1000028351578011_高考中备受青睐的阿波罗尼斯圆
- 格式:pdf
- 大小:74.90 KB
- 文档页数:1
高考数学文化内容预测三:阿波罗尼斯圆问题一、高考考试大纲数学大纲分析及意义:普通高考考试大纲数学修订,加强了对数学文化的考查。
针对这一修订提出以下建议:建议教师对数学文化这一概念认真学习,结合教材内容学习,特别是教材中渗透数学文化的内容要充分重视,重点研究;结合近年新课标试题中出现的与数学文化有关的试题进行学习,重点关注题源、考法命题形式。
其主要意义为:(1)增加中华优秀传统文化的考核内容,积极培育和践行社会主义核心价值观,充分发挥高考命题的育人功能和积极导向作用.(2)能力要求:经命题专家精细加工,再渗透现代数学思想和方法;在内涵方面,增加了基础性、综合性、应用性、创新性的要求.二、往年新课标高考实例解析及2017年高考数学文化试题预测:往年新课标高考实例分析:分析一:古代数学书籍《九章算术》、《数书九章》等为背景近年来在全国高考数学试题中,从《九章算术》中选取与当今高中数学教学相映的题材背景.(1)2015年高考全国卷Ⅰ,此题源于《九章算术》卷第五《商功》之[二五],将古代文化“依垣”和现代教育元素“圆锥”结合.(2)2015年高考全国卷Ⅱ,此题源于《九章算术》卷第一《方田》之[六]:“又有九十一分之四十九.问约之得几何?”“可半者半之,不可半者,副置分母、子之数,以少减多,更相减损,求其等也.以等数约之”,后人称之为“更相减损术”.(3)2015年高考湖北卷,此题背景源于《九章算术》卷第五《商功》之[一五].今有阳马,广五尺,袤七尺,高八尺.问积几何;之[一六]今有鳖臑,下广五尺,无袤;上袤四尺,无广,高七尺.问积几何.考题将“阳马”,“鳖臑”相结合,以《选修2-1》P109例4为源进行有机整合.巧妙嫁接,精典设问,和谐优美的考题呼之即出.分析二:课后阅读或课后习题如阿波罗尼圆为背景从2005-2013年多次涉及考题,全国卷2011年16题以此为命题背景的其他省市:江苏:2008年13题、2013年17题.2009-2013年湖北高考连续出现等等.数学文化题型背景预测:预测1:古代数学书籍《九章算术》、《数书九章》等数为背景的数学文化类题目.预测2:高等数学衔接知识类题目.如微积分、初等数学和高等数学的桥梁,由高中向大学的知识过渡衔接.预测3:课本阅读和课后习题的数学文化类题目.如必修3中,辗转相除法、更相减损术、秦九韶算法、二进制、割圆术等。
例说阿波罗尼斯圆的应用ʏ贵州省遵义地区仁怀市周林高中 卢艳华圆是高考考查的热点,几乎在每套高考试卷中都能看到圆的影子,其中以阿波罗尼斯圆为背景的考题层出不穷㊂它既可作为数学文化试题直接考查,也可以逆向考查点的定位或线段之间的数量关系,常以线段比例的形式隐含在平面解析几何或立体几何等相关知识中,成为知识交汇处命题的着眼点,备受命题人的青睐㊂同学们遇到阿波罗尼斯圆问题时,常需挖掘题中隐含条件,根据圆的特殊性质找到特定方法,与平面几何知识相结合,不断地转化求解㊂一㊁阿波罗尼斯圆的定义我们知道,到两定点距离之和(大于两定点间距离)为定值的点的轨迹是椭圆,到两定点距离之差的绝对值(小于两定点间距离)为定值的点的轨迹是双曲线,那么到两定点距离之商(大于零且不等于1)为定值的点的轨迹是什么呢?古希腊数学家阿波罗尼斯(A p o l l o n i u s )在他的著作‘圆锥曲线论“中回答了这个问题,并给出了阿波罗尼斯圆的定义:在平面内,已知两定点A ,B 之间的距离为2a (常数),动点P 到A ,B 的距离之比为常数λ(λ>0,且λʂ1),则点P 的轨迹是半径r =2λa|λ2-1|的圆,且圆心与两定点共线㊂这就是阿波罗尼斯轨迹定理,该圆称为阿波罗尼斯圆,简称为阿氏圆㊂图1证明:如图1,以线段A B 的中点O 为坐标原点㊁直线A B 为x 轴㊁线段A B 的垂直平分线为y 轴,建立平面直角坐标系㊂则A (-a ,0),B (a ,0)㊂设P (x ,y ),由|P A ||P B |=λ,得(x +a )2+y2(x -a )2+y 2=λ,两边同时平方,整理得x 2+y 2-2(λ2+1)a λ2-1㊃x +a 2=0,化为x -λ2+1λ2-1a2+y 2=2λλ2-1a 2㊂所以点P 的轨迹是以λ2+1λ2-1a ,0 为圆心,r =2λ|λ2-1|a 为半径的圆,且圆心与两定点A ,B 共线㊂容易得到阿波罗尼斯圆的如下性质㊂①圆上任意一点满足:|P A ||P B |=λ(常数),当λ>1时,点B 在该圆内,点A 在该圆外;当0<λ<1时,点B 在该圆外,点A 在该圆内㊂②圆的半径r =λ|A B ||λ2-1|,若以线段A B的中点为坐标原点㊁直线A B 为x 轴㊁直线A B 的垂直平分线为y 轴建系,则圆心坐标为λ2+1λ2-1㊃|A B |2,0㊂③设圆与x 轴的交点分别为C ,D (设C 在A ,B 之间),由阿波罗尼斯圆的定义知,|P A ||P B |=|C A ||C B |=|D A ||D B |=λ(常数),根据三角形内㊁外角平分线定理的逆定理,得P C ,P D分别为әA P B 的内角øA P B 及对应外角的角平分线,C ,D 分别为线段A B 的内分点和外分点,我们称C ,D 调和分割线段A B ,显然有P C ʅP D ,线段C D 为圆的直径㊂④平面内到A ,B 两点距离之比分别为λ和1λ(λ>0,且λʂ1)的点的轨迹是两个外离的半径相等的阿氏圆,且半径均为λ|A B ||λ2-1|㊂二㊁阿波罗尼斯圆的教材背景现行高中数学教材在编写时十分注重对数学史题材的引入及应用,如新人教B 版教材(2019年版)‘数学选择性必修第一册“中多次涉及阿波罗尼斯圆,有以下题目㊂1.(第116页习题2-3C 第1题)已知әA B C 中,A B =3,A C =2B C ,求әA B C 的面积的最大值㊂2.(第120页例4)已知动点M 到O (0,0)的距离与到A (3,0)的距离之比为12,求M 的轨迹方程,并说明轨迹曲线的形状㊂3.(第121页习题2-4B 第1题)求到两定点A (-1,2),B (3,2)的距离之比为2的点的轨迹方程㊂4.(第121页习题2-4B 第3题)已知动点M 到点(a ,0)的距离等于到点(b ,0)的距离的2倍(其中a ʂb ),求点M 的轨迹方程,并指出轨迹曲线的形状㊂尽管教材中未提及阿波罗尼斯圆的概念,但平面解析几何中常常会涉及平面内两点间的距离,三角形角平分线的性质等,属于必备知识,所以我们需要适度地拓展学习,以便提高解题的关键能力和学科素养㊂三、阿波罗尼斯圆的应用举例1.对阿波罗尼斯圆的深刻理解图2例1 (多选题)如图2,圆C 与x 轴相切于T (1,0),与y 轴正半轴交于A ,B 两点(B 在A 的上方),且|A B |=2,过点A 任意作一条直线与圆O :x 2+y 2=1相交于M ,N 两点,则以下结论中正确的有( )㊂A.|N A ||N B |=|M A ||M B |B .|N B ||N A |-|M A ||M B |=2C .|N B ||N A |+|M A ||M B |=22D .|N B ||N A |㊃|M A ||M B |=22解析:依题意,设圆心C (1,r )(r 为圆C的半径),由|A B |=2,得r =12+12=2㊂故圆心C 的坐标为(1,2),圆C 的标准方程是(x -1)2+(y -2)2=2㊂令x =0,得A (0,2-1),B (0,2+1)㊂设圆O 与y 轴的正㊁负半轴分别交于点E ㊁F ,则|E A |=2-2,|E B |=2㊂从而|E A ||E B |=2-22=2-1,|F A ||F B |=22+2=2-1,即|E A ||E B |=|F A ||F B |,所以圆O 是以A ,B 为定点,且比值为λ=2-1的阿波罗尼斯圆,故|N A ||N B |=|M A ||M B |,选项A 正确㊂由上可知,|N B ||N A |=|E B ||E A |=2+1,|M A ||M B |=|E A ||E B |=2-1㊂所以|N B ||N A |-|M A ||M B |=(2+1)-(2-1)=2㊂|N B ||N A |+|M A ||M B |=(2+1)+(2-1)=22,|N B ||N A |㊃|M A ||M B |=(2+1)㊃(2-1)=1㊂因此,B ㊁C 正确,D 错误㊂故选A B C ㊂评注:本题通过线段A B 的内㊁外分点E ㊁F 为圆直径的两端点,即内㊁外角平分线与y 轴两交点,回归几何本原,从而得到阿波罗尼斯圆㊂根据阿波罗尼斯圆定义的纯粹性和完备性,我们不难发现,给定平面内的两点A ,B ,若动点M 满足:|M A ||M B |=λ(常数λ>0且λʂ1),则M 必在阿波罗尼斯圆上;反之,阿波罗尼斯圆上的任意一点M 都满足|M A ||M B |=λ(常数λ>0且λʂ1)㊂2.