七年级上册数学讲课(教师用)
- 格式:ppt
- 大小:370.00 KB
- 文档页数:45
数学教师教学用书七年级 (上册)
《七年级数学教师教学用书(上册)》是一本专为中学数学
教师准备的教学用书,主要内容包括:
一、数学基础知识:本书从数学基础知识入手,介绍了数学
的基本概念、基本概念的定义、基本概念的性质、基本概念的应
用等,为教师提供了较为全面的数学基础知识。
二、数学计算:本书介绍了数学计算的基本原理,包括数学
计算的基本技巧、数学计算的基本方法、数学计算的基本原理等,为教师提供了较为全面的数学计算知识。
三、数学推理:本书介绍了数学推理的基本原理,包括数学
推理的基本技巧、数学推理的基本方法、数学推理的基本原理等,为教师提供了较为全面的数学推理知识。
四、数学实践:本书介绍了数学实践的基本原理,包括数学
实践的基本技巧、数学实践的基本方法、数学实践的基本原理等,为教师提供了较为全面的数学实践知识。
五、数学思维:本书介绍了数学思维的基本原理,包括数学
思维的基本技巧、数学思维的基本方法、数学思维的基本原理等,为教师提供了较为全面的数学思维知识。
总之,《七年级数学教师教学用书(上册)》是一本专为中学数学教师准备的教学用书,其内容涵盖了数学基础知识、数学计算、数学推理、数学实践和数学思维等方面,为教师提供了较为全面的数学知识,有助于教师更好地掌握数学知识,更好地教授学生。
辅导教案学员姓名:学科教师:周乔乔年级:七年级辅导科目:数学授课日期时间主题幂的运算(一)教学内容《整式的乘除》是整式加减的延续和发展,也是后续学习因式分解、分式运算的基础.整式的乘法运算包含单项式乘法、单项式与多项式乘法和多项式乘法,它们最后都转化为单项式乘法.单项式的乘法又以幂的运算为基础.“整式的乘法”的内容和逻辑线索是:同底数幂的乘法——幂的乘方——积的乘方——单项式乘单项式——单项式乘多项式——多项式乘多项式——乘法公式(特例).由此可见,同底数幂的乘法、幂的乘方、积的乘方是整式乘法的逻辑起点,是该章的起始课.作为章节起始课,承载着单元知识以及学习方法、路径的引领作用.幂的运算(一)知识结构模块一:同底数幂的乘法知识精讲内容分析1、幂的运算概念:求n 个相同因数的积的运算,叫做乘方,乘方的结果叫做幂.在n a 中,a 叫做底数,n 叫做指数.含义:n a 中,a 为底数,n 为指数,即表示a 的个数,n a 表示有n 个a 连续相乘. 例如:53表示33333⨯⨯⨯⨯,()53-表示()()()()()33333-⨯-⨯-⨯-⨯-,53-表示()33333-⨯⨯⨯⨯,527⎛⎫⎪⎝⎭表示2222277777⨯⨯⨯⨯,527表示222227⨯⨯⨯⨯.特别注意负数及分数的乘方,应把底数加上括号. 2、“奇负偶正”口诀的应用:口诀“奇负偶正”在多处知识点中均提到过,它具体的应用有如下几点:(1)多重负号的化简,这里奇偶指的是“-”号的个数,例如:[](3)3---=-;[](3)3-+-=. (2)有理数乘法,当多个非零因数相乘时,这里奇偶指的是负因数的个数,正负指结果中积的符号. (3)有理数乘方,这里奇、偶指的是指数,当底数为负数时,指数为奇数,则幂为负;指数为偶数,则幂为正.例如:()239-=,()3327-=-.特别地:当n 为奇数时,()n n a a -=-;而当n 为偶数时,()nn a a -=. 负数的奇次幂是负数,负数的偶次幂是正数.正数的任何次幂都是正数,1的任何次幂都是1,任何不为0的数的0次幂都是“1”. 3、同底数幂相乘同底数的幂相乘,底数不变,指数相加.用式子表示为: m n m n a a a +⋅=(,m n 都是正整数).【例1】 下列各式正确吗?不正确的请加以改正. (1)347()()x x x -⋅-=-; (2)246()()x x x --=-; (3)()()121m m m a a a ++--=;(4)5552b b b ⋅=;(5)4610b b b +=; (6)55102x x x ⋅=;(7)5525x x x ⋅=;(8)33c c c ⋅=.【难度】★【答案】(1)正确;(2)不正确,正确为:()()4626x x x x --=-=--;(3)不正确,正确为:()()()12121m m m m a a a a +++--=-=-;(4)不正确,正确为:5510b b b ⋅=;(5)不正确,不能计算;(6)不正确,正确为:5510x x x ⋅=;(7)不正确,正确为:5510x x x ⋅=; (8)不正确,正确为:34c c c ⋅=. 例题解析【解析】同底数幂相乘,底数不变,指数相加.【总结】本题主要考查同底数幂的乘法运算,同时一定要注意确保是在同底数幂乘法运算时才可以应用,注意算式中的符号.【例2】 计算下列各式,结果用幂的形式表示: (1)567(2)(2)(2)-⨯-⨯-; (2)23a a a ⋅⋅;(3)24()()a b a b +⋅+;(4)235()()()x y x y x y -⋅-⋅-.【难度】★【答案】(1)182;(2)6a ;(3)()6a b +;(4)()10x y -. 【解析】本题主要考查同底数幂相乘的计算,底数不变,指数相加.【例3】 计算下列各式,结果用幂的形式表示. (1)()()334333x x x x x x x x ⋅+⋅⋅+-⋅-⋅;(2)()()()()()3224a a a a a ---+--;(3)12211m n m n m n a a a a a a -++-+⋅+⋅+⋅. 【难度】★【答案】(1)73x ;(2)0;(3)13m n a ++.【解析】(1)原式77773x x x x =++=; (2)原式660a a =-=;(3)原式11113m n m n m n m n a a a a ++++++++=++=.【总结】本题主要考查同底数幂相乘的计算和合并同类项相关知识概念,同底数幂相乘,底数不变,指数相加,然后进行合并同类项的运算.【例4】 计算下列各式,结果用幂的形式表示.(1)()()()332a a a --⋅--;(2)()()23x y y x --;(3)()()()212222m m x y x y x y -+---.【难度】★★【答案】(1)8a ;(2)()5y x -;(3)()232m x y +-.【解析】(1)原式358a a a =⋅=; (2)原式235()()()y x y x y x =-⋅-=-;(3)原式21223(2)m m m x y a +-+++=-=.【总结】本题主要考查同底数幂相乘的计算,底数不变,指数相加;同时涉及到多重负号的化简,看“-”号的个数决定运算结果的符号,奇负偶正.【例5】 如果2111m n n x x x -+⋅=,且145m n y y y --⋅=,试求m 、n 的值. 【难度】★★【答案】64m n ==,.【解析】根据同底数幂的计算法则,可得2111145m n n m n -++=⎧⎨-+-=⎩,解方程组得64m n =⎧⎨=⎩.