北师大版九年级数学上册教案《成比例线段》
- 格式:docx
- 大小:895.72 KB
- 文档页数:7
北师大版九年级上册1成比例线段第四章:成比例线段教学设计一、教学背景针对应用题,学生往往会找到一些比例关系,但是对于成比例线段的理解较为模糊,因此需要对成比例线段进行系统的教学。
本节课作为第四章,是对正式学习成比例线段的教学内容,有利于为进一步学习成比例图和相似三角形打下坚实基础。
二、教学目标1.掌握成比例线段的基础概念。
2.理解成比例线段的性质及应用。
3.能够解决简单的成比例线段应用题。
三、教学重点1.成比例线段的定义和性质。
2.应用成比例线段解决实际问题。
四、教学难点1.运用已知比例关系判断成比例线段。
2.解决实际问题中不确定比例关系的选取。
五、教学方法1.归纳法、演绎法相结合。
2.经验法。
3.体验法。
4.问题解决法。
5.课堂讨论法。
1. 导入1.通过赛车主题视频引入,游览一下汽车比例,引出比例的概念。
2.利用“男女身高比例,找寻其他生活中的比例关系”的问题引导学生思考比例关系的应用。
2. 新课讲解1.定义和性质:–成比例线段的定义:同一直线上的任意两个线段长度之比相等,则这两个线段互为成比例线段。
–成比例线段的性质:若两组成比例线段分别有两个相等的线段,则这两组成比例线段相等。
2.运用成比例线段解决实际问题:–通过案例让学生感受成比例线段在实际生活中的应用。
3. 练习1.针对成比例线段的比例关系,让学生练习选出正确的比例关系。
2.列举一些典型的应用题,带领学生掌握成比例线段的解决方法。
4. 总结与归纳总结成比例线段的概念和性质,以及应用成比例线段解决实际问题的方法。
5. 课后拓展1.钻研成比例线段的不同应用场景。
2.搜集实际问题,练习运用成比例线段。
视频、多媒体课件、平面文件。
八、教学评价1.每节课后留作业并进行答疑。
2.随堂测试,检查学生的掌握情况。
九、教学参考1.《北师大版九年级数学上册》。
2.《试论成比例线段及其在初中数学教学中的应用》。
数学北师大版九年级上册《4.1 成比例线段》教案第四章图形的相似4.1 成比例线段第1课时一、教学目标1.结合现实情境感受学习线段的比的必要性,借助几何直观了解线段的比和成比例线段.2.掌握比例的性质.3.掌通过现实情境,进一步发展从数学的角度发现问题、提出问题、解决问题的能力,培养数学应用意识,体会数学与自然、社会的密切联系.二、教学重点及难点重点:比例的基本性质.难点:比例的基本性质的运用.三、教学用具多媒体课件、直尺或三角板.四、相关资源《生活中的相似》图片.五、教学过程【情境引入】在实际生活中,我们经常会看到许多形状相同的图片,这些形状相同的图片之间有什么关系呢?带着这个问题让我们开始今天的学习吧!师生活动:教师展示图片并出示问题,学生思考、讨论.设计意图:通过生活中的图片引入本课,激发学生学习本节课的兴趣.【探究新知】想一想你能在下面这些图形中找出形状相同的图形吗?这些形状相同的图形有什么不同?用什么刻画、描述形状相同图形的不同点呢?师生活动:教师出示问题,学生思考、讨论,教师分析、引导学生回答.答:第一个图形和最后一个图形形状相同,第三个图形和第六个图形形状相同,第四个图形和第五个图形形状相同;这些形状相同的图形的大小不同.对于形状相同而大小不同的两个图形,我们可以用相应线段长度的比来描述它们的大小关系.设计意图:让学生亲自观察、分析、探究,培养学生的观察能力,分析和解决问题的能力.形状相同而大小不同的两个平面图形,较大的图形可以看成是由较小的图形“放大”得到的,较小的图形可以看成是由较大的图形“缩小”得到的.在这个过程中,两个图形上的相应线段也被“放大”或“缩小”.