC交l于T.∵∠2=60°,∴∠4=90°﹣60°=30°.∵AC=8(km),∴CS=8sin30°=4(km).∴AS=8cos30°=8×=12(km).又∵∠1=30°,∴∠3=90°﹣30°=60°.∵AB=40km,∴BR=40•sin60°=20(km).∴AR=40×cos60°=40×=20(km).易得,△STC∽△RTB,所以=,,解得:ST=8(km).所以AT=12+8=20(km).又因为AM=19.5km,MN长为1km,∴AN=20.5km,∵19.5<AT<20.5故轮船能够正好行至码头MN靠岸.【点评】此题结合方向角,考查了阅读理解能力、解直角三角形的能力.计算出相关特殊角和作出辅助线构造相似三角形是解题的关键.22.我县实施新课程后,学生的自主字习、合作交流能力有很大提高.张老师为了了解所教班级学生自主学习、合作交流的具体情况,对本班部分学生进行了为期半个月的跟踪调査,并将调査结果分成四类,A:特别好;B:好;C:一般;D:较差;并将调査结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:(1)本次调查中,张老师一共调査了20名同学,其中C类女生有2名,D类男生有1名;(2)将上面的条形统计图补充完整;(3)为了共同进步,张老师想从被调査的A类和D类学生中分别选取一位同学进行“一帮一”互助学习,请用列表法或画树形图的方法求出所选两位同学恰好是一位男同学和一位女同学的概率.【考点】条形统计图;扇形统计图;列表法与树状图法.【分析】(1)由扇形统计图可知,特别好的占总数的15%,人数有条形图可知3人,所以调查的样本容量是:3÷15%,即可得出C类女生和D类男生人数;(2)根据(1)中所求数据得出条形图的高度即可;(3)根据被调査的A类和D类学生男女生人数列表即可得出答案.【解答】解:(1)3÷15%=20,20×25%=5.女生:5﹣3=2,1﹣25%﹣50%﹣15%=10%,20×10%=2,男生:2﹣1=1,故答案为:20,2,1;(2)如图所示:(3)根据张老师想从被调査的A类和D类学生中分别选取一位同学进行“一帮一”互助学习,可以将A类与D类学生分为以下几种情况:男A 女A1 女A2男D 男A男D 女A1男D 女A2男D女D 女D男A 女A1女D 女A2女D∴共有6种结果,每种结果出现可能性相等,∴两位同学恰好是一位男同学和一位女同学的概率为:P(一男一女)==.【点评】此题主要考查了条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.23.如图,已知抛物线y=ax2+bx+c经过 A(0,4),B(4,0),C(﹣1,0)三点.过点A作垂直于y轴的直线l.在抛物线上有一动点P,过点P作直线PQ平行于y轴交直线l于点Q.连接AP.(1)求抛物线y=ax2+bx+c的解析式;(2)是否存在点P,使得以A、P、Q三点构成的三角形与△AOC相似?如果存在,请求出点P的坐标;若不存在,请说明理由;(3)当点P位于抛物线y=ax2+bx+c的对称轴的右侧.若将△APQ沿AP对折,点Q的对应点为点M.求当点M落在坐标轴上时直线AP的解析式.【考点】二次函数综合题.【专题】计算题;压轴题.【分析】(1)将A(0,4),B(4,0),C(﹣1,0)分别代入抛物线y=ax2+bx+c,列出方程组,即可求出函数解析式.(2)当P在l下方时,令△AOC∽△AQP,△AOC∽△PQA,根据相似三角形的性质,列比例式,求出点的坐标;当P在l上方时,令△AOC∽△AQP,△AOC∽△PQA,根据相似三角形的性质,列比例式,求出点的坐标;(3)画出函数图形,利用三角形相似,求出P点坐标,再利用待定系数法求出函数解析式.【解答】解:(1)将A(0,4),B(4,0),C(﹣1,0)分别代入抛物线y=ax2+bx+c得,,解得,函数解析式为y=﹣x2+3x+4.(2)P在l下方时,令①△AOC∽△AQP,=,即,由于y=﹣x2+3x+4,则有=,解得x=0(舍去)或x=,此时,y=,P点坐标为(,).②△AOC∽△PQA,,即,由于y=﹣x2+3x+4,则有,解得,x=0(舍去)或x=7,P点坐标为(7,﹣24).③P在l上方时,令△AOC∽△PQA,,即,∵y=﹣x2+3x+4,∴,解得,x=0(舍去)或x=﹣1,P点坐标为(﹣1,0)(不合题意舍去).④△AOC∽△AQP,=,即∴,解得,x=0(舍去)或x=,P点坐标为(,).(3)如图(1),若对称点M在y轴,则∠PAQ=45°,设AP解析式为y=kx+b,则k=1或﹣1,当k=1时,把A(0,4)代入得y=x+4,当k=﹣1时,把A(0,4)代入得y=﹣x+4,此时P在对称轴右侧,符合题意,∴y=x+4,或y=﹣x+4,设点Q(x,4),P(x,﹣x2+3x+4),则PQ=x2﹣3x=PM,∵△AEM∽△MFP.则有=,∵ME=OA=4,AM=AQ=x,PM=PQ=x2﹣3x,∴=,解得:PF=4x﹣12,∴OM=(4x﹣12)﹣x=3x﹣12,Rt△AOM中,由勾股定理得OM2+OA2=AM2,∴(3x﹣12)2+42=x2,解得x1=4,x2=5,均在抛物线对称轴的右侧,故点P的坐标为(4,0)或(5,﹣6).设一次函数解析式为y=kx+b,把(0,4)(4,0)分别代入解析式得,解得,函数解析式为y=﹣x+4.把(0,4)(5,﹣6)分别代入解析式得,解得,函数解析式为y=﹣2x+4.综上所述,函数解析式为y=x+4,y=﹣x+4,y=﹣2x+4.【点评】本题考查了二次函数解析式的求法、二次函数解析式、相似三角形的性质、翻折变换、待定系数法求一次函数解析式等,题目错综复杂,涉及知识面广,旨在考查逻辑思维能力.。
中考数学模拟试卷(二)一、选择题(本题共10小题;每小题3分,共30分)下列各题都有代号为A 、B 、C 、D 的四个结论供选择,其中只有一个结论是正确的.1.13-的值是 ( )A .-3B .3C .13D .-132.函数(1)y k x =-中,如果y 随着x 增大而增大,那么常数k 的取值范围是( ) A .1k < B .1k ≤ C .1>k D .1k ≥ 3.一个几何体的三视图如图所示,则此几何体是( ) A .圆锥 B .棱柱 C .圆柱 D .棱台3.下列计算正确的是 ( )A.422a a a =+; B .236a a a =÷; C .32a a a =⋅; D .532)(a a =. 4.如果b a <,0<c ,那么下列不等式成立的是( ).A. c b c a +<+;B. c b c a +-<+-;C. bc ac <;D.cbc a <. 5.在一个不透明的袋子中装有2个白球,n 个红球,它们除了颜色不同外,其余均相同. 若从中随机摸出一个球,摸到红球的概率是54,则n 的值等于( ) A .15个 B .8个 C .10个 D .6个6.在平面直角坐标系中,若点P (m ,m+2)在第二象限,则mx 的取值范围为 ( ) A .-2 <m<0 B .m <-2 C .m >0 D .m >-2 7.如图所示,点P 为反比例函数y =2x上的一动点,作PD ⊥x 轴于点D ,△POD 的面积为k ,则函数y =k x -1的图像为 ( )8.如图所示,将矩形ABCD 沿对角线BD 折叠,使C 落在C'处, BC'交AD 于E ,则下列结论不一定成立的是 ( ) A .AD =BC' B .∠EBD =∠EDB C .△ABE ∽△CBD D .sin ∠ABE =AEED9.如图所示,已知Rt △ABC 中,∠ABC =90°,∠BAC =30°,AB =3,将△ABC 绕顶点C 顺时针旋转至△A'B'C 的位置,且A 、C 、B'三点在同一条直线上, 则点A 经过的最短路线的长度是 ( )(第3题图)俯视图 主视图左视图A .8cmB .43cmC .323πcm D .83πcm10.如图所示,AB 为⊙O 的直径,AC 交⊙O 于E 点,BC 交⊙O 于D 点,CD =BD ,∠C =70°.现给出以下四个结论:①∠A =45°; ②AC =AB ;③AE =BE ;④CE ·AB =2BD 2,其中正确结论的序号是 ( ) A .①②B .②③C .②④D .③④二、填空题(本题共8小题;每小题3分,共24分)请把最后结果填在题中横线上.请把最后结果填在题中横线上.11.分解因式:a 3-a =________________.12.如图所示的围棋盘放在平面直角坐标系内,黑棋A 的坐标为(-1, 2),那么白棋B 的坐标是____________.13.4支排球队进行单循环比赛(参加比赛的每两支球队之间都要进行一 场比赛),则总的比赛场数为_______场.14.若关于x 的分式方程311x a x x--=-无解,则a =_______.15.现在一般超市都是使用环保购物袋,某超市有偿..提供可重复使用的三种环保购物袋,每个售价分别为1元、2元和3元,这三种环保购物袋每个最多分别能装大米3kg 、5kg和8kg .6月7日,小明和爸爸在该超市选购了3个环保购物袋用来装刚购买的20kg 散装大米,他们选购的3个环保购物袋至少..应付给超市___________元. 16.如图所示的抛物线是二次函数y =ax 2-3x +a 2-1的图像,那么a 的值是_______. 17.如图所示,在△ABC 中,AB =AC =13,BC =10,D 是AB 的中点,过点D 作DE ⊥AC 于点E ,则DE 的长是________.18.如图所示为手的示意图,在各个手指间标记字母A 、B 、C 、D .请你按图中箭头所指方向(即A →B →C →D →C →B →A →B →C →…的方式)从A 开始数连续的正整数1,2,3,4,…,当数到12时,对应的字母是_______;当字母C 第201次出现时,恰好数到的数是_______;当字母C 第2n +l 次出现时(n 为正整数),恰好数到的数是_______(用含n 的代数式表示).A B CD E(第10题Ox yE DC A B三、解答题(本题共11小题;共76分.解答应写出文字说明、证明过程或演算步骤)19.(本小题5分)计算:0183221π⎛⎫-+⎪-⎝⎭20.(本小题5分)先化简,再求值:2239(1)x xx x---÷,其中31x=21.(本小题5分)解不等式组:12,132,2xx x->⎧⎪⎨-≤+⎪⎩………………①…………②22.(本小题6分)如图所示,△ABC在方格纸中.(1)请在方格纸上建立平面直角坐标系,使A(2,3),C(6,2).并求出B点坐标.(2)以原点O为位似中心,相似比为2,在第一象限内将△ABC放大,画出放大后的图形△A'B'C'.(3)计算△A'B'C'的面积S.23.(本小题6分)小明、小亮和小强三人准备下象棋,他们约定用“抛硬币”的游戏方式来确定哪两个人先下棋,规则如右图所示:(1)请你完成如左图所示游戏一个回合所有可能出现的结果的树状图.(2)求一个回合能确定两人先下棋的概率.解:(1)树状图为:24.(本题满分6分)结合“两纲教育”,某中学600名学生参加了“让青春飞扬”知识竞赛.竞赛组委会从中随机抽取了部分学生的成绩(得分都是整数..,最高分98分)作为样本进行统计分析,并绘制成抽样分析分类统计表和频率分布直方图(如表1和图6,部分数据缺失).试根据所提供的信息解答下列问题:(1) 本次随机抽样调查的样本容量是 ▲ ;(2) 试估计全校所有参赛学生中成绩等第为优良的学生人数;(3) 若本次随机抽样的样本平均数为76.5,又表1中b 比a 大15,试求出a 、b 的值; (4) 如果把满足q x p ≤≤的x 的取值范围记为[p ,q ],表1中a 的取值范围是 ▲ . (A )[69.5,79.5] (B )[65,74] (C )[66.5,75.5] (D )[66,75]25.