【总结】考查同底数幂相乘的运算法则.【例6】 求值: (1)已知:29m n n m x x x +-⋅=,求()59n-+的值.(2)已知:()4233x +-=,求x 的值.【难度】★★【答案】(1)116-;(2)2-.【解析】(1)由同底数幂乘法法则,可得29m n n m ++-=,解得3n =,()359116-+=-;(2)()()422333x +-==-,可得42x +=,解得2x =-.【总结】本题主要考查同底数幂相乘的运算法则,注意一定要让底数相等的前提下保证幂相等.【例7】 若2216m n ⋅=,求48m n m n ++⋅的值. 【难度】★★★ 【答案】432.【解析】由同底数幂的乘法计算,可得422m n +=,由此4m n +=,原式=4444832⨯=. 【总结】本题主要考查同底数幂计算中整体思想的应用.【例8】 解关于x 的方程: (1)21134151294x x x x ++⋅=-⋅; (2)已知351327648x x ++-=. 【难度】★★★ 【答案】(1)32x =;(2)13x =.【解析】(1)22223321512324x x x x ⋅⋅=-⋅⋅ (2)3333393648x x ++⋅-= 2671512x ⋅= 3338648x +⋅= 2362166x == 3343813x +== 32x =13x =【总结】解此种类型的方程主要根据乘方的定义把含有未知数的项变作相同的项,再根据相互之间的关系转化求解.【例9】 若312x y z==,且99xy yz xz ++=,求2222129x y z ++的值. 【难度】★★★ 【答案】594. 【解析】由312x y z==,可得32x y z y ==,,22223261199xy yz xz y y y y ++=++==,则有29y =,所以()()2222222212923129266594x y z y y y y ++=⨯++⨯==.【总结】考查整体思想的应用,等量代换的方法.1、幂的乘方定义:幂的乘方是指几个相同的幂相乘.2、幂的乘方法则:幂的乘方,底数不变,指数相乘.即()m n mn a a =(m 、n 都是正整数)【例10】计算下列各式,结果用幂的形式表示.(1)()42a -;(2)24()a -; (3)2()n n a ; (4)()832;(5)()432⎡⎤-⎣⎦; (6)()33b -;(7)()43x -;(8)323()()x y x y ⎡⎤⎡⎤++⎣⎦⎣⎦.【难度】★【答案】(1)8a -;(2)8a ;(3)22n a ;(4)242;(5)122;(6)9b -;(7)12x ;(8)()9x y +.【解析】幂的乘方,底数不变,指数相乘. 【总结】本题主要考查幂的乘方的运算.【例11】 当正整数n 分别满足什么条件时,()(),n nn n a a a a -=-=-?【难度】★【答案】n 为偶数时,()nn a a -=;n 为奇数时,()nn a a -=-.【解析】幂的运算中,奇负偶正.【例12】已知:2n a =(n 为正整数),求()()2223nn a a -的值.【难度】★★【答案】48-.【解析】原式=()()4646462248n n n n a a a a -=-=-=-.【总结】本题主要考查幂的乘方的运算,以及运算中整体思想的应用. 知识精讲例题解析模块二:幂的乘方【例13】 计算(1)()2122n n n a a a +++;(2)()()()3834222632x x x x x ⎡⎤-+⎢⎥⎣⎦.【难度】★★【答案】(1)223n a +;(2)0【解析】(1)原式22222223n n n a a a +++=+=; (2)原式18181820x x x =-+=. 【总结】本题考查幂的乘方和同底数幂的乘法运算.【例14】计算:(1)()()()22121n n n a b b a a b -+⎡⎤⎡⎤---⎣⎦⎣⎦;(2)()()3223a b b a ⎡⎤⎡⎤---⎣⎦⎣⎦. 【难度】★★ 【答案】(1)()61n a b --;(2)0.【解析】(1)原式2222161()()()()n n n n a b a b a b a b -+-=-⋅-⋅-=-;(2)原式66()()0a b a b =---=.【总结】本题考查幂的乘方和同底数幂的乘法运算.【例15】已知23m n a a ==,,求23m n a +的值.【难度】★★ 【答案】108.【解析】()()2323232323108m n m n m n a a a a a +=⋅=⋅=⨯=.【总结】本题注意考查幂的乘方运算中整体思想的应用.【例16】 已知2673x x y m m a a a b a b ++⋅⋅⋅=(x 、y 、m 都是正整数),且y 不大于3,求2x y m +-的值. 【难度】★★★ 【答案】3-.【解析】依题意有221673x y m m a b a b +++=,由此可得()217x y ++=,63m m +=,解得3x y +=, 3m =,由此23x y m +-=-.【总结】本题主要考查同底数幂相乘的法则的运用.【例17】比较大小:(1)比较下列一组数的大小:在552,443,334,225; (2)比较下列一组数的大小:31416181279,,; (3)比较下列一组数的大小:4488,5366,6244. 【难度】★★★【答案】(1)443355223425>>>;(2)31416181279>>;(3)488366244456>>. 【解析】(1)()()()()11111111555114441133311222112232338144645525========,,,,可得:443355223425>>>;(2)()()()31416131412441312361212281332733933======,,,可得:31416181279>>; (3)()()()11211211248841123663112244211244256551256636======,,,可得:488366244456>>.【总结】本题中,指数幂运算结果都是很大的数,不可能直接算出来,采用间接法,利用幂的乘方运算法则,要么化作指数相同,比较底数大小,要么化作底数相同,比较指数大小.【例18】已知()()2222221123451216n n n n ++++++=++L ,求222224650++++L 的值.【难度】★★★ 【答案】22100.【解析】原式=()()()()()222222222212223225212325⨯+⨯+⨯+⋅⋅⋅+⨯=⨯+++⋅⋅⋅+,代入公式,可得:()()14252512251221006⨯⨯⨯+⨯⨯+=.【总结】本题主要考查对相关公式的变形运用. 模块三:积的乘方1、积的乘方定义:积的乘方指的是乘积形式的乘方.2、积的乘方法则:积的乘方,等于把积中的每个因式分别乘方,再把所得的幂相乘: ()nn n ab a b =(n 是正整数)3、积的乘方的逆用:()n n n a b ab =.