阿波罗尼斯圆的逆用例2 已知圆x 2+y 2=1和点A (-2,0),是否存在异于A 的定点B 和常数k ,满足:对于圆上任意一点P ,都有|P B |=k |P A |(k >0,且k ʂ1)?若有,求出点B 的坐标及常数k 的值;若无,请说明理由㊂解析:设点B (b ,0),P (x ,y ),由|P B |=k |P A |,得(x -b )2+y 2=k ㊃(x +2)2+y 2,化简得(1-k 2)x 2+(1-k 2)㊃y 2-(2b +4k 2)x =4k 2-b 2㊂所以x 2+y 2-2b +4k 21-k 2x =4k 2-b21-k2㊂因为该圆上的任意一点P ,都有|P B |=k |P A |,所以动点P 的轨迹方程是x 2+y 2=1,即-2b +4k21-k 2=0,且4k 2-b21-k 2=1,也即2b +4k 2=0,4k 2-b 2=1-k 2,解得b =-12或b =-2㊂当b =-12时,k =12,符合题意;当b =-2时,k =1,不合题意㊂故点B 坐标是-12,0,常数k =12㊂评注:阿波罗尼斯圆能实现点与圆的相互转化,解决一些由圆求点或由点求圆的问题㊂从本题中我们可以得到一个结论:已知一个定圆和一个定点,即可确定λ和另一个定点,且圆心与两定点共线,这是阿波罗尼斯圆的逆用㊂3.以阿波罗尼斯圆为背景的数学文化的渗透例3 古希腊数学家阿波罗尼斯在其著作‘圆锥曲线论“中证明了这样一个命题:平面内与两个定点距离之比为常数k (k >0,且k ʂ1)的点的轨迹是圆,后人把这个圆称为阿波罗尼斯圆㊂已知定点A (-2,0),B (2,0),动点C 满足|A C |=2|B C |,则点C 的轨迹为阿波罗尼斯圆,记此圆为圆P ㊂已知点D 在圆P 上且在第一象限内,直线A D 交圆P 于另一点E ,连接E B 并延长交圆P 于点F ,连接D F ㊂若øD F E =30ʎ,则直线A D 的斜率为( )㊂A.3913 B .2613C .34D .134解析:设C (x ,y ),由|A C |=2|B C |,得(x +2)2+y 2=2(x -2)2+y 2,化为x -1032+y 2=649,得半径r =83㊂|O P |=103,|A P |=|A O |+|O P |=2+103=163㊂图3由øD P E =2øD F E =60ʎ,得|P E |=|P D |=83,则әD P E 为等边三角形,过圆心P 作P G ʅD E 于点G ,如图3所示㊂则|P G |=|P E |s i n 60ʎ=433,所以|A G |=4133,k A D =t a nøP A G =|P G ||A G |=4334133=3913㊂故选A ㊂评注:对于数学文化试题,一般会配有较长的文字描述,首先应读懂题意,然后借助已知中提供的有效信息和结论进行求解,这些信息,往往就是提示,甚至是解题工具,应重视并充分利用㊂另外本题对圆的性质也进行了挖掘,如同弧所对的圆周角与圆心角的关系,所以适当运用平面几何知识,常常可以简化复杂烦琐的计算㊂4.阿波罗尼斯圆在平面解析几何中的应用例4 已知抛物线C :y 2=8x 的焦点为F ,准线与x 轴的交点为K ,点A 在抛物线C 上,且|A K |=2|A F |,则әA F K 的面积为㊂解析:在y 2=8x 中,有F (2,0),准线l :x =-2,得K (-2,0)㊂由|A K |=2|A F |知,λ=2,点A 的轨迹为阿波罗尼斯圆㊂设该圆的方程为(x -a )2+y 2=r 2(r >0),由阿波罗尼斯圆的性质,得a =λ2+1λ2-1㊃|O F |=2+12-1ˑ2=6,r =2λλ2-1㊃|O F |=2ˑ22-1ˑ2=42㊂圆的方程为(x -6)2+y 2=32,与y 2=8x 联立,得x A =2,y A =ʃ4,故әA F K 的面积为12ˑ|K F |ˑ|y A |=12ˑ4ˑ4=8㊂评注:本题虽然也可以利用抛物线定义和三角函数求解,但本解法独辟蹊径,由两线段长度的倍数关系联想到阿波罗尼斯圆,再转化为两曲线的交点问题得到解决㊂一般地,如果存在这样一个三角形:一边确定,另两边长度成比例(比值不为1),可以考虑用阿波罗尼斯圆的性质来探求点的位置㊂5.转化为两点间距离例5 已知a ,b 是平面内两个互相垂直的单位向量,若向量c 满足|c -a |=12,则|a +b -c |+2|c -b |的最小值为㊂图4解析:设O A ң=a ,O B ң=b ,O C ң=c ,a +b =O D ң,则|c -a |=|A C ң|=12㊂从而点C 在以点A 为圆心㊁12为半径的圆上,如图4所示㊂由题意知,|a +b -c |+2|c -b |=|C D ң|+2|B C ң|㊂设|C D |=2|C M |,则|C D |+2|C B |=2(|C M |+|C B |),由阿波罗尼斯圆知,点M 在直线D A 上㊂由r =λ|DM ||λ2-1|,得2|DM |22-1=12,解得|DM |=34㊂所以2(|C M |+|C B |)ȡ2|B M |=2|B D |2+|DM |2=21+342=52,当且仅当C ,B ,M 三点共线且C 在B ,M 之间时取等号,即|a +b -c |+2|c -b |的最小值为52㊂评注:本题是一个复杂的平面向量的模的问题㊂设|C D |=2|C M |,对隐含条件深入挖掘,层层转化,揭示了点C 的轨迹为阿波罗尼斯圆,于是问题的背景便豁然开朗㊂这种 无中生有 的手法,巧妙地将所求最小值转化为圆上的点到定点B 的最小距离㊂6.转化为直线与圆的位置关系例6 在平面直角坐标系x O y 中,已知直线l :y =k (x -2)-4,k ɪR ,点A (-2,0),B (1,0)㊂若直线l 上存在点P ,使得|P A |=2|P B |,则实数k 的取值范围是㊂图5解析:由题意知,满足|P A |=2|P B |的点P 的轨迹为阿波罗尼斯圆,其半径r =λ|A B ||λ2-1|=2ˑ322-1=2㊂以线段A B 的中点为坐标原点㊁A B 的垂直平分线为y '轴,建立新的直角坐标系x O 'y',如图5所示㊂则y '轴与y 轴之间的距离为12,在新坐标系下,由公式知圆心的横坐标为x 0=λ2+1λ2-1㊃a =22+122-1ˑ32=52,且圆心在直线A B 上㊂所以在原坐标系中,圆心的横坐标为52-12=2=r ,即圆与y 轴相切,得圆的方程为(x -2)2+y 2=4㊂又点P 在直线l 上,所以直线l 与圆有公共点,圆心(2,0)到直线l :k x -y -2k -4=0的距离d =4k 2+1ɤr=2,解得k ȡ3或k ɤ-3,即实数k 的取值范围是(-ɕ,-3]ɣ[3,+ɕ)㊂评注:本题在求阿波罗尼斯圆的方程时,为了使用公式 x 0=λ2+1λ2-1㊃a,需重新建系,注意新旧坐标之间的转换㊂当然也可以设P (x ,y ),直接由|P A |=2|P B |,得(x +2)2+y 2=2(x -1)2+y 2,化为(x -2)2+y 2=4,即得圆心坐标和半径㊂本题实际上是在直线与阿波罗尼斯圆有公共点的条件下寻找关于k 的不等关系,通过比较圆心到直线距离与圆半径的大小得解㊂(责任编辑 徐利杰)。
