七年级数学上册第3章一元一次方程小结与复习教案新版湘教版
- 格式:doc
- 大小:466.00 KB
- 文档页数:12
第3章 一元一次方程小结与复习一、等式的概念和性质1.等式的概念,用等号“=”来表示相等关系的式子,叫做等式. 在等式中,等号左、右两边的式子,分别叫做这个等式的左边、右边.等式可以是数字算式,可以是公式、方程,也可以是用式子表示的运算律、运算法则. 2.等式的性质五号等式的性质1:等式两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式.若a b =,则a m b m ±=±;等式的性质2:等式两边都乘以(或除以)同一个数(除数不能是0)或同一个整式,所得结果仍是等式.若a b =,则am bm =,a b mm=(0)m ≠.注意:(1)在对等式变形过程中,等式两边必须同时进行.即:同时加或同时减,同时乘以或同时除以,不能漏掉某一边. (2)等式变形过程中,两边同加或同减,同乘或同除以的数或整式必须相同.(3)在等式变形中,以下两个性质也经常用到:①等式具有对称性,即:如果a b =,那么b a =.②等式具有传递性,即:如果a b =,b c =,那么a c =.黑体小四 二、方程的相关概念黑体小四1.方程,含有未知数的等式叫作方程. 注意:定义中含有两层含义,即:方程必定是等式,即是用等号连接而成的式子;方程中必定有一个待确定的数即未知的字母.二者缺一不可.楷体五号五号2.方程的解 使方程左、右两边相等的未知数的值,叫做方程的解.楷体五号 3.解方程 求得方程的解的过程.注意:解方程与方程的解是两个不同的概念,后者是求得的结果,前者是求出这个结果的过程.小四三、一元一次方程的定义体小四1.一元一次方程的概念 只含有一个未知数,并且未知数的次数是1的方程叫做一元一次方程.楷体五号2.一元一次方程的形式楷体五号标准形式:0ax b +=(其中0a ≠,a ,b 是已知数)的形式叫一元一次方程的标准形式.最简形式:方程ax b =(0a ≠,a ,b 为已知数)叫一元一次方程的最简形式.注意:(1)任何一元一次方程都可以转化为最简形式或标准形式,所以判断一个方程是不是一元一次方程,可以通过变形为最简形式或标准形式来验证.如方程22216x x x ++=-是一元一次方程.如果不变形,直接判断就出会现错误.(2)方程ax b =与方程(0)ax b a =≠是不同的,方程ax b =的解需要分类讨论完成. 四、一元一次方程的解法 解一元一次方程的一般步骤五号(1)去分母:在方程的两边都乘以各分母的最小公倍数. 注意:不要漏乘不含分母的项,分子是个整体,含有多项式时应加上括号.(2)去括号:一般地,先去小括号,再去中括号,最后去大括号. 注意:不要漏乘括号里的项,不要弄错符号.(3)移项:把含有未知数的项都移到方程的一边,不含未知数的项移到方程的另一边. 注意:①移项要变号;②不要丢项.(4)合并同类项:把方程化成ax b =的形式. 注意:字母和其指数不变. (5)系数化为1:在方程的两边都除以未知数的系数a (0a ≠),得到方程的解bx a=. 注意:不要把分子、分母搞颠倒.体五 五、一元一次方程模型的应用1.运用一元一次方程模型解决实际问题的步骤:分析等量关系,设未知数 建立方程模型 解方程 检验解的合理性 2. 常见实际问题的类型 (1)和、差、倍、分问题; (2)利润、利息问题; (3)行程问题;(4)分段计费和方案问题. 练习1、等式的概念和性质 1.下列说法不正确的是( )A .等式两边都加上一个数或一个等式,所得结果仍是等式.B .等式两边都乘以一个数,所得结果仍是等式.C .等式两边都除以一个数,所得结果仍是等式.D .一个等式的左、右两边与另一个等式的左、右两边分别相加,所得结果仍是等式. 2.根据等式的性质填空.(1)4a b =-,则 a b =+; (2)359x -=,则39x =+ ;(3)683x y =+,则x = ; (4)122x y =+,则x = .练习2、方程的相关概念1.列各式中,哪些是等式?哪些是代数式,哪些是方程?①34a +;②28x y +=;③532-=;④1x y ->;⑤61x x --;⑥83x -=;⑦230y y +=;⑧2223a a -;⑨32a a <-. 2.判断题.(1)所有的方程一定是等式. ( ) (2)所有的等式一定是方程. ( ) (3)241x x -+是方程. ( ) (4)51x -不是方程.( ) (5)78x x =不是等式,因为7x 与8x 不是相等关系. ( ) (6)55=是等式,也是方程.( )(7)“某数的3倍与6的差”的含义是36x -,它是一个代数式,而不是方程. ( ) 练习3、一元一次方程的定义1.在下列方程中哪些是一元一次方程?哪些不是?说明理由: (1)3x+5=12; (2)31+x +2x =5; (3)2x+y=3; (4)y 2+5y -6=0; (5)x3-x =2.2.已知2(1)(1)30k x k x -+-+=是关于x 的一元一次方程,求k 的值.3.已知方程()7421=+--m x m 是关于x 的一元一次方程,则m=_________4.已知方程1(2)40a a x--+=是一元一次方程,则a = ;x = .练习4、一元一次方程的解与解法1)一元一次方程的解 一)、根据方程解的具体数值来确定 1.若关于x 的方程a xx -=+332的解是2x =-,则代数式21aa -的值是_________。
湘教版数学七年级上册第三章《一元一次方程》复习说课稿一. 教材分析湘教版数学七年级上册第三章《一元一次方程》复习说课稿,主要涵盖了本章的主要知识点,包括一元一次方程的定义、解法及其应用。
本章内容是初中学段数学的重要内容,是学生首次接触方程的学习,对于培养学生的逻辑思维和解决问题的能力具有重要意义。
二. 学情分析面对七年级的学生,他们在之前的学习中已经接触过一些简单的数学运算和逻辑思维,但对于方程的概念和解法可能还存在一定的模糊认识。
因此,在教学过程中,需要注重对学生基础知识的巩固,并通过实例解析让学生更好地理解和运用一元一次方程。
三. 说教学目标1.知识与技能:使学生掌握一元一次方程的定义、解法及其应用。
2.过程与方法:培养学生解决实际问题的能力,提高学生的逻辑思维和运算能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生积极思考、合作探讨的学习态度。
四. 说教学重难点1.重点:一元一次方程的定义、解法及其应用。
2.难点:一元一次方程在实际问题中的应用,解方程的灵活运用。
五. 说教学方法与手段1.教学方法:采用问题驱动、案例分析、小组讨论等教学方法,引导学生主动探究、积极思考。
2.教学手段:利用多媒体课件、黑板、粉笔等传统教学手段,结合数学软件和网络资源,提高教学效果。
六. 说教学过程1.导入:通过一个实际问题引入一元一次方程的概念,激发学生的学习兴趣。