如果选用同一个长度单位量得两条线段AB,CD的长度分别是m,n,那么这两条线段的比就是它们长度的比,即AB∶ CD=m∶ n,或写成.其中,线段AB,CD分别叫做这个线段比的前项和后项.如果把表示成比值k,那么,或AB=k·CD.两条线段的比实际上就是两个数的比.思考如图,五边形ABCDE与五边形A'B'C'D'E'形状相同,AB=5 cm,A'B'=3 cm,线段AB与线段A'B'的比是多少?师生活动:教师出示问题,学生思考,教师找学生代表回答.解:AB∶A'B'=5∶3,就是线段AB与线段A'B'的比,这个比值刻画了这两个五边形的大小关系.设计意图:通过本题让学生及时巩固所学概念.做一做如图,设小方格的边长为1,四边形ABCD与四边形EFGH 的顶点都在格点上,那么AB,AD,EF,EH的长度分别是多少?分别计算,,,的值,你发现了什么?师生活动:教师出示问题,学生思考、计算,教师找学生代表回答.解:AB=8,AD=,EF=4,EH=;,,,,发现:,.在四条线段a,b,c,d中,如果a与b的比等于c与d的比,即,那么这四条线段a,b,c,d叫做成比例线段,简称比例线段.如上题中,AB,EF,AD,EH是成比例线段,AB,AD,EF,EH也是成比例线段.设计意图:通过“做一做”让学生发现规律,从而引出成比例线段的概念.议一议如果a,b,c,d四个数成比例,即,那么ad=bc吗?反过来,如果ad=bc(a,b,c,d都不等于0),那么a,b,c,d四个数成比例吗?师生活动:教师出示问题,学生思考、讨论,教师分析、引导.解:如果,那么ad=bc;如果ad=bc(a,b,c,d都不等于0),那么a,b,c,d四个数成比例,即.理由:因为,所以b,d均不为0.两边同时乘以bd,得ad=bc.或设,则a=bk,c=dk.因此,ad=(bk)d=b(dk)=bc.因为ad=bc,且a,b,c,d都不等于0,两边同除以bd,得,即a,b,c,d四个数成比例.注意:a,b,c,d四个数成比例,它们是有顺序的,它们对应的关系只能是或a∶b=c∶d.设计意图:通过“议一议”引出比例线段的基本性质.【典例精析】例如图,一块矩形绸布的长AB=a m,宽AD=1 m,按照图中所示的方式将它裁成相同的三面矩形彩旗,且使裁出的每面彩旗的宽与长的比与原绸布的宽与长的比相同,即,那么a的值应当是多少?师生活动:教师出示例题,学生尝试完成,教师给出规范的解题过程.解:根据题意可知,AB=a m,AE=a m,AD=1 m.由,得,即.∶a2=3.开平方,得(舍去).设计意图:让学生进一步加深对比例的基本性质的理解,培养学生分析问题、解决问题的意识和能力.【课堂练习】1.下列各组的四条线段中,成比例的线段是().A.1 cm,2 cm,3 cm,4 cm B.1 cm,2 cm,4 cm,8 cm C.cm,cm,cm,1 cm D.2 cm,3 cm,4 cm,5 cm2.下列四组线段中,能成比例的是().A.3,6,7,9 B.3,6,9,18 C.2,5,6,8 D.1,2,3,43.若a=0.2 m,b=4 cm,则线段a∶b=________.4.a,b,c,d是成比例线段,其中a=3 cm,b=2 cm,c=6 cm,求线段d的长.5.如图,在∶ABC中,D,E分别是AB和AC上的点,AB=12 cm,AE=6 cm,EC=5 cm,且,求AD的长.师生活动:教师找几名学生板演,讲解出现的问题.参考答案1.B.2.B.3.5∶1.4.解:∶a,b,c,d是成比例线段,∶,即.∶d=4 cm.5.cm.设计意图:让学生巩固所学知识.六、课堂小结1.两条线段的比如果选用同一个长度单位量得两条线段AB,CD的长度分别是m,n,那么这两条线段的比就是它们长度的比,即AB∶CD=m∶n,或写成.其中,线段AB,CD分别叫做这个线段比的前项和后项.2.