专题42 阿波罗尼斯圆【方法点拨】一般地,平面内到两个定点距离之比为常数的点的轨迹是圆,此圆被叫做“啊波罗尼斯圆” (又称之为圆的第二定义).说明:(1) 不妨设(),0A a - ,(),0B a ,()0,0,1AP BP a λλλ=>>≠,再设 (),P x y ,则有()()2222y a x y a x +-=++λ,化简得:2222221211⎪⎭⎫ ⎝⎛-=+⎪⎪⎭⎫ ⎝⎛-+-a y a x λλλλ,轨迹为圆心a a 12011222-⎪⎪⎭⎫ ⎝⎛-+λλλλ,半径为,的圆.(2) 满足上面条件的啊波罗尼斯圆的直径的两端是按照定比λ内分AB 和外分AB 所得的两个分点(如图,有=AM ANBM BNλ=). (3)设P 是圆上的一点(不与M N 、重合),则PM PN 、是三角形PAB 的内、外角平分线,PM PN ⊥.(4)逆向运用:给定圆O 和定点A (A 不在圆O 上且不与O 重合),则一定存在唯一一个定值λ和一个定点B ,使得对于圆O 上的任意一点P 都有PA PBλ=.【典型题示例】例1 满足条件AB =2,AC =2BC 的△ABC 的面积的最大值为 . 【答案】22【分析】已知三角形的一边长及另两边的关系欲求面积的最大值,一种思路是利用面积公式、余弦定理建立关于某一边的目标函数,最后利用基本不等式求解;二是紧紧抓住条件“AC =2BC ”,符合 “啊园”,建系求出第三个顶点C 的轨迹,挖出“隐圆”,当点C 到直线AB 距离最大,即为半径时,△ABC 的面积最大为2 2.(1)λλ≠【解析一】设BC =x ,则AC 2x , 根据面积公式得ABC S ∆=21sin 1cos 2AB BC B x B ⨯=-, 根据余弦定理得2222242cos 24AB BC AC x x B AB BC x +-+-==⨯244x x-=,代入上式得ABC S ∆=()22221281241416x x x x --⎛⎫--=⎪⎝⎭由三角形三边关系有2222x x x x+>+>⎪⎩解得222222x <<,故当212,23x x ==时ABC S ∆128216=【解析二】以AB 所在的直线为x 轴,它的中垂线为y 轴建立直角坐标系, 则A (-1,0),B (1,0),设C (x ,y ) 由AC =2BC ,即AC 2=2BC 2所以(x +1)2+y 2=2[(x -1)2+y 2],化简得(x -3)2+y 2=8 故点C 的轨迹方程为(x -3)2+y 2=8(y ≠0),当点C 到直线AB 距离最大,即为半径时,△ABC 的面积最大为2 2.例2 已知等腰三角形腰上的中线为3,则该三角形面积的最大值为________. 【答案】2【分析】本题解法较多,但各种解法中,以利用“啊圆”为最简,注意到中线上三角形两边之比为2∶1,符合啊波罗尼斯圆定理,挖出“隐圆”,易求得最大值为2. 【解析一】如图1,ABC ∆中,AB AC =,AD DC =,3BD =设AD CD m ==,则2AB m =, 22cos 23ADB m∠=在ABD ∆中,在BDC ∆中,22cos 23CDB m∠由cos cos 0ADB CDB ∠+∠=可得,2262BC m =-,所以2253cos 4m A m-=,则429309sin m m A -+-= 故2242591639309ABCm m m S ∆⎛⎫--+ ⎪-+-⎝⎭==易知当253m =时,面积的最大值是2. 点评:避免求边BC ,优化此解法,考虑ABD ∆中,有2253cos 4m A m -=,而2ABC ABD S S ∆∆=,同样可解.【解析二】以BD 中点O 为原点,BD 所在直线为x 轴建立如图2所示的平面直角坐标系,设(),A x y ,则2AB AD =,即2222334x y x y ⎡⎤⎛⎛⎢⎥+=+ ⎢⎥⎝⎭⎝⎭⎣⎦, 整理得,225343x y ⎛+= ⎝⎭,即有3y ≤32ABC S BD y y ∆=⨯=≤.【解析三】以BC 中点O 为原点,BC 所在直线为x 轴建立如图3所示的平面直角坐标系,设(),0C m ,(),0B m -,()0,A n ,则,22m n D ⎛⎫ ⎪⎝⎭,所以2223322m n BD ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭,而223422232m n ⎛⎫⎛⎫+ ⎪ ⎪⎝⎭⎝⎭≤⋅=, 当且仅当3n m =时,取等.【解析四】如图4,作AO BC ⊥于点O ,交BD 于点G ,则G 为ABC ∆的重心,43322ABCm n S mn ∆==⋅⋅则有2233BG CG BD ===所以133sin 2sin 22ABC BGC S S BG CG BGC BGC ∆∆==⨯⋅∠=∠≤,当2BGC π∠=时,取等.例3 已知圆22:1O x y +=和点()2,0A -,若定点(),0B b (2)b ≠-和常数λ满足:对圆O 上任意一点M ,都有MB MA λ=,则 (1)b = ; (2)λ= . 【答案】(1)12b =-;(2)12λ=.【分析】其实质是啊圆的逆用,设出点的坐标,恒成立问题转化为与点的坐标无关,即分子为零.【解答】设(),M x y ,则22221,1x y y x +==-,2222222222222251||()21122||(2)44154254b b MB x b y x bx b x b bx b MA x y x x x x xλ++-+-++-+-=====-++++++-++, 所以λ为常数,所以25102b b ++=,解得12b =-或2b =-(舍去),所以2124b λ=-=.例4 已知圆C :x 2+y 2=9,点A (-5,0),在直线OA 上(O 为坐标原点),存在定点B (不同于点A )满足:对于圆C 上任一点P ,都有PBP A 为一常数,则点B 的坐标为___________.【答案】⎝⎛⎭⎫-95,0 【分析】本题的实质是“逆用啊圆”. 【解析一】假设存在这样的点B (t,0).当点P 为圆C 与x 轴的左交点(-3,0)时,PB P A =|t +3|2;当点P 为圆C 与x 轴的右交点(3,0)时,PB P A =|t -3|8.依题意,|t +3|2=|t -3|8,解得t =-95或t =-5(舍去).下面证明点B ⎝⎛⎭⎫-95,0对于圆C 上任一点P ,都有PBP A 为一常数. 设P (x ,y ),则y 2=9-x 2, 所以PB 2P A2=⎝⎛⎭⎫x +952+y 2x +52+y 2=x 2+185x +9-x 2+8125x 2+10x +25+9-x 2=1825·5x +172·5x +17=925.从而PB P A =35为常数.【解析二】假设存在这样的点B (t,0),使得PBP A 为常数λ,则PB 2=λ2P A 2,所以(x -t )2+y 2=λ2[(x +5)2+y 2],将y 2=9-x 2代入,得x 2-2xt +t 2+9-x 2=λ2(x 2+10x +25+9-x 2), 即2(5λ2+t )x +34λ2-t 2-9=0对x ∈[-3,3]恒成立,所以⎩⎪⎨⎪⎧5λ2+t =0,34λ2-t 2-9=0.解得⎩⎨⎧λ=35,t =-95或⎩⎪⎨⎪⎧λ=1,t =-5(舍去). 故存在点B ⎝⎛⎭⎫-95,0对于圆C 上任一点P ,都有PB P A 为常数35. 例5 啊波罗尼斯是古希腊著名数学家,与欧几里得、啊基米德并称为亚历山大时期数学三巨匠,他对圆锥曲线有深刻而系统的研究,啊波罗尼斯圆是他的研究成果之一,指的是:已知动点M 与两定点A ,B 的距离之比为(0,1)λλλ>≠,那么点M 的轨迹就是啊波罗尼斯圆,简称啊氏圆.已知在平面直角坐标系中,圆22:4O x y +=、点()1,0A -和点()0,1B ,M 为圆O 上的动点,则2||+||MA MB 的最小值为_________. 17【分析】逆用“啊圆”,将2||MA 中系数2去掉化为“一条线段”, 从而将2||+||MA MB 化为两条线段的和,再利用“三点共线”求解.【解析】因为啊圆的圆心、两定点共线,且在该直线上的直径的端点分别是两定点构成线段分成定比的内外分点所以另一定点必在x 轴上,且()2,0-内分该点与()1,0A -连结的线段的比为2 故该点的坐标为()4,0-设()4,0C -,则圆22:4O x y +=上任意一动点M 都满足||=2||MC MA 所以2||+||=||+||MA MB MC MB又因为||+||||17MC MB BC ≥M B C 、、共线时,等号成立所以2||+||MA MB. 点评:1. 已知两定点、啊圆的圆心三点共线;2. 啊圆的在已知两定点所在直线上的直径的两端点,分别是两定点构成线段分成定比的内、外分点.例6 古希腊著名数学家阿波罗尼斯与欧几里得、阿基米德齐名.他发现:“平面内到两个定点,A B 的距离之比为定值()1λλ≠的点的轨迹是圆”.后来,人们将这个圆以他的名字命名,称为阿波罗尼斯圆,简称阿氏圆在平面直角坐标系xOy 中,()()2,0,4,0,A B -点12PA P PB=满足.设点P 的轨迹为C ,下列结论正确的是( ) A .C 的方程为()2249x y ++=B .在x 轴上存在异于,A B 的两定点,D E ,使得12PD PE=C .当,,A B P 三点不共线时,射线PO 是APB ∠的平分线D .在C 上存在点M ,使得2||MO MA = 【答案】BC【分析】通过设出点P 坐标,利用12PA PB=即可得到轨迹方程,找出两点,D E 即可判断B 的正误,设出M 点坐标,利用2||MO MA =与圆的方程表达式解出就存在,解不出就不存在.