2.新课导入:讲解一元一次方程的定义、解法及其应用,让学生掌握解题方法。
3.实例解析:分析几个典型的一元一次方程应用题,引导学生运用所学知识解决实际问题。
4.小组讨论:学生分组讨论,分享解题心得,互相学习,巩固知识。
5.练习巩固:布置一些练习题,让学生独立完成,检验学习效果。
6.总结提升:对本章内容进行总结,强调一元一次方程在实际生活中的应用。
7.布置作业:布置一些拓展性作业,让学生课后思考,提高能力。
七. 说板书设计板书设计要清晰、简洁,突出一元一次方程的核心知识点,包括定义、解法及其应用。
湘教版七年级上册第三章:一元一次方程的应用复习教案教学设计课题名称:一元一次方程的应用复习(1)一、教学内容分析本节课是一节复习课,七年级上册的所有知识学习完后,在期末检测前进行单元复习的内容,一元一次方程的应用这节课是学生学习的重点,也是学习的难点。
本节课通过情境引入问题,激发学生学习和积极性。
二、教学目标1、知识目标:通过问题情境进一步熟悉列方程解决实际问题的一般步骤。
2、技能目标:通过学生交流、合作学习提高学生分析问题中数量关系,列出方程解决问题的能力,形成用方程解决问题的意识。
3、情感与价值观:在学习中体会方程是刻画现实世界的有效模型,体会数学的应用价值。
教学重点:在合作学习中进一步熟悉用方程解决实际问题的一般步骤,提高学生分析问题中数量关系,列出方程解决问题的能力。
教学难点:分析问题中数量关系,找等量关系,列出方程。
三、学习者特征分析学生已经掌握了一定的列方程解应用题的能力,且对于列方程解应用题的一般步骤都已经很熟练。
四、教学过程二.合作学习:四个情境引入(课件)四个合作学习,在学生练习过程中,教师巡视,及时解决学生问题。
第四个情境引入中要加入几何画板中动画演示。
合作学习让学生先独立完成,再小组交流,指名板书,讲解找出等量关系。
列方程解应用题的一般步骤,突破难点,找出等量关系。
三、拓展提升:三个问题情境(课件)引入三个拓展提升题,交流讨论,有可行方案,再根据方案完成解决问题。
培养学生分析问题,解决问题的能力。
四、归纳总结:(课件)回顾数学对生活的好处。
六、教学评价设计小组互评、上台集体评分、学生讲评七、教学板书(列一元一次方程解应用题。
3.3 一元一次方程的解法(第1课时)【教学目标】知识与技能1.掌握移项变号的基本原则。
2.用移项解一元一次方程。
3.找相等关系列一元一次方程。
过程与方法经历运用方程解决实际问题的过程,发展抽象、概括、分析问题和解决问题的能力,认识用方程解决实际问题的关键是建立相等关系。
情感态度通过学习“合并同类项”和“移项”,体会古老的代数书中“对消”和“还原”的思想,激发学生学习数学的热情。
教学重点掌握移项变号的基本原则。
教学难点用移项解一元一次方程。
【教学过程】一、情景导入,初步认知1.什么是一元一次方程?2.等式的性质?【教学说明】通过复习一元一次方程及等式的性质,为进一步学习做准备。
二、思考探究,获取新知1.某探险家在2002年乘热气球在24 h内飞行5 129km。
已知热气球在前12 h飞行了2 345km,求热气球在后12 h飞行的平均速度。
(1)教师和学生一起分析问题,找出等量关系。
(2)如何设未知数呢?(3)根据等量关系式列出方程。
(4)如何求出未知数的值呢?2.利用等式的性质求出方程2 345+12x=5 129①中x的值。
利用等式的性质,在方程①的两边都减去2 345,得2 345+12x-2 345=5 129-2 345,即12x=2 784②。
利用等式的性质,在方程②的两边都除以12,得12x÷12=2 784÷12,即x=232。
因此,热气球在后12 h飞行的平均速度为232km/h。
【归纳结论】我们把求方程的解的过程叫做解方程。
3.探究: 解方程2 345+12x=5 129时,我们根据等式的性质1,在方程的两边都减去2 345,得到12x=5 129-2 345。
观察:(1)在上述演变过程中,方程的哪些项改变了在原方程中的位置?怎样变的?(2)改变的项有什么变化?【归纳结论】把方程中的某一项改变符号后,从方程的一边移到另一边,我们把这种变形叫做移项。
移项必须要变号。
第三章一元一次方程3.3解一元一次方程(一)——合并同类项与移项(1)学习目标1.经历运用方程解决实际问题的过程,体会方程是刻画现实世界的有效数学模型。
2.学会合并(同类项),会解“ax+bx=c”类型的一元一次方程。
3.能够找出实际问题中的已知数和未知数,分析它们之间的数量关系,列出方程,初步体会一元一次方程的应用价值,感受数学文化。
重点:建立方程解决实际问题,会解“ax+bx=c”类型的一元一次方程。
难点:分析实际问题中的已知量和未知量,找出相等关系,列出方程。
学习过程一、课前预习1、回忆整式中合并同类项的方法与上一节课中的等式的性质2。
2、阅读课本P88-P89问题2之前部分和课本P91例3并思考下列问题。
(1)在课本P88问题1中是如何列方程的?分哪些步骤?①():前年购买计算机x台。
②():前年购买量+去年购买量+今年购买量=140台。
③(): x+2x+4x=140。
(2)怎样解这个方程?最终我们将方程转化为什么样的形式?经过了那些步骤?(3)以上解方程“合并”起了什么作用?(4)“将未知数的系数化为1”的根据是什么?3、对于课本P88问题1还有不同的未知数的设法吗?哪种方法更简单?4、阅读课本P91例3并思考还有其他的设法和列方程的方法吗?哪种方法更简单?5、试完成课本P89 练习二、课堂展示三、分组联动1、 课本P93习题 12、课本P93习题 4四、课堂检测1、 解下列方程:(1) 163-=+x x (2) 3327-=-+-x x x(3) 55.75.216=--x x y (4) 1352-=+--x x x2、甲、乙、丙三个乡合修水利工程,按照受益土地的面积比3 :2 :4 分担费用1440元,三个乡各分配多少元?五、课堂小结六 拓广探索1、课本P94习题 62、课本P94习题 93.3解一元一次方程(一)——合并同类项与移项(2)学习目标1.能熟练地求解数字系数的一元一次方程(不含去括号、去分母)。