(本小题8分)如图所示,要在木里县某林场东西方向的两地之间修一条公路MN ,已知C 点周围200m 范围内为原始森林保护区,在MN 上的点A 处测得点C 在点A 的北偏东45°方向上,从A 向东走600m 到达B 处,测得点C 在点B 的北偏西60°方向上. (1)MN 是否穿过原始森林保护区?为什么?(参考数据:3≈1.732)(2)若修路工程顺利进行,要使修路工程比原计划提前5天完成,需将原定的工作效率提高25%,则原计划完成这项工程需要多少天?26.(本小题8分)如图a 所示,已知正方形ABCD 的边CD 在正方形DEFG 的边DE 上,连接AE 、GC .成绩范围60<x 8060<≤x80≥x 成绩等第 不合格合格优良人数 40平均成绩57a b表1:抽样分析分类统计表抽样分析频率分布直方图(图6)成绩0.01 0.04 组距频率0.020.0349.5 0.1 0.20.3 0.15 59.5 69.5 79.5 89.599.5(1)试猜想AE 与GC 有怎样的位置关系,并证明你的结论.(2)将正方形DEFG 绕点D 按顺时针方向旋转,使点E 落在BC 边上,如图b 所示,连接AE 和CG .你认为(1)中的结论是否还成立?若成立,给出证明;若不成立,请说明理由.27.(本小题9分)如图所示,已知⊙O 的半径为6cm ,射线PM 经过点O ,OP =10cm ,射线PN 与⊙O 相切于点Q .A 、B 两点同时从点P 出发,点A 以5cm/s 的速度沿射线PM 方向运动,点B 以4cm/s 的速度沿射线PN 方向运动,设运动时间为t s . (1)求PQ 的长.(2)当t 为何值时,直线AB 与⊙O 相切?OPQMNAB28.(本小题9分)某茶厂种植“春蕊”牌绿茶,由历年来市场销售行情知道,从每年的3 月25日起的180天内,绿茶市场销售单价y (元)与上市时间t (天)的关系可以近似地用图a 中的一条折线表示.绿茶的种植除了与气候、种植技术有关外,其种植的成本单价z (元)与上市时间t (天)的关系可以近似地用图b 所示的抛物线表示.B C D EFG A a 图 B C D E F G A b 图(1)直接写出图a中表示的市场销售单价y(元)与上市时间£(天)(t>0)的函数关系式.(2)求出图b中表示的种植成本单价z(元)与上市时间t(天)(t>0)的函数关系式.(3)认定市场销售单价减去种植成本单价为纯收益单价,问何时上市的绿茶纯收益单价最大?(说明:市场销售单价和种植成本单价的单位:元/500g.)29.(本小题9分)在直角梯形OABC中,CB∥OA,∠COA=90°,CB=3,OA=6,BA=5分别以OA、OC边所在直线为x轴、y轴建立如图所示的平面直角坐标系.(1)求点B的坐标.(2)已知D、E分别为线段OC、OB上的点,OD=5,OE=2EB,直线DE交x轴于点F.求直线DE的解析式.(3)点M是(2)中直线DE上的一个动点,在x轴上方的平面内是否存在另一个点N,使以O 、D 、M 、N 为顶点的四边形是菱形?若存在,请求出点N 的坐标;若不存在,请说明理由.参考答案1~10. BCCAB AACDC 11.()()11a a a +- 12.(-3,-2) 13.6 14.1或-2 15.8 16.-1 17.601318.B 603 6n +3 19.0 20.解:原式=9)32(2-⨯--x xx x x x =)3)(3(3-+⨯-x x x x x=31+x 当13-=x 时,原式=231+=32-21.由①,得x>3. 由②,得x ≤10. ∴原不等式的解集为3<x ≤10. 22.(1)图略.B (2,1) (2)图略(3)16 23.(1)如图所示:(2)3424..解:(1) 80 ; (2) 成绩位于79.5~89.5的频率为25.015.03.02.01.01=+++-)(.所以全校所有参赛学生中成绩等第为优良的学生人数为24015.025.0600=+⨯)((人) (3) 本次随机抽样分析成绩不合格的人数为81.080=⨯(人),成绩优良的人数为324.080=⨯(人),依据题意,可得方程组⎪⎩⎪⎨⎧=+-=++⨯.15,5.76803240857b a ba 解得 ⎩⎨⎧==.87,72b a(4) D .25.(1)MN 不会穿过原始森林保护区 (2)原计划完成这项工程需要25天 26.(1)AE ⊥GC (2)成立 27.(1)8cm (2)当t 为0.5s 或3.5s 时,直线AB 与⊙O 相切28.(1) ()()2160 0<t<120,380 (120t 150),220 150t 1805t y t ⎧-+⎪⎪=≤≤⎨⎪⎪+≤≤⎩(2)()2111020300z t =-+(t>0)(3)在t =10时,纯收益单价最大,最大值为100元。
2023年山东省枣庄市中考数学模拟试卷(二)学校:___________姓名:___________班级:___________考号:___________第I卷(选择题)一、选择题(本大题共10小题,共30.0分。
在每小题列出的选项中,选出符合题目的一项)1. 在下列四个实数中,最大的实数是( )A. −5B. 12C. −1D. 22. 下列运算中,正确的是( )A. a+a=2a2B. a2⋅a3=a6C. (−2a)2=4a2D. (a−1)2=a2+13. 一把直尺和一块三角板ABC(含30°、60°角)如图所示摆放,直尺一边与三角板的两直角边分别交于点D和点E,另一边与三角板的两直角边分别交于点F和点A,且∠CED=50°,那么∠BFA的大小为( )A. 145°B. 140°C. 135°D. 130°4. 对于任意有理数a,b,现用“☆”定义一种运算:a☆b=a2−b2,根据这个定义,代数式(x+y)☆y可以化简为( )A. xy+y2B. xy−y2C. x2+2xyD. x25. 《九章算术》是中国古代数学著作之一,书中有这样的一个问题:五只雀,六只燕共重一斤,雀重燕轻,互换一只,恰好一样重.问:每只雀、燕的重量各为多少?设一只雀的重量为x斤,一只燕的重量为y斤,则可列方程组为( )A. {5x+6y=15x−y=6y−x B. {6x+5y=1 5x+y=6y+xC. {5x+6y=14x+y=5y+x D. {6x+5y=1 4x−y=5y−x6. 已知关于x的方程2x+mx−2=3的解是正数,那么m的取值范围为( ) A. m>−6且m≠−2 B. m<6C. m>−6且m≠−4D. m<6且m≠−27.如图,点C,D在以AB为直径的⊙O上,且CD平分∠ACB,若CD =43,∠CAB=75°,则AB的长是( )A. 83B. 43C. 8D. 48.如图,在平面直角坐标系中,等腰直角三角形ABC的顶点A、B分别在x轴、y轴的正半轴上,∠ABC=90°,CA⊥x轴,点C在函数y=kx(x>0)的图象上,若AB=1,则k的值为( )A. 1B. 22C. 2D. 29.如图,在正方形ABCD中,对角线AC,BD交于点O,折叠正方形A BCD,使AB边落在AC上,点B落在点H处,折痕AE交BC于点E,交BO 于点F,连接FH,下列结论:①AD=DF;②四边形BEHF为菱形;③FHAD=2−1;④S△ABES△ACE =ABAC.其中正确的结论有( )A. 4个B. 3个C. 2个D. 1个10. 如图,已知二次函数y=ax2+bx+c(a、b、c为常数,且a≠0)的图象顶点为P(1,m),经过点A(2,1).有以下结论:①a<0;②abc>0;③4a+2b+c=1;④x>1时,y随x的增大而减小;⑤对于任意实数t,总有at2+bt≤a+b,其中正确的有( )A. 2个B. 3个C. 4个D. 5个第II卷(非选择题)二、填空题(本大题共6小题,共18.0分)11. 新冠肺炎患者喷嚏、咳嗽、说话的飞沫,直接吸入都会导致感染,所以我们要戴口罩,医用口罩可以过滤小至0.00000004米颗粒,用科学记数法表示0.00000004是______ .12. 已知关于x的不等式组{x−a>05−2x≥−1无解,则a的取值范围是______.13.如图,在平面直角坐标系xOy中,点A在第一象限内,点B在x轴正半轴上,△OCD是以点O为位似中心,且与△OAB的相似比的位似图形.若点A的坐标为(3,2),则点C的坐标为______.为1314.如图,在等腰Rt△ABC中,∠BAC=90°,BC=42.分AB的长为半径画弧分别与△ABC别以点A,B,C为圆心,以12的边相交,则图中阴影部分的面积为______ .(结果保留π)15. 如图,菱形ABCD的对角线AC,BD相交于点O,点E在OB上,连接AE,点F为CD的中点,连接OF.若AE=BE,OE=3,OA=4,则线段OF的长为______.16. 直线y=x+1与x轴交于点D,与y轴交于点A1,把正方形A1B1C1O1、A2B2C2C1和A3B3C3 C2按如图所示方式放置,点A2、A3在直线y=x+1上,点C1、C2、C3在x轴上,按照这样的规律,则正方形A2022B2022C2022C2021中的点B2022的坐标为______.三、解答题(本大题共8小题,共72.0分。
洛阳市2024年中招模拟考试(二)数学试卷一、选择题(每小题3分,共30分,下列各小题均有四个选项,其中只有一个是正确的)1. 下列各数中最大的数是( )A. B. 0C. D.2. 榫卯是古代中国建筑、家具及其它器械主要结构方式,是我国工艺文化精神的传奇;凸出部分叫榫,凹进部分叫卯,如图是某个部件“卯”的实物图,它的俯视图是( )A. B. C. D.3. 2024年清明节假期,洛阳地铁客流刷新历史最高记录,4月5日地铁日客运量54.32万人次,创历史新高.数据“54.32万”用科学记数法表示为( )A. B. C. D. 4. 如图,一束平行于主光轴的光线经凸透镜折射后,其折射光线与一束经过光心O 的光线相交于点P ,点F 为焦点.若,,则的度数为( )A B.C. D. 5. 下列计算,结果正确的是( )A. B. C. D. 6. 不等式组的解集是( )A. B. C. D.的.5-1-454.3210⨯45.43210⨯55.43210⨯65.43210⨯1155∠=︒235∠=︒3∠45︒50︒55︒60︒32a a a -=()2239a a =()222a b a b +=+623a a a ÷=23312x x x -<⎧⎨+≥⎩5x <15x ≤<15x -≤<1x ≤-7. 关于x 的一元二次方程有两个实数根,则m 的取值范围是( )A. B. C. D. 8. 如图,在菱形中,,连接、,则的值为( )A.B.C.D.9. 元朝朱世杰所著的《算学启蒙》中,记载了这样一道题:良马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何日追及之?其大意是:快马每天行240里,慢马每天行150里,慢马先行12天,快马几天可追上慢马?若设快马x天可追上慢马,由题意得( )A. B. C.D.10.在中,,D 为上一点,动点P 以每秒1个单位的速度从C 点出发,在三角形边上沿匀速运动,到达点A 时停止,以为边作正方形.设点P 的运动时间为,正方形的面积为S ,当点P 由点B 运动到点A 时,经探究发现S 是关于t 的二次函数,图象如图2所示,则线段的长是( )A. 6B. 8C. D. 二、填空题(每小题3分,共15分)2220x x m -+-=3m ≥3m >3m ≤3m <ABCD 60ABC ∠=︒AC BD ACBD1224015024012x x -=⨯24015015012x x -=⨯12240150x x +=12240150x x=-Rt ABC △90C ∠=︒AC CD =C B A →→DP DPEF ()s t DPEF AB11.x 的取值范围是_____.12. 