电力电子技术_直流-交流变换技术
- 格式:ppt
- 大小:3.66 MB
- 文档页数:78
第五章直流—交流(DC—AC)变换5.1 逆变电路概述5.1.1 晶闸管逆变电路的换流问题DC—AC变换原理可用图5-1所示单相逆变电路来说明,其中晶闸管元件VT1、VT4,VT2、VT3成对导通。
当VT1、VT4导通时,直流电源E通过VT1、VT4向负载送出电流,形成输出电压左(+)、右(-),如图5-1(a)所示。
当VT2、VT3导通时,设法将VT1、VT4关断,实现负载电流从VT1、VT4向VT2、VT3的转移,即换流。
换流完成后,由VT2、VT3向负载输出电流,形成左(-)、右(+)的输出电压,如图5-1(b)所示。
这两对晶闸管轮流切换导通,则负载上便可得到交流电压,如图5-1(c)波形所示。
控制两对晶闸管的切换导通频率就可调节输出交流频率,改变直流电压E的大小就可调节输出电压幅值。
输出电流的波形、相位则决定于交流负载的性质。
图5-1 DC—AC变换原理要使逆变电路稳定工作,必须解决导通晶闸管的关断问题,即换流问题。
晶闸管为半控器件,在承受正向电压条件下只要门极施加正向触发脉冲即可导通。
但导通后门极失去控制作用,只有使阳极电流衰减至维持电流以下才能关断。
常用的晶闸管换流方法有:(1)电网换流(2)负载谐振式换流(3)强迫换流5.1.2 逆变电路的类型逆变器的交流负载中包含有电感、电容等无源元件,它们与外电路间必然有能量的交换,这就是无功。
由于逆变器的直流输入与交流输出间有无功功率的流动,所以必须在直流输入端设置储能元件来缓冲无功的需求。
在交—直—交变频电路中,直流环节的储能元件往往被当作滤波元件来看待,但它更有向交流负载提供无功功率的重要作用。
根据直流输入储能元件类型的不同,逆变电路可分为两种类型:图5-4 电压源型逆变器图5-5 无功二极管的作用1.电压源型逆变器电压源型逆变器是采用电容作储能元件,图5-4为一单相桥式电压源型逆变器原理图。
电压源型逆变器有如下特点:1)直流输入侧并联大电容C用作无功功率缓冲环节(滤波环节),构成逆变器低阻抗的电源内阻特性(电压源特性),即输出电压确定,其波形接近矩形,电流波形与负载有关,接近正弦。
1 简要说明四类基本的电力电子变流电路表答:交流变直流,即整流电路交流变交流,即交流电力控制电路或变频变相电路直流变直流,即直流斩波电路直流变交流,即逆变电;2 美国学者W.Newell用倒二角形对电力电子技术进行形象的描述,认为电力电子学是由电力学,电子学,控制理论三个学科交义而形成的。
3 电力电子技术是使用电力电子器件对电能进行变换和控制的技术,其电力变换常分为四大类:直流变直流、直流变交流、交流变交流、交流变直流。
4 根据二极管反向恢复时间的长短,可以将二极管分为普通二极管、快恢复二极管和肖特基二极管。
5 驱动电路需要提供控制电路和主电路之间的电气隔离环节,一般采用光隔离和磁隔离。
6 电力电子装置中可能发生的过电压分为外因过电压和内因过电压,其中内因过电压包括换相过电压和关断过电压。
7 电力电子系统一般由控制电路,驱动电路,主电路组成8 电力电子器件的损耗主要包括开关损耗和通态损耗9 单相半波整流电路带阻性负载时,晶闸管触发角a移相范围是【0~π】,晶闸管导通角沒和触发角α之间的关系是α+β=π或互补10 三相半波整流电路带阻性负载时,晶闸管触发角a移相范围是0-150度,输出电压连续时触发角α移相范围是0-30度11 同步信号为锯齿波的晶闸管触发电路主耍由脉冲的形成与放大,锯齿波的形成和脉冲移相,同步环节三个基本环节12 一般来说,电力电子变流电路中换流方式有器件换流、负载换流、电网换流和强迫换流。
13 直流斩波电路主要有三种控制方式:脉宽调制、脉频调制和混合调制。
14 正弦脉宽调制(SPWM)中,根据载波比N是否为固定值,可以分为同步调制和异步调制15 PWM控制方案优劣体现在输出波形谐波的多少、直流侧电压利用率; 一个周期内的开关次数。