第3章 一元一次方程 3.1 建立一元一次方程模型1.通过探究,了解方程及一元一次方程的概念并能识别、了解什么是方程的解并会检验. 2.能根据实际问题中的数量关系,设未知数,列出一元一次方程.阅读教材P 83~84,完成下列问题.(一)知识探究1.方程的概念:我们把含有未知数的等式叫做方程.2.只含有一个未知数,且未知数的次数(即指数)是 1 的整式方程,叫一元一次方程.任意写出一个以y 为未知数的一元一次方程:__答案不唯一,如y +1=2__.3.能使方程左、右两边相等的未知数的值叫做方程的解. (二)自学反馈1.如图是一个长方体形的电视机包装盒,它的底面宽为1.5米,长为1.8米,且包装盒的表面积为8.5平方米,设这个电视机包装盒的高为x ,则可以得到方程:__2(1.5×1.8+1.5x +1.8x)=8.5.2.小英把10元钱递给营业员买钢笔和铅笔,下面是小英和营业员的对话,你能根据他们的对话的内容算出铅笔是多少元一支吗?小英:买4支铅笔和一支钢笔;营业员:一支钢笔比一支铅笔多4元,应找你2元.解:设一支铅笔x 元,则一支钢笔要(x +4)元,依题意可得方程:4x +x +4=10-2____.3.已知方程:y -1=1y ,12x +6=0,x 2-3x +2=0,x -2y =1,x =3其中一元一次方程的个数是(B )A .1 个B .2 个C .3个D .4 个4.检验下列括号里数是不是它们前面的方程的解. x =10-4x (x =1,x =2).解:把x =1代入原方程得,左边=1,右边=6,左边≠右边,所以x =1不是方程x =10-4x 的解. 把x =2代入原方程得,左边=2,右边=2,左边=右边,所以x =2是方程x =10-4x 的解.活动1 小组讨论例1 判断下列式子是不是方程,是打“√”,不是打“×”. (1)5x +3y -6x =7 (√) (2)4x -7 (×) (3)5x>3 (×) (4)6x 2+x -2=0 (√) (5)1+2=3 (×) (6)-5x-m =11 (√)例2 已知2x m +1+3=7是关于x 的一元一次方程,则m =0. 例3 检验下列x 的值是不是方程2.5x +318=1 068的解. (1)x =300; (2)x =330.解:(1)把x =300代入原方程得, 左边=2.5×300+318=1 068. 左边=右边.所以x =300是方程2.5x +318=1 068的解. (2)把x =330代入原方程得,左边=2.5×330+318=1143. 左边≠右边.所以x =330不是方程2.5x +318=1 068的解. 活动2 跟踪训练1.下列四个式子中,是一元一次方程的是(B ) A .2x -6 B .x -1=0 C .2x +y =5D .12x +3=1 2.若x =2是关于x 的方程2x +3m -1=0的解,则m 的值为(B ) A .-0.5 B .-1 C .0 D .13.下列方程中,解为x =4的方程是(C ) A .7x =3x -4 B .3+x =-1 C .x -5=3-xD .x2=8 4.小明准备为希望工程捐款,他现在有20元,以后每月打算存10元.若设x 个月后他能捐出100元,则下列方程中能正确计算出x 的是(A )A .10x +20=100B .10x -20=100C .20-10x =100D .20x +10=100活动3 课堂小结本课时主要学习了哪些知识与方法?有何收获和感悟?还有哪些疑惑?3.2 等式的性质1.通过探究,了解什么是等式,等式与方程的区别和联系.2.掌握等式的两条性质,并能运用这两条性质对等式进行变形.(重难点) 3.经历探究,培养观察、分析、归纳的数学思维和能力.阅读教材P 87~88,完成下列问题.(一)知识探究1.探究:观察下图中左右两个天平,你能发现什么规律?从左往右看,是在平衡的天平的两边都加上同样的量,结果天平还是平衡; 从右往左看,是在平衡的天平的两边都减去同样的量,结果天平还是平衡.等式性质1:等式两边都加上(或减去)同一个数(或式子),所得结果仍是等式.2.探究:观察下图中左右两个天平,你能发现什么规律?从左往右看,是在平衡的天平的两边都乘以同一个量,结果天平还是平衡; 从右往左看,是在平衡的天平的两边都除以同一个量,结果天平还是平衡.等式性质2:等式两边都乘(或除以)同一个数(或式)(除数或除式不能为0),所得结果仍是等式. (二)自学反馈1.把方程12x =1变形为x =2,其依据是(B )A .等式性质1B .等式性质2C .分式的基本性质D .不等式的性质1 2.下列说法中,正确的个数是(C )①若mx =my ,则mx -my =0;②若mx =my ,则x =y ;③若mx =my ,则mx +my =2my ;④若x =y ,则mx =my.A .1个B .2个C .3个D .4个3.(1)若2x -a =3,则2x =3+a ,这是根据等式性质1,在等式两边同时加上a . (2)若-2x =4,则x =-2,这是根据等式性质2,在等式两边同时除以2.活动1 小组讨论例1 填空,并说明理由.(1)如果a +2=b +7,那么a =____________; (2)如果3x =9y ,那么 x =____________; (3)如果12a =13b ,那么3a =____________.解:(1)因为a +2=b +7 ,由等式性质1可知, 等式两边都减去2,得a + 2 - 2=b + 7 -2, 即 a =b + 5 .(2)因为3x =9y ,由等式性质2可知,等式两边都除以3,得 3x 3=9y 3, 即x =3y.(3)因为12a =13b ,由等式性质2可知,等式两边都乘6,得 12a ×6=13b ×6, 即3a =2b .例2 判断下列等式变形是否正确,并说明理由. (1)如果a -3=2b -5,那么a =2b -8; (2)如果2x -14=4x -25,那么10x -5=16x -8.解:(1)错误.由等式性质1可知,等式两边都加上3,得 a -3+3=2b -5+3,即a =2b -2. (2)正确.由等式性质2可知,等式两边都乘20,得 2x -14×20=4x -25×20, 即5(2x -1)=4(4x -2). 去括号,得10x -5=16x -8.活动2 跟踪训练1.下列变形不正确的是(D ) A .若x -1=3,则x =4B .若3x -1=x +3,则2x -1=3C .若2=x ,则x =2D .若5x -4x =8,则5x +8=4x2.如果a =b ,那么下列等式一定成立的是(B ) A .a -c =c -b B .ac +b =bc +a C .a c =b cD .a b=1 3.如图,天平中的物体a 、b 、c 使天平处于平衡状态,则物体a 与物体c 的重量关系是(B )A .2a =3cB .4a =9cC .a =2cD .a =c4.已知x 、y 都是整数,利用等式性质,将下列各小题中的等式进行变形,然后填空.(1)如果x +y =0,那么x =-y ,这就是说,如果两个数的和为0,那么这两个数互为相反数. (2)如果x =-y ,那么x +y =0,这就是说,如果两个数互为相反数,那么这两个数的和为0. (3)如果xy =1,那么x =1y ,这就是说,如果两个数的积为1,那么这两个数互为倒数.(4)如果x =1y ,那么xy =1,这就是说,如果两个数互为倒数,那么这两个数的积为1.活动3 课堂小结本课时主要学习了哪些知识与方法?有何收获和感悟?还有哪些疑惑?3.3 一元一次方程的解法 第1课时 移项、合并同类项1.通过探究,领会移项的实质就是等式的变形,记得移项一定要变号. 2.能依据等式性质1,运用移项法则解一元一次方程.(重难点)阅读教材P 90~91,完成下列问题. (一)知识探究1.利用等式的性质1,观察下列变形过程: (1)方程5x -2=8两边都加上2, 得5x -2+2=8+2,即5x =8+2.