【例19】计算:(1)()333m n -;(2)43213a b ⎛⎫- ⎪⎝⎭;(3)()32242a b--;(4)541103⎛⎫-⨯ ⎪⎝⎭.【难度】★【答案】(1)9327m n -;(2)128181a b ;(3)61264a b ;(4)2010243-.【解析】本题考查积的乘方的运算法则,把积中的每个因式分别乘方,注意正负.【例20】计算:(1)342(-)a b ;(2)3532()4x y ;(3)23[()]a b -+.【难度】★【答案】(1)68a b ;(2)91518x y ;(3)()6a b -+.【解析】本题考查积的乘方的运算法则,把积中的每个因式分别乘方,注意正负.【例21】计算:(1)()()233232x x +;(2)()()32223332x y x y -;例题解析知识精讲(3)()()433648a b a b -+-;(4)232()[()]a b b a -⋅-.【难度】★【答案】(1)617x ;(2)66x y ;(3)0;(4)()8a b -. 【解析】(1)原式6669817x x x =+=;(2)原式66666632x y x y x y =-=; (3)原式122412240a b a b =-=;(4)原式268()()()a b a b a b =-⋅-=-.【总结】本题考查同底数幂的乘法,幂的乘方,积的乘方综合运算,熟练运算法则.【例22】计算:(1)32332()()y y y ⋅⋅;(2)2323[()]a a a -⋅⋅-;(3)()()3222632x y x y ⎡⎤⎡⎤---+-⎣⎦⎢⎥⎣⎦.【难度】★★【答案】(1)15y ;(2)11a -;(3)12665x y . 【解析】(1)原式26615y y y y =⋅⋅=;(2)原式5611a a a =-⋅=-;(3)原式1261261266465x y x y x y =+=.【总结】本题考查同底数幂的乘法,幂的乘方,积的乘方综合运算,熟练运算法则.【例23】用简便方法计算:(1)818139⎛⎫⨯- ⎪⎝⎭;(2)()66720030.1252-⨯;(3)128184⎛⎫⨯- ⎪⎝⎭;(4)61245⨯.【难度】★★【答案】(1)9;(2)4-;(3)1;(4)1210. 【解析】(1)原式=()888928111399999999⎛⎫⎛⎫⎛⎫⨯=⨯⨯=⨯⨯= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭;(2)原式=()()()()6676676676672001230.125220.125240.125844-⨯⨯=-⨯⨯=-⨯⨯=-;(3)原式=()()1212121281232421111222414444⎛⎫⎛⎫⎛⎫⎛⎫⨯=⨯=⨯=⨯= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭;(4)原式=()()61221212121225252510⨯=⨯=⨯=.【总结】主要根据积的乘方逆运算法则和同底数幂的乘法,将底数变成易于计算的数字.【例24】简便计算:(1)()()16170.1258⨯-;(2)20022001513135⎛⎫⎛⎫⨯ ⎪⎪⎝⎭⎝⎭;(3)()()315150.1252⨯.【难度】★★【答案】(1)8-;(2)513;(3)1. 【解析】(1)原式=()()()()()1616160.125880.125888⨯-⨯-=⨯-⨯-=-⎡⎤⎣⎦;(2) 原式=200120012001551355135131351313513⎛⎫⎛⎫⎛⎫⎛⎫⨯⨯=⨯⨯=⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭; (3) 原式=()()()151515330.12520.12521⨯=⨯=.【总结】考查积的乘方简便运算,把握好乘方的定义,同时注意一定指数相同时才能进行积的乘方的逆运算.【例25】已知57,19m n m x x +==,求3n x 的值.【难度】★★★ 【答案】27.【解析】57m n m n x x x +=⋅=,由19m x =,可得3n x =,则()333327n n x x ===.【总结】本题主要是幂的运算中整体思想的应用.【例26】已知:1123326x x x ++-⋅=,求x 的值.【难度】★★★ 【答案】4.【解析】由题目条件,根据积的乘方逆运用,()11233266x x x ++-⨯==,可得123x x +=-,解方程得:4x =.【总结】本题主要考查积的乘方的逆用.【例27】计算:()99991111...1123 (98991009998)32⎛⎫⨯⨯⨯⨯⨯⋅⨯⨯⨯⨯⨯⨯ ⎪⎝⎭.【难度】★★★ 【答案】99100.【解析】原式=999911112398991001009998⎛⎫⨯⨯⋅⋅⋅⨯⨯⨯⨯⨯⋅⋅⋅⨯⨯⨯= ⎪⎝⎭.【总结】本题主要考查积的乘方的逆用.【例28】2009201025⨯的积有多少个0?是几位数?【难度】★★★【答案】有2009个0,是2010位数. 【解析】()20092009201020092009200925255255105⨯=⨯⨯=⨯⨯=⨯,可知式子乘积有2009个0, 是2010位数.【总结】本题主要考查积的乘方的逆用,注意指数的变化.【习题1】 计算:(1)()3523124m m ⎛⎫-⋅- ⎪⎝⎭;(2)322373127y y y ⎛⎫⎛⎫⋅⋅- ⎪⎪⎝⎭⎝⎭;随堂检测(3)431()()4x y x y ⎡⎤++⎢⎥⎣⎦.【难度】★【答案】(1)2112m ;(2)137192y ;(3)()71256x y +【解析】(1)原式6152111(32)642m m m =-⋅-=; (2)原式3661337971249192y y y y =⋅⋅=;(3)原式43711()()()256256x y x y x y =+⋅+=+.【总结】本题主要考查幂的运算,注意运算法则的准确运用以及计算过程中的符号.【习题2】 计算:(1)()()842263x x x x ⋅+⋅;(2)()()()()224252232a a a a ⋅-⋅;(3)()()()33252352123y y y y y ⎛⎫⋅⋅+-⋅- ⎪⎝⎭. 【难度】★【答案】(1)182x ;(2)14a ;(3)25132127y ⎛⎫+ ⎪⎝⎭.【解析】(1)原式216612182x x x x x =⋅+⋅=; (2)原式10486142a a a a a =⋅-⋅=;(3)原式252566325101313131222(1)272727y y y y y y y y =⋅⋅+⋅=+⋅=+.【总结】本题主要考查幂的运算,注意运算法则的准确运用以及计算后注意合并同类项.