【解析】设点(),P x y ,则12PA PB=,化简整理得2280x y x ++=,即()22416x y ++=,故A 错误;根据对称性可知,当()()6,0,12,0,D E --时,12PD PE=,故B 正确; 对于C 选项,222cos =2AP PO AO APO AP PO +-∠⋅,222cos =2BP PO BO BPO BP PO+-∠⋅,要证PO 为角平分线,只需证明cos =cos APO BPO ∠∠,即证22222222AP PO AO BP PO BO AP PO BP PO+-+-=⋅⋅,化简整理即证2228PO AP =-,设(),P x y ,则222PO x y =+,()()222222222282828AP x x y x x y x y x y -=++=++++=+,则证cos =cos APO BPO ∠∠,故C 正确;对于D 选项,设()00,M x y ,由2||MO MA =220003316+160x y x ++=,而点M 在圆上,故满足2280x y x ++=,联立解得0=2x ,0y 无实数解,于是D 错误.故答案为BC.【巩固训练】1.(多选题)在平面直角坐标系中,三点()1,0A -,()1,0B ,()0,7C ,动点P 满足PA =,则A.点P 的轨迹方程为()2238x y -+= B.PAB △面积最大时PA =C.PAB ∠最大时,PA =D.P 到直线AC 2. 在平面直角坐标系xOy 中,点)0,4(),0,1(B A .若直线0=+-m y x 上存在点P ,使得PB PA 21=,则实数m 的取值范围是 3. 已知圆O :x 2+y 2=1和点A (-2,0),若定点B (b,0)(b ≠-2)和常数λ满足:对圆O 上任意一点M ,都有MB =λMA ,则(1)b =________; (2)λ=________.4.在△ABC 中,|AB|=2,|AC|=k|BC|(k >1),则当△ABC 面积的最大值为2√2时, k = .5.点P 是圆C :x 2+y 2=1上动点,已知A (-1,2),B (2,0),则P A +12PB 的最小值为________.6.啊波罗尼斯是古希腊著名数学家,与欧几里得、啊基米德并称为亚历山大时期数学三巨匠,他对圆锥曲线有深刻而系统的研究,主要研究成果集中在他的代表作《圆锥曲线》一书,啊波罗尼斯圆是他的研究成果之一,指的是:已知动点M 与两定点Q 、P 的距离之比|MQ||MP|=λ(λ>0,λ≠1),那么点M 的轨迹就是啊波罗尼斯圆.已知动点M 的轨迹是啊波罗尼斯圆,其方程为x 2+y 2=1,定点Q 为x 轴上一点,P(−12,0)且λ=2,若点B(1,1),则2|MP|+|MB|的最小值为( )A.√6 B. √7 C. √10 D. √117.已知)1,0(A,)0,1(B,)0,(tC,点D是直线AC上的动点,若BDAD2≤恒成立,则最小正整数t的值为.8.在平面四边形ABCD中,,,.若,则的最小值为.9.已知22(1)4x y-+=,__________.【答案或提示】1. 【答案】ABD【解析】由题意可设(),P x y,由PA=,可得222PA PB=,即()()2222121x y x y⎡⎤++=++⎣⎦,化简可得()2238x y-+=,故选项A正确;对于选项B,2AB=,且点P到直线AB的距离的最大值为圆()2238x y-+=的半径r,即为,所有PAB△面积最大为122⨯⨯=,此时(3,P,所以PA==B正确;对于选项C,PAB∠最大时,为过点A作圆()2238x y-+=的切点,求得切点不为(3,±,则PA≠C错误;对于选项D,直线AC的方程为770x y-+=,则圆心()3,0到直线AC的距离为5=,所以点P到直线AC距离最小值为55-=,故选项D 正确;故选ABD.2. 【答案】⎡-⎣.【解法一】设满足条件PB=2P A的P点坐标为(x,y),则(x-4)2+y2=4(x-1)2+4y2,化简得x2+y2=4.要使直线x-y+m=0有交点,则|m|2≤2.即-22≤m≤22.【解法二】设直线x-y+m=0有一点(x,x +m)满足P A=2PB,90BAD∠=︒2AB=1AD=43AB AC BA BC CA CB⋅+⋅=⋅12CB CD+则(x -4)2+(x +m )2=4(x -1)2+4(x +m )2. 整理得2x 2+2mx +m 2-4=0 (*) 方程(*)有解,则△=4m 2-8(m 2-4)≥0, 解之得:-2 2≤m ≤22. 3. 【答案】 (1)-12 (2)12【解析】 (1)因为点M 为圆O 上任意一点,所以不妨取圆O 与x 轴的两个交点(-1,0)和(1,0). 当M 点取(-1,0)时,由MB =λMA ,得|b +1|=λ; 当M 点取(1,0)时,由MB =λMA ,得|b -1|=3λ. 消去λ,得|b -1|=3|b +1|.两边平方,化简得2b 2+5b +2=0, 解得b =-12或b =-2(舍去).(2)由|b +1|=λ,得λ=12.4.【答案】√2【分析】本题考查轨迹方程的求解,以及新定义,直线与圆的位置关系的应用,属于较难题.根据条件得到点C 的轨迹方程(k 2−1)x 2+(k 2−1)y 2+2(k 2+1)x +k 2−1=0,作图,可得当点C 到AB 的距离d 等于其所在圆半径r 时,面积最大,通过面积求得r ,进而得到k .【解析】如图,不妨设A(1,0),B(−1,0),C (x,y), 则|AC|=k|BC|,可化为(x −1)2+y 2=k 2[(x +1)2+y 2], 整理可得(k 2−1)x 2+(k 2−1)y 2+2(k 2+1)x +k 2−1=0, 即(x +k 2+1k 2−1)2+y 2=(k 2+1k 2−1)2−1,圆心(−k 2+1k 2−1,0),r 2=(k 2+1k 2−1)2−1,由图可知当点C 到AB(x 轴)距离最大时,△ABC 的面积最大, 即当点C 到AB 的距离d 等于半径r 时,面积最大, ∴△ABC 面积的最大值是12×2r =2√2,解得r =2√2, 故有(k 2+1k 2−1)2−1=(2√2)2,解得k =±√2,k =±√22, 因为k >1,所以k =√2. 故答案为:√2.5.【答案】52【提示】已知动点轨迹为圆,将12PB 转化为P 到一个定点的距离,即求动点到两个定点距离之和. 6.【答案】C【分析】令2|MP|=|MQ|,则2|MP|+|MB|=|MQ|+|MB|,由啊波罗尼斯圆的定义及已知可求得点Q 的坐标,进而利用图象得解.本题以啊波罗尼斯圆为背景,考查学生在陌生环境下灵活运用知识的能力,考查创新意识,逻辑推理能力及运算求解能力,考查数形结合思想,属于拔高题.【解析】由题意可得圆x 2+y 2=1是关于P ,Q 的啊波罗尼斯圆,且λ=2,则|MQ||MP|=2, 设点Q 的坐标为(m,n),则√(x−m)2+(y−n)2√(x+12)2+y 2=2, 整理得,x 2+y 2+4+2m 3x +2n 3y +1−m 2−n 23=0,由已知该圆的方程为x 2+y 2=1,则{4+2m =02n =01−m 2−n 23=−1,解得{m =−2n =0, ∴点Q 的坐标为(−2,0),∴2|MP|+|MB|=|MQ|+|MB|,由图象可知,当点M 位于M 1或M 2时取得最小值,且最小值为|QB|=√(−2−1)2+1=√10. 故选:C . 7. 【答案】4【解析】直线AC 的方程为1=+y tx即0=-+t ty x ,设),(y x D BD AD 2≤ 即224BD AD ≤∴])1[(4)1(2222y x y x ++-≤-+98)31()34(22≥++-y x 表示圆外区域及圆周上的点 直线0=-+t ty x 与圆98)31()34(22=++-y x 相离或相切 所以3221|3134|2≥+--t t t ,化简得0142≥+-t t 解得32+≥t 或32-≤t∴正整数t 的值的值为4.8.【提示】已知可化为: ,故,点的轨迹是圆;所求 中含系数不同,需化一,由于,故应构造出 或,这里所求圆的圆心在直线AB 上,故需在直线AB 上寻求一点E ,使CE =2CB ,将化为一条线段,逆用“啊波罗尼斯圆”即可.9. 【提示】为使所求具有几何意义,利用已知22(1)4x y -+=进行常数代换,12. 43AB AC BA BC CA CB ⋅+⋅=⋅2=AB AC BA BC AB AC AB CB AB ⋅+⋅=⋅+⋅=3CA CB ⋅C 12CB CD +11=(2)22CB CD CB CD ++12CD 2CB 2CB。