计算的结果是________.13. 某班准备从《歌唱祖国》《我的祖国》《走进新时代》《十送红军》四首歌曲中选择两首进行排练,参加即将举办的“建国七十五周年”合唱选拔赛,那么该班恰好选中前面两首歌曲的概率是___.14. 如图,在中,是直径,点C 是圆上一点.过点C 作的切线交的延长线于点D ,若,则图中阴影部分的面积为_____.(结果用含π的式子表示)15. 矩形中,,将边绕点A 逆时针旋转得到线段,过点E 作交直线于点F (旋转角为α,),当点F 、E 、D 三点共线时,线段的长为_____.三、解答题(本大题共8小题,共75分)16. (1)计算:;(2)化简:.17. 我市某校为了解九年级学生体育备考情况,对全校九年级240名男生进行了体育测试,并随机抽取甲、乙两个班(两班男生人数相同)各10名男生的跳绳测试成绩并整理、描述、分析.【收集数据】甲、乙两班10名男生的跳绳成绩(单位:次)如下:甲:135 149 198 150 160 123 155 160 137 186乙:100 132 133 146 146 152 164 173 197 210【分析数据】根据以上数据,得到以下统计量.班级平均中位众211a a a -++O AB O AB 120,ACD CD ∠=︒=ABCD 35AB AD ==,AB AE EF AE ⊥BC 0180a ︒<<︒BF ()01320242--+-+()()()223a b a b a a b -+--统计量数数数甲b 乙a146根据以上信息,回答下列问题:(1)表格中的a =,b =;(2)综合上表中的统计量,你认为哪一个班的男生成绩较好,并说明理由;(3)洛阳市2024年中招体育考试九年级终结性评价评分标准规定:跳绳男子满分标准为150次,估计该校本次测试成绩满分的男生人数.18. 已知:点P 是外一点.(1)尺规作图:如图,以直径作交于E ,F 两点,连接,,;(保留作图痕迹,不要求写作法)(2)在(1)的条件下,求证:,是的切线;(3)在(1)(2)的条件下,若点D 在上(点D 不与E ,F 两点重合),且,则的度数为.19. 如图,菱形的边在x 轴正半轴上,点A的坐标,反比例函数的图象经过的中点D .(1)求k 的值;(2)的垂直平分线交反比例函数的图象于点E ,连接、,求的面积.20. 近年来我市大力实施河渠综合治理,水域治理效果显著,不仅有效改善了小环境,提升城市的防洪能力,同时也提升了群众生活的幸福指数和城市美丽指数.为了满足市民健康和休闲的需要,我市某区在一为155.3152.5155.3O OP O ' O OP PE PF PE PF O O 50EPF ∠=︒EDF ∠OABC OC ()34,()0ky x x=>BC AB ()0ky x x=>AE OE AOE △条东西走向的小河AB 的两侧开辟了两条健康步道,如图所示,小河北岸的步道由三个半圆形组成.经数学兴趣小组勘测,点C 在点A 的南偏东方向5千米处,点C 在点B 的南偏西45°方向.该小组成员小聪认为小河北岸健康步道的长度不超过10千米.请通过计算判断小聪的说法是否正确(结果精确到1千米,参考数据:,,,,,,π取3.14).21. 洛邑古城,被誉为“中原渡口”,截止目前景区总接待游客量突破2600万人次,日接待游客量最高突破10万人次.是集游、玩、吃、住、购于一体综合性人文旅游观光区,近期被大数据评为“第一热门汉服打卡地”.洛邑古城内某商铺打算购进A ,B 两种文创饰品对游客销售.若该商铺采购9件A 种和6件B 种共需330元;若采购5件A 种和3件B 种共需175元.两种饰品的售价均为每件30元;(1)求A ,B 饰品每件的进价分别为多少元?(2)该商铺计划采购这两种饰品共400件进行销售,其中A 种饰品的数量不少于150件,且不大于300件.实际销售时,若A 种饰品的数量超过250件时,则超出部分每件降价3元销售.①求该商铺售完这两种饰品获得的利润y (元)与购进A 种饰品的数量x (件)之间的函数关系式,并写出x 的取值范围;②设计能让这次采购的饰品获利最大的方案,并求出最大利润.22. 定义:在平面直角坐标系中,当点N 在图形M 上,且点N 的纵坐标和横坐标相等时,则称这个点为图形M 的“梦之点”.(1)点是反比例函数图象上的一个“梦之点”,则该函数图象上的另一个“梦之点”H 的坐标是;的53︒sin370.60︒≈cos370.80︒≈tan370.75︒≈sin 530.80︒≈cos530.60︒≈tan 53 1.33︒≈xOy ()33G --,1ky x=(2)如图,已知点A ,B 是抛物线上的“梦之点”,点C 是抛物线的顶点,连接,判断的形状,并说明理由:(3)在的范围内,若二次函数的图象上至少存在一个“梦之点”,则m 的取值范围是 .23. 【综合与实践】在一次综合实践活动课上,张老师组织学生开展“如何仅通过折纸的方法来确定特殊平行四边形纸片一边上的三等分点”的探究活动.【操作探究】“求知”小组的同学经过一番思考和讨论交流后,对正方形进行了如下操作:第1步:如图1所示,先将正方形纸片对折,使点A 与点B 重合,然后展开铺平,折痕;第2步:将边沿翻折到的位置;第3步:延长交于点H ,则点H 为边的三等分点.证明过程如下:连接,∵正方形沿折叠,∴① ,又∵,∴,∴.由题意可知E 是的中点,设,则,在中,可列方程:② ,(方程不要求化简)解得:③ ,即H 是边的三等分点.“励志”小组对矩形纸片进行了如下操作:第1步:如图2所示,先将矩形纸片对折,使点A 与点B 重合,然后展开铺平,折痕为;第2步:再将矩形纸片沿对角线翻折,再展开铺平,折痕为,沿翻折得折痕交于点G ;第3步:过点G 折叠矩形纸片,使折痕.为21922y x x =-++AC AB BC ,,ABC 02x <<222y x mx m m =-++ABCD ABCD EF BC CE GC EG AD AD CH ABCD CE 90D B CGH ∠=∠=∠=︒CH CH =CGH CDH ≌△△GH DH =AB 2AB a DH x ==,AE BE EG a ===Rt AEH DH =AD ABCD ABCD EF ABCD BD BD CE CE BD ABCD MN AD ∥【过程思考】(1)“求知”小组的证明过程中,三个空所填的内容分别是①: ,②:,③:;(2)“励志”小组经过上述操作,认为点M 为边的三等分点,请你判断“励志”小组的结论是否正确,并说明理由.【拓展提升】(3)如图3,在菱形中,,E 是上的一个三等分点,记点D 关于的对称点为,射线与菱形的边交于点F ,请直接写出的长.洛阳市2024年中招模拟考试(二)数学试卷一、选择题(每小题3分,共30分,下列各小题均有四个选项,其中只有一个是正确的)1. 下列各数中最大的数是( )A. B. 0C. D.【答案】D 【解析】【分析】此题考查了实数的大小比较法则:正数大于零,零大于负数,两个负数绝对值大的反而小,据此判断.【详解】∵故选:D .2. 榫卯是古代中国建筑、家具及其它器械的主要结构方式,是我国工艺文化精神的传奇;凸出部分叫榫,凹进部分叫卯,如图是某个部件“卯”的实物图,它的俯视图是( )AB ABCD 8,6AC BD ==BD AE D ¢ED 'ABCD D F '5-1-510-<-<<A. B. C. D.【答案】A 【解析】【分析】本题考查三视图,熟练掌握三视图的画法,是解题的关键.根据俯视图是从上向下观察到的图形,进行判断即可,注意,主视图中存在的线段,在俯视图中被遮住或是看不到的线段要用虚线表示.【详解】解:由题意,得:“卯”的俯视图为:.故选A .3. 2024年清明节假期,洛阳地铁客流刷新历史最高记录,4月5日地铁日客运量54.32万人次,创历史新高.数据“54.32万”用科学记数法表示为( )A. B. C. D. 【答案】C 【解析】【分析】本题主要考查科学记数法.科学记数法的表示形式为的形式,其中,n 为整数,据此解答即可.【详解】解:54.32万,故选:C .4. 如图,一束平行于主光轴的光线经凸透镜折射后,其折射光线与一束经过光心O 的光线相交于点P ,点F 为焦点.若,,则的度数为( )A. B.C. D. 【答案】D454.3210⨯45.43210⨯55.43210⨯65.43210⨯10n a ⨯110a ≤<5543200 5.43210==⨯1155∠=︒235∠=︒3∠45︒50︒55︒60︒【分析】本题考查了平行线的性质,三角形外角的性质等知识,掌握这两个知识点是关键.利用平行线的性质及三角形外角的性质即可求解.【详解】解:∵,∴,∴,∵,∴;故选:D .5. 下列计算,结果正确的是( )A. B. C. D. 【答案】B 【解析】【分析】本题考查了积的乘方,合并同类项,同底数幂的除法,完全平方公式;根据以上运算法则进行计算即可求解.【详解】解:A . 与不是同类项,不能合并,故该选项不正确,不符合题意; B . ,故该选项正确,符合题意;C . ,故该选项不正确,不符合题意;D . ,故该选项不正确,不符合题意;故选:B .6. 不等式组的解集是( )A. B. C.D. AB OF ∥1180BFO ∠+∠=︒18015525BFO ∠=︒-︒=︒235POF ∠=∠=︒3352560POF BFO ∠=∠+∠=︒+︒=︒32a a a -=()2239a a =()222a b a b +=+623a a a ÷=3a 2a -()2222339a a a ==()2222ab a ab b +=++62624a a a a -÷==23312x x x -<⎧⎨+≥⎩5x <15x ≤<15x -≤<1x ≤-【解析】【分析】此题考查了求不等式组的解集,求出每个不等式的解集,取公共部分即可.【详解】解:解不等式①得,解不等式②得,∴原不等式组的解集是故选:C7. 关于x 的一元二次方程有两个实数根,则m 的取值范围是( )A. B. C. D. 【答案】C 【解析】【分析】本题考查了一元二次方程的判别式,根据方程两个实数根得出,代入数值计算,即可作答.【详解】解:∵一元二次方程有两个实数根,∴,解得,故选:C .8. 如图,在菱形中,,连接、,则值为( )A.B.C.D.【答案】D 【解析】的23312x x x -<⎧⎨+≥⎩①②5x <1x ≥-15x -≤<2220x x m -+-=3m ≥3m >3m ≤3m <240b ac ∆=-≥2220x x m -+-=()()22424121240b ac m m ∆=-=--⨯⨯-=-≥3m ≤ABCD 60ABC ∠=︒AC BD ACBD12【分析】设AC 与BD 的交点为O ,由题意易得,,进而可得△ABC 是等边三角形,,然后问题可求解.【详解】解:设AC 与BD 的交点为O ,如图所示:∵四边形是菱形,∴,,∵,∴△ABC 是等边三角形,∴,∴,∴,∴,∴故选D .【点睛】本题主要考查菱形的性质、含30°角的直角三角形的性质及勾股定理,熟练掌握菱形的性质、含30°角的直角三角形的性质及勾股定理是解题的关键.9. 元朝朱世杰所著的《算学启蒙》中,记载了这样一道题:良马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何日追及之?其大意是:快马每天行240里,慢马每天行150里,慢马先行12天,快马几天可追上慢马?若设快马x 天可追上慢马,由题意得( )A. B. C. D. 