【习题3】 计算:()()()()213325m m ma b b a a b b a ++⎡⎤⎡⎤-⋅--⋅-⋅--⎣⎦⎣⎦. 【难度】★ 【答案】()620m a b +--.【解析】原式=()()()()34215m m m a b a b a b a b ++⎡⎤-⋅--⋅-⋅-⎣⎦()34215m m m a b +++++=--()620m a b +=--.【总结】本题主要考查幂的运算,计算过程中注意符号的变化.【习题4】 填空题:(1)n 为自然数,那么()1n-=______;()21n-=_______;()211n +-=________;(2)当n 为____________数时,()()2110n n-+-=; (3)当n 为____________数时,()()2112nn-+-=. 【难度】★★【答案】(1)111±-,,;(2)奇;(3)偶. 【解析】主要考查幂的运算中的符号,奇负偶正.【习题5】 若n 是自然数,并且有理数,a b 满足10a b+=,则必有( )A .210nna b ⎛⎫+= ⎪⎝⎭;B .21210n nab +⎛⎫+= ⎪⎝⎭;C .2210nnab ⎛⎫+= ⎪⎝⎭;D .212110n n ab ++⎛⎫+= ⎪⎝⎭.【难度】★★ 【答案】B 【解析】a 和1b互为相反数,则必为一正一负,根据“奇负偶正”可知两幂运算指数必为一 奇一偶. 【总结】本题主要考查积的乘方以及相反数的相关概念.【习题6】 填空:(1)计算:()()5333a b b a --=__________; (2)计算:43()()()m n n m n m ---=__________;(3)计算:()()222x y y x ⎡⎤--⋅-⎣⎦=__________. 【难度】★★【答案】(1)()83a b --;(2)()8m n -;(3)()6x y -. 【解析】(1)原式538(3)[(3)](3)a b a b a b =-⋅--=--; (2)原式448()()()m n n m m n =-⋅-=-; (3)原式426()()()x y x y x y =-⋅-=-.【总结】本题主要考查幂的综合运算,计算过程中注意符号.【习题7】 用简便方法计算: (1)()()2200320030.045⎡⎤⨯-⎣⎦;(2)200720072 1.53⎛⎫-⨯ ⎪⎝⎭;(3)1111127331982⎛⎫⎛⎫⎛⎫-⨯⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.【难度】★★【答案】(1)1;(2)1-;(3)32-【解析】(1)原式=()()()200320032003220.0450.0451⨯=⨯=;(2)原式=20072 1.513⎛⎫-⨯=- ⎪⎝⎭;(3)原式=1111111173337333311982298222⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-⨯⨯-⨯-=-⨯⨯-⨯-=- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦.【总结】考查幂的运算的应用,一般将指数化作相同,用积的乘方逆运算应用计算.【习题8】 如果2228162n n ⋅⋅=,求n 的值. 【难度】★★ 【答案】3.【解析】将式子两边化作等底数幂,即有()()347122281622222nnn n n +⋅⋅=⨯⨯==,故7122n +=,解得3n =.【总结】本题主要考查同底数幂相乘的法则的运用.【习题9】 已知a 、b 互为负倒数,a 、c 互为相反数,d 的绝对值为1,则()()20152016201412ab a c d ++-=__________. 【难度】★★【答案】32-.【解析】依题意有101ab a c d =-+==,,,代入可得:()2015201620141310122⨯-+-=-. 【总结】本题中注意d 的取值以及负倒数的概念.【习题10】 已知有理数x ,y ,z 满足()2|2|367|334|0x z x y y z --+--++-=,求3314n n n x y z x --的值. 【难度】★★ 【答案】0.【解析】依题意有2036703340x z x y y z --=⎧⎪--=⎨⎪+-=⎩,可解得:3131x y z =⎧⎪⎪=⎨⎪⎪=⎩,代入可得:313134311131333333033n n nn n ---⎛⎫⎛⎫⋅⋅-=⋅⨯-=-= ⎪⎪⎝⎭⎝⎭.【总结】当几个非负数的和为零时,则这几个数分别为零.【习题11】 已知2326212a b c ===,,,求a b c ,,之间的一个数量关系. 【难度】★★ 【答案】2a c b +=.【解析】由3×12=36=6×6,根据题意代换可得:2222a c b b ⋅=⋅,即为222a c b +=.由此可得:2a c b +=.【总结】本题主要考查同底数幂相乘的法则的运用.【习题12】 小杰在学习幂的乘法时,发现()32236a a a ⨯==,()23326a a a ⨯==,两者的结果是相同的,他觉得这是由于在进行指数相乘时,乘法具有交换律,所以是相同的,于是他在计算()32a -与()23a -时,认为结果也应是相同的,你同意他的观点吗?说说你 的理由. 【难度】★★ 【答案】不同意.【解析】这两个幂的乘法运算可视作积的乘方运算,积的乘方运算的结果是积中的每个因式 分别乘方,会产生类似()1n-的运算,n 分别为奇偶时会产生不同的运算结果,奇负偶正, 即要注意好运算符号,两个式子计算结果不相等.【总结】负数的偶次幂为正,负数的奇次幂为负.【习题13】 三个互不相等的有理数,既可表示为1,a b +,a 的形式,又可表示为0,ba, b 的形式,则19921993a b += .【难度】★★★ 【答案】2.【解析】三个有理数互不相等,则1ba≠,可得1b =,进而可得01a b a +==-,,代入可得:()19921993112-+=.【总结】本题主要考查对题目条件的理解,以及幂的运算的考查.【习题14】 已知:3982ba ==,求22211125525a b a b b a b ⎛⎫⎛⎫⎛⎫-++-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭的值.【难度】★★★ 【答案】64-.【解析】由已知,即得()333998222b a ====,由此29a b ==,,对代数式化简,结果为:2222a a b -,代入数值计算得:222222964⨯-⨯⨯=-.【总结】本题中注意要先根据已知条件将等式转化为底数相同的幂,再根据指数相同求出相应的字母的值,最后再求出代数式的值.【作业1】 下列计算正确的是( )课后作业A .234235a a a +=B .()32528a a =C .3252()2a a a -=-D .226212m m a a a ⋅=【难度】★ 【答案】C【解析】考查幂的运算法则,熟练计算.