专题1 阿波罗尼斯圆及其应用 微点5 阿波罗尼斯球专题1 阿波罗尼斯圆及其应用 微点5 阿波罗尼斯球 【微点综述】对于立体几何某些涉及距离比值的动点轨迹问题,可转化为在某个平面内的距离关系,从而借助阿波罗尼斯球和阿波罗尼斯圆的定义及相关知识解决问题.对于这类问题也可以利用空间坐标计算求解轨迹问题. 【典例刨析】例1.(2022贵州贵阳·模拟)1.在平面内,已知动点P 与两定点A ,B 的距离之比为()0,1λλλ>≠,那么点P 的轨迹是圆,此圆称为阿波罗尼斯圆.在空间中,也可得到类似结论.如图,三棱柱111ABC A B C -中,1A A ⊥平面ABC ,2AB BC ==,1BB ,90ABC ∠=︒,点M 为AB 的中点,点P在三棱柱内部或表面上运动,且PA =,动点P 形成的曲面将三棱柱分成两个部分,体积分别为1V ,()212V V V <,则12V V =( )A .12B .13C .14D .152.如图,在长方体1111ABCD A B C D -中,1226AB AD AA ===,点E 在棱AB 上,2BE AE =,动点P满足BP .若点P 在平面ABCD 内运动,则点P 所形成的阿氏圆的半径为________;若点P 在长方体1111ABCD A B C D -内部运动,F 为棱11C D 的中点,M 为CP 的中点,则三棱锥1M B CF -的体积的最小值为___________.3.已知正方体1111ABCD A B C D -的棱长为4,点P 在平面11A BCD 内,且3PA PB =,则点P 的轨迹的长度为___________.4.古希腊数学家阿波罗尼斯发现:平面上到两定点A 、B 距离之比()0,1λλλ>≠是常数的点的轨迹是一个圆心在直线AB 上的圆,该圆简称为阿氏圆.根据以上信息,解决下面的问题:在棱长为2的正方体1111ABCD A B C D -中,点P 是正方体的表面11ADD A (包括边界)上的动点,若动点P 满足2PA PD =,则点P 所形成的阿氏圆的半径为______;若E 是CD 的中点,且满足APB EPD ∠=∠,则三棱锥P ACD -体积的最大值是______.阿波罗尼奥斯例5.(2022·湖南怀化·高二期末)5.古希腊数学家阿波罗尼斯发现:平面上到两定点A ,B 的距离之比为常数()0,1λλλ>≠的点的轨迹是—个圆心在直线AB 上的圆.该圆被称为阿氏圆,如图,在长方体1111ABCD A B C D -中,1226AB AD AA ===,点E 在棱AB 上,2BE AE =,动点P 满足BP =,若点P 在平面ABCD 内运动,则点P 对应的轨迹的面积是___________;F 为11C D 的中点,则三棱锥1P B CF -体积的最小值为___________.6.棱长为36的正四面体ABCD 的外接球与内切球的半径之和为______,内切球球面上有一动点M ,则13MB MC +的最小值为______.【针对训练】7.如图,AB 是平面α的斜线段,A 为斜足,点C 满足sin sin (0)CAB CBA λλ∠=∠>,且在平面α内运动,则A .当1λ=时,点C 的轨迹是抛物线B .当1λ=时,点C 的轨迹是一条直线 C .当2λ=时,点C 的轨迹是椭圆D .当2λ=时,点C 的轨迹是双曲线抛物线8.如图,已知平面αβ⊥,l αβ=,A 、B 是直线l 上的两点,C 、D 是平面β内的两点,且DA l ⊥,CB l ⊥,3AD =,6AB =,6CB =.P 是平面α上的一动点,且直线PD ,PC 与平面α所成角相等,则二面角P BC D--的余弦值的最小值是( )A B C .12D .1(2022·山西太原·二模(理))9.已知点M 是棱长为3的正方体1111ABCD A B C D -的内切球O 球面上的动点,点N 为线段11B C 上一点,112NC B N =,DM BN ⊥,则动点M 运动路线的长度为( )A BC D (2022天津西青区杨柳青一中高二期中)10.古希腊数学家阿波罗尼斯发现:平面上到两定点A ,B 距离之比()0,1λλλ>≠是常数的点的轨迹是一个圆心在直线AB 上的圆,该圆简称为阿氏圆.根据以上信息,解决下面的问题:在棱长为2的正方体1111ABCD A B C D -中,点P 是正方体的表面11ADD A (包括边界)上的动点,若动点P 满足2PA PD =,则点P所形成的阿氏圆的半径为___________;若E 是CD 的中点,且正方体的表面11ADD A (包括边界)上的动点F 满足条件APB EPD ∠=∠,则三棱锥F ACD -体积的最大值是__________.11.已知正方体1111ABCD A B C D -的棱长为1,点P 为侧面11BB C C 内的动点,且2PA PB =,则点P 所形成的轨迹图形长度为_______________. (2022江西上饶·二模(理))12.点M 为正方体1111ABCD A B C D -的内切球O 球面上的动点,点N 为11B C 上一点,112NB NC =,DM BN ⊥,若球O 的体积为36π,则动点M 的轨迹长度为___________.13.已知在棱长为12的正四面体ABCD 的内切球球面上有一动点P ,则PA 的最小值为______,13PA PB+的最小值为______.专题1 阿波罗尼斯圆及其应用 微点5 阿波罗尼斯球专题1 阿波罗尼斯圆及其应用 微点5 阿波罗尼斯球 【微点综述】对于立体几何某些涉及距离比值的动点轨迹问题,可转化为在某个平面内的距离关系,从而借助阿波罗尼斯球和阿波罗尼斯圆的定义及相关知识解决问题.对于这类问题也可以利用空间坐标计算求解轨迹问题. 【典例刨析】例1.(2022贵州贵阳·模拟)1.在平面内,已知动点P 与两定点A ,B 的距离之比为()0,1λλλ>≠,那么点P 的轨迹是圆,此圆称为阿波罗尼斯圆.在空间中,也可得到类似结论.如图,三棱柱111ABC A B C -中,1A A ⊥平面ABC ,2AB BC ==,1BB ,90ABC ∠=︒,点M 为AB 的中点,点P在三棱柱内部或表面上运动,且PA ,动点P 形成的曲面将三棱柱分成两个部分,体积分别为1V ,()212V V V <,则12V V =( )A .12B .13C .14D .152.如图,在长方体1111ABCD A B C D -中,1226AB AD AA ===,点E 在棱AB 上,2BE AE =,动点P满足BP .若点P 在平面ABCD 内运动,则点P 所形成的阿氏圆的半径为________;若点P 在长方体1111ABCD A B C D -内部运动,F 为棱11C D 的中点,M 为CP 的中点,则三棱锥1M B CF -的体积的最小值为___________.3.已知正方体1111ABCD A B C D -的棱长为4,点P 在平面11A BCD 内,且3PA PB =,则点P 的轨迹的长度为___________.4.古希腊数学家阿波罗尼斯发现:平面上到两定点A 、B 距离之比()0,1λλλ>≠是常数的点的轨迹是一个圆心在直线AB 上的圆,该圆简称为阿氏圆.根据以上信息,解决下面的问题:在棱长为2的正方体1111ABCD A B C D -中,点P 是正方体的表面11ADD A (包括边界)上的动点,若动点P 满足2PA PD =,则点P 所形成的阿氏圆的半径为______;若E 是CD 的中点,且满足APB EPD ∠=∠,则三棱锥P ACD -体积的最大值是______.阿波罗尼奥斯例5.(2022·湖南怀化·高二期末)5.古希腊数学家阿波罗尼斯发现:平面上到两定点A ,B 的距离之比为常数()0,1λλλ>≠的点的轨迹是—个圆心在直线AB 上的圆.该圆被称为阿氏圆,如图,在长方体1111ABCD A B C D -中,1226AB AD AA ===,点E 在棱AB 上,2BE AE =,动点P 满足BP =,若点P 在平面ABCD 内运动,则点P 对应的轨迹的面积是___________;F 为11C D 的中点,则三棱锥1P B CF -体积的最小值为___________.6.棱长为36的正四面体ABCD 的外接球与内切球的半径之和为______,内切球球面上有一动点M ,则13MB MC +的最小值为______.【针对训练】7.如图,AB 是平面α的斜线段,A 为斜足,点C 满足sin sin (0)CAB CBA λλ∠=∠>,且在平面α内运动,则A .当1λ=时,点C 的轨迹是抛物线B .当1λ=时,点C 的轨迹是一条直线 C .当2λ=时,点C 的轨迹是椭圆D .当2λ=时,点C 的轨迹是双曲线抛物线 8.如图,已知平面αβ⊥,l αβ=,A 、B 是直线l 上的两点,C 、D 是平面β内的两点,且DA l ⊥,CB l ⊥,3AD =,6AB =,6CB =.P 是平面α上的一动点,且直线PD ,PC 与平面α所成角相等,则二面角P BC D --的余弦值的最小值是( )A B C .12D .1(2022·山西太原·二模(理))9.