16 PWM整流电路根据是否引入电流反馈可分为直接电流控制和间接电流控制17 根据电力电子电路中的功率器件开关过程中是否产生损耗,其开关方式可以分为软开关和硬开关。
第五章直流-交流(DC-AC)变换一、概述DC-AC变换器(无源逆变器)V1、V4和V2、V3轮流切换导通,u o为交变电压(1)电网换流 利用电网电压换流,只适合可控整流、有源逆变电路、交—交变频器(2)负载谐振式换流 利用负载回路中形成的振荡特性,使电流自动过零,只要负载 电流超前于电压时间大于t q ,即能实现换流,分串,并联。
VT 2、VT 3通后,u 0经VT 2、VT 3反向加在VT 1、VT 4上1. 晶闸管逆变电路的换流方式换流概念:直流供电时,如何使已通元件关断VT 1导通,C 充电左(-)右(+),为换流做准备; VT 2导通,C 上电压反向加至VT 1,换流,C 反向充电。
(3)强迫换流附加换流环节,任何时刻都能换流直接耦合式强迫换流2. 逆变电路的类型(1)电压源型逆变器电流源型逆变器电流源型逆变器功率流向控制(3)两类逆变器的比较比较点电流型电压型直流回路滤波环节电抗器电容器输出电压波形决定于负载,当负载为异步电动机时,近似为正弦波矩形输出电流波形矩形近似正弦波,有较大谐波分量输出动态阻抗大小续流二极管不需要需要过流及短路保护容易困难线路结构较简单较复杂适用范围适用于单机拖动,频繁加减速下运行,需经常反向的场合适用于多机供电不可逆拖动,稳速工作,快速性不高的场合二、强迫换流式逆变电路1.串联二极管式电流源型逆变器结构VT1~VT6为晶闸管C1~C6为换流电容VD1~VD6为隔离二极管2.工作过程(换流机理)(1)换流前运行阶段(2)晶闸管换流与恒流充、放电阶段(3)二极管换流阶段(4)换流后运行阶段diL dt引起三、逆变器的多重化技术及多电平化1. 多重化技术改善方波逆变的输出波形:中小容量:SPWM大容量:多重化技术思路:用阶梯波逼近正弦波(1)串联多重化特点:适合于电压源型逆变器二重化三相电压源逆变器单个三相逆变电路输出电压波形桥Ⅱ输出电压相位比桥Ⅰ滞后30º桥Ⅰ输出变压器△/Y,桥Ⅱ输出变压器△/Z变比为1变比为13二重化逆变电路输出电压比单个逆变电路输出电压台阶更多、更接近正弦。
电力电子技术1.1:电力变换通常可分为四大类,即交流变直流(AC-DC)、直流变交流(DC-AC)、直流变直流(DC-DC)和交流变交流(AC-AC )。
交流变直流称为 整流 ,直流变交流称为 逆变 。
1.2:(1);晶闸管是通过对门极的控制能够使其导通而不能使其关断的器件,属于 半控型器型 。
对晶闸管电路的控制方式主要是相位控制方式,简称 相控方式 。
(2);才用全控型器件的电路的主要控制方式为脉冲宽度调制(PWM)方式。
相对应相位控制方式,可称为斩波控制方式,简称 斩控方式 。
2.1.2:电力电子器件在实际应用中,一般是由 控制电路 、 驱动电路 、和以 电力电子器件 为核心的主电路组成一个系统。
2.1.3:电力电子器件分为以下三类:1)通过控制信号可以控制其导通而不能控制其关断的电力电子器件被称为 半控型器件 。
2)通过控制信号既可以控制其导通,又可以控制其关断的女电力电子器件被称为全控型器件 。
3)也有不能用控制信号来控制其通断的电力电子器件,因此也就不需要驱动电路,这就是 电力二极管 ,又被称为 不可控器件 。
2.2.1:从外形上看,电力二极管可以有 螺栓形 、 平板形 等多种封装。
2.3.2:晶闸管正常工作的特性如下:1)当晶闸管承受反向电压时,无论门极是否有触发电流,晶闸管都 不会导通 。
2)当晶闸管承受正向电压时,仅在门极有触发电流的情况下晶闸管 才能导通 。
3)晶闸管一旦导通,门极就失去控制作用,无论门极触发电流是否还存在,晶闸管都 保持导通 。
4)若要使已导通的晶闸管 关断 ,只能利用外加电压电路的作用使流过晶闸管的电流降到接近零的某一数值以下。
2.3.4:晶闸管的派生器件分为哪几类 快速晶闸管 、 双向晶闸管 、 逆导晶闸管 、光控晶闸管 。