【作业2】 计算: (1)22234xy ⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦;(2)33223a b ⎛⎫- ⎪⎝⎭;(4)()42313x y a b ⎡⎤--⋅⎢⎥⎣⎦.【难度】★ 【答案】(1)2481256x y ;(2)96827a b -;(3)()8124181x y a b - 【解析】考查幂的运算法则,熟练计算. 【作业3】计算:()()2436234341233a b a b b a ⎛⎫+--- ⎪⎝⎭【难度】★【答案】912410239a b ⎛⎫+⨯ ⎪⎝⎭.【解析】原式=12412491249124110232399a b a b a b a b ⎛⎫++⨯=+⨯ ⎪⎝⎭.【总结】本题主要考查幂的综合运算.【作业4】 简便计算: (1)20021220028113834⎛⎫⎛⎫-⋅+⨯- ⎪⎪⎝⎭⎝⎭;(2)()201120101294313343⎛⎫⎛⎫⎛⎫-⋅--⨯ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭.【难度】★【答案】(1)2;(2)3527-.【解析】(1)原式=2002122002122002121111343423434⎛⎫⎛⎫⎛⎫⎛⎫⨯+⨯=⨯+⨯= ⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭;(2)原式=2010201093944311413533343332727⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-⨯-⨯+⨯⨯=-+=- ⎪ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭.【总结】本题主要考查利用积的乘法法则完成简便运算.【作业5】 计算:62262224()()()()()kk k k kx y x y x y x y x y +-⎡⎤⎡⎤⎡⎤-⋅---⋅-+-⎣⎦⎣⎦⎣⎦.【难度】★★ 【答案】()8kx y -.【解析】原式=()()()()2662228k k k k kx y x y x y x y ++--⋅---+-=()()()888kkkx y x y x y ---+-()8kx y =-.【总结】本题主要考查幂的乘方的运用.【作业6】 求值:(1)已知102103m n ==,,求3210m n +. (2)已知54n n x y ==,,求()32n x y .【难度】★★【答案】(1)72;(2)2000.【解析】(1)()()3232323210101010102372m n m n m n +=⋅=⋅=⨯=;(2)()()()32323232542000nn n n n x y x y x y ==⋅=⨯=.【总结】本题主要考查整体思想的应用.【作业7】 求值:(1)若23n a =,求()43n a 的值.(2)如果()23612m n a b a b ⋅=,求m n ,的值.【难度】★★【答案】(1)729;(2)32m n ==,.【解析】(1)()()46312263729n n n a a a ====;(2)()2326612m n m n a b a b a b ⋅==,由此26612m n ==,,可解得32m n ==,.【总结】本题主要考查整体思想的应用.【作业8】 若a 、b 、c 都是正数,且22a =,33b =,44c =,比较a 、b 、c 的大小. 【难度】★★★ 【答案】b a c >=.【解析】22a =,则有()22224a ==,即44a =,又44c =,且a 、c 都是正数,可得a c =;由22a =,33b =,则有()()322633622839a a b b ======,,即66a b <,可知a b <;综上所述,b a c >=.【总结】本题主要考查幂的乘法的综合运算,以及幂的大小比较,注意将不同的幂化成同底数或者是同指数.【作业9】 已知999990991199X Y ==,,比较X 与Y 的大小.【难度】★★★ 【答案】X=Y .【解析】()999999999999011999119119999X Y ⨯⨯=====. 【总结】本题主要考查幂的大小比较,根据幂的乘方法则进行转化.【作业10】 已知:252000x =,802000y =,求11x y+的值. 【难度】★★★ 【答案】1. 【解析】由题意()1125200025xxx==,()1180200080yyy==,两式相乘,得:11200025802000x y+=⨯=,故111x y+=. 【总结】本题一方面考查整体思想的运用,另一方面考查幂的乘方的计算.。
第二章有理数及其运算■通关口诀:学好有理并不难;基本概念要通关。
整分统称有理数;小数有理也无理。
数轴加上反绝倒。
还有负数非负数。
六个概念先学好;五种运算无漏洞。
科学记数表大数;寻找规律有方法。
■正奇数学学堂第一讲:有理数与数轴【知识点一】正数、负数和0。
1.相反意义的量:由具有相反意义的词表示的两个量叫做具有相反意义的量。
2.具有相反意义的两个量:规定其中一个量用正数表示;另一个量就用负数表示。
3.正负数:正数:大于0的数;负数:小于0的数。
其中正数的正号可省略不写。
负数的负号必须写出。
4.0:不仅表示“没有”,它还是正数与负数的分界。
同时也是具有相反意义的量的基准量。
既不是正数又不是负数。
5.正数与负数的分界:数0既不是正数,也不是负数,它是正、负数的界限,表示“基准”的数,零不是表示“没有”,它表示一个实际存在的数量.正数,负数的“+”“-”的符号是表示性质相反的量,符号写在数字前面,这种符号叫做性质符号。
6.重新认识两个符号——⑴“+”:运算符号表示加;性质符号表正数。
⑵“-”:运算符号表示减;性质符号表负数。
★正奇点睛:1.其实上述两个符号还有“自己”和“相反”的意思。
学了相反数自会明白。
2.注意“负负得正”与“双重否定变肯定”的关系。
〖母题示例〗1.任意写出5个正数:________________;任意写出5个负数:_______________.2.小明的姐姐在银行工作,她把存入3万元记作+3万元,那么支取2万元应记作_______,-4万元表示________________.3.已知下列各数:51-,432-,3.14,+3065,0,-239.则正数有_____________________;负数有____________________.4.如果向东为正,那么 -50m表示的意义是()A.向东行进50m C.向北行进50mB.向南行进50m D.向西行进50m5.下列结论中正确的是()A.0既是正数,又是负数B.O是最小的正数C.0是最大的负数D.0既不是正数,也不是负数6.给出下列各数:-3,0,+5,213-,+3.1,21-,2004,+2008.其中是负数的有()A.2个B.3个C.4个D.5个7.如果规定向东为正,那么从起点先走+40米,再走-60米到达终点,问终点在起点什么方向多少米?应怎样表示?一共走过的路程是多少米?8.10筐橘子,以每筐15㎏为标准,超过的千克数记作正数,不足的千克数记作负数。