(2)方程4x =3x +50两边都减去3x , 得4x -3x =3x +50-3x ,即4x -3x =50.归纳:把方程中的某一项改变符号后,从方程的一边移到另一边,这种变形叫做移项.必须牢记,移项要变号. 2.解方程:4x -5=2x +3. 解:移项,得4x -2x =3+5, 合并同类项,得2x =8, 两边都除以2,得x =4.检验:把x =4代入原方程左、右两边, 左边=4×4-5=11, 右边=2×4+3=11, 左边=右边,因此,x =4是原方程的解.归纳:利用移项解一元一次方程的一般步骤:移项→合并同类项→系数化为1. (二)自学反馈1.方程3x -7=x +3,移项得(A )A .3x -x =7+3B .3x +x =7+3C .3x -x =-7+3D .3x +x =-7+3 2.方程6x =3+5x 的解是(B ) A .x =2 B .x =3 C .x =-2 D .x =-3活动1 小组讨论 例 解下列方程: (1)4x +3=2x -7 ; (2)-x -1=3-12x.解:(1)移项,得4x -2x =-7-3, 合并同类项,得2x =-10, 两边都除以2,得x =-5.检验:把x =-5分别代入原方程的左、右两边, 左边=4×(-5)+3=-17, 右边=2×(-5)-7=-17, 左边=右边.所以 x =-5 是原方程的解. (2)移项,得-x +12x =3+1.合并同类项,得-12x =4.两边都乘-2,得x =-8.检验:把x =-8分别代入原方程的左、右两边, 左边=(-8)-1=7, 右边=3-12×(-8)=7,左边=右边.所以x =-8 是原方程的解. 活动2 跟踪训练1.方程3x -1=8的解是(A )A .x =3B .x =4C .x =5D .x =62.若x =4是关于x 的方程x2-a =4的解,则a 的值为(D )A .-6B .2C .16D .-23.代数式1-2a 与a -2的值相等,则a 等于(B ) A .0 B .1 C .2 D .3 4.解下列方程: (1)7u -3=5u -4; 解:u =-12.(2)2.4y +2y +2.4=6.8. 解:y =1.活动3 课堂小结本课时主要学习了哪些知识与方法?有何收获和感悟?还有哪些疑惑?1.通过探究,学习并了解“去括号法则”是解方程的重要步骤. 2.能准确而熟练地运用“去括号法则”解带有括号的方程.(重难点)阅读教材P 92~93,完成下列问题.解方程“去括号”这一变形是运用了什么根据?去括号要注意什么? (一)知识探究要去括号,就要根据去括号法则及乘法分配律,特别是当括号前是“-”号时,去括号时,各项都要变号,若括号前有数字,则要乘遍括号内所有项,不能漏乘并注意符号.(二)自学反馈 1.解方程:(1)2(x -2)=-(x +3); (2)2(x -4)+2x =7-(x -1); (3)-3(x -2)+1=4x -(2x -1). 解:(1)x =13.(2)x =165.(3)x =65.2.学校团委组织65名团员为学校建花坛搬砖,初一同学每人搬6块,其他年级同学每人搬8块,总共搬了400块,问初一同学有多少人参加了搬砖?解:初一有60人参加了搬砖.去括号不能漏乘并注意符号.活动1 小组讨论例 解方程:3(2x -1)=3x +1. 解:去括号,得 6x -3=3x +1, 移项,得6x -3x =1+3, 合并同类项,得3x =4, 两边都除以3,得x =43.因此,原方程的解是x =43.活动2 跟踪训练 1.解方程:(1)5(x +2)=2(5x -1);解:x =125.(2)4x +3=2(x -1)+1;解:x =-2.(3)(x +1)-2(x -1)=1-3x ;解:x =-1.(4)2(x -1)-(x +2)=3(4-x). 解:x =4.2.学校田径队的小刚在400米跑测试时,先以6米/秒的速度跑完了大部分路程,最后以8米/秒的速度冲刺到达终点,成绩为1分零5秒,问小刚在冲刺以前跑了多少时间?解:小刚在冲刺以前跑了1分钟. 活动3 课堂小结1.通过这节课,你在用一元一次方程解决实际问题方面又获得了哪些收获? 2.去括号解一元一次方程要注意什么?1.通过探究,掌握并运用等式性质2正确去分母解一元一次方程.(重难点) 2.了解一元一次方程解法的一般步骤.(重难点)阅读教材P 93~95,完成下列问题.(一)知识探究1.去分母的关键在于:方程两边同时乘以各分母的最小公倍数. 2.去分母的根据是等式的性质2,去分母时两边同乘各分母的最小公倍数,通常要将分子、分母看成一个整体,用括号括起来,去分母时不要漏乘每一项.3.含有分母的方程的解法的一般步骤为:①去分母,②去括号,③移项,④合并同类项,⑤系数化为1.(二)自学反馈1.解方程:3x +x -12=x +14-2x -13.解:两边都乘以12,去分母,得12×3x +6(x -1)=3(x +1)-4(2x -1).去括号,得36x +6x -6=3x +3-8x +4. 移项,得36x +6x -3x +8x =3+4+6. 合并同类项,得47x =13. 系数化为1,得x =1347.2.解方程:x -14+1=2-x +36.解:x =95.去分母时不要漏乘每一项,去分母后分子是多项式的要用括号括起来.活动1 小组讨论例 解方程:3x -12-2-x5=x.解:去分母,得5(3x -1)-2(2-x)=10x.去括号,得15x -5-4+2x =10x. 移项,合并同类项,得7x =9. 方程两边都除以7,得x =97.因此,原方程的解是x =97.活动2 跟踪训练 1.解方程:(1)5x -14=3x +12-2-x 3;解:x =-17.(2)2x +13-x +26=1;解:x =2.(3)3x -2x -12=2-x -25.解:x =1922.2.k 取何值时,代数式k +13的值比3k +12的值小1?解:k +13=3k +12-1,k =57.活动3 课堂小结1.去分母解一元一次方程时要注意什么?2.去分母解一元一次方程时,在方程两边同时乘以各分母最小公倍数的目的是什么?3.4 一元一次方程模型的应用 第1课时 和、差、倍、分问题1.掌握建立一元一次方程模型解应用题的方法步骤,能列方程解决简单的和、差、倍、分问题.(重难点) 2.通过列方程解应用题,培养分析问题,解决实际问题的能力.3.通过列方程解应用题,体会代数方法的优越性,理解列方程解决问题是数学联系实际的重要方面.阅读教材P 98~99,完成下列问题.(一)知识探究1.和、差、倍、分问题寻找相等关系时:抓住关键词列方程,常见的关键词有多、少、和、差、不足、剩余以及倍,增长率等.2.运用一元一次方程模型解决实际问题的步骤为:实际问题――→分析等量关系,设未知数建立方程模型―→解方程―→检验解的合理性.(二)自学反馈1.已知甲数是乙数的3倍多12,甲乙两数的和是60,求乙数.解:12.2.在甲处劳动的有27人,在乙处劳动的有19人,现调20人去支援,使甲处人数为乙处人数的两倍,应调往甲、乙两处各多少人?