【答案】B1,2ABD CBD ABC AB BC ∠=∠=∠=,,AC BD BO DO AO CO ⊥==BO =ABCD 1,2ABD CBD ABC AB BC ∠=∠=∠=,,AC BD BO DO AO CO ⊥==60ABC ∠=︒30,ABO AB AC ∠=︒=12AO AB =OB ==,2BD AC AO ==AC BD ==24015024012x x -=⨯24015015012x x -=⨯12240150x x +=12240150x x =-【解析】【分析】本题考查了一元一次方程的应用,根据题意列出方程是解题的关键.设快马x 天可追上慢马,根据路程相等,列出方程即可求解.【详解】解:设快马x 天可追上慢马,由题意得.故选:B .10. 在中,,D 为上一点,动点P 以每秒1个单位速度从C 点出发,在三角形边上沿匀速运动,到达点A 时停止,以为边作正方形.设点P 的运动时间为,正方形的面积为S ,当点P 由点B 运动到点A 时,经探究发现S 是关于t 的二次函数,图象如图2所示,则线段的长是( )A. 6B. 8C.D. 【答案】A【解析】【分析】本题考查了二次函数图象,求二次函数解析式,在中,则,求得的长,设函数的顶点解析式,用待定系数法,求出函数表达式,即可求解.【详解】解:在中,则,当时,,解得:(负值已舍去),∴,∴抛物线经过点,∵抛物线顶点为:,的24015015012x x -=⨯Rt ABC △90C ∠=︒AC CD =C B A →→DP DPEF ()s t DPEFABRt ABC△CD =,PC t=22222S PD t t ==+=+BC Rt ABC△CD =,PC t=22222S PD t t ==+=+6S =262t =+2t =2BC =()2,6()4,2设抛物线解析式为:,将代入,得:,解得:,∴,当时,(舍)或,∴,故选:A .二、填空题(每小题3分,共15分)11.x 的取值范围是_____.【答案】【解析】【分析】本题考查了分母不为零,二次根式的被开方数是非负数,熟练掌握二次根式和分式有意义的条件是解题的关键.根据分母不为零,二次根式的被开方数是非负数,列出不等式计算即可.有意义,∴且,∴且,故答案为:.12. 计算的结果是________.【答案】【解析】【分析】此题考查了分式的加减法,分式加减法的关键是通分,通分的关键是找出各分母的最简公分母.原式通分并利用同分母分式的减法法则计算,即可得到结果.【详解】解:原式,故答案为:.13. 某班准备从《歌唱祖国》《我的祖国》《走进新时代》《十送红军》四首歌曲中选择两首进行排练,参加即将举办的“建国七十五周年”合唱选拔赛,那么该班恰好选中前面两首歌曲的概率是___.()242S a t =-+()2,6()26242a =-+1a =()242S t =-+18y =()218420t t =-+=,8t =826AB =-=5x ≥50x -≥0x ≠5x ≥0x ≠5x ≥211a a a -++11a +2(1)(1)111a a a a a -+-==++11a +【答案】【解析】【分析】本题主要考查等可能事件的概率,画出树状图展示所有等可能的结果,是解题的关键.根据题意画出树状图得出所有等可能情况数和恰好选中前面两首歌曲的情况数,然后根据概率公式即可得出答案.【详解】解:将《歌唱祖国》《我的祖国》《走进新时代》《十送红军》四首歌曲分别用甲,乙,丙,丁表示,根据题意画图如下:共有12种等可能的结果数,其中恰好选中前面两首歌曲的有2种,则恰好选中甲、乙两位选手的概率,故答案为:.14. 如图,在中,是直径,点C 是圆上一点.过点C 作的切线交的延长线于点D ,若,则图中阴影部分的面积为_____.(结果用含π的式子表示)【答案】【解析】【分析】本题主要考查切线的性质以及扇形的面积计算,连接,根据切线的性质得出由得由三角形外角的性质得根据勾股定理得,再根据求解即可【详解】解:连接如图,1621126==16O AB O AB 120,ACD CD ∠=︒=2π3-OC 90,30,OCD OCD ∠=︒∠=︒OC OA =,OAC OCA ∠=∠60,BOC ∠=︒2OC ==OCD BOC S S S - 阴影扇形OC ,∵是的切线,∴∴∵∴∵∴,∴∴∴即∴∴,故答案为:15. 矩形中,,将边绕点A 逆时针旋转得到线段,过点E 作交直线于点F (旋转角为α,),当点F 、E 、D 三点共线时,线段的长为_____.CD O ,OC CD ⊥90,OCD ∠=︒120,ACD ∠=︒1209030,ACO ACD OCD ∠=∠-∠=︒-︒=︒,OC OA ==30ACO OAC ∠=∠︒303060,COD OCA OAC ∴∠=∠+∠=︒+︒=︒30,CDO ∠=︒2,DO CO =222,CD CO DO +=(2224,CO CO +=2,CO ==OCD BOC S S S - 阴影扇形2160222360π⨯=⨯-23π=-2π3-ABCD 35AB AD ==,AB AE EF AE ⊥BC 0180a ︒<<︒BF【答案】1或9【解析】【分析】本题考查了矩形的性质,全等三角形的判定和性质,旋转的性质,勾股定理等知识,分为:当点E 在上时,连接,可证得,从而,设,则,可求得,在中列出,进而求得的值;当点E 在的延长线上时,同样方法求得结果.【详解】解:∵四边形是矩形,∴当点E 在上时,连接,如图,∵,∴∴,∵,∴,∴,设,则,由旋转得:,∵,∴,∴,在中,由勾股定理得,,∴,∴,DF AF Rt Rt ABF AEF ≌ BF EF =BF EF x ==5CF x =-4DE ===Rt DCF ()()222534x x -+=+BF FD ABCD 3,5,90,CD AB BC AD ABC BCD CDA ====∠=∠=∠=︒DF AF EF AE ⊥90,AEF ∠=︒90AEF B ∠=∠=°AE AB AF AF ==,Rt Rt ABF AEF ≌ BF EF =BF EF x ==5CF x =-3AE AB ==EF AE ⊥90AED AEF ∠=∠=︒4DE ===Rt DCF 222CF CD DF +=()()222534x x -+=+1x =∴,如图,当点E 在的延长线上时,同理上可得:,,设,则,,∴,∴,∴,综上所述:或9.故答案为:1或9三、解答题(本大题共8小题,共75分)16. (1)计算:;(2)化简:.【答案】(1);(2)【解析】【分析】本题主要考查了实数混合运算,整式乘法混合运算,解题的关键是熟练掌握运算法则,准确计算.(1)根据算术平方根定义,零指数幂和负整数指数幂运算法则进行计算即可;(2)根据平方差公式和单项式乘多项式运算法则进行计算即可.【详解】解:(1)1BF =FD EFBF =4DE =EF BF a ==4DF a =-5CF a =-()()222534a a -+=-9a =9BF =1BF =()01320242--+-+()()()223a b a b a a b -+--1122233a b ab-+()01320242--+-+13132=+-+;(2).17. 我市某校为了解九年级学生体育备考情况,对全校九年级240名男生进行了体育测试,并随机抽取甲、乙两个班(两班男生人数相同)各10名男生的跳绳测试成绩并整理、描述、分析.【收集数据】甲、乙两班10名男生的跳绳成绩(单位:次)如下:甲:135 149 198 150 160 123 155 160 137 186乙:100 132 133 146 146 152 164 173 197 210【分析数据】根据以上数据,得到以下统计量.班级统计量平均数中位数众数甲b 乙a 146根据以上信息,回答下列问题:(1)表格中的a = ,b = ;(2)综合上表中的统计量,你认为哪一个班的男生成绩较好,并说明理由;(3)洛阳市2024年中招体育考试九年级终结性评价评分标准规定:跳绳男子满分标准为150次,估计该校本次测试成绩满分的男生人数.【答案】(1)149,160(2)甲班成绩较好;甲、乙两班样本平均数相同,但甲班的中位数和众数均高于乙班,所以甲班成绩较好(3)132人【解析】【分析】本题考查条形统计图、中位数、众数、平均数:(1)根据中位数的意义,将乙班的抽查的10人成绩排序找出处在中间位置的两个数的平均数即可为中位的112=()()()223a b a b a a b -+--()22243a b a ab =---22243a b a ab=--+2233a b ab -+=155.3152.5155.3数,从甲班成绩中找出出现次数最多的数即为众数;(2)根据平均数、中位数,众数可以分析得出;(3)根据题意,计算出两班级成绩为满分的学生的百分比,然后乘以总人数即可解答本题.【小问1详解】解:由题意得:乙班10名男生的跳绳成绩按大小顺序排列最中间的两个分数为146,153,故中位数;甲班10名男生的跳绳成绩出现次数最多的是160分,共出现2次,故众数;故答案为:149;160;【小问2详解】解:甲班成绩较好;理由如下:甲、乙两班样本的平均数相同,但甲班的中位数和众数均高于乙班,所以甲班成绩较好;【小问3详解】解:(人),答:估计该校本次测试成绩满分的男生有132人.18. 已知:点P 是外一点.(1)尺规作图:如图,以为直径作交于E ,F 两点,连接,,;(保留作图痕迹,不要求写作法)(2)在(1)的条件下,求证:,是的切线;(3)在(1)(2)的条件下,若点D 在上(点D 不与E ,F 两点重合),且,则的度数为 .【答案】(1)见解析(2)见解析 (3)或【解析】【分析】(1)如图1,连接,作的垂线交于点,以为圆心,为半径画圆,连接,即可;1461521492a +==160c =1124013220⨯=O OP O ' O OP PE PF PE PF O O 50EPF ∠=︒EDF ∠65︒115︒OP OP OP O 'O 'O P 'PE PF(2)如图1,连接,由为直径,可得,即,,进而结论得证;(3)如图1,,由题意知,,由圆周角定理可得;由圆内接四边形可得,;计算求解即可.【小问1详解】解:如图1,连接,作的垂线交于点,以为圆心,为半径画圆,连接,即可;图1【小问2详解】证明:如图1,连接,∵为直径,∴,即,,∵是半径,∴,是的切线;【小问3详解】解:如图1,,由题意知,,∵,∴;由圆内接四边形可得,;综上所述,的度数为或,故答案为:或.【点睛】本题考查了作垂线,直径所对的圆周角为直角,切线的判定.圆周角定理,圆内接四边形的性质等知识.熟练掌握作垂线,直径所对的圆周角为直角,切线的判定.圆周角定理,圆内接四边形的性质是解题的关键.OE OF ,OP 90PEO PFO ∠=∠=︒OE PE ⊥OF PF ⊥D D ',360130EOF EPF PEO PFO ∠=︒-∠-∠-∠=︒12EDF EOF ∠=∠180ED F EDF '∠=︒-∠OP OP OP O 'O 'O P 'PE PF OE OF ,OP 90PEO PFO ∠=∠=︒OE PE ⊥OF PF ⊥OE OF ,PE PF O D D ',360130EOF EPF PEO PFO ∠=︒-∠-∠-∠=︒ EFEF =1652EDF EOF ∠=∠=︒180115ED F EDF '∠=︒-∠=︒EDF ∠65︒115︒65︒115︒19. 如图,菱形的边在x 轴正半轴上,点A 的坐标,反比例函数的图象经过的中点D .(1)求k 的值;(2)的垂直平分线交反比例函数的图象于点E ,连接、,求的面积.【答案】(1)13(2)【解析】【分析】本题考查反比例函数的综合,菱形的性质,垂直平分线的定义,中点坐标公式,三角形的面积求法等知识,运用数形结合思想是解题的关键.(1)先求出的长度,也就是菱形的边长,从而求出点的坐标,再用中点公式求出点D 的坐标,从而得解;(2)根据点的坐标求出点E 的横坐标,继而求出点E 的坐标,再利用割补法求面积即可.