课案(教师用)1.2.4 绝对值(二)(新授课) 【理论支持】根据赫尔巴特的“诱发学习兴趣原理”学说,与旧有知识相关的新事物会引起我们的注意.而我们全然未知的事物是不会引起我们的注意的.但是,尽管熟知的事物会引起我们的注意,但其注意不会持久的.可以引起我们最大的兴趣的事物是知与未知的混合物.本节课联系小学及课本内容,把两个有理数的大小比较进行系统的概括,体验出两个有理数比较大小的方法.⑴利用数轴比较大小;⑵利用绝对值比较大小.本节课的教学目标是让学生掌握这两种方法.在教用数轴比较有理数大小的方法时,引入是采用温度的排序.根据常识,学生可以由低到高地排列这些温度,再让学生把这些数表示在数轴上,可以看到表示它们的各点是从左到右的顺序,由此引出利用数轴比较有理数大小的规定:“在数轴上,左边的数小于右边的数.”在这部分教学中,要让学生结合图形理解这些结论.在讲解利用绝对值比较大小时,采用把两个负数在数轴表示,利用在数轴上的数“左边的数小于右边的数”;得出“绝对值大的负数反而小”的结论.从而得出利用绝对值比较有理数大小的方法.这节课的重点是利用绝对值比较两个负数的大小.难点是利用绝对值比较两个异分母负数大小;这是本节课较难的部分,为了解决难点,特别要让学生清楚地了解进行比较时的过程:⑴先求出两个负数的绝对值.⑵比较两个绝对值的大小(要通分,化为同分母分数).⑶根据绝对值大的负数反而小的结论判断这两个负分数的大小. 【教学目标】 知识与技能:1.会利用数轴比较两个有理数的大小.2.会利用绝对值比较两个负数的大小. 数学思考:体验绝对值解决实际问题的过程,感受数学在生活中的应用价值. 解决问题:利用绝对值概念比较有理数的大小,培养学生的逻辑思维能力. 情感态度:敢于面对数学活动中的困难,有学好数学的自信心. 【教学重难点】重点:利用绝对值比较两个负数的大小.难点:利用绝对值比较两个异分母负分数的大小 【课时安排】 一课时【教学设计】课前延伸一、基础知识及答案比较下列各组数的大小:(1)83--与 ; (2) 4332--与; (3)4与-5 , (4) 0.9与1.1. 【答案】(1)38-<-;(2) 2334-<-;(3)4>-5; (4) 0.9<1.1. 【设计说明】本题是为了分散利用绝对值比较两个负分数的大小这一难点埋下了伏笔,在这个题目中用最简单的“∵,∴”的形式训练学生简单的推理能力.二、预习思考题及答案比较下列各组数的大小:(1)-10与0; (2) -9与-1;(3)5477--与; (4)7384--与. 【答案】(1)-10<0; (2)-9<-1;(3)5477--<; (4)73-<-84. 【设计说明】让学生体会出这四道题的难度较大,培养学生的自学能力.课内探究 一、导入新课,探究新知教材12页探究如图1.2-6给出了一周中每天的最高气温和最低气温,其中最低的是 ℃,最高的是 ℃.你能将这14个数按从低到高的顺序排列吗?分析:图1.2-6给出的14个温度按从低到高排列为: -4,-3,-2,-1,0,1,2,3,4,5,6,7,8,9.按照这个顺序排列的温度,与温度计上所对应的点是从下到上的,按照这个顺序把这些数表示在数轴上,表示它们的各点的顺序是从左到右的.(学生活动)在练习纸上画出数轴,把每个数标在对应点上,并比较大小. 师:我们已知两个正数(或0)之间怎样比较大小,例如0<1,1<2,2<3,… 任意两个有理数(例如-4和-3,-2和0,-1和1)怎样比较大小呢?数学中规定,在数轴上表示有理数,它们从左到右的顺序,就是从小到大的顺序,即左边的数小于右边的数.由这个规定可知:-6<-5,-5<-4,-4<-3,-2<0,-1<1,… 得出结论:(1)正数大于0,0大于负数,正数大于负数;(2)两个负数,绝对值大的反而小. 例如 1 0,0 -1,1 -1,-1 -2【设计说明】探究数的大小比较的方法,采用把两个负数在数轴表示,利用在数轴上的数“左边的数小于右边的数”;得出“绝对值大的负数反而小”的结论.从而得出利用绝对值比较有理数大小的方法. 二、应用新知例 比较下列各对数的大小 (1)-(-1)和-(+2); (2)73218--和; (3)-(-0.3)和31-.解:(1)先化简,-(-1)=1,-(+2)=-2.正数大于负数,1>-2,即-(-1)>-(+2) .(2) 这是两个负数比较大小,要比较它们的绝对值.218218=-,2197373==- . ∵219218<, 即73218-<-, ∴ 73218-<-. (3)先化简,-(-0.3)=0.3, 3131-= , ∵0.3 <31,∴-(-0.3) <31-.【设计说明】比较两个负分数的大小是这节的重点也是难点,利用这两个小题让学生从整体上把握一下方法,达到熟练掌握的程度. 三、巩固新知(1)比较下列各对数的大小:-3和-5; -2.5和5.2--(2)判断题:①两个有理数比较大小,绝对值大的反而小 . ( ) ②有理数中没有最小的数.( )③若b a -=,则b a =.( ) ④若a <b <0,则a <b .( )(3)写出绝对值不大于4的所有整数,并把它们表示在数轴上. (4)比较大小:-2_________-5,-2.5 2.5--; 65-56-,87- 98-. (写出过程)四、归纳小结师:谁能说说今天这节课我们学习了哪些内容?生:如何比较两个有理数大小.师:两个有理数是如何比较大小的? 生:(1)正数大于0,0大于负数,正数大于负数;(2)两个负数,绝对值大的反而小. 师:还有没有方法了?生:利用数轴比较,左边的数小于右边的数.【设计说明】教师的小结必须把今天的所学纳入知识系统,明确说明利用数轴可以比较任意两数的大小,而利用绝对值比较大小只适用于两个负数. 【布置作业】比较下列各组数的大小. 5-9-和,-2.22和-2.25,85-2413和-,14.3-722-和⎪⎭⎫⎝⎛+ 〖参考答案〗-9<-5,-2.22>-2.25,852413->-,14.3722--<⎪⎭⎫⎝⎛+【板书设计】 2.4 绝对值 (2)(1)正数大于0,0大于负数,正数大于负数 (2)两个负数,绝对值大的反而小.例 解:(1) -(-1)=1,-(+2)=-2. ∴ 1>-2,即-(-1)>-(+2).(2) 218218=-,2197373==- . ∵219218<, 即73218-<-, ∴ 73218-<-. (3)先化简,-(-0.3)=0.3, 3131-= . ∵0.3 <31,∴-(-0.3) <31- .课后提升课后练习题及答案:(1)若|a|=6,则a=______;(2)若|-b|=0.87,则b=______;(3)若x+|x|=0,则x是______数.(4)已知│a│=4,│b│=3,且a>b,求a、b的值.〖参考答案〗(1)∵|a|=6,∴a=±6;(2)∵|-b|=0.87,∴b=±0.87;(3)∵x+|x|=0,∴|x|=-x.∵|x|≥0,∴-x≥0∴x≤0,x是非正数.(4) ∵|a|=4,∴a=±4∵|b|=3,∴b=±3∵a>b,∴a=4,b=±3【设计说明】“绝对值”是代数中最重要的概念之一,应当从正、逆两个方面来理解这个概念.对绝对值的代数定义,至少要认识到以下三点:(1)任何一个数的绝对值一定是正数或0,即|a|≥0;(2)互为相反数的两个数的绝对值相等,|a|=|-a|;(3) 求一个含有字母的代数式的值,一定要根据字母的取值范围分情况进行讨论.。