成比例线段在四条线段a,b,c,d中,如果a与b的比等于c与d的比,即,那么这四条线段a,b,c,d叫做成比例线段,简称比例线段.注意:a,b,c,d成比例时,它们是有顺序的,它们对应的关系只能是或a∶b=c∶d.3.比例的基本性质如果,那么ad=bc;如果ad=bc(a,b,c,d都不等于0),那么.师生活动:教师引导学生归纳、总结本节课所学内容.设计意图:帮助学生养成系统整理知识的学习习惯,加深认识,深化提高,形成学生自己的知识体系.七、板书设计4.1 成比例线段(1)1.两条线段的比2.成比例线段3.比例的基本性质。
《成比例线段》◆学情分析学生的知识技能基础:这节课是“成比例线段”的第二课时,学生已经通过第一节课的学习,观察了大量的图片,列举了许多现实生活中的情境,认识了线段的比的知识,知道了选用同一单位长度量线段的长度,从而求出两条线段的比。
也学会了运用比例线段的基本性质解决实际问题,并通过图片创设的问题情境,重现了现实生活中的比例模型,初步掌握了解决有关比的问题的方法。
在这个基础上,进一步来学习成比例线段的有关性质,学生不会感到陌生,反而容易接受本节课的继续学习。
学生活动经验基础:上一节课,学生已经收集了一些相似图形的图片,如大小不同的两张中国地图、国旗,同底相片等。
已经感受了数学知识源于生活,用于生活。
各小组展示并讨论过线段比的事例,具有了一定的合作交流的基础和能力。
◆教学目标【知识与能力目标】了解线比例线段的基本性质;理解并掌握比例的基本性质及其简单应用;发展学生从数学的角度提出问题、分析问题和解决问题的能力。
【过程与方法目标】经历运用线段的比解决问题的过程,在观察、计算、讨论、想象等活动中获取知识。
【情感态度价值观目标】通过本节课的教学,培养学生的数学应用意识,体会数学与现实生活的密切联系。
【教学重点】理解线段比的概念及其求解。
【教学难点】求线段的比,注意线段长度单位要统一。
课件。
一、情境导入1、看一看,想一想。
这棵大树有多高?小敏思考后,她只用一根卷尺, 测出了大树影子BC,自己的身高A1 B1及影子B1 C1三个数据,然后通过计算,立刻得出了树高AB.你能行吗?这里需要什么知识?【设计意图】:通过实际生活中的例子,让学生在上新课之前就对新的知识产生了浓厚的兴趣。
这样更利于新课的进行。
2、想一想,算一算:这幅图片中的实际自然景观有多大?(已知中国自然景观卫星影像图1:18 700 000)◆教学重难点◆◆课前准备◆◆教学过程为解决这些问题,需要……系统地学习相似图形的一些相关知识。
为此,我们先来学习线段的比。
4.1 成比例线段第1课时 线段的比和比例的基本性质1.了解线段的比和比例线段的概念.2.掌握比例的基本性质,会求两条线段的比,并应用线段的比解决实际问题.(重点)阅读教材P76~79,完成下列内容:(一)知识探究1.线段的比:如果选用同一个长度单位量得两条线段AB ,CD 的长度分别是m ,n ,那么这两条线段的比(ratio)就是它们________的比,即AB ∶CD =m ∶n ,或写成AB CD =m n.其中,线段AB ,CD 分别叫做这个线段比的________和________.如果把m n 表示成比值k ,那么AB CD=k 或AB =k ·CD.两条线段的比实际上就是两个数的比.2.四条线段a ,b ,c ,d 中,如果a 与b 的比等于c 与d 的比,即________,那么这四条线段a ,b ,c ,d 叫做成比例线段,简称________.3.比例的基本性质如果a b =c d,那么ad =________. 如果ad =bc(a ,b ,c ,d 都不等于0),那么a b=________. (二)自学反馈1.