解:17人,3人.活动1 小组讨论例 某房间里有四条腿的椅子和三条腿的凳子共16个, 如果椅子腿数与凳子腿数的和为60条,有几张椅子和几条凳子?分析 本问题中涉及的等量关系有: 椅子数+凳子数=16,椅子腿数+凳子腿数=60.解:设有x 张椅子,则有(16-x)条凳子. 根据题意,得4x + 3(16-x)=60 . 去括号,得 4x +48-3x =60 . 移项,合并同类项,得 x =12 . 凳子数为16-12=4(条). 答:有12张椅子,4条凳子.活动2 跟踪训练1.甲车队有15辆汽车,乙车队有28辆汽车,现调来10辆汽车分给两个车队,使甲车队车数比乙车队车数的一半多2辆,应分配到甲乙两车队各多少辆车?解:分配到甲车队4辆车,分配到乙车队6辆车. 2.自去年3月西双版纳州启动农村义务教育学生营养改善计划以来,某校根据上级要求配备了一批营养早餐.某天早上七年级(1)班分到牛奶、面包共7件,每件牛奶24元,每件面包16元,共需144元.求这天早上该班分到多少件牛奶,多少件面包?解:该班分配到牛奶4件,面包3件.3.3月12日是植树节,初三年级170名学生去参加义务植树活动.如果男生平均一天能挖树坑3个,女生一天能种树7棵,正好使每个树坑种上一棵树,问该年级的男女各有多少人?解:该年级男生119人,女生51人.活动3 课堂小结谈谈这节课你有什么收获?第2课时 销售问题和本息问题1.学会列一元一次方程解决销售问题和储蓄问题.(重难点)2.培养运用代数方法解决实际问题的能力,掌握解题技巧和能力.(重难点)3.充分感受到用代数方法解应用题的优越性,从而提高学习数学的趣味性,培养正确思考,认真分析的良好习惯.阅读教材P 99~100,完成下列问题. (一)知识探究1.利润=售价-进价,售价=标价×折数10,利润率=利润÷成本×100%.2.利息=本金×利率×期数;本息和=本金+利息.(二)自学反馈1.某商店若将某商品按标价的八折出售,则此时该商品的利润率是10%,已知该商品的进价是1 000元,求该商品的标价.解:设该商品的标价是x 元,依题意,得 0.8x -1 000=1 000×10%.解得x =1 375.答:该商品的标价是1 375元.2.小明的爸爸为他存了一个三年期的教育储蓄,开始存入5 000元,三年后得到本息和5 405元,则这个三年期的教育储蓄的年利率为多少?解:设这个三年期的教育储蓄的年利率为x ,依题意,得5 000+3×5 000x =5 405. 解得x =0.027.0.027×100%=2.7%.答:这个三年期的教育储蓄的年利率为2.7%.活动1 小组讨论例1 某商店若将某型号彩电按标价的八折出售,则此时每台彩电的利润率是5%. 已知该型号彩电的进价为每台4 000元,求该型号彩电的标价.分析:本问题中涉及的等量关系有:售价-进价=利润. 解:设每台彩电标价为x 元,根据等量关系,得0.8x -4 000=4 000×5%. 解得x =5 250.答:该型号彩电标价为每台5 250元.例2 2016年10月1日,杨明将一笔钱存入某银行,定期3年,年利率是5%. 若到期后取出,他可得本息和23 000元,求杨明存入的本金是多少元.分析:顾客存入银行的钱叫本金,银行付给顾客的酬金叫利息.利息=本金×年利率×年数.本问题中涉及的等量关系有:本金 + 利息=本息和.解:设杨明存入的本金是 x 元,根据等量关系,得 x +3×5%x =23 000, 化简,得 1.15x =23 000.解得 x =20 000.答:杨明存入的本金是20 000元. 活动2 跟踪训练1.某人把2 000元作为教育储蓄存入银行,年利率为2.88%,到期时共得到利息345.6元(不扣税),他一共存了多少年?解:6年.2.某商品的进价是1 000元,售价为1 500元,由于情况不好,商店决定降价出售,但又要保证利润率不低于5%,那么商店可降多少元出售此商品?解:最多可降价450元出售.3.某商场将某种DVD产品按进价提高35%,然后打出“九折酬宾,外送50元打的费”的广告,结果每台DVD 仍获利208元,则每台DVD的进价是多少元?解:每台DVD进价1 200元.活动3课堂小结谈谈这节课你有什么收获?第3课时行程问题1.通过探究,学会列一元一次方程解决行程问题中的相遇问题和追及问题.(重难点)2.通过列方程解应用题培养学生运用代数方法解决实际问题的能力,掌握解题技巧.(重难点)阅读教材P101~102,完成下列问题.(一)知识探究1.速度×时间=路程.2.相遇问题(甲、乙相向而行)的相等关系是:甲走的路程+乙走的路程=全路程.3.追及问题(甲、乙同向而行,同地不同时)的相等关系是:甲的时间=乙的时间-时间差;甲的路程=乙的路程.4.追及问题(同向而行,同时不同地)的相等关系是:甲的时间=乙的时间;甲走的路程-乙走的路程=原来甲、乙相距的路程.(二)自学反馈1.两地相距500米,小红和小明同时从两地相向而行,小红每分钟行60米,小明每分钟行65米,几分钟相遇?(B)A.3 B.4C.5 D.62.甲乙两人在相距12千米的A,B两地同时出发,同向而行.甲步行每小时行4千米,乙骑车在后面,每小时速度是甲的3倍.几小时后乙能追上甲?解:设x小时后乙追上甲,依题意,得3×4x-4x=12.解得x=1.5.答:1.5小时后乙追上甲.活动1小组讨论例小明与小红的家相距20 km,小明从家里出发骑自行车去小红家,两人商定小红到时候从家里出发骑自行车去接小明. 已知小明骑车的速度为13 km/h,小红骑车的速度是12 km/h.(1)如果两人同时出发,那么他们经过多少小时相遇?(2)如果小明先走30 min,那么小红骑车要走多少小时才能与小明相遇?分析:由于小明与小红都从家里出发,相向而行,所以相遇时,他们走的路程的和等于两家之间的距离.不管两人是同时出发,还是有一人先走,都有小明走的路程+小红走的路程=两家之间的距离(20 km).(1)如果两人同时出发,如图所示(2)如果小明先走30 m in,如图所示解:(1)设小明与小红骑车走了x h后相遇,则根据等量关系,得13x +12x=20 .解得x=0.8 .答:经过0.8 h他们两人相遇.(2)设小红骑车走了t h后与小明相遇,则根据等量关系,得13(0.5 +t)+12t=20 .解得t=0.54 .答:小红骑车走0.54 h后与小明相遇.活动2跟踪训练1.王丽要从自己家骑自行车到外婆家,如果她的速度为9 km/h,那么到预定时间离外婆家还有1 km,如果她的速度为12 km/h,那么比预定时间少用10 min就可到外婆家,求预定时间和王丽家到外婆家的路程.解:预定时间为60 min;到外婆家的路程为10 km.2.田径场周长为400米,小明跑步的速度是爷爷的53倍,他们从同一起点沿跑道的同一方向同时出发,5 min后小明第一次追上了爷爷,求小明和爷爷跑步的速度.解:小明跑步的速度为200米/分,爷爷跑步的速度为120米/分.活动3课堂小结谈谈这节课你有什么收获?第4课时分段计费问题和方案问题1.通过探究,学会列一元一次方程解决分段计费、间隔问题及方案决策问题.