已知点M 是棱长为3的正方体1111ABCD A B C D -的内切球O 球面上的动点,点N 为A BC D (2022天津西青区杨柳青一中高二期中)10.古希腊数学家阿波罗尼斯发现:平面上到两定点A ,B 距离之比()0,1λλλ>≠是常数的点的轨迹是一个圆心在直线AB 上的圆,该圆简称为阿氏圆.根据以上信息,解决下面的问题:在棱长为2的正方体1111ABCD A B C D -中,点P 是正方体的表面11ADD A (包括边界)上的动点,若动点P 满足2PA PD =,则点P 所形成的阿氏圆的半径为___________;若E 是CD 的中点,且正方体的表面11ADD A (包括边界)上的动点F 满足条件APB EPD ∠=∠,则三棱锥F ACD -体积的最大值是__________.11.已知正方体1111ABCD A B C D -的棱长为1,点P 为侧面11BB C C 内的动点,且2PA PB =,则点P 所形成的轨迹图形长度为_______________. (2022江西上饶·二模(理))12.点M 为正方体1111ABCD A B C D -的内切球O 球面上的动点,点N 为11B C 上一点,112NB NC =,DM BN ⊥,若球O 的体积为36π,则动点M 的轨迹长度为___________.13.已知在棱长为12的正四面体ABCD 的内切球球面上有一动点P ,则PA 的最小值为______,13PA PB +的最小值为______.参考答案:1.D【分析】在平面P AB 中,作MPN MAP ∠=∠,交AB 于点N ,从而得到PNMANP ,判断出B 、N 重合,得到点P 落在以B12V V ,,即可求出12V V . 【详解】如图,在平面P AB 中,作MPN MAP ∠=∠,交AB 于点N ,则MPN NAP ∠=∠, 又因PNM ANP ∠=∠,所以PNM ANP ,所以PN AN PA MN PN MP ===,AN MN ==,所以AM AN MN =-=. 因为112AM AB ==,所以1PN MN =, 所以B 、N重合且BP PN ==所以点P 落在以B. 作BH AC ⊥于H,则2BH AB =因为1AA ⊥面ABC ,所以1AA ⊥BH , 又因为1AA AC A =,所以BH ⊥面11AA CC ,所以B 到面11AA CC的距离为BH BP , 所以球面与面11AA CC相切,而1BB = 所以球面不会与面111A B C 相交, 则31142833V BP π==, 111=2222V AB BC AA ⨯⨯⨯=⨯⨯=三棱柱,所以21V V V=-=三棱柱,所以12VV=15.故选:D.【点睛】立体几何中的动点轨迹问题一般有四种,即线段型,平面型,二次曲线型,球型,有两种处理方法:(1)很容易的看出动点符合什么样的轨迹(定义法);(2)要么通过计算(建系)求出具体的轨迹表达式.2.94##2.25【分析】建立空间直角坐标系,由两点间距离公式化简后得轨迹方程,再由空间向量表示点到平面的距离公式求解最值【详解】以AB为x轴,AD为y轴,1AA为z轴,建立如图所示的坐标系,在平面直角坐标系xAy中,(6,0),(2,0),B E设(,)P x y,由BP得2222(6)3[(2)]x y x y-+=-+,所以22+12x y=,所以若点P在平面ABCD内运动,则点P所形成的阿氏圆的半径为若点P在长方体1111ABCD A B C D-内部运动,设点(,,)P x y z,由BP得222222(6)3[(2)z]x y z x y-++=-++,所以222++12x y z=,由题得1(3,3,3,),(6,0,3),(6,3,0),F B C所以11(3,3,0),(0,3,3),FB BC=-=-设平面1B CF的法向量为000(,,)n x y z=r,所以100100·330,(1,1,1)·330n FB x ynn B C y z⎧=-=⎪∴=⎨=-=⎪⎩,由题得(6,3,z)CP x y=--,所以点P到平面1B CF的距离为|||||CP n xhn⋅+==因为2222222(++)(111)(),66x y z x y zx y z++≥++∴-≤++≤,所以minh==M为CP的中点,所以点M到平面1BCF由题得1B CF△=所以三棱锥1M B CF -的体积的最小值为(21934.故答案为:943 【分析】若E 为1AB 与1A B 的交点,由正方体的性质可证AE ⊥面11A BCD ,在Rt △AEP 中有222AE PE AP +=可得228PE AP +=,再在面11A BCD 上构建平面直角坐标系,并写出各点坐标且令00(,)P x y ,结合已知条件列方程,即可得P 的轨迹,进而求轨迹长度.【详解】若E 为1AB 与1A B 的交点,则1AE A B ⊥, ∵BC ⊥面11AA B B ,AE ⊂面11AA B B , ∴AE BC ⊥,又1A B BC B =I , ∴AE ⊥面11A BCD ,∴连接PE ,即在Rt △AEP 中有222AE PE AP +=,又正方体1111ABCD A B C D -的棱长为4, ∴228PE AP +=在面11A BCD 上构建如下平面直角坐标系,若00(,)P x y ,11(0,0),(0,4),A B C D E ,∴22200(PE x y =-+,22200(PB x y =-+,∴222200816AP PE x y =+=-++,又3PA PB =,∴2222000000169(32)x y x y -++=-++,整理得22000340x y ++=,∴220017(48x y -+=,故轨迹为半径r =的圆,∴轨迹长度为2r π=【点睛】关键点点睛:应用正方体的性质及勾股定理得228PE AP +=,再在面11A BCD 上构建平面直角坐标系,设00(,)P x y 结合已知条件可得方程,整理即有P 的轨迹方程.4.43【解析】在AD 上取点M ,在AD 延长线上取点N ,使得2MA MD =,2NA ND =,则,M N 是题中阿氏圆上的点,则MN 是阿氏圆的直径,由此可求得半径,由APB EPD ∠=∠可得Rt PDERt PAB △△,2PA ABPD DE==,即P 在上述阿氏圆上,这样当P 是阿氏圆与1DD 交点Q 时,P 到平面ACD 距离最大,三棱锥P ACD -体积的最大,由体积公式计算可得.【详解】在AD 上取点M ,在AD 延长线上取点N ,使得2MA MD =,2NA ND =,则,M N 是题中阿氏圆上的点,由题意MN 是阿氏圆的直径, 2AD =,则23MD =,2DN =,所以28233MN =+=,∴阿氏圆半径为423MN =; 正方体中AB ,CD 都与侧面11ADD A 垂直,从而与侧面11ADD A 内的直线,PA PD 垂直,如图APB EPD ∠=∠,则Rt PDE Rt PAB △△,∴2PA ABPD DE==,即P 在上述阿氏圆上, ∵ACD △的面积是2为定值,因此只要P 到平面ACD 距离最大,则三棱锥P ACD -体积的最大,由于P 点在阿氏圆上,当P 是阿氏圆与1DD 交点Q 时,P 到平面ACD 距离最大,此时2QA QD =2=,QD =,三棱锥P ACD -体积的最大值为123V =⨯=.故答案为:43【点睛】关键点点睛:本题考查棱锥的体积,考查新定义的理解与应用.解题关键是正确理解新定义得出圆半径,由已知角相等得出P 点就在新定义“阿氏圆”上,从而易得它到底面距离最大时的位置,从而得出最大体积.5. 12π272-【分析】建立空间直角坐标系,根据BP =,可得P 对应的轨迹方程;先求1B CF △的面积,其是固定值,要使体积最小,只需求点P 到平面1B CF 的距离的最小值即可. 【详解】分别以1,,AB AD AA 为,,x y z 轴建系,设(),,0P x y ,而(6,0,0)B ,(2,0,0)E ,1(6,0,3)B ,(6,3,0)C ,(3,3,3)F .由BP =,=化简得P 对应的轨迹方程为2212x y +=.所以点P对应的轨迹的面积是212ππ⋅=. 易得1B CF △的三个边11B C B F CF ===即1B CF △是边长为为, 1(0,3,3),(3,0,3)CB CF =-=-,设平面1B CF 的一个法向量为(),,n x y z =,则有330330y z x z -+=⎧⎨-+=⎩,可取平面1B CF 的一个法向量为()1,1,1n =,根据点P的轨迹,可设,0)P θθ,()23,0,CP θθ∴=--239CP n θθ∴⋅=+-,所以点P 到平面1B CF的距离26CP n d n⋅==≥,所以1133V Sh Sd ==≥272- 故答案为:12π;272- 6. 