下列各组线段(单位:cm)中,成比例线段是( )A .1,2,3,4B .1,2,2,4C .3,5,9,13D .1,2,2,32.把mn =pq 写成比例式,错误的是( )A.m p =q nB.p m =n qC.q m =n pD.m n =p q活动1 小组讨论例 如图,一块矩形绸布的长AB =a m ,宽AD =1 m ,按照图中所示的方式将它裁成相同的三面矩形彩旗,且使裁出的每面彩旗的宽与长的比与原绸布的宽与长的比相同,即AE AD =AD AB,那么a 的值应当是多少?解:根据题意可知,AB =a m ,AE =13a m ,AD =1 m. 由AE AD =AD AB,得 13a 1=1a, 即13a 2=1. ∴a 2=3.开平方,得a =3(a =-3舍去).本例提供了应用比例基本性质的一个具体情境,应注意阅读和理解题意,然后由比例式得到等积式,再通过计算求得结果.易错提示:开平方后求得的结果,需要检验是否符合题意.活动2 跟踪训练1.等边三角形的一边与这边上的高的比是( )A.3∶2B.3∶1C .2∶ 3D .1∶ 32.若四条线段a 、b 、c 、d 成比例,且a =3,b =4,c =6,则d =( )A .2B .4C .4.5D .83.在比例尺为1∶900 000的安徽黄山交通图中,黄山风景区与市政府所在地之间的距离是4 cm ,这两地的实际距离是( )A .2 250厘米B .3.6千米C .2.25千米D .36千米4.A 、B 两地之间的高速公路为120 km ,在A 、B 间有C 、D 两个收费站,已知AD ∶DB =11∶1,AC ∶CD =2∶9,则C 、D 间的距离是________km.5.如图,已知AD DB =AE EC,AD =6.4 cm ,DB =4.8 cm ,EC =4.2 cm ,求AC 的长. 活动3 课堂小结1.线段的比的概念、表示方法;前项、后项及比值k.2.两条线段的比是有序的;与采用的单位无关,但要选用同一长度单位.3.两条线段的比在实际生活中的应用.【预习导学】(一)知识探究1.长度 前项 后项 2.a b =c d 比例线段 3.bc c d(二)自学反馈1.B 2.D【合作探究】活动2 跟踪训练1.C 2.D 3.D 4.905.∵AD DB =AE EC ,∴6.44.8=AE 4.2.解得AE =5.6.∴AC =AE +EC =5.6+4.2=9.8(cm).第2课时 等比性质1.理解并掌握等比性质.(重点)2.运用等比性质解决有关问题.(难点)阅读教材P79~80,自学“例2”,完成下列内容:(一)知识探究等比性质:如果a b =c d =…=m n (b +d +…n ≠0),那么a +c +…+m b +d +…+n=________. 注意在运用等比性质时,前提条件是:分母b +d +…+n ≠0.(二)自学反馈如果a b =c d =52(b +d ≠0),那么a +c b +d=________.活动1 小组讨论例 在△ABC 与△DEF 中,若AB DE =BC EF =CA FD =34,且△ABC 的周长为18 cm ,求△DEF 的周长. 解:∵AB DE =BC EF =CA FD =34, ∴AB +BC +CA DE +EF +FD =AB DE =34. ∴4(AB +BC +CA)=3(DE +EF +FD),即DE +EF +FD =43(AB +BC +CA). 又∵△ABC 的周长为18 cm ,即AB +BC +CA =18 cm ,∴DE +EF +FD =43(AB +BC +CA)=43×18=24(cm), 即△DEF 的周长为24 cm.在应用等比性质时,要抓住题目已知条件:三角形ABC 的周长,即三边之和为18 cm.活动2 跟踪训练1.