(重难点)2.培养运用代数方法解决实际问题的能力,掌握解题技巧.(重难点)3.增强节约用水、节约资源的意识.阅读教材P103~104,完成下列问题.自学反馈1.为了节约用电,某地规定用电不超过140度,按每度0.57元收费;如果超过140度,超过部分按每度0.68元收费.小李家7月份的电费平均每度为0.60元,求他家7月份用电多少度.解:192.5.2.某市乘公交车(非空调)每次需投币1.5元或者购买IC卡,每次刷卡扣款1.35元,但办理IC卡时需付工本费15元.问需乘坐公交车多少次时两种收费方式的收费一样?当超过这个次数后哪种收费方式较合算?解:100次,购买IC卡合算.活动1小组讨论例1为鼓励居民节约用水,某市出台了新的家庭用水收费标准,规定:所交水费分为标准内水费与超标部分水费两部分,其中标准内水费为1.96 元/t,超标部分水费为2.94元/t. 某家庭6月份用水12 t,需交水费27.44元.求该市规定的家庭月标准用水量.解:由于1.96×12=23.52(元),小于27.44元,因此所交水费中含有超标部分的水费,即月标准内水费+超标部分的水费=该月所交水费.设家庭月标准用水量为x t,根据等量关系,得1.96x +(12-x)×2.94=27.44.解得x=8 .因此,该市家庭月标准用水量为8 t.例2现有树苗若干棵,计划栽在一段公路的一侧,要求路的两端各栽1棵,并且每2棵树的间隔相等. 方案一:如果每隔5 m栽1棵,那么树苗缺21棵;方案二:如果每隔5.5 m栽1棵,则树苗正好栽完. 根据以上方案,请算出原有树苗的棵数和这段路的长度.分析:观察下面植树示意图,想一想:(1)相邻两树的间隔长与应植树的棵数有什么关系?(2)相邻两树的间隔长、应植树棵数与路长有怎样的数量关系?设原有树苗x 棵,由题意可得下表:方案间隔长应植树数路长一 5 x+21 5(x+21-1)二 5.5 x 5.5(x-1)本题中涉及的等量关系有:方案一的路长=方案二的路长解:设原有树苗x棵,根据等量关系,得5(x+21-1)=5.5(x-1) ,即5(x+20)=5.5(x-1).化简,得-0.5x=-105.5.解得x=211.因此,这段路长为5×(211+20)=1 155(m).答:原有树苗211棵,这段路的长度为1 155 m.活动2跟踪训练1.你坐过出租车吗?请你帮小明算一算.杭州市出租车收费标准是:起步价(3千米以内)10元,超过3千米的部分每千米1.20元,小明乘坐了x(x>3)千米的路程.(1)请写出他应付费用的表达式;解:10+1.2(x-3).(2)若他支付的费用是23.2元,你能算出他乘坐的路程吗?解:14.2.某厂招聘运输工,有两种方法来结算工资,一种是每月基本工资300元,每运1吨货给15元;另一种是没有基本工资,每运1吨货给20元.问每月运多少吨货时两种结算方法给的工资一样多?如果某工人每月可运货70吨,那么用哪种结算方法可多拿工资?解:60吨,用第二种结算方法可多拿工资.活动3课堂小结本课时主要学习了哪些知识与方法?有何收获和感悟?还有哪些疑惑?。
课题:《一元一次方程》小结与复习(2)教学目标1.在具体情境中会解一元一次方程。
2.能够根据具体问题中的数量关系,列出方程体会方程是刻画现实世界的一个有效的数学模型。
重点:一元一次方程的算法.难点:找出等量关系,建立方程模型.教学过程一、知识基础回顾:(出示ppt课件)用一元一次方程解决实际问题的一般步骤审:分析题中已知什么,求什么.有哪些事物在哪些方面产生关系。
找:一个相等关系.(和/倍/不同方案间不变量的相等)(关键) 设:设未知数(直接设,间接设),包括单位名称.列:把相等关系中各个量转化成代数式,从而列出方程. (重点) 解:解方程,求出未知数的值(x=a).代入方程检验。
答:检验所求解是否符合题意,写出答案。
二、合作探究,解决下列情境问题:(出示ppt课件)今天是小新妈妈的生日,于是清早爸爸让小新去买一些生日蜡烛。
1、已知小新与妈妈的年龄和是55岁,妈妈的年龄比小新的年龄的3倍小5岁,那么小新得买多少根蜡烛才刚刚好呢?等量关系:1、妈妈的年龄+小新的年龄=55岁2、妈妈的年龄=小新的年龄×3-5答:小新得买40根蜡烛才刚刚好。
2、(妈妈过生日,小新准备去银行拿出自己的压岁钱给妈妈买一份礼物。
)小新的压岁钱已存了1年,已知银行的年利率为1.4%,这次小新共拿出202.8元,你能知道小新存入的压岁钱是多少吗?等量关系:本息和=本金+利息答:小新存入压岁钱为200元。
3、(来到商场,小新决定给妈妈买一件她最喜爱的毛衣.)商场正在搞活动,为了吸引消费者,商场将进价为80元的毛衣按标价8折销售,仍可获20元的利润,你能说出毛衣的标价吗?小新买毛衣用去多少元。
等量关系:售价-进价=利润标价×打折数=售价答:毛衣的标价为125元。
小新买毛衣用去125×0.8=100元。
4、(在回家途中,小新心想妈妈平时最喜欢喝红酒了,就顺道买两瓶红酒吧!)到家后,爸爸问起红酒多少钱一瓶时,小新愣住了,买酒时忘问了,他只记得:蜡烛是0.2元/支,共用去八元钱,口袋里还剩下40.8元,你能帮助小新说出红酒每瓶的价格吗?等量关系:买蜡烛的钱+买毛衣的钱+2瓶红酒的钱+剩余40.8=202.8答:红酒每瓶27元。
湘教版数学七年级上册第三章《一元一次方程》复习教学设计一. 教材分析湘教版数学七年级上册第三章《一元一次方程》复习教学设计,主要是对一元一次方程的概念、解法以及应用进行复习。
本章内容是初中学段数学的基础知识,对于学生来说,掌握一元一次方程的解法及其应用对于后续学习有着重要的意义。
二. 学情分析学生在之前的学习中,已经初步掌握了一元一次方程的解法,但部分学生对于概念的理解不够清晰,解题方法不够熟练,需要通过复习来加强理解。
同时,学生对于实际应用题的解决能力有待提高,需要通过复习来加强应用能力的培养。
三. 教学目标1.理解一元一次方程的概念,掌握一元一次方程的解法。
2.能够运用一元一次方程解决实际问题,提高学生的应用能力。
3.通过复习,提高学生的数学思维能力,培养学生的逻辑思维。
四. 教学重难点1.一元一次方程的概念及其解法。
2.一元一次方程在实际问题中的应用。
五. 教学方法采用讲解法、案例分析法、小组讨论法、练习法等教学方法,结合多媒体教学手段,以提高学生的学习兴趣,提高学习效果。
六. 教学准备1.教学课件:制作一元一次方程的复习课件,包括概念、解法、应用等内容。
2.教学案例:准备一些实际问题,用于引导学生运用一元一次方程解决实际问题。
3.练习题:准备一些一元一次方程的练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)通过提问方式引导学生回顾一元一次方程的概念,激发学生的学习兴趣。
2.呈现(15分钟)呈现一元一次方程的解法,通过讲解和示例,让学生明确一元一次方程的解法步骤。
3.操练(15分钟)让学生分组讨论,互相解答练习题,巩固一元一次方程的解法。
4.巩固(10分钟)讲解练习题的答案,分析解题过程中出现的问题,引导学生总结解题方法。