3.1.1:(1)从晶闸管开始承受正向阳极电压起,到施加触发脉冲止的电角度称为 触发延迟角 ,α用表示,也称 触发角 或 控制角 。
1. 电力电子技术:使用电力电子器件对电能进行变换和控制的技术。
2. 半导体变流技术:包括用电力电子器件构成电力变换电路和对其进行控制的技术,以及构成电力电子装置和电力电子系统的技术。
3. 整流:直流变交流。
4. 逆变:交流变直流。
5. 电力电子器件:是直接用于主电路电路中,实现电能的变换或控制的电子器件。
6. 主电路:是在电气设备或电力系统中,直接承担电能的变换或控制任务的电路。
7. 维持电流:使晶闸管维持导通所必需的最小电流称为维持电流。
8. 擎住电流:晶闸管刚从断态转入通态并移除触发信号后,能维持导通所需的最小电流称为擎住电流。
9. 双向晶闸管:双向晶闸可认为是一对反并联联接的普通晶闸管的集成。
10. 逆导晶闸管:是将晶闸管反并联一个二极管制作在同一管芯上的功率集成器件。
11. 光控晶闸管:又称光触发晶闸管,是利用一定波长的光照信号触发导通的晶闸管。
12. 电流关断增益:GTO最大可关断阳极电流与门极负脉冲电流最大值IGM之比称为电流关断增益。
13. 功率模块:将多个电力电子器件封装在一个模块中,称为功率模块。
14. 功率集成电路:将功率器件与逻辑、控制、保护、传感、检测、自诊断等信息电子电路制作在同一芯片上的集成电路。
15. 直流斩波电路:直流到另一固定电压或可调电压的直流电的变换电路。
16. 脉冲宽度调制:周期不变,导通时间变化,即通过导通占空比的改变来改变变压比,控制输出电压的调制方法。
17. 脉冲频率调制:导通时间不变,周期变化,导通比也能发生变化,从而达到改变输出电压目的的调制方法。
18. 双极式PWM:一个开关周期内,斩波电路所输出的负载电压极性交替变化的PWM控制方式。
19. 单极式PWM:一个开关周期内,斩波电路所输出的负载电压极性单一的PWM控制方式。
20. 正激变换器:指在开关管开通时,电源将能量直接传送给负载一种带隔离变压器的DC-DC变换器。
21. 反激变换器:指在开关管开通时电源将电能转为磁能储存在电感(变压器)中,当开关管关断时再将磁能变为电能传送到负载的一种带隔离变压器的DC-DC变换器。
电力电子技术知识点总结电力电子技术是现代电力系统中的关键部分,它将电力系统与电子技术相结合,用于有效地控制、转换和传递电能。
本文将对电力电子技术的基本概念、分类和应用进行综述。
1. 电力电子技术的概述电力电子技术是指应用电子器件和电子控制器件来实现电力的调节、变换和传递的技术。
通过电力电子技术,可以实现电能的高效利用,提高能量转换效率和电力质量,同时也可以实现对电力系统的灵活控制。
2. 电力电子技术的分类电力电子技术根据其应用领域和转换方式可以分为多种类型,常见的包括:2.1 直流-直流变换技术(DC-DC)直流-直流变换技术主要是通过电力电子器件实现直流电能的调节和变换。
常见的直流-直流变换技术包括升压、降压、反相等。
2.2 直流-交流变换技术(DC-AC)直流-交流变换技术是将直流电能转换为交流电能,常见的应用场景包括太阳能发电系统和电动汽车充电桩。
2.3 交流-直流变换技术(AC-DC)交流-直流变换技术是将交流电能转换为直流电能,常见的应用场景包括电力系统中的整流器和UPS电源。
2.4 交流-交流变换技术(AC-AC)交流-交流变换技术主要是通过电力电子器件实现交流电能的调节和变换。
常见的交流-交流变换技术包括电压调节、频率调节和相位调节等。
3. 电力电子技术的应用电力电子技术在现代电力系统中有着广泛的应用,常见的应用包括:3.1 电力传输与配电电力传输与配电中的变压器、线路的无功补偿和电压调节等都会涉及到电力电子技术的应用。
通过电力电子技术,可以降低传输损耗、提高电力质量。
3.2 新能源发电电力电子技术在新能源发电领域有着重要的应用,如风能发电和太阳能发电系统中的逆变器、控制器等都需要电力电子技术来实现能量转换。
3.3 智能电网智能电网是未来电力系统的发展方向,电力电子技术在智能电网中有着重要的作用,通过电力电子器件和控制策略的应用,可以实现对电力系统的高效调节和控制。