人教版七年级数学上册第4章第8课时《角的换算》(教师版)题目简述本节课主要学习角分为几类,学习角度大小的单位:度和弧度,并能够进行角度之间的换算。
一、教学目标1.知识与技能:–了解角的概念和角的分类;–掌握度和弧度的概念及其相互转换的方法;–能够进行角度之间的换算。
2.过程与方法:–通过解决实际问题,培养学生观察能力;–通过多种练习题,训练学生运算能力;–创设情境,培养学生主动学习的能力。
3.情感、态度和价值观:–提高学生对数学的兴趣和学习的积极性;–培养学生的逻辑思维、分析和解决问题的能力;–引导学生认识数学在生活中的应用。
二、教学重点和难点1.教学重点:–角度单位度和弧度的概念;–度和弧度的相互转换。
2.教学难点:–度和弧度的相互转换的思维方式。
三、教学过程1. 导入新课通过举例子的方式引导学生认识角:儿童节上的方阵游戏中,一个方阵共有多少个角。
2. 规范角的定义角是由两条射线共同起点所围成的图形部分。
3. 角的分类根据角的大小可分为以下几类: - 锐角:角度小于90°; - 直角:角度等于90°; - 钝角:角度大于90°。
4. 度的定义与换算•度是角的一种度量单位,用符号°表示;•一个周角等于360°;•化简与扩大角度的运算:如270°=3×90°。
5. 弧度的定义与换算•弧度是角的另一种度量单位,用符号 rad 表示;•弧度制下,一个周角等于2π rad;•度和弧度之间的换算:如180°=π rad。
6. 实际问题解决通过一些实际例子,让学生应用所学知识解决问题,如测量角的大小、计算弧长等。
7. 小结与作业布置总结本节课所学内容,布置以下作业: 1. 完成教材第4章第8课时的练习题;2. 选做题:根据生活中的实际例子,记录角度大小,并进行度和弧度的转换。
四、板书设计人教版七年级数学上册第4章第8课时《角的换算》1. 角的定义- 角是由两条射线共同起点所围成的图形部分2. 角的分类- 锐角:角度小于90°- 直角:角度等于90°- 钝角:角度大于90°3. 度的定义与换算- 一个周角等于360°4. 弧度的定义与换算- 一个周角等于2π rad5. 度和弧度的换算- 180°=π rad五、教学反思本节课通过具体的例子引导学生理解角的概念,并通过度和弧度的概念及其换算方法提高学生对角度大小的认识和计算能力。
七年级数学上册教案精选12篇课时篇一三维目标七年级上册数学教案篇二一、知识与技能能判断一个数是正数还是负数,能用正数或负数表示生活中具有相反意义的量。
二、过程与方法借助生活中的实例理解有理数的意义,体会负数引入的必要性和有理数应用的广泛性。
三、情感态度与价值观培养学生积极思考,合作交流的意识和能力。
教学重、难点与关键1、重点:正确理解负数的意义,掌握判断一个数是正数还是负数的方法。
2、难点:正确理解负数的概念。
3、关键:创设情境,充分利用学生身边熟悉的事物, 加深对负数意义的理解。
教具准备投影仪。
教学过程四、课堂引入我们知道,数是人们在实际生活和生活需要中产生,并不断扩充的。
人们由记数、排序、产生数1,2,3,…;为了表示“没有物体”、“空位”引进了数“0”, 测量和分配有时不能得到整数的结果,为此产生了分数和小数。
在生活、生产、科研中经常遇到数的表示与数的运算的问题,例如课本第2 页至第3页中提到的四个问题,这里出现的新数:-3,-2,-2.7%在前面的实际问题中它们分别表示:零下3摄氏度,净输2球,减少2.7%。
五、讲授新课(1)、像-3,-2,-2.7%这样的数(即在以前学过的0以外的数前面加上负号“-”的数)叫做负数。
而3,2,+2.7%在问题中分别表示零上3摄氏度,净胜2球,增长2.7%, 它们与负数具有相反的意义,我们把这样的数(即以前学过的0 以外的数)叫做正数,有时在正数前面也加上“+”(正)号,例如,+3,+2,+0.5,+ ,…就是3,2,0.5,,…一个数前面的“+”、“-”号叫做它的符号,这种符号叫做性质符号。
(2)、中国古代用算筹(表示数的工具)进行计算,红色算筹表示正数,黑色算筹表示负数。
(3)、数0既不是正数,也不是负数,但0是正数与负数的分界数。
(4)、0可以表示没有,还可以表示一个确定的量,如今天气温是0 ,是指一个确定的温度;海拔0表示海平面的平均高度。
用正负数表示具有相反意义的量(5)、把0以外的数分为正数和负数,起源于表示两种相反意义的量。
人教版数学七年级上册教案(精选14篇)人教版数学七年级上册教案第1篇一、教材分析1、教材的内容:本节课是人教版七年级下册第五章第一节的第一课时2、教材的地位和作用:平面内两条直线的位置关系是“空间与图形”所要研究的基本问题,这些内容学生在前两个学段已经有所接触,本章在学生已有知识和经验的基础上,继续研究平面内两条直线的位置关系,首先研究相交的两条直线,这是后面学习垂直相交的必要基础也为后面学面直角坐标系奠定基石,因此本节课具有承前启后的重要作用3、教学的重点、难点:重点:邻补角、对顶角的概念,对顶角的性质和应用。
难点:理解对顶角性质的探索(确定重难点的依据:本节的学习目的是研究两条相交直线产生的四个角的关系,因此将邻补角、对顶角的概念、性质以及应用作为本节的重点。
同学们刚刚开始接触几何,对推理说理不习惯也不熟悉,所以将理解对顶角相等的性质作为难点。
)4、教学目标:A:知识与技能目标(1).理解对顶角和邻补角的概念,能在图形中辨认.(2).掌握对顶角相等的性质和它的推证过程(3).会用对顶角的性质进行有关的简单推理和计算.B:过程与方法目标(1).通过观察、操作、探究、猜想、思考、交流、归纳、推理等培养学生的推理能力和有条理的表达能力,培养操作能力、动手能力。