已知a b =c d =e f=4,且a +c +e =8,则b +d +f 等于( ) A .4 B .8C .32D .22.若a +b c =b +c a =c +a b=k ,且a +b +c ≠0,则k 的值为( ) A .2 B .-1C .2或-1D .不存在3.已知a b =c d =e f =23,则a +e b +f=________. 4.如果a b =c d =e f=k(b +d +f ≠0),且a +c +e =3(b +d +f),那么k =________.5.已知a b =c d =e f =23,b +2d -3f ≠0,求a +2c -3e b +2d -3f的值. 活动3 课堂小结等比性质:如果a b =c d =…=m n (b +d +…n ≠0),那么a +c +…+m b +d +…+n =a b.【预习导学】(一)知识探究 a b(二)自学反馈52【合作探究】活动2 跟踪训练1.D 2.A 3.234.3 5.∵a b =c d =e f =23,b +2d -3f ≠0,∴a b =2c 2d =-3e -3f =23.∵b +2d -3f ≠0,∴a +2c -3e b +2d -3f =23.。
第四章图形的相似4.1成比例线段4.1.1线段的比和比例的基本性质教学目标【知识与技能】1.通过简单实例了解两条线段的比的概念.2.了解比例的基本性质及应用.【过程与方法】经历探索成比例线段的过程,并利用其解决一些简单的问题.【情感态度】通过现实情境,培养应用意识,了解数学、自然、社会的密切联系.【教学重点】成比例线段的基本性质.【教学难点】成比例线段的基本性质.教学过程一、情境导入,初步认识请写出线段AB和CD的比,并讨论线段的比有哪些地方是需要特别留意的?【教学说明】让学生初步了解线段的比就是线段长度的比.让学生在两个实例中理解线段的比要注意以下几点:1.线段的比是正数;2.单位要统一;3.线段的比与线段的长度无关;二、思考探究,获取新知1.由下面的格点图可知,AB A B =_______,BC B C =_______,这样AB A B 与BC B C之间有关系_______.【归纳结论】对于四条线段a 、b 、c 、d ,如果其中两条线段的长度的比等于另外两条线段的比,如a b =d c(或a ∶b =c ∶d ),那么,这四条线段叫做成比例线段,简称比例线段.此时也称这四条线段成比例.【教学说明】从具体的事例中感受线段的成比例.2.如果四条线段a 、b 、c 、d 成比例,即a cb d .那么ad =bc 吗?如果ad =bc ,那么a 、b 、c 、d 成比例吗?【归纳结论】如果a cb d,那么ad=bc.如果ad=bc (a 、b 、c 、d 都不等于0),那么 a c b d .【教学说明】培养学生的自学能力及归纳能力.三、运用新知,深化理解1.一条线段的长度是另一条线段的3倍,则这两条线段的比为3∶1.2.已知3x=4y ,则x y = 43.3.已知四条线段a 、b 、c 、d 的长度,试判断它们是否成比例?(1)a=16cmb=8cm c=5cm d=10cm;(2)a=8cmb=5cm c=6cm d=10cm.分析:(1)a b =2,d c =2,则a b =d c,所以a 、b 、d 、c 成比例.(2)由已知得ab ≠cd ,ac ≠bd ,ad ≠bc ,所以a 、b 、c 、d 四条线段不成比例.4.在比例尺为1∶200的地图上,测得A ,B 两地间的图上距离为4.5cm ,求A ,B 两地间的实际距离.分析:利用比例尺的定义即“ 图上距离比例尺实际距离”列出等量关系式.解:设A 、B 两地间的实际距离为xcm ,则4.51200 x .解得x=900.∴设A 、B 两地间的实际距离为900cm.5.