【小问1详解】解:∵A 点坐标∴∵四边形是菱形∴, ∴;【小问2详解】∵,∴反比例函数解析式是∵E 在AB 的垂直平分线上,A ,,OABC OC ()34,()0k y x x=>BC AB ()0k y x x =>AE OE AOE △8211OA C B 、A B 、()34,5OA =OABC ()50C ,()84B ,13,22D ⎛⎫∴ ⎪⎝⎭13k xy ==13k =()130y x x=>()34,()84B ,E 点横坐标为把 优人 得: 过A 作⊥ x 轴于 H ,的垂直平分线交x 轴于 F ,则.20. 近年来我市大力实施河渠综合治理,水域治理效果显著,不仅有效改善了小环境,提升城市的防洪能力,同时也提升了群众生活的幸福指数和城市美丽指数.为了满足市民健康和休闲的需要,我市某区在一条东西走向的小河AB 的两侧开辟了两条健康步道,如图所示,小河北岸的步道由三个半圆形组成.经数学兴趣小组勘测,点C 在点A 的南偏东方向5千米处,点C 在点B 的南偏西45°方向.该小组成员小聪认为小河北岸健康步道的长度不超过10千米.请通过计算判断小聪的说法是否正确(结果精确到1千米,参考数据:,,,,,,π取3.14).【答案】小聪的说法不正确,见解析【解析】【分析】本题考查了解直角三角形的应用.过C 作于D ,在中,利用三角函数的定义求得和的长,在中,求得,据此求得北岸健康步道的长度,即可判断.【详解】解:过C 作于D ,垂足为D,112,112x =()130y x x =>2611y =1126,211E ⎛⎫∴ ⎪⎝⎭AH AB AOE AOB FOEAEFH S S S S =+-△△△梯形112611133443221122⎛⎫⎛⎫=⨯⨯+⨯+⨯-- ⎪ ⎪⎝⎭⎝⎭8211=53︒sin370.60︒≈cos370.80︒≈tan370.75︒≈sin 530.80︒≈cos530.60︒≈tan 53 1.33︒≈CD AB ⊥Rt ACD △CD AD Rt BCD BD CD =CD AB ⊥由题意得:,,千米,在中,,千米千米,在中,,∴千米,∴千米,∴北岸健康步道的长度为,因此小聪的说法不正确.21. 洛邑古城,被誉为“中原渡口”,截止目前景区总接待游客量突破2600万人次,日接待游客量最高突破10万人次.是集游、玩、吃、住、购于一体的综合性人文旅游观光区,近期被大数据评为“第一热门汉服打卡地”.洛邑古城内某商铺打算购进A ,B 两种文创饰品对游客销售.若该商铺采购9件A 种和6件B 种共需330元;若采购5件A 种和3件B 种共需175元.两种饰品的售价均为每件30元;(1)求A ,B 饰品每件的进价分别为多少元?(2)该商铺计划采购这两种饰品共400件进行销售,其中A 种饰品的数量不少于150件,且不大于300件.实际销售时,若A 种饰品的数量超过250件时,则超出部分每件降价3元销售.①求该商铺售完这两种饰品获得的利润y (元)与购进A 种饰品的数量x (件)之间的函数关系式,并写出x 的取值范围;②设计能让这次采购的饰品获利最大的方案,并求出最大利润.【答案】(1)A 饰品的进价为20元/件,B 饰品的进价为25元/件 (2)①;②购进A 饰品数量300件,购进B 饰品的数量100件时,获利最大,最大利润为3350元【解析】【分析】本题考查二元一次方程组和一次函数的应用,分段函数等知识,审清题意找出等量关系并正确列的905337CAD ∠=︒-︒=︒45CBD ∠=︒5AC =Rt ACD △37CAD ∠=︒·sin 3750.63CD AC =︒≈⨯=cos3750.84AD AC =⋅︒≈⨯=Rt BCD 45CBD ∠=︒3BD CD ==7AB AD BD =+=77π314111022≈⨯≈>.()()5200015025022750250300x x y x x ⎧+≤≤⎪=⎨+<≤⎪⎩式和方程是解题的关键.(1)设A 饰品每件的进价为a 元,B 饰品每件的进价为b 元,根据题意列出方程组求解即可;(2)①由购进A 饰品的数量为x 件,得购进B 饰品的数量为件,再分当时和当时两种情况,根据总利润的计算公式求出总利润即可;②根据两种情况下的解析式分别求出最大值,再比较即可.【小问1详解】解:设A 饰品每件的进价为a 元,B 饰品每件的进价为b 元,由题意列方程组为: , 解得 答:A 饰品的进价为20元/件,B 饰品的进价为25元/件;【小问2详解】①购进A 饰品的数量为x 件,则购进B 饰品的数量为件,∴当时,;当时,,综上所述:这两种饰品获得的利润y (元)与购进A 种饰品的数量x (件)之间的函数关系式是;②当时, ∴当时,y 取最大值,此时(元).当时, ,当时y 取最大值,此时,∵,∴当,即购进A 饰品的数量为件,则购进B 饰品的数量为件时,y 取最大值元.22. 定义:在平面直角坐标系中,当点N 在图形M 上,且点N 的纵坐标和横坐标相等时,则称这个点为图形M 的“梦之点”.()400x -150250x ≤≤250300x <≤9633053175a b a b +=⎧⎨+=⎩2025a b =⎧⎨=⎩()400x -150250x ≤≤()()()3020302540052000y x x x =-+--=+250300x <≤()()()()()302025030203250302540022750y x x x =-⨯+--⨯-+--=+()()5200015025022750250300x x y x x ⎧+≤≤⎪=⎨+<≤⎪⎩150250x ≤≤52000y x =+250x =525020003250y =⨯+=250300x <≤22750y x =+300x =230027503350y =⨯+=32503350<300x =3001003350xOy(1)点是反比例函数图象上的一个“梦之点”,则该函数图象上的另一个“梦之点”H 的坐标是 ;(2)如图,已知点A ,B 是抛物线上的“梦之点”,点C 是抛物线的顶点,连接,判断的形状,并说明理由:(3)在的范围内,若二次函数的图象上至少存在一个“梦之点”,则m 的取值范围是 .【答案】(1) (2)是直角三角形,理由见解析(3)【解析】【分析】本题主要考查了二次函数与x 轴的交点问题,一次函数与反比例函数的交点问题,勾股定理,二次函数的性质等等:(1)利用待定系数法求出反比例函数解析式,再求出时,自变量的值即可得到答案;(2)先求出时的自变量的值,进而求出点A 和点B 的坐标,再把解析式化为顶点式得到点C 的坐标,最后利用勾股定理和勾股定理的逆定理证明即可得到结论;(3)把解析式化为顶点式得到抛物线的顶点坐标为,分以下几种情况:当时,抛物线的图象上至少存在一个“梦之点”;当时,直线与抛物线在范围内不存在交点;当抛物线恰好经过原点时,则,解得或,当时,联立解得或,符合题意;()33G --,1k y x =21922y x x =-++AC AB BC ,,ABC 02x <<222y x mx m m =-++()33,ABC 12m -<<1y x =21922y x x x =-++=222AC AB BC +=()m m ,02m <<222y x mx m m =-++2m ≥y x =222y x mx m m =-++02x <<222y x mx m m =-++20m m +=0m =1m =-0m =2y x y x⎧=⎨=⎩00x y ==⎧⎨⎩11x y =⎧⎨=⎩。
2023年陕西省宝鸡市中考模拟数学试题学校:___________姓名:___________班级:___________考号:___________ 一、单选题1.2-的相反数是( ) A .2-B .2C .12D .12-2.以下是回收、绿色包装、节水、低碳四个标志,其中是中心对称图形的是( )A .B .C .D .3.下列等式从左到右的变形,属于因式分解的是( ) A .2221(1)x x x +-=- B .22()()a b a b a b +-=- C .2244(2)x x x ++=+D .22(1)ax a a x -=-4.如图,下面几何体的俯视图是( )A .B .C .D .5.如图,在ABC ∆中,CD 平分ACB ∠,已知74,46A B ︒︒∠=∠=,则BDC ∠的度数为( )A .104︒B .106︒C .134︒D .136︒6.如图,矩形ABCD 中,AB =3BC =,AE BD ⊥于E ,则EC =( )A B C D 7.在平面直角坐标系中,将直线l 1:y =3x -2平移后得到直线l 2:y =3x +4,则下列平移方法正确的是( ) A .将l 1向上平移2个单位长度 B .将l 1向上平移4个单位长度 C .将l 1向左平移2个单位长度D .将l 1向右平移3个单位长度8.如图,抛物线2y ax bx c =++ 与x 轴交于点A (﹣1,0),顶点坐标(1,n ),与y 轴的交点在(0,3),(0,4)之间(包含端点),则下列结论:①abc >0;①3a +b <0;①﹣43≤a ≤﹣1;①a +b ≥am 2+bm (m 为任意实数);①一元二次方程2ax bx c n ++= 有两个不相等的实数根,其中正确的有( )A .2个B .3个C .4个D .5个二、填空题9.计算:310(5)ab ab ÷-=______. 10.十边形共有_______条对角线.11.如图,在①ABC 中,①B =30°,①C =45°,AD 是BC 边上的高,AB =4cm ,分别以B 、C 为圆心,以BD 、CD 为半径画弧,交边AB 、AC 于点E 、F ,则图中阴影部分的面积是______cm 2.12.如图,过y 轴正半轴上任意一点P ,作x 轴的平行线,分别与反比例函数y =kx与y =2x 的图象交于点A ,B ,若C 为x 轴上任意一点,连接AC ,BC ,若S △ABC =4,则k 的值为____.13.如图,点A 1(1,1)在直线y =x 上,过点A 1分别作y 轴、x 轴的平行线交直线y x =于点B 1,B 2,过点B 2作y 轴的平行线交直线y =x 于点A 2,过点A 2作x 轴的平行线交直线y x =于点B 3,…,按照此规律进行下去,则点An 的横坐标为______.三、解答题14. 计算:3|+(1-π)0.15.解不等式组:212541x x x x -+⎧⎨+<-⎩.16.先化简,再求值:22214()244a a a a a a a a +--+÷--+,其中a =011(()2π-+. 17.如图,在①ABC 中,AB =AC ,①BAC =36°,请用尺规过点B 作一条直线,使其将①ABC 分成两个等腰三角形(保留作图痕迹,不写作法).=.18.已知:如图,点E、F在CD上,且A B∠=∠,AC//BD,CF DE求证:AEC①BFD.19.一书店按定价的五折购进某种图书800本,在实际销售中,500本按定价的七折批发售出,300本按八五折零售,若这种图书最终获利8200元,问该图书批发与零售价分别是多少元?20.现有A、B、C三个不透明的盒子,A盒中装有红球、黄球、蓝球各1个,B盒中装有红球、黄球各1个,C盒中装有红球、蓝球各1个,这些球除颜色外都相同.现分别从A、B、C三个盒子中任意摸出一个球.(1)从A盒中摸出红球的概率为;(2)用画树状图或列表的方法,求摸出的三个球中至少有一个红球的概率.21.如图,码头A、B分别在海岛O的北偏东45°和北偏东60°方向上,仓库C在海岛O的北偏东75°方向上,码头A、B均在仓库C的正西方向,码头B和仓库C的距离BC=50km,若将一批物资从仓库C用汽车运送到A、B两个码头中的一处,再用货船运送到海岛O,若汽车的行驶速度为50km/h,货船航行的速度为25km/h,问这批物资在哪个码头装船,最早运抵海岛O?