4. 电力电子技术的发展趋势随着新能源的快速发展和电力系统的智能化改造,电力电子技术将得到更广泛的应用。
一、选择题2-1、单相半波电阻性负载可控整流电路中,控制角α的最大移相范围是( D)A、0º-90°B、0º-120°C、0º-150°D、0º-180°2-2、单相半波可控整流电路输出最大直流电压的平均值等于整流前交流电压的(C)倍。
A 1,B 0.5,C 0.45,D 0.9.2-3、单相半控桥整流电路的两只晶闸管的触发脉冲依次应相差(A )度。
A、180°,B、60°,C、360°,D、120°2-4、在单相桥式全控整流电路中,大电感负载时,控制角α的有效移相范围是(A)。
A、0°~90°B、0°~180°C、90°~180°2-5、普通的单相半控桥可控整流装置中一共用了(B )晶闸管。
A 一只,B 二只,C 三只,D 四只。
2-6、在单相全控桥整流电路中,两对晶闸管的触发脉冲,应依次相差(A)度。
A 、180度;B、60度;C、360度;D、120度2-7、α为( C )度时,三相半波可控整流电路电阻性负载输出电压波形处于连续和断续的临界状态。
A,0度,B,60度,C,30度,D,120度,2-8、晶闸管触发电路中,若改变(B)的大小,则输出脉冲产生相位移动,达到移相控制的目的。
A,同步电压,B、控制电压,C、脉冲变压器变比。
2-9、三相半波可控整流电路的自然换相点是( B)A、交流相电压的过零点;B、本相相电压与相邻相电压正、负半周的交点处;C、比三相不控整流电路的自然换相点超前30°;D、比三相不控整流电路的自然换相点滞后60°。
2-10、α=( 60度)度时,三相全控桥式整流电路带电阻负载电路,输出负载电压波形处于连续和断续的临界状态。
A、0度;B、60度;C、30度;D、120度;2-11、三相全控桥式整流电路带大电感负载时,控制角α的有效移相范围是(A)度。
电力电子技术在高速列车供电系统中的应用随着科技的发展和社会对高速列车的需求增加,高速列车供电系统的可靠性、效率和稳定性变得越发重要。
在这个背景下,电力电子技术应运而生,成为高速列车供电系统的关键技术之一。
本文将探讨电力电子技术在高速列车供电系统中的应用,并分析其在提高系统效率和稳定性方面的作用。
1. 交流-直流变换器(AC/DC Converter)在高速列车供电系统中,交流-直流变换器(AC/DC Converter)是必不可少的设备。
它将来自电网的交流电转换为高速列车所需的直流电。
传统的整流器在效率和可靠性方面存在诸多问题,而采用电力电子器件构成的交流-直流变换器则具有更高的效率和更低的功率损耗。
电力电子器件的快速开关特性和可调节的电压转换功能使得交流-直流变换器能够快速响应电网电压的波动,并能够在列车启动和制动时灵活地调整输出电压。
因此,电力电子技术在交流-直流变换器中的应用显著提高了供电系统的效率和稳定性。
2. 逆变器(Inverter)除了交流-直流变换器,逆变器(Inverter)也是高速列车供电系统中重要的电力电子设备之一。
逆变器将直流电转换为交流电,为高速列车的电动驱动系统提供所需的交流电能。
传统的电力逆变器在频率和电压调节方面存在限制,而采用电力电子器件构成的逆变器具有快速调节的特性,能够在不同运行条件下灵活控制输出频率和电压。
此外,电力电子技术还可以实现逆变器的能量回馈功能,在高速列车制动时将制动能量转换为电能并反馈回电网。
因此,电力电子技术在逆变器中的应用不仅提高了供电系统的效率和稳定性,还有助于能源的节约和回收利用。
3. 高效能电机驱动系统在高速列车供电系统中,高效能电机驱动系统是实现列车高速行驶的关键。
电力电子技术在电机驱动系统中的应用能够提高动力转换效率和控制精度。
通过采用电力电子器件驱动电机,可以提供高效能的动力输出,减少能量的损耗。
此外,电力电子技术还能够实现对电机的精确控制,使得高速列车在起动、制动和转弯等运行过程中更加稳定和安全。