【分析】(1)将正四面体ABCD放入正方体可求得外接球半径,利用等体积法可求得内切球的半径.(2)根据阿波罗尼斯球的性质找到阿波罗尼斯球中的两个定点,再将13MC 转换,从而得出13MB MC +取最小值时的线段,再根据余弦定理求解即可.【详解】(1) 将正四面体ABCD 放入如图正方体,则正四面体ABCD 的外接球与该正方体的外接球为同一球.=设正四面体ABCD的内切球半径为r,根据等体积法有3321114436323r-⨯⨯⨯=⨯,解得r=故外接球与内切球的半径之和为=(2)由阿波罗尼斯球得内切球球心O是线段CH上以,C E为定点,空间中满足()1PCPEλλ=≠的点P的集合,连接CO并延长交平面ABD于H,交内切球上方的点设为K,过M作ME CH⊥,交CH于E,连接,BM CM,设OE x=.由(1)空得CO OH==KC HCKE HE=.=,解得x3KCKEλ==,所以3MCME=,所以13MC ME=.所以13MB MC MB ME BE+=+≥,在BOE△中,BO CO==OE=1cos cos3BOE BOH∠=-∠=-,所以BE==所以13MB MC+的最小值为故答案为:(1)(2)【点睛】本题主要考查了正四面体外接球与内切球的半径计算,同时也考查了利用阿波罗尼斯球中的比例关系求解线段最值的问题,需要根据题意找到球中的定点,根据阿波罗尼斯球的性质转换所求的线段之和求解.属于难题. 7.B【解析】当1λ=时,BC AC =,故C 的轨迹为线段AB 的中垂面与α的交线,当2λ=时,2BC AC =,在平面α内建立坐标系,设(,)C x y ,求出C 的轨迹方程得出结论.【详解】在ABC ∆中,∵sin sin (0)CAB CBA λλ∠=∠>,由正弦定理可得:BCACλ=, 当1λ=时,BC AC =,过AB 的中点作线段AB 的垂面β, 则点C 在α与β的交线上,即点C 的轨迹是一条直线, 当2λ=时,2BC AC =,设B 在平面α内的射影为D ,连接BD ,CD ,设BD h =,2AD a =,则BC = 在平面α内,以AD 所在直线为x 轴,以AD 的中点为y 轴建立平面直角坐标系,设(,)C x y ,则CA =CD CB ==2222516393a h x a y ⎛⎫++=+ ⎪⎝⎭.∴C 的轨迹是圆. 故选B .【点睛】本题考查轨迹方程的求解与判断,分类讨论思想,属于中档题. 8.B【分析】根据题目条件得到2PB PA =,进而建立平面直角坐标系,求出P 点轨迹方程,点P 在α内的轨迹为以()5,0M -为圆心,以4为半径的上半圆,从而求出当PB 与圆相切时,二面角的平面角PBA ∠最大,求出相应的余弦值最小值.【详解】由题意易得PD 与平面α所成角为DPA ∠,PC 与平面α所成角为CPB ∠, ∵DPA CPB ∠=∠, ∴tan tan DPA CPB ∠=∠, ∴AD BCPA PB=, ∴2PB PA =, ∴P 点轨迹为阿氏圆.在平面α内,以AB 为x 轴,以AB 的中垂线为y 轴,建立平面直角坐标系,则()(),3,03,0A B -,设(),,0P x y y >,=整理得:()22516x y ++=,所以点P 在α内的轨迹为以()5,0M -为圆心,以4为半径的上半圆, 因为平面αβ⊥,l αβ=,CB l ⊥,CB β⊂,所以CB α⊥, 因为PB α⊂, 所以CB PB ⊥,因为平面PBC 平面BC β=,CB l ⊥, 所以二面角P BC D --的平面角为PBA ∠,由图可知,当PB 与圆相切时,PBA ∠最大,余弦值最小, 此时41sin 82MP PBA MB ∠===,故cos PBA ∠==故选:B . 9.B【分析】根据给定条件探求出过点D 垂直于直线BN 的平面,可得此平面截球O 的截面小圆即为M 的运动路线,求出点O 到此截面距离即可计算作答.【详解】在正方体1111ABCD A B C D -中,在BB 1上取点P ,使B 1P =2BP ,连接CP ,DP ,如图,因N 在B 1C 上,有112NC B N =,即1113NB PB BC B B==,则1R t R t C B P B BN,1CPB BNB ∠=∠,于是得BN CP ⊥,而CD ⊥平面BCC 1B 1,BN ⊂平面BCC 1B 1,则BN CD ⊥,又CD CP C ⋂=,,CD CP ⊂平面CDP ,则有BN ⊥平面CDP ,因动点M 满足DM BN ⊥,则有点M 在平面CDP 内,依题意,平面CDP 截球O 的截面小圆即为M 的运动路线,令正方形BCC 1B 1与正方形ADD 1A 1的中心分别为E ,F ,连接EF ,则正方体内切球球心O必为线段EF 中点,显然,EF //CD ,EF ⊄平面CDP ,CD ⊂平面CDP ,于是得EF //平面CDP ,则点O 到平面CDP 距离等于点E 到平面CDP 的距离h ,取BC 中点G ,连接EG ,CE ,PE ,而平面CDP ⊥平面BCC 1B 1,平面CDP 平面BCC 1B 1=CP ,则ECP △的边CP 上的高等于h ,EG ⊥BC ,32EG GC ==,则CE =BGEP 中,31,2BP BG ==,则EP =,ECP △中,CP =由余弦定理得222cos 2EP CE CP CEP EP CE +-∠==⋅,sin CEP ∠=由11sin 22CEPSCP h CE EP CEP =⋅=⋅∠得:h =设点M 运动路线的小圆半径为r ,而球O 的半径32R =,由222r h R +=得r =2r π=所以动点M . 故选:B10.43【分析】根据题意以D 为坐标原点,DA 为x 轴建立平面直角坐标系,设P (x ,y ),利用P A =2PD ,求出点P 的轨迹方程,即可得到点P 所形成的阿氏圆的半径,利用tan ∠APB =ABAP,tan ∠DPE =DEDP,结合已知条件∠APB =∠EPD ,从而得到AP =2DP ,结合图像利用1空中的结论求解DP 3即为三棱锥P ﹣ACD 最大的高,然后利用三棱锥的体积公式求解即可. 【详解】以D 为坐标原点,DA 为x 轴建立如图所示的平面直角坐标系, 则A (2,0),D (0,0),设P (x ,y ),因为P A =2PD ,整理得22224()()33x y ++=,故点P 所形成的阿氏圆的半径为43;因为AB ⊥平面ADD 1A 1,CD ⊥平面ADD 1A 1, 所以∠P AB =90°,∠PDE =90°,所以tan ∠APB =AB AP,tan ∠DPE =DEDP , 又∠APB =∠DPE ,则AB AP =DEDP, 因为E 是CD 的中点,所以AP =2DP ,由1空的结论可知,点P 的轨迹为22224()()33x y ++=的一部分,则当P 在DD 1上时,三棱锥P ﹣ACD 的体积最大, 图2中的DP 3即为三棱锥P ﹣ACD 最大的高,所以33DP ==,则三棱锥P ﹣ACD 体积的最大值是311122332ACDSDP ⋅⋅=⨯⨯⨯=故答案为:4311【分析】由题意,建立空间直角坐标系,根据两点距离公式,结合线段等量关系,整理轨迹方程,可得答案.【详解】解:以D 为坐标原点,DA 为x 轴,DC 为y 轴,1DD 为z 轴,建立空间直角坐标系,则()1,0,0A ,()1,1,0.B P 为侧面11BB C C 内的动点,P ∴的纵坐标为1,设(),1,P x z ,则PA PB =2,PA PB ==化简整理得()22113x z -+=,当1y =时,该方程表示在平面11B BCC 内,以点B∴点P 所形成的轨迹图形为图中EF ,其长度为:124EF π==.12 【分析】在1BB 取点P ,使12B P P B =,证明BN ⊥平面DCP ,从而得点M 的轨迹为平面DCP与球O 的截面圆周,因此求出球半径和球心到截面的距离,然后利用截面圆性质可得球面圆半径后可得其周长.题中球心到截面的距离利用体积法求解.球O 半径利用球的体积公式计算可得.