(两个码头物资装船所用的时间相同,参考数≈1.4)22.如今很多初中生购买饮品饮用,既影响身体健康又给家庭增加不必要的开销,为此数学兴趣小组对本班同学一天饮用饮品的情况进行了调查,大致可分为四种:A:自带白开水;B:瓶装矿泉水;C:碳酸饮料;D:非碳酸饮料.根据统计结果绘制如下两个统计图,根据统计图提供的信息,解答下列问题:(1)这个班级有多少名同学?并补全条形统计图.(2)若该班同学每人每天只饮用一种饮品(每种仅限1瓶,价格如下表),则该班同学用于饮品上的人均花费是多少元?(3)若我市约有初中生4万人,估计我市初中生每天用于饮品上的花费是多少元?23.张琪和爸爸到曲江池遗址公园运动,两人同时从家出发,沿相同路线前行,途中爸爸有事返回,张琪继续前行5分钟后也原路返回,两人恰好同时到家张琪和爸爸在整个运动过程中离家的路点y1(米),y2(米)与运动时间x(分)之间的函数关系如图所示(1)求爸爸返问时离家的路程y2(米)与运动时间x(分)之间的函数关系式;(2)张琪开始返回时与爸爸相距多少米?24.如图,在等腰△ABC中,AB=BC,以BC为直径的①O与AC相交于点D,过点D 作DE①AB交CB延长线于点E,垂足为点F.(1)判断DE与①O的位置关系,并说明理由;,求EF的长.(2)若①O的半径R=5,tanC=1225.如图,直线y =﹣2x +4交y 轴于点A ,交抛物线212y x bx c =++ 于点B (3,﹣2),抛物线经过点C (﹣1,0),交y 轴于点D ,点P 是抛物线上的动点,作PE ①DB 交DB 所在直线于点E . (1)求抛物线的解析式;(2)当①PDE 为等腰直角三角形时,求出PE 的长及P 点坐标;(3)在(2)的条件下,连接PB ,将①PBE 沿直线AB 翻折,直接写出翻折点后E 的对称点坐标.26.(1)如图,四边形ABCD 的面积是m ,E ,F ,G ,H 分别是边AB ,BC ,CD ,AD 的中点,则图中阴影部分的面积是 (用含m 的代数式表示).(2)如图,把等腰梯形ABCD 放在平面直角坐标系中,已知三个顶点的坐标分别是A (-2,0),B (6,0),C (4,4),画出经过顶点D 并且平分梯形面积的直线,并求出它的表达式.(3)如图,在四边形ABCD中,AD①BC,AB>CD,是否存在过点A的一条直线将四边形ABCD的面积平分?如果存在,请画出符合条件的直线,并说明你的作法和理由;如果不存在,也请说明理由.参考答案:1.B 【解析】 【分析】根据相反数的定义可得结果. 【详解】因为-2+2=0,所以-2的相反数是2, 故选:B . 【点睛】本题考查求相反数,熟记相反数的概念是解题的关键. 2.B 【解析】 【分析】根据中心对称图形的概念,中心对称图形是图形沿对称中心旋转180度后与原图重合. 【详解】解:A 、不是中心对称图形,不符合题意; B 、是中心对称图形,符合题意; C 、不是中心对称图形,不符合题意; D 、不是中心对称图形,不符合题意; 故选:B . 【点睛】本题考查了中心对称图形,解题的关键是根据中心对称图形的概念,中心对称图形是图形沿对称中心旋转180度后与原图重合. 3.C 【解析】 【详解】解:A .2221(1)x x x -+=-,故A 不是因式分解; B .22()()a b a b a b -=+-,故B 不是因式分解; C .2244(2)x x x ++=+,故C 正确;D .22(1)ax a a x -=-=a (x +1)(x ﹣1),故D 分解不完全. 故选C . 4.D 【解析】 【详解】解:从上面看有3列,左边一列有2个正方形,中间一列有1个正方形,右边一列有1个正方形. 故选D . 5.A 【解析】 【分析】首先根据三角形内角和为180°以及角平分线性质得出①ACD=①BCD=30°,再利用三角形内角和进一步求出答案即可. 【详解】①74,46A B ︒︒∠=∠=, ①①ACB=180°-74°-46°=60°, ①CD 平分ACB ∠, ①①ACD=①BCD=30°,①①BDC=180°-①B-①BCD=104°, 故选:A. 【点睛】本题主要考查了三角形内角和性质以及角平分线性质的综合运用,熟练掌握相关概念是解题关键. 6.D 【解析】 【分析】作EF BC ⊥于F ,构造Rt CFE △中和Rt BEF △,由已知条件3AB BC ==,可求得①ADB=30°,所以Rt CFE △和Rt BEF △都可解,从而求出BE ,BF 的长,再求出CF 的长,在Rt CFE △中利用勾股定理可求出EC 的长.【详解】作EF ①BC 于F , 四边形ABCD 是矩形,390AD BC AB CD BAD ∴===∠=︒,.AB tan ADB AD ∴∠==30ADB ∴∠=︒,60ABE ∴∠=︒,∴在Rt ABE △中12BE cos ABE AB ∠===,BE ∴=①在Rt BEF △中,BF cos FBE BE ∠== 34BF ∴=,EF ∴==, 39344CF ∴=-=, 在Rt CFE △中,CE = 故选D . 【点睛】本题考查的知识点是矩形的性质,解直角三角形,以及勾股定理的运用,解题关键是运用勾股定理进行解答. 7.C 【解析】 【分析】利用一次函数图象的平移规律,左加右减,上加下减,得出即可.【详解】①将直线l 1:y =3x -2平移后,得到直线l 2:y =3x +4,①3(x +a )-2=3x +4,解得:a =2,即将l 1向左平移2个单位长度,得到l 2,①3x -2+b=3x +4,解得:b =6,①将l 1向上平移6个单位长度,得到l 2,故C 正确.故选:C .【点睛】本题主要考查了一次函数图象与几何变换,正确把握变换规律是解题关键.8.B【解析】【详解】①抛物线开口向下,①a <0,①顶点坐标(1,n ),①对称轴为直线x =1, ①2b a=1,①b =﹣2a >0, ①与y 轴的交点在(0,3),(0,4)之间(包含端点),①3≤c ≤4,①abc <0,故①错误;3a +b =3a +(﹣2a )=a <0,故①正确;①与x 轴交于点A (﹣1,0),①a ﹣b +c =0,①a ﹣(﹣2a )+c =0,①c =﹣3a ,①3≤﹣3a ≤4,①﹣43≤a ≤﹣1,故①正确; ①顶点坐标为(1,n ),①当x =1时,函数有最大值n ,①a+b+c≥am2+bm+c,①a+b≥am2+bm,故①正确;一元二次方程2ax bx c n++=有两个相等的实数根x1=x2=1,故①错误.综上所述,结论正确的是①①①共3个.故选B.【点睛】本题考查了抛物线与x轴的交点,二次函数的性质,主要利用了二次函数的开口方向,对称轴,最值问题,以及二次函数图象上点的坐标特征,关键在于根据顶点横坐标表示出a、b的关系.9.22b-.【解析】【详解】解:原式=22b-,故答案为22b-.10.35【解析】【分析】从n边形的一个顶点出发可以引(n-3)条对角线,即可求出十边形的对角线数量.【详解】从10边形的一个顶点出发可以引7条对角线,①十边形的对角线数量为7×10÷2=35.故答案为:35.【点睛】本题考查了多边形的对角线,熟记有关公式是解题的关键,需要注意一条对角线会计算两次需要除以2.11.322π-.【解析】【详解】解:①AD是BC边上的高,①①ADB=①ADC=90°,①①B=30°,①AD =12AB =2cm ,①BD =cm ), ①①C =45°,①①DAC =45°,①AD =CD =2cm ,①BC =()cm ,①S 阴影=12×()×2﹣3012360π⨯﹣454360π⨯=122ππ--=322π-,故答案为(322π-). 【点睛】此题主要考查了扇形的面积计算,以及勾股定理,关键是正确计算出AD 、BD 、CD 长. 12.-6【解析】【分析】根据AB 平行x 轴设出AB 坐标,再表示出S △ABC ,最后列方程计算即可.【详解】①点B 在y =2x上,则设点B (2m ,m ), ①点A 在y =k x上,则点A (k m ,m ), 则AB =2m -k m =2k m -, 则S △ABC =12×AB ×m =12×2k m-•m =4, 解得:k =-6,故答案为:-6.【点睛】 本题考查了反比例函数图象上点的坐标特征.通过设坐标表示出面积是解题的关键.本知识点是中考的重要考点,同学们应高度关注.13.1n -. 【解析】【详解】解:①AnBn+1①x轴,①tan①AnBn+1Bn当x=1时,y x=①点B1的坐标为(1,①A1B1=1A1B21.①1+A1B2①点A2,点B21),①A2B21,A2B343,①点A3的坐标为(43,43),点B3的坐标为(43.同理,可得:点An的坐标为(1n-,1n-).故答案为1n-.【点睛】本题考查了一次函数图象上点的坐标特征、解直角三角形以及规律型,通过解直角三角形找出点A2、A3、…、An的坐标是解题的关键.14.2--【解析】【分析】根据立方根、实数绝对值、零指数幂化简后计算即可【详解】解:原式=-3×2+3- 1=2--【点睛】本题考查了实数的混合运算,解题的关键是先把各式化简再进行运算.也考查了零指数幂、负整数指数幂.15.x≥3【解析】【分析】根据解不等式组的解法步骤解出即可.【详解】212541x x x x -+⎧⎨+<-⎩①② 由①可得x ≥3,由①可得x>2,①不等式的解集为:x ≥3.【点睛】本题考查解不等式组,关键在于熟练掌握解法步骤.16.21(2)a -,1. 【解析】【分析】根据分式的加法和除法可以化简题目中的式子,然后将a 的值代入化简后的式子即可解答本题.【详解】解:原式=2(2)(2)(1)(2)4a a a a a a a a +-+-⋅-- =241(2)4a a a -⋅-- =21(2)a -,①a =011(()2π-+=1+2=3, ①当a =3时,原式=21(32)-=1. 【点睛】此题考查了分式的化简求值,零指数幂定义,负指数幂定义,正确掌握分式的混合运算法则及运算顺序是解题的关键.17.见解析【解析】【分析】作ABC ∠的角平分线与AC 交点即为D .【详解】解:如图,作ABC ∠的角平分线与AC 交于点D ,此时36A ABD CBD ∠=∠=∠=︒, 72C BDC ∠=∠=︒①①ABD 和①DBC 都是等腰三角形直线BD 即为所求.【点睛】本题考查尺规作图中的作角平分线,根据等腰三角形的性质推导出作角平分线是解题的关键.18.见解析【解析】【分析】利用平行线的性质可得①C =①D ,然后再利用等式的性质可得CE =DF ,再利用AAS 判定①AEC①①BFD 即可.【详解】证明:AC //BD ,C D ∠∠∴=,CF DE =,CF EF DE EF ∴+=+,即CE DF =,在AEC 和BFD 中A B C D CE DF ∠=∠⎧⎪∠=∠⎨⎪=⎩,AEC ∴①()BFD AAS .【点睛】此题主要考查了全等三角形的判定,关键是掌握判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .19.图书批发价为28元,零售价为34元【解析】【分析】设这种图书定价x 元,根据“总利润=批发收入+零售收入-购书总支出”列方程,求解即可.【详解】设这种图书定价x 元,根据题意得:5000.73000.858000.58200x x x ⨯+⨯-⨯=2058200x =40x =.当40x =时,0.728x =,0.8534x =.答:该图书批发价为28元,零售价为34元.【点睛】本题考查了一元一次方程的应用-利润问题.找准相等关系是解答本题的关键.20.(1)从A 盒子中摸出红球的概率为13;(2)摸出的三个球中至少有一个红球的概率是56. 【解析】【分析】(1)从A 盒中摸出红球的结果有一个,由概率公式即可得出结果;(2)画树状图展示所有12种等可能的结果数,摸出的三个球中至少有一个红球的结果有10种,由概率公式即可得出结果.