已知a 、b 、c 、d 是成比例线段,且a=3cm ,b=2cm ,c=6cm ,求线段d 的长.分析:由a 、b 、c 、d 是成比例线段得 a c b d,代入计算求出线段d 的长.解:∵a 、b 、c 、d 是成比例线段,∴ a c b d ,即362 d.解得d=4cm.6.已知三条线段的长分别为2、4、8,请你再添上一条线段,使它们成比例,求出所有符合条件的线段长.分析:解:设添加的线段长为x ,当x ≤2时,x ∶2=4∶8,x=1;当2≤x ≤4时,2∶x=4∶8,x=4;当4≤x ≤8时,2∶4=x ∶8,x=4;当x ≥8时,2∶4=8∶x ,x=16.综上,符合条件的线段长可为:1,4,16.【教学说明】本题运用了分类讨论思想求解,解题的关键是找出各种可能的情况.先设要添加的线段长为x ,然后使这四个数各自成比例,再算出x 的值.四、师生互动,课堂小结1.本节课你有哪些收获?2.通过这节课的学习,你还存在哪些疑惑?【教学说明】让学生相互交流后,单独回答、提问.课后作业1.布置作业:教材“习题4.1”中第1题.2.完成练习册中相应练习.教学反思本节的重点是线段的比和比例线段的概念以及比例的性质.虽然小学时已经接触过比例性质的一些知识,但内容比较简单,而本节涉及到的比例基本性质变式较多,容易混淆.所以应多加训练.。
相似图形与成比例线段【学习目标】1、从生活中形状相同的图形的实例中认识图形的相似,理解相似图形概念。
2、了解成比例线段的概念,会确定线段的比。
【学习重点】相似图形的概念与成比例线段的概念。
【学习难点】成比例线段概念。
【学习过程】知识点一:比例线段定义:对于四条线段a、b、c、d,如果其中两条线段的比(即它们长度的比)与另外两条线段的比相等,如果a cb d=,那么就说这四条线段a、b、c、d叫做成比例线段,简称比例线段。
例1:如四条线段的长度分别是4cm、8cm、3cm、6cm判断这四条线段是否成比例?解:练习一:1、线段a、b、c、d的长度分别是2、3、2、6判断这四条线段是否成比例?2、已知A、B两地的实际距离是250m若画在图上的距离是5cm,则图上距离与实际距离的比是___________3、已知线段a=12、b =23+、c=23-、若a cb x=,则x=_________若()0b yyy c=>,则y=__________4、下列四组线段中,不成比例的是()A a=3 b=6 c=2 d=4B a=1 b=2c=3d=6C a=4 b=6 c=5 d=10D a=2b=3c=2 d=6知识点二:比例线段的性质比例性质是根据等式的性质得到的,推理过程如下:(1) 基本性质:如果a c b d=,那么ad bc =(两边同乘bd ,0bd ≠) 在0abcd ≠的情况下,还有以下几种变形b d ac =、a b cd =、c d a b = (2) 合比性质:如果a c b d =,那么a b c d b d±±= (3) 等比性质:如果a c e m b d f n ====()0b d f n ++++≠,那么a c e m ab d f n b ++++=++++例2 填空: 如果23a b =,则a = 2a = 、 a b b += 、 a b b -=练习二:1、已知35a b =,求a b a b +-2、若234a b c ==,则23a b c a++=_________3、已知mx ny =,则下列各式中不正确的是( )A m x n y =B m n y x =C y m x n =D x y n m = 4、已知570x y -=,则x y=_______ 5、已知345x y z ==,求x y z x y z +++-=________。