【详解】解:如图,在1BB 取点P ,使12BP PB =,连接CP ,DP ,BN ,因为112NC NB =,可得1BCP B BN ≅△△,则1BCP B BN ∠=∠,所以190NBC BCP NBC NBB ∠+∠=∠+∠=︒所以BN CP ⊥,又DC ⊥平面11BCC B ,BN ⊂平面11BCC B ,所以DC BN ⊥,同理DC CP ⊥,因为DC CP C =,,DC CP ⊂平面DCP ,所以BN ⊥平面DCP ,则点M 的轨迹为平面DCP 与球O 的截面圆周,设正方体的棱长为a ,则343632a ππ⎛⎫⋅= ⎪⎝⎭,解得6a =,连接OD ,OP ,OC , 如图,在对角面11BDD B 中,1111211622332ODP B DP SBB S S S ==⨯=⨯⨯=△△△C 到平面ODP 的距离即C 到平面11DBBD = 1123C ODP V -=⨯=,又CP ==162DCP S =⨯=△O 到平面DCP 的距离为h ,则O DPC C DPO V V --=,h ==,得O 到平面DCP所以截面圆的半径r ==则点M 的轨迹长度为2π=,.【点睛】关键点点睛:本题考查空间的几何体中的轨迹问题,解题关系是确定BN ⊥平面DCP ,得点M 的轨迹为平面DCP 与球O 的截面圆周,为了求截面圆半径,需求得球半径和球心到截面的距离,这个距离我们利用体积法求解.13. 【解析】求出正四面体的高,进一步得到内切球的半径,由高减去内切球的直径得PA 的最小值;利用阿波罗尼斯球的定义,借助内切球的比例关系求得3BP BE =,转化后求最小值即可.【详解】设正四面体ABCD 的高为h ,每一个面的面积为S ,其内切球的半径为r , 则由等积法可得,11433Sh Sr =,即14r h =. 设内切球球心为O ,连结BO 并延长交平面ACD 于H ,交内切球上方的点设为K ,过P 作PE BH ⊥,交BH 于E ,连结BP ,AP ,如图,则在正三角形中2123AH ==∴BH∴正四面体内切球的半径1144r h BH ==则BP 的最小值为BK=AP的最小值为根据阿波罗尼斯球知,内切球是线段BH 上以B ,E 为定点,空间中满足(1)PB PE λλ=≠的点P 的集合,设OE x =,因为34BO =⨯OH KB HB KE HE =,∴=x =,3KB KE λ∴===, ∴3PB PE =,∴13PB PE =, 13PA PB PA PE AE ∴+=+…, 在AOE △中,BO AO ==OE =,1cos cos 3OH AOE AOH AO ∠=-∠=-==-,AE ∴= ∴13PA PB +故答案为:【点睛】关键点点睛:本题解题的关键点在于,根据阿波罗尼斯球定义利用比例关系求得3BP BE =,可将13PA PB +转化为PA PE +,利用平面几何性质知PA PE +最小值为AE ,由余弦定理求解即可,属于难题.。
阿波罗尼斯圆的应用作者:汪欣晏
来源:《科教导刊·电子版》2020年第02期
摘要阿波罗尼斯圆,简称阿氏圆,在高考中的几何问题中能得到很好的应用,尤其是在点与圆的转化中能有很好的效果,在应用中,可从两个方面来解决问题:(1)由点求圆;(2)由圆求点。
在此,向大家介绍阿波罗尼斯圆的应用方法,供参考。
关键词阿波罗尼斯圆阿氏圆由点求圆由圆求點
【背景】:如图,在中,为的角平分线,为的外角平分线,根据角平分线定理,易得,
评述:两种方法对比可知,以常规法通过斜率硬算工程量,难度较大,而用特殊的边长关系,以确定阿氏圆,再通过阿氏圆的几何性质,求出所求边的关系,更为简便巧妙。
阿波罗尼斯圆在高考中的应用
阿波罗尼斯圆是一种经典的几何形状,自古以来就被应用于科学、数学、艺术和建筑等领域,并被认为是世界上最重要的几何形状之一。
尤其在高考应用中,阿波罗尼斯圆扮演着一个非常重要的角色。
首先,阿波罗尼斯圆在高考几何中独有的概念及其运用是必不可少的,它可以帮助考生深入理解几何的基础知识。
例如,高考几何中的线段的长度、内积、外积等概念,都能够很好地利用阿波罗尼斯圆的概念来计算和分析。
考生在解答高考几何中的各种问题时,也能够很好地利用和应用阿波罗尼斯圆的特性,为高考数学的答案提供帮助。
此外,阿波罗尼斯圆在高考数学中也具有重要的意义。
它可以帮助考生能够更好地理解和掌握高考数学中的多项式导数、积分、偏导数和隐函数等概念,从而更加清楚准确地解决高考中的数学问题。
在解答高考数学中多项式和隐函数等问题时,阿波罗尼斯圆也可以帮助考生更加有效地完成答案。
例如,高考数学中求一元多项式的导数的问题,可以借助于阿波罗切线的概念,对函数的切点求出表达式,从而轻松地求解导数问题。
最后,阿波罗尼斯圆在图形设计、动画设计和绘图等领域也有着重要的应用。
在高考数学中,考生要求画出和分析函数的图形,借助阿波罗尼斯圆的概念,可以更容易地完成函数图形画出和分析工作。
此外,它还能够帮助考生更加清楚准确地获得函数表达式各个参数的数值,从而更好地解决高考数学的问题。
总之,阿波罗尼斯圆在高考中的应用广泛而多样,它不仅能够帮
助考生深入理解数学和几何的基本概念,还能够帮助他们解决高考中的计算等问题,从而大大增加考生通过高考的可能性。
高三第一轮复习专题训练之阿波罗尼斯圆引例:1.已知点(,)M x y 与两定点(0,0),(3,0)O A 的距离之比为12, 那么点M 的坐标应满足什么关系? (人教A 版《必修2》第124页习题4.1B 组第3题)2.已知点()()08,02,,Q P , 点M 与点P 的距离是它与点Q 的距离的51, 用《几何画板》探究点的轨迹, 并给出轨迹的方程. (人教A 版《必修2》第140页例题)背景展示: 阿波罗尼斯是古希腊著名数学家, 与欧几里得、阿基米德被称为亚历山大时期数学三巨匠, 他对圆锥曲线有深刻而系统的研究, 主要研究成果集中在他的代表作《圆锥曲线》一书, 阿波罗尼斯圆是他的研究成果之一.例1.求证:到两定点的距离的比值是不等于1的常数的点的轨迹是圆.证明:如图, 设两定点为A 、B , |AB |=a , 动点为P , 距离的比值为常数()1λλ≠以AB 为x 轴、A 为坐标原点建立直角坐标系, 则B (a , 0), 设P (x , y ), 由|PA||PB |λ=得: ()2222x y x a y λ-++=()()2222222112x y a x a λλλλ+⇒--+=22222211a a x y λλλλ+⎛⎫⎛⎫⇒+= ⎪ ⎪--⎝⎭⎝⎭例2.(2008年高考数学江苏卷)若BC AC AB 22==,, 则ABC S ∆的最大值为 .解:显然这是一例阿波罗圆, 建立如图的直角坐标系, 得:()2238x y -+=.设圆心为M ,显然当CM⊥x轴时,△ABC面积最大,此时22,CM =()max 1222222ABC S ∆∴=⋅⋅=.评注:既然△ABC 存在, 说明其轨迹不包括与x轴的两个交点P,Q ,现在问:P,Q 这两点究竟有什么性质?由于2PA CAPB CB==, ∴CP 为△ACB 的内角平分线;同理, CQ 为△ACB 的外角平分线.这就是说, P,Q 分别是线段AB 的内分点和外分点, 而PQ 正是阿氏圆的直径.于是“阿波罗尼斯圆”在我国又被称为“内外圆”.因此, 题2又有如下的轴上简洁解法:∵动点C 到定点A ( - 1, 0 ) 和B (1, 0)距离之比为2, 则有|1|1|x x +=-()222212216103x x x x x x x ⇒++=-+⇒-+=⇒=±∴得2231-=x 为内分点,23x =+为外分点.圆半径()2112r x x =-= 即为三角形高的最大值, 即△ABC 高的最大值是22.故△ABC 的面积的最大值是22.例3.(2006年高考数学四川卷)已知两个定点()()01,02,,B A -.如果动点P 满足PB PA 2=, 则点的轨迹所包围的面积等于 ( )A. π B. π4 C. π8 D.π9解:显然这又是一个阿波罗圆, 由上述评注我们可以实行轴上解决.设O 为坐标原点, 注意到2OA OB =,可知原点O为线段AB的内分点.设AB的外分点为(),0C x , 由2CA CB =221x x +⇒=-4x ⇒=, 即有C (4, 0).于是圆直径为24OC r ==, ∴2r =, 所求轨迹面积224S ππ=⋅=, 故选B.例4. (2019年高考数学湖北卷)如图, 圆C 与x 轴相切于点(1,0)T , 与y 轴正半轴交于两点,A B (B 在A 的上方), 且2AB =.(Ⅰ)圆C 的标准..方程为 ;(Ⅱ)过点A 任作一条直线与圆22:1O x y +=相交于,M N 两点, 下列三个结论:①NA MA NB MB=; ②2NB MA NAMB-=;③NB MA NAMB+=.其中正确结论的序号是 .(写出所有正确结论的序号)解:(1)易知半径r =, 所以圆的方程为()(2212x y -+=;(2)易知()()1,1A B , 设(),P x y 为圆C 上任意一点, 则1PA PB====, 故①正确; ()()21212NB MANA MB-=+--=, ②正确;()()212122NB MANA MB+=++-=, ③正确。