5.拓展(10分钟)让学生运用一元一次方程解决实际问题,培养学生的应用能力。
6.小结(5分钟)对本节课的内容进行总结,强调一元一次方程的概念和解法。
7.家庭作业(5分钟)布置一些一元一次方程的练习题,要求学生回家后自主完成。
第3章 一元一次方程小结与复习一、等式的概念和性质1.等式的概念,用等号“=”来表示相等关系的式子,叫做等式. 在等式中,等号左、右两边的式子,分别叫做这个等式的左边、右边.等式可以是数字算式,可以是公式、方程,也可以是用式子表示的运算律、运算法则. 2.等式的性质等式的性质1:等式两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式.若a b =,则a m b m ±=±;等式的性质2:等式两边都乘以(或除以)同一个数(除数不能是0)或同一个整式,所得结果仍是等式.若a b =,则am bm =,a b mm=(0)m ≠.注意:(1)在对等式变形过程中,等式两边必须同时进行.即:同时加或同时减,同时乘以或同时除以,不能漏掉某一边. (2)等式变形过程中,两边同加或同减,同乘或同除以的数或整式必须相同.(3)在等式变形中,以下两个性质也经常用到:①等式具有对称性,即:如果a b =,那么b a =.②等式具有传递性,即:如果a b =,b c =,那么a c =. 二、方程的相关概念1.方程,含有未知数的等式叫作方程. 注意:定义中含有两层含义,即:方程必定是等式,即是用等号连接而成的式子;方程中必定有一个待确定的数即未知的字母.二者缺一不可.2.方程的解 使方程左、右两边相等的未知数的值,叫做方程的解. 3.解方程 求得方程的解的过程.注意:解方程与方程的解是两个不同的概念,后者是求得的结果,前者是求出这个结果的过程.三、一元一次方程的定义1.一元一次方程的概念 只含有一个未知数,并且未知数的次数是1的方程叫做一元一次方程.2.一元一次方程的形式标准形式:0ax b +=(其中0a ≠,a ,b 是已知数)的形式叫一元一次方程的标准形式.最简形式:方程ax b =(0a ≠,a ,b 为已知数)叫一元一次方程的最简形式.注意:(1)任何一元一次方程都可以转化为最简形式或标准形式,所以判断一个方程是不是一元一次方程,可以通过变形为最简形式或标准形式来验证.如方程22216x x x ++=-是一元一次方程.如果不变形,直接判断就出会现错误.(2)方程ax b =与方程(0)ax b a =≠是不同的,方程ax b =的解需要分类讨论完成. 四、一元一次方程的解法 解一元一次方程的一般步骤(1)去分母:在方程的两边都乘以各分母的最小公倍数. 注意:不要漏乘不含分母的项,分子是个整体,含有多项式时应加上括号.(2)去括号:一般地,先去小括号,再去中括号,最后去大括号. 注意:不要漏乘括号里的项,不要弄错符号.(3)移项:把含有未知数的项都移到方程的一边,不含未知数的项移到方程的另一边. 注意:①移项要变号;②不要丢项.(4)合并同类项:把方程化成ax b =的形式. 注意:字母和其指数不变. (5)系数化为1:在方程的两边都除以未知数的系数a (0a ≠),得到方程的解bx a=. 注意:不要把分子、分母搞颠倒.五、一元一次方程模型的应用 1.运用一元一次方程模型解决实际问题的步骤:分析等量关系,设未知数 建立方程模型 解方程 检验解的合理性 2. 常见实际问题的类型 (1)和、差、倍、分问题; (2)利润、利息问题; (3)行程问题;(4)分段计费和方案问题. 练习1、等式的概念和性质 1.下列说法不正确的是( )A .等式两边都加上一个数或一个等式,所得结果仍是等式.B .等式两边都乘以一个数,所得结果仍是等式.C .等式两边都除以一个数,所得结果仍是等式.D .一个等式的左、右两边与另一个等式的左、右两边分别相加,所得结果仍是等式. 2.根据等式的性质填空.(1)4a b =-,则 a b =+; (2)359x -=,则39x =+ ;(3)683x y =+,则x = ; (4)122x y =+,则x = .练习2、方程的相关概念1.列各式中,哪些是等式?哪些是代数式,哪些是方程?①34a +;②28x y +=;③532-=;④1x y ->;⑤61x x --;⑥83x-=;⑦230y y +=;⑧2223a a -;⑨32a a <-. 2.判断题.(1)所有的方程一定是等式. ( ) (2)所有的等式一定是方程. ( ) (3)241x x -+是方程. ( ) (4)51x -不是方程.( ) (5)78x x =不是等式,因为7x 与8x 不是相等关系. ( ) (6)55=是等式,也是方程.( )(7)“某数的3倍与6的差”的含义是36x -,它是一个代数式,而不是方程. ( ) 练习3、一元一次方程的定义1.在下列方程中哪些是一元一次方程?哪些不是?说明理由: (1)3x+5=12; (2)31+x +2x =5; (3)2x+y=3; (4)y 2+5y -6=0; (5)x3-x =2.2.已知2(1)(1)30k x k x -+-+=是关于x 的一元一次方程,求k 的值.3.已知方程()7421=+--m x m 是关于x 的一元一次方程,则m=_________4.已知方程1(2)40a a x--+=是一元一次方程,则a = ;x = .练习4、一元一次方程的解与解法1)一元一次方程的解 一)、根据方程解的具体数值来确定 1.若关于x 的方程a xx -=+332的解是2x =-,则代数式21aa -的值是_________。
2.若3x =是方程123x b -=的一个解,则b = . 3.某同学在解方程513x x -=Θ+,把Θ处的数字看错了,解得43x =-,该同学把Θ看成了 .二)、根据方程解的个数情况来确定关于x 的方程43mx x n +=-,分别求m ,n 为何值时,原方程:(1)有唯一解;(2)有无数多解;(3)无解.2.已知关于x 的方程2(1)(5)3a x a x b -=-+有无数多个解,那么a = ,b = .3.已知方程32ax x b +=-有两个不同的解,试求1999()a b +的值.三)、根据方程定解的情况来确定1.若a ,b 为定值,关于x 的一元一次方程2236ka x bx--=,无论k 为何值时,它的解总是1x =,求a 和b 的值. 2.当a 取符合30na +≠的任意数时,式子23ma na -+的值都是一个定值,其中6m n -=,求m ,n 的值.四)、根据方程整数解的情况来确定1.已知m 为整数,关于x 的方程6x mx =-的解为正整数,求m 的值.2.已知关于x 的方程9314x kx -=+有整数解,那么满足条件的所有整数k =3.若方程25514228x xa -=+有一个正整数解,则a 取的最小正数是多少?并求出相应方程的解.五)、根据方程公共解的情况来确定1.若()40k m x ++=和(2)10k m x --=是关于x 的同解方程,则2km-的值是 . 