【详解】(1)根据概率公式,从A 盒子中摸出红球的概率为13; (2)列出树状图如图所示:由图可知,共有12种等可能结果,其中至少有一个红球的结果有10种.所以,P (摸出的三个球中至少有一个红球)105126==. 答:摸出的三个球中至少有一个红球的概率是56. 【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n ,再从中选出符合事件A 或B 的结果数目m ,然后利用概率公式计算事件A 或事件B 的概率. 21.这批物资在A 码头装船,最早运抵海岛O .【解析】【分析】延长CA 交OM 于K .先根据方位角、等腰三角形的定义求出OB 的长,再利用直角三角形的性质、线段的和差求出OA 、AB 的长,然后分别求出时间即可判断.【详解】解:如图,延长CA 交O M 于K,由题意得,75,60,45,90COK BOK AOK CKO ∠=︒∠=︒∠=︒∠=︒,9015,9030,C COK KBO BOK OK AK ∴∠=︒-∠=︒∠=︒-∠=︒=.KBO C BOC ∠=∠+∠,即3015BOC ︒=︒+∠,15BOC C ∴∠=∠=︒,50()OB BC km ∴==.在Rt OBK ∆中,125(),)2OK OB km BK km ====,在Rt AOK ∆中,25(),35()AK OK km OA km ====,2517.5()AB BK AK km ∴=-=≈,5017.567.5()AC BC AB km =+≈+=. 则若在A 码头装船,所需时间为67.535 2.75()50255025AC OA h +=+=, 若在B 码头装船,所需时间为50503()50255025BC OB h +=+=, 因2.753h h <, 故这批物资在A 码头装船,能最早运抵海岛O .【点睛】本题考查了解直角三角形的应用、勾股定理、速度、时间、路程之间的关系等知识点,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,构造直角三角形解决问题.22.(1)50人,画图见解析(2)2.6元(3)104000元【解析】【分析】对于(1),根据购买瓶装矿泉水的人数和所占百分比求出总数,再用总数分别减去三类的人数,可求出C类的人数,最后补充统计图即可;对于(2),根据总钱数÷总人数可得人均花费;对于(3),根据(2)中样本的人均花费估算4万人的花费即可.(1)①抽查的总人数为:20÷40%=50人,①C类人数=50﹣20﹣5﹣15=10人,补全条形统计图如下:(2)该班同学用于饮品上的人均花费=(5×0+20×2+3×10+4×15)÷50=2.6元;(3)我市初中生每天用于饮品上的花费=40000×2.6=104000元.【点睛】本题主要考查了应用统计图解决问题,掌握样本估计总体的思想是解题的关键. 23.(1)y 2=−100x +4500;(2)1500米.【解析】【分析】(1)设爸爸返回的解析式为y 2=kx+b ,把(15,3000)(45,0)代入进一步求解即可; (2)求出线段OB 的解析式,根据题意列方程解答即可.【详解】(1)设爸爸返回的解析式为y 2=kx+b ,把(15,3000)(45,0)代入得:15k b 3000+=……①,45k b 0+=……①,结合①①解得:k 100=,b 4500=,①y 2=−100x+4500,即爸爸返问时离家的路程y 2(米)与运动时间x (分)之间的函数关系式为:y 2=−100x+4500;(2)设线段OB 表示的函数关系式为y 1=k′x ,把(15,3000)代入得k′=200, ①线段OB 表示的函数关系式为y 1=200x ,当x =20时,y 1−y 2=200x −(−100x +4500)=300x −4500=300×20−4500=1500, ①张琪开始返回时与爸爸相距1500米.【点睛】本题主要考查了一次函数的实际应用,熟练掌握相关方法是解题关键.24.(1)证明见解析(2)83【解析】【分析】(1)连接圆心和切点,利用平行,DE ①AB 可证得①ODF =90°;(2)过D 作DH ①BC 于H ,设BD =k ,CD =2k ,求得BD 、CD 的长,根据三角形的面积公式得到DH 的长,由勾股定理得到OH 的长,根据射影定理得到OD 2=OH •OE ,求得OE 的长,从而得到BE 的长,根据相似三角形的性质得到BF =2,根据勾股定理即可得到结论.【详解】解:(1)证明:如图,连接OD,BD,①AB是①O的直径,①①ADB=①90°,①BD①AC.①AB=BC,①AD=DC.①OA=OB,①OD①BA,①DE①BA,①DE①OD,①直线DE是①O的切线.(2)过D作DH①BC于H①①O的半径R=5,tanC=12,①BC=10,设BD=k,CD=2k,①BC=10,①k①BD CD①DH=CD BDBC⋅=4,①OH,①DE①OD,DH①OE,①OD2=OH•OE,①OE=253,①BE=103,①DE①AB,①BF①OD,①①BFE①①ODE,①BF BE OD OE=, 即1032553BF =, ①BF =2,①EF=83.【点睛】本题考查了直线与圆的位置关系,等腰直角三角形的性质以及解直角三角形.当题中已有垂直时,证直线为圆的切线,通常选用平行来进行证明;而求相关角的余弦值,应根据所给条件进行适当转移,注意利用直角三角形面积的不同方式求解.25.(1)213222y x x =--;(2)PE =5或1,P (1,﹣3)或(5,3);(3)E 的对称点坐标为(1.8,-3.6)或(3.6,﹣1.2).【解析】【分析】(1)把B (3,﹣2),C (﹣1,0)代入212y x bx c =++即可得到结论; (2)由213222y x x =--求得D (0,﹣2),根据等腰直角三角形的性质得到DE =PE ,列方程即可得到结论;(3)①当P 点在直线BD 的上方时,如图1,设点E 关于直线AB 的对称点为E ′,过E ′作E ′H ①DE 于H ,求得直线EE ′的解析式为1922y x =-,设E ′(m ,1922m -),根据勾股定理即可得到结论;①当P 点在直线BD 的下方时,如图2,设点E 关于直线AB 的对称点为E ′,过E ′作E ′H ①DE 于H ,得到直线EE ′的解析式为132y x =-,设E ′(m ,132m -),根据勾股定理即可得到结论.【详解】解:(1)把B (3,﹣2),C (﹣1,0)代入212y x bx c =++得: 19322102b c b c ⎧⨯++=-⎪⎪⎨⎪-+=⎪⎩,①322b c ⎧=-⎪⎨⎪=-⎩, ①抛物线的解析式为213222y x x =--; (2)设P (m ,213222m m --), 在213222y x x =--中,当x =0时,y =﹣2,①D (0,﹣2), ①B (3,﹣2),①BD ①x 轴,①PE ①BD ,①E (m ,﹣2),①DE =m ,PE =2132222m m --+,或PE =2132222m m --++, ①①PDE 为等腰直角三角形,且①PED =90°,①DE =PE ,①m =21322m m -,或m =21322m m -+, 解得:m =5,m =1,m =0(不合题意,舍去),①PE =5或2,P (1,﹣3)或(5,3);(3)①当P 点在直线BD 的上方时,如图1,设点E 关于直线AB 的对称点为E ′,过E ′作E ′H ①DE 于H ,由(2)知,此时,E (5,﹣2),①DE =5,①BE ′=BE =2,①EE ′①AB ,①设直线EE ′的解析式为12y x b =+ ,①﹣2=12×5+b ,①b =﹣92,①直线EE ′的解析式为1922y x =-, 设E ′(m ,1922m -), ①E ′H =﹣2﹣1922m +=5122m -,BH =3﹣m , ①E ′H 2+BH 2=BE ′2,①(5122m -)2+(3﹣m )2=4, ①m =1.8,m =5(舍去),①E ′(1.8,-3.6);①当P 点在直线BD 的下方时,如图2,设点E 关于直线AB 的对称点为E ′,过E ′作E ′H ①DE 于H ,由(2)知,此时,E (2,﹣2),①DE =2,①BE ′=BE =1,①EE ′①AB ,①设直线EE ′的解析式为12y x b =+,①﹣2=12×2+b , ①b =﹣3,①直线EE ′的解析式为132y x =-,设E ′(m ,132m -), ①EH =1322m -+=112m -,BH=m -3, ①E ′H 2+BH 2=BE ′2,①(112m -)2+(m ﹣3)2=1, ①m =3.6,m =2(舍去),①E ′(3.6,﹣1.2).综上所述,E 的对称点坐标为(1.8,-3.6)或(3.6,﹣1.2).【点睛】本题考查了待定系数法求二次函数解析式,等腰直角三角形的性质,勾股定理,折叠的性质,正确的作出辅助线是解题的关键.26.(1)12m ; (2)画图见解析,y =-x +4;(3)存在,画图、作法及理由见解析【解析】【分析】(1)利用三角形中线把三角形面积等分,得到12OFC OBC S S = , 12OGC ODC S S =,12OAH OAD S S =,12OAE OAB S S =,求出阴影部分面积和四边形ABCD 面积之间关系; (2)首先根据(1)的思路得到DQ ,然后利用待定系数法求解;(3)取CD 的中点M ,连接AM 并延长交BC 的延长线于点N ,取BN 的中点E ,则过点A ,E 的直线将四边形ABCD 的面积平分,然后进行说明.【详解】(1)连接AO ,BO 、CO 、DO ①BF =CF ,①12OFC OBC S S = , 同理:12OGC ODC SS =,12OAH OAD S S =,12OAE OAB S S =, ①S 阴影=11112222OFC OGC OAH OAE OBC ODC OAD OAB SS S S S S S S +++=+++ =()12OBC OBA ODC OAD S S S S +++=12S 四边形ABCD =12m(2) 解:如答图,取CD ,AB 的中点M ,N ,连接MN ,过点D 与MN 的中点P 作直线DP 交AB 于点Q ,则直线DQ 平分梯形ABCD 的面积.①N (2,0),M (2,4),D (0,4),①P (2,2).设直线DQ 的表达式为y =kx +b ,将点D (0,4),P (2,2)代入y =kx +b 得,224k b b =+⎧⎨=⎩, 解得14k b =-⎧⎨=⎩. ①直线DQ 的表达式为y =-x +4.(3)解:如图,取CD 的中点M ,连接AM 并延长交BC 的延长线于点N ,取BN 的中点E ,则过点A ,E 的直线将四边形ABCD 的面积平分.理由:①AD ①BC ,①①DAM =①N ,在①ADM 和①NCM 中,DAM N AMD CM DM CM ∠=∠⎧⎪∠=∠⎨⎪=⎩①①ADM ①①CNM (AAS ),①S 四边形ABCD =S △ABN ,①E 是BN 的中点,①S △ABE =S △AEN ,①S 四边形AECD =S △ABE .【点睛】本题考查平分四边形面积的作法,解决问题的关键是利用中点的性质进行求解.。