2023-2024学年北师大版九年级数学上册教案:4.2 平行线分线段成比例一. 教材分析《2023-2024学年北师大版九年级数学上册》第4.2节“平行线分线段成比例”主要介绍了平行线分线段成比例的性质。
通过这一节的学习,学生能够理解并掌握平行线分线段成比例的定理,并能够运用该定理解决实际问题。
本节内容是初中数学的重要知识点,对于学生来说具有较高的难度,需要通过大量的练习来巩固。
二. 学情分析九年级的学生已经掌握了平行线的性质,对于线段的比例也有一定的理解。
但是,将平行线与线段的比例联系起来,对于他们来说还有一定的难度。
因此,在教学过程中,需要通过具体的实例,引导学生理解并掌握平行线分线段成比例的性质。
三. 教学目标1.了解平行线分线段成比例的定理,并能够运用该定理解决实际问题。
2.培养学生的逻辑思维能力和解决问题的能力。
3.提高学生的数学素养,使他们在数学学习上有所突破。
四. 教学重难点1.平行线分线段成比例的定理的理解和运用。
2.如何将平行线与线段的比例联系起来,形成系统性的认识。
五. 教学方法采用问题驱动的教学方法,通过具体的实例,引导学生发现并总结平行线分线段成比例的定理。
同时,结合小组讨论和练习,巩固所学知识,提高学生的实际应用能力。
六. 教学准备1.准备相关的教学材料,如PPT、实例等。
2.准备练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)通过一个实际问题,引导学生思考平行线与线段的比例之间的关系。
例如,假设有一块土地,被两条平行线和一条横线分成四个部分,如何求出每个部分的面积比例。
2.呈现(10分钟)通过具体的实例,呈现平行线分线段成比例的定理。
引导学生发现并总结定理的内容。
3.操练(10分钟)让学生分组讨论,运用平行线分线段成比例的定理解决实际问题。
教师巡回指导,解答学生的疑问。
4.巩固(10分钟)给出一些练习题,让学生独立完成,巩固所学知识。
教师选取部分题目进行讲解,分析解题思路。
《成比例线段》
◆学情分析
学生的知识技能基础:
这节课是“成比例线段”的第二课时,学生已经通过第一节课的学习,观察了大量的图片,列举了许多现实生活中的情境,认识了线段的比的知识,知道了选用同一单位长度量线段的长度,从而求出两条线段的比。
也学会了运用比例线段的基本性质解决实际问题,并通过图片创设的问题情境,重现了现实生活中的比例模型,初步掌握了解决有关比的问题的方法。
在这个基础上,进一步来学习成比例线段的有关性质,学生不会感到陌生,反而容易接受本节课的继续学习。
学生活动经验基础:
上一节课,学生已经收集了一些相似图形的图片,如大小不同的两张中国地图、国旗,同底相片等。
已经感受了数学知识源于生活,用于生活。
各小组展示并讨论过线段比的事例,具有了一定的合作交流的基础和能力。
◆教学目标
【知识与能力目标】
了解线比例线段的基本性质;理解并掌握比例的基本性质及其简单应用;发展学生从数学的角度提出问题、分析问题和解决问题的能力。
【过程与方法目标】
经历运用线段的比解决问题的过程,在观察、计算、讨论、想象等活动中获取知识。
【情感态度价值观目标】
通过本节课的教学,培养学生的数学应用意识,体会数学与现实生活的密切联系。
【教学重点】
理解线段比的概念及其求解。
【教学难点】
求线段的比,注意线段长度单位要统一。
课件。
一、情境导入
1、看一看,想一想。
这棵大树有多高?
小敏思考后,她只用一根卷尺, 测出了大树影子BC,自己的身高A1 B1及影子B1 C1三个数据,然后通过计算,立刻得出了树高AB.你能行吗?这里需要什么知识?
【设计意图】:通过实际生活中的例子,让学生在上新课之前就对新的知识产生了浓厚的兴趣。
这样更利于新课的进行。
2、想一想,算一算:
这幅图片中的实际自然景观有多大?