2.已知关于x 的方程32()43a x x x ⎡⎤--=⎢⎥⎣⎦,和方程3151128x a x +--=有相同的解,求这个相同的解.3.已知关于x 的方程(3)81a b x b -=-仅有正整数解,并且和关于x 的方程(3)81b a x a -=-是同解方程.若0a ≥,220a b +≠,求出这个方程可能的解.2)一元一次方程的解法 一)、基本类型的一元一次方程的解法 1.解方程:(1)2(43)56(32)2(1)x x x --=--+ (2)41x 5+-612-x =1-123x-(3)112132132xx -+-=二)、分式中含有小数的一元一次方程的解法 1.解方程:(1)7110.2510.0240.0180.012x x x --+=- (2)10.50.210.30.30.30.02x x x---=(3)0.10.020.10.10.30.0020.05x x -+-= (4)42 1.730%50%x x -+-=三)、含有多层括号的一元一次方程的解法1.解方程:(1)11133312242y ⎧⎫⎛⎫---=⎨⎬ ⎪⎝⎭⎩⎭ (2)1112{[(4)6]8}19753x ++++= (3)1112(1)(1)223x x x x ⎡⎤---=-⎢⎥⎣⎦四)、一元一次方程的技巧解法1.解方程:(1)1123(23)(32)11191313x x x -+-+= (2)2009122320092010x x x+++=⨯⨯⨯(3) (200613)352003200520052007x x x x++++=⨯⨯⨯⨯(4)20181614125357911x x x x x -----++++=一、填空题.(每小题3分,共24分)1.已知4x2n-5+5=0是关于x 的一元一次方程,则n=_______. 2.若x=-1是方程2x-3a=7的解,则a=_______. 3.当x=______时,代数式 x-1和 的值互为相反数.4.已知x 的 与x 的3倍的和比x 的2倍少6,列出方程为________. 5.在方程4x+3y=1中,用x 的代数式表示y ,则y=________.6.某商品的进价为300元,按标价的六折销售时,利润率为5%,则商品的标价为____元. 7.已知三个连续的偶数的和为60,则这三个数是________.8.一件工作,甲单独做需6天完成,乙单独做需12天完成,若甲、乙一起做,•则需________天完成.二、选择题.(每小题3分,共30分)9.方程2m+x=1和3x-1=2x+1有相同的解,则m 的值为( ). A .0 B .1 C .-2 D .- 10.方程│3x│=18的解的情况是( ). A .有一个解是6 B .有两个解,是±6 C .无解 D .有无数个解11.若方程2ax-3=5x+b 无解,则a ,b 应满足( ). A .a≠ ,b≠3 B.a= ,b=-3 C .a≠ ,b=-3 D .a= ,b≠-3 12.解方程20.250.1x0.10.030.02x -+=时,把分母化为整数,得( )。
A 、200025101032x x -+=B 、20025100.132x x -+=C 、20.250.10.132x x -+=D 、20.250.11032x x -+=13.在800米跑道上有两人练中长跑,甲每分钟跑300米,乙每分钟跑260米,•两人同地、同时、同向起跑,t 分钟后第一次相遇,t 等于( ). A .10分 B .15分 C .20分 D .30分14.某商场在统计今年第一季度的销售额时发现,二月份比一月份增加了10%,三月份比二月份减少了10%,则三月份的销售额比一月份的销售额( ). A .增加10% B .减少10% C .不增也不减 D .减少1%15.在梯形面积公式S= (a+b )h 中,已知h=6厘米,a=3厘米,S=24平方厘米,则b=( •)厘米.A .1B .5C .3D .416.已知甲组有28人,乙组有20人,则下列调配方法中,能使一组人数为另一组人数的一半的是( ).A .从甲组调12人去乙组B .从乙组调4人去甲组C .从乙组调12人去甲组D .从甲组调12人去乙组,或从乙组调4人去甲组 17.足球比赛的规则为胜一场得3分,平一场得1分,负一场是0分,•一个队打了14场比赛,负了5场,共得19分,那么这个队胜了( )场. A .3 B .4 C .5 D .618.如图所示,在甲图中的左盘上将2个物品取下一个,则在乙图中右盘上取下几个砝码才能使天平仍然平衡?( )A .3个B .4个C .5个D .6个三、解答题.(19,20题每题6分,21,22题每题7分,23,24题每题10分,共46分) 19.解方程:2(x -3)+3(2x -1)=5(x +3)20.解方程:2233554--+=+-+x x x x21.一个三位数,百位上的数字比十位上的数大1,个位上的数字比十位上数字的3倍少2.若将三个数字顺序颠倒后,所得的三位数与原三位数的和是1171,求这个三位数.22.据了解,火车票价按“ ”的方法来确定.已知A 站至H 站总里程数为1500千米,全程参考价为180元.下表是沿途各站至H站的里程数:车站名 A B C D E F G H各站至H站里程数(米) 1500 1130 910 622 402 219 72 0例如:要确定从B站至E站火车票价,其票价为=87.36≈87(元).(1)求A站至F站的火车票价(结果精确到1元).(2)旅客王大妈乘火车去女儿家,上车过两站后拿着车票问乘务员: “我快到站了吗?”乘务员看到王大妈手中的票价是66元,马上说下一站就到了.请问王大妈是在哪一站下的车(要求写出解答过程).23.某公园的门票价格规定如下表:购票人数 1~50人 51~100人 100人以上票价 5元 4.5元 4元某校初一甲、乙两班共103人(其中甲班人数多于乙班人数)去游该公园,如果两班都以班为单位分别购票,则一共需付486元.(1)如果两班联合起来,作为一个团体购票,则可以节约多少钱?(2)两班各有多少名学生?(提示:本题应分情况讨论)24.赣州市出租车收费标准是起步价为5元,3千米后的价格为1.5元/千米,不足1千米的以1千米计算.(1)若行驶x千米(x>3),试用式子表示应收多少的车费?(2)我乘坐出租车行驶5.8千米,应付多少元?(3)如果我付12.5元,那么出租车行驶了大约多少路程?25.甲、乙两件服装的成本共500元,商店老板为获取利润,决定将甲服装按50%的利润定价,乙服装按40%的利润定价.在实际出售时,应顾客要求,两件服装均按9折出售,这样商店共获利157元,求甲、乙两件服装的成本各是多少元?26.某企业生产一种产品,每件成本为400元,销售价为510元,本季度销售了m件,为进一步扩大市场,该企业决定在降低销售价的同时降低成本,经过市场调研,预测下季度这种产品每件销售价降低4%,销售将提高10%,要使销售利润(销售利润=销售价﹣成本价)保持不变,该产品每件的成本价应降低多少元?如有侵权请联系告知删除,感谢你们的配合!。