南京中考数学模拟测试卷(2)一.选择题(共6小题,满分12分,每小题2分)1.(2分)为了方便市民出行,提倡低碳交通,近几年南京市大力发展公共自行车系统,根据规划,全市公共自行车总量明年将达70000辆,用科学记数法表示70000是()A.0.7×105B.7×104C.7×105D.70×1032.(2分)数轴上点A、B表示的数分别是5、﹣3,它们之间的距离可以表示为()A.﹣3+5B.﹣3﹣5C.|﹣3+5|D.|﹣3﹣5|3.(2分)不透明袋子中装有一个几何体模型,两位同学摸该模型并描述它的特征.甲同学:它有4个面是三角形;乙同学:它有8条棱.该模型的形状对应的立体图形可能是()A.三棱柱B.四棱柱C.三棱锥D.四棱锥4.(2分)若<a<,则下列结论中正确的是()A.1<a<3B.1<a<4C.2<a<3D.2<a<45.(2分)某排球队6名场上队员的身高(单位:cm)是:180,184,188,190,192,194.现用一名身高为186cm的队员换下场上身高为192cm的队员,与换人前相比,场上队员的身高()A.平均数变小,方差变小B.平均数变小,方差变大C.平均数变大,方差变小D.平均数变大,方差变大6.(2分)如图,AB⊥CD,且AB=CD.E、F是AD上两点,CE⊥AD,BF⊥AD.若CE =a,BF=b,EF=c,则AD的长为()A.a+c B.b+c C.a﹣b+c D.a+b﹣c二.填空题(共10小题,满分20分,每小题2分)7.(2分)化简:=;=.8.(2分)若二次根式在实数范围内有意义,则x的取值范围是.9.(2分)分解因式:2a(b+c)﹣3(b+c)=.10.(2分)2016年南京实现GDP约10500亿元,成为全国第11个经济总量超过万亿的城市,用科学记数法表示10500是.11.(2分)已知关于x的方程x2+px+q=0的两根为﹣3和﹣1,则p=,q=.12.(2分)如图,∠1是五边形ABCDE的一个外角,若∠1=65°,则∠A+∠B+∠C+∠D =°.13.(2分)如图,五边形ABCDE是正五边形.若l1∥l2,则∠1﹣∠2=°.14.(2分)如图,在△ABC中,用直尺和圆规作AB、AC的垂直平分线,分别交AB、AC 于点D、E,连接DE.若BC=10cm,则DE=cm.15.(2分)在平面直角坐标系中,点A的坐标是(﹣1,2),作点A关于y轴的对称点,得到点A',再将点A'向下平移4个单位,得到点A″,则点A″的坐标是(,).16.(2分)如图,在矩形ABCD中,AB=5,BC=4,以CD为直径作⊙O.将矩形ABCD 绕点C旋转,使所得矩形A′B′CD′的边A′B′与⊙O相切,切点为E,边CD′与⊙O相交于点F,则CF的长为.三.解答题(共11小题,满分88分)17.(7分)计算﹣.18.(7分)解不等式组,并写出它的整数解.19.(8分)某校九年级有24个班,共1000名学生,他们参加了一次数学测试,学校统计了所有学生的成绩,得到下列统计图.(1)求该校九年级学生本次数学测试成绩的平均数;(2)下列关于本次数学测试说法正确的是A.九年级学生成绩的众数与平均数相等B.九年级学生成绩的中位数与平均数相等C.随机抽取一个班,该班学生成绩的平均数等于九年级学生成绩的平均数D.随机抽取300名学生,可以用他们成绩的平均数估计九年级学生成绩的平均数20.(8分)某公司共25名员工,下表是他们月收入的资料.月收入/元45000180001000055004800340030002200人数111361111(1)该公司员工月收入的中位数是元,众数是元.(2)根据上表,可以算得该公司员工月收入的平均数为6276元.你认为用平均数、中位数和众数中的哪一个反映该公司全体员工月收入水平较为合适?说明理由.21.(8分)全面两孩政策实施后,甲、乙两个家庭有了各自的规划,假定生男生女的概率相同,回答下列问题:(1)甲家庭已有一个男孩,准备再生一个孩子,则第二个孩子是女孩的概率是;(2)乙家庭没有孩子,准备生两个孩子,求至少有一个孩子是女孩的概率.22.(8分)如图,在四边形ABCD中,BC=CD,∠C=2∠BAD.O是四边形ABCD内一点,且OA=OB=OD.求证:(1)∠BOD=∠C;(2)四边形OBCD是菱形.23.(8分)刘阿姨到超市购买大米,第一次按原价购买,用了105元,几天后,遇上这种大米8折出售,她用140元又买了一些,两次一共购买了40kg.这种大米的原价是多少?24.(8分)甲口袋中有2个白球、1个红球,乙口袋中有1个白球、1个红球,这些球除颜色外无其他差别.分别从每个口袋中随机摸出1个球.(1)求摸出的2个球都是白球的概率.(2)下列事件中,概率最大的是.A.摸出的2个球颜色相同B.摸出的2个球颜色不相同C.摸出的2个球中至少有1个红球D.摸出的2个球中至少有1个白球25.(8分)图中是抛物线拱桥,P处有一照明灯,水面OA宽4m,从O、A两处观测P处,仰角分别为α、β,且tanα=,tan,以O为原点,OA所在直线为x轴建立直角坐标系.(1)求点P的坐标;(2)水面上升1m,水面宽多少(取1.41,结果精确到0.1m)?26.(9分)如图,O是△ABC内一点,⊙O与BC相交于F、G两点,且与AB、AC分别相切于点D、E,DE∥BC,连接DF、EG.(1)求证:AB=AC.(2)已知AB=10,BC=12,求四边形DFGE是矩形时⊙O的半径.27.(9分)如图,把函数y=x的图象上各点的纵坐标变为原来的2倍,横坐标不变,得到函数y=2x的图象;也可以把函数y=x的图象上各点的横坐标变为原来的倍,纵坐标不变,得到函数y=2x的图象.类似地,我们可以认识其他函数.(1)把函数y=的图象上各点的纵坐标变为原来的倍,横坐标不变,得到函数y=的图象;也可以把函数y=的图象上各点的横坐标变为原来的倍,纵坐标不变,得到函数y=的图象.(2)已知下列变化:①向下平移2个单位长度;②向右平移1个单位长度;③向右平移个单位长度;④纵坐标变为原来的4倍,横坐标不变;⑤横坐标变为原来的倍,纵坐标不变;⑥横坐标变为原来的2倍,纵坐标不变.(Ⅰ)函数y=x2的图象上所有的点经过④→②→①,得到函数的图象;(Ⅱ)为了得到函数y=﹣(x﹣1)2﹣2的图象,可以把函数y=﹣x2的图象上所有的点.A.①→⑤→③B.①→⑥→③C.①→②→⑥D.①→③→⑥(3)函数y=的图象可以经过怎样的变化得到函数y=﹣的图象?(写出一种即可)。
中考数学模拟试题(2)
一、选择题
1. -2的绝对值是()
A.±2B.2C.一2D.
2.如图所示的立体图形的主视图是()
A.B.C.D.
3.下列运算正确的是()
A.B. C.D.
4.如今网络购物已成为一种常见的购物方式,2016年11月11日当天某电商平台的交易额就达到了1107亿元,用科学记数法表示为(单位:元)()
A,B.C.D.
5.如图,BE平分∠DBC,点A是BD上一点,过点A作AE∥BC交BE于点E,∠
DAE=56°,则∠E的度数为()
A.56°B.36°C.26°D.28°
6.一组数据5,2,6,9,5,3的众数、中位数、平均数分别是()
A.5,5,6B.9,5,5C.5,5,5D.2,6,5
7.如图,在Rt△ABC中,∠ACB=90°,AC=4,BC=3,将Rt△ABC绕点A逆时针旋转30°
后得到△ADE,则图中阴影部分的面积为()
A.B.C.D.
8.若一次函数y=mx+n(m≠0)中的m,n是使等式成立的整数,则一次函数y=mx+n(m≠0)的图象一定经过的象限是()
A.一、三B.三、四C.一、二D.二、四
9.如图,在矩形ABCD中,AB=2,AD=,点E是CD的中点,连接AE,将△ADE沿直线AE折叠,使点D落在点F处,则线段CF的长度是()
A.1B.C.D.
10.如图,抛物线(a≠0)的顶点和该抛物线与y轴的交点在一次函数
y=kx+1(k≠0)的图象上,它的对称轴是x =1,有下列四个结论:①abc<0,
②,③a=-k,④当0<x<1时,ax+b>k,其中正确结论的个数是()
A.4B.3C.2D.1
第Ⅱ卷(非选择题共90分)
二、填空题(本大题共6小题,每小题3分,共18分,请把答案填在题中的横线上)
11.使分式有意义的x取值范围是________.
12.一个不透明口袋里装有形状、大小都相同的2个红球和4个黑球,从中任意摸出一个球恰好是红球的概率是________.
13.边长相等的正五边形与正六边形按如图所示拼接在一起,则∠ABC=________度.
14.关于x的一元二次方程有两个不相等的实数根,则a的取值范围是_______.
15.如图,点A是函数图象上一点,连接AO交反比例函数(k≠0)的图象于
点B,若BO=2AB,则k________.
16.按照如图所示的方法排列黑色小正方形地砖,则第14个图案中黑色小正方形
地砖的块数是________.
三、解答题(本大题共8小题,共72分.解答应写出必要的文字说明、证明过程或演算步骤)
17.先化简,再求值:,其中x=2.
18.当前,“精准扶贫”工作已进入攻坚阶段,凡贫困家庭均要“建档立卡”.某初级中学七年级共有四个班,已“建档立卡”的贫困家庭的学生人数按一、二、三、四班分别记为A1,A2,A3,A4,现对A1,A2,A3,A4统计后,制成如图所示的统计图.
(1)求七年级已“建档立卡”的贫困家庭的学生总人数;
(2)将条形统计图补充完整,并求出A1所在扇形的圆心角的度数;
(3)现从A1,A2中各选出一人进行座谈,若A1中有一名女生,A2中有两名女生,请用树状图表示所有可能情况,并求出恰好选出一名男生和一名女生的概率.
19.如图,AB是半圆的直径,AC为弦,过点C作直线DE交AB的延长线
于点E.若∠ACD=60°,∠E=30°.
(1)求证:直线DE与半圆相切;
(2)若BE=3,求CE的长.
20.如图,一次函数(k≠0)的图象与反比例函数(m≠0,x<0)
的图象交于点A(-3,1)和点C,与y轴交于点B,△AOB的面积是6.
(1)求一次函数与反比例函数的解析式;
(2)当x<0时,比较与的大小.
21.四川省安岳县盛产柠檬和柚子两种水果,今年,某公司计划用两种型号
的汽车运输柠檬和柚子到外地销售,运输中要求每辆汽车都要满载满运,且
只能装运一种水果.若用3辆汽车装载柠檬、2辆汽车装载袖子可共装载33吨,若用2辆汽车装载柠檬、3辆汽车装载柚子可共装载32吨.
(1)求每辆汽车可装载柠檬或柚子各多少吨?
(2)据调查,全部销售完后,每吨柠檬可获利700元、每吨柚子可获利500元,计划用20辆汽车运输,且柚子不少于30吨,如何安排运输才能使公司获利最大,最大利润是多少元?
22.如图,光明中学一教学楼顶上竖有一块高为AB的宣传牌,点E和点D分别是教学楼底部和外墙上的一点(A,B,D,E在同一直线上),小红同学在距E点9米的C处测得宣传牌底部点B的仰角为67°,同时测
得教学楼外墙外点D的仰角为30°,从点C沿坡度为1:的斜坡向上
走到点F时,DF正好与水平线CE平行.
(1)求点F到直线CE的距离(结果保留根号);
(2)若在点F处测得宣传牌顶部A的仰角为45°,求出宣传牌AB的高
度(结果精确到0.0l).
(注:sin67°≈0.92,tan67°≈2.36,≈1.41,≈1.73)
23.在△ABC中,AB=AC>BC ,D是BC上一点,连接AD,作△ADE,使AD=AE,且∠DAE=∠BAC,过点E作EF∥BC交AB于F,连接FC.
(1)如图1.
①连接BE,求证:△AEB≌△ADC:
②若D是线段BC的中点,且AC=6,BC=4,求CF的
长;
(2)如图2,'若点D在线段BC的延长线上,且四边
形CDEF是矩形,当AC=m,BC=n时,求CD的长
(用含m,n的代数式表示).
24.如图,抛物线(a≠0)与x轴交于A ,C两点,与直线y=x-1交于A,B两点,直线AB与抛物线的对称轴交于点E.
(1)求抛物线的解析式;
(2)若点P在直线AB上方的抛物线上运动.
①点P在什么位置时,△ABP的面积最大,求出此时点P的坐标;
②当点P与点C重合时,连接PE,将△PEB补成矩形,使△PEB上的两个顶点成为矩
形一边的两个顶点,第三个顶点落在矩形这一边的对边上,求出矩形未知顶点的坐
标.。