(已知中国自然景观卫星影像图1:18 700 000)
◆教学重难点
◆
◆课前准备
◆
◆教学过程
为解决这些问题,需要……
系统地学习相似图形的一些相关知识。
为此,我们先来学习线段的比。
【设计意图】:在此节课,可以培养师生,生生合作的精神。
二、探索新知
(一)如果两个数的比值与另两个数的比值相等,就说这四个数成比例。
我们把 a 、b 、c 、d 这四个数成比例,
表示成 ,或 a :b =c :d ,
其中a 、d 叫做比例外项,
b 、
c 叫做比例内项,
比例有如下性质:
a c ad bc
b d
=⇔= (a ,b ,c ,d 均不为零) (二)请你想一想什么叫做两条线段的比呢?
请同学们测量课本封面相邻两边a ,b 的长。
如:a =14.8cm ,b =22cm .
a 与
b 的比是多少?
14.8372255
a cm
b cm == 如果选用一个长度单位量得两条线段a ,b 的长度分别为m ,n 。
那么两条线段的比a :b =m :n 或a m b n
=。
其中a ,b 分别叫做这个线段比的前项和后项。
,,m a k k a k b n b
==⋅如果把表示成比值那么或 。
(三)、跟着我学如何理解两条线段的比
实践出真知:
①若a =148 mm ,b =220 mm ,求a ∶b ;
②若a =148 mm ,b =22 cm ,求 a ∶b 。
14837:;22055a mm b mm ==解(1)、 148148372222055
a mm mm
b cm mm ===(2)、。
(四)、①设线段AB =2cm ,AC =4cm ,两条线段的长度比是
②设线段AB =200cm ,AC =4m ,两条线段的长度比是
注意:两条线段单位要统一。
两条线段的长度比叫做这两条线段的比。
(五)通过图形探知
请找出上图的3组比例线段,并写出比例式。
一般地,如果四条线段a ,b ,c ,d 中,a 与b 的比等于c 与d 的比,即
a c
b d
=,那么这四条线段叫做成比例线段,简称比例线段。
三、典题精讲
例1 :已知线段a =10mm , b =6cm ,
问:这四条线段是否成比例?为什么?
答:这四条线段成比例。
∵a =10mm =1cm
即线段a 、c 、d 、b 成比例.
想一想: 是否还可以写出其他几组成比例的线段。
答:可以.
如: 等。
例2:如图,在平行四边形ABCD 中,∠B =30°,AD =10.AE 为BC 边上的高,垂足E 为BC 中点。
求:AE ∶BC 。
解:在Rt △ABE 中,B =300
∴AB =2AE 。
d b =36=12∴a c =d
b a d =
c b c a =
b d d a =b c
∵BC=AD=10,E是BC中点, ∴BE=5,由勾股定理可得
AE=
3
10
AE
BC
∴==
例3:如图,P为线段AB上一点AB-BC=10cm,BC∶AC=3∶5。
求:AC的长。
解:设BC=3x,AC=5x
则AB=5x+3x=8x
AB-BC=8x-3x=5x=10
x=2
AC=5x=5×2=10(cm)。
四、学以致用
1.已知线段a=2cm,b=4.1cm,c=4cm,d=8.2cm,下面哪个选项是正确的?( )
A. d, b, a, c成比例线段
B. a, d, b, c成比例线段
C. a, c, b, d成比例线段
D. a, d, c, b成比例线段
2.下列各组线段的长度成比例的是()
A.2cm,3cm,4cm,1cm
B.1.5cm,2.5cm,6.5cm,4.5cm
C.1.1cm,2.2cm,3.3cm,4.4cm
D.1cm,2cm,2cm,4cm
正确答案:C D
五、思考领悟
一个生活常识:在同一时刻,物高与影长成比例。
线段的比。
将所学知识网络化。
要养成用一双数学眼睛去观察生活。
与同伴谈谈你的收获与体会。
六:课堂小结
判断四条线段是否成比例的方法有两种:
(1)把四条线段按大小排列好,判断前两条线段的比和后两条线段的比是否相等。
(2)查看是否有两条线段的积等于其余两条线段的积。
七:布置作业
略
◆教学反思
略。