(2).体会具体到抽象再到具体的思想方法.C:情感、态度与价值目标(1).感受图形中和谐美、对称美.(2).感受合作交流带来的成功感,树立自信心.(3).感受数学应用的广泛性,使学生更加热爱数学二、学情分析:在此之前,学生已经学习了图形的初步认识、对相交线和平行线有了直观的感性认识,且对互补和互余有了清楚的了解,在此基础上来学习邻补角和对顶角,符合学生的认知规律,让学生对新知识的应用充满好奇与期待.三、教法和学法:教法:叶圣陶先生倡导:解放学生的手,解放学生的脑,解放学生的时间.根据这一思想及我校初一学生活泼好动的特点,我采取启发式教学、探究式教学及多媒体辅助教学相结合的方法.学法:以学生分组实践、自主探究、合作交流为主要形式的探究式学习方法.四、教学过程:1课前准备:课件,剪刀,纸片,相交线模型2教学过程:设置以下六个环节环节一:情景屋(创设情景,激发学习动机)请学生欣赏观察图片,图片中有大桥上的钢梁和钢索,窗户的窗格都给我们以相交线平行线的形象,让学生感受到相交线平行线在我们生活中有着广泛的应用,由此产生研究它们了解它们的兴趣和欲望,适时的给出本章课题:相交线和平行线环节二:问题苑(合作交流,解释发现)通过一些问题的设置,激发学生探究的欲望,具体操作:(1):动手尝试:剪纸片,感知剪刀所形成的角在剪纸过程中的变化(2):给出问题,由剪刀这个实物抽象出几何模型——两条直线相交。
第一章丰富的图形世界■通关口诀:平面立体要分清;直曲分为两线型。
平面直线和曲线;三角四边多边形。
圆与抛物和双曲;立体图形柱锥球。
展开折叠十一型;主要针对正方体。
平面去截几何体;截面边数不超面。
■数学学堂第一讲:生活中的立体图形【知识点一】生活中常见几何图形的基本特征及分类。
1.常见的几何体的基本特征(顶点、面、棱):⑴正方体、长方体−−−→推广棱柱。
⑵圆柱。
⑶棱锥、圆锥−−−→推广锥体。
⑷球体。
2.生活中常见几何图形的分类。
简单的几何体柱体锥体球体圆柱圆锥〖母题示例〗1.试一试在括号里写出它们的名称.2.将下列几何体分类,柱体有:,锥体有,球体有。
(填序号)【知识点二】棱柱及其特征。
1.特征:所有侧棱长都相等;棱柱的上下底面是相同的多边形;侧面都是平行四边形。
2.按棱分类、命名:三、四、五---棱柱。
正方体和长方体都是四棱柱。
3.棱柱可分为直棱柱和斜棱柱:直棱柱的侧面是长方形。
初中只学习和讨论直棱柱。
4.数量特征:一个n棱柱有2n个顶点,3n条棱,n条侧棱,(n+2)个面,n个侧面。
〖母题示例〗1.下列说法中,正确的是()(A)正方体不是棱柱。
(B)圆锥是由3个面围成。
(C)正方体的各条棱都相等。
(D)棱柱的各条棱都相等。
2.五棱柱有个顶点,条棱,条侧棱,个面,个侧面。
【知识点三】组合几何体。
1.生活中的物体→抽象→分解为基本几何体。
体会和认识数学的抽象性。
2.简单的几何体:构成了复杂的、形形色色、丰富多彩的生活空间。
〖母题示例〗以下建筑中,那些由基本几何体组合而成。
由哪些几何体组成?(选三个)。
ABCD【知识点四】图形的构成元素及其关系。
1.图形的构成:⑴图形是由点、线面构成的。
⑵线有直线和曲线;面有平面和曲面。
⑶线与线相交得点;面与面相交得线。
2.用运动的观点看几何体:几何体曲面曲线平面直线点动动动动−→−⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧−→−−→−−→−〖母题示例〗观察图形,回答问题:⑴图中的几何体各由几个面围成?围成这些面的几何体有什么特点?⑵图中的几何体的“交线”各有什么特点? ⑶图中的几何体有无顶点?有几个顶点?【知识点五】平面图形旋转成几何体。
4.1 无理数◆无理数的定义:无限不循环小数就是无理数.题型一 认识无理数1.(2024春•庆云县校级月考)在实数1.414-,p ,3.14,2+,3.212212221¼中,无理数的个数是( )个.A .1B .2C .3D .4【分析】无理数即无限不循环小数,据此进行判断即可.【解答】解: 1.414-是有限小数,3.14&&是无限循环小数,它们不是无理数;,p ,2+,3.212212221¼是无限不循环小数,它们是无理数,共4个;故选:D.2.(2024春•陵城区期末)下列各数:2p ,175,0.333333,1.212212212221¼¼(每两个1之间依次多一个2),3.14,2中,无理数有( )A .2个B .3个C .4个D .5个【分析】无理数即无限不循环小数,据此进行判断即可.【解答】解:175是分数,0.333333,3.148=是整数,它们不是无理数;2p 1.212212212221¼¼(每两个1之间依次多一个2),2是无限不循环小数,它们是无理数,共4个;故选:C .3.(2024春•鱼台县校级月考)在3.14,23,,2p ,1.01001000100001¼(每两个相邻的1之间依次增加一个0),这六个实数中,无理数有( )A .1个B .2个C .3个D .4个【分析】首先思考无理数的定义,再根据定义逐个判断即可.4=,,2p,1.01001000100001¼(每两个相邻的1之间依次增加一个0)是无理数,所以无理数的个数是3个.故选:C .4.(2024春•德城区校级月考)下列实数p ,227,0.121121112...,中,无理数的个数有( )A .2B .3C .4D .5【分析】根据无限不循环小数是无理数,即可判断无理数的个数.【解答】解:227是分数,属于有理数,3=-是整数,属于有理数,\,p ,227,0.121121112...,p 0.121121112...,共3个.故选:B .5.(2024春•庆云县校级月考)下列各数既是负实数,又是无理数的是( )A .1B .0C .D .23-【分析】根据无理数的意义,逐一判断即可解答.【解答】解:无理数是无限不循环小数,而1,0,23-是有理数,只有是无理数,也是负实数.故选:C .6.(2024春•兖州区校级期末)下列各数:17,3p -,1.050050005,其中无理数个数为( )A .2B .3C .4D .5【分析】无理数即无限不循环小数,据此进行判断即可.【解答】解:1735=是分数,1.050050005是有限小数,它们不是无理数;3p -是无限不循环小数,它们是无理数,共3个;故选:B .1.(2024•青岛一模)下列实数中是无理数的为( )A .3pB .2C .227D .0.9【分析】根据无理数的定义无限不循环小数解答即可,【解答】解:A 、3p是无理数,符合题意;B 、2是有理数,不符合题意;C 、227是有理数,不符合题意;D 、0.9是有理数,不符合题意;故选:A .2.(2024春•0,p -13,0.1010010001¼(相连两个1之间依次多一个0),其中无理数有( )个.A .1B .2C .3D .4【分析】无理数就是无限不循环小数,根据定义即可作出判断.,p -,0.1010010001¼(相连两个1之间依次多一个0),共3个.故选:C .3.(2024春•嘉祥县月考)在实数2372p 3.1415926,0.15115111511115¼中,无理数有( )A .1个B .2个C .3个D .4个【分析】有限小数和无限循环小数是有理数,而无限不循环小数是无理数,据此解答即可.,0.151151115111152p¼,共有3个,故选:C .4.(2024•,3.14,2p ,227中,无理数有()个.A .1B .2C .3D .4【分析】根据无理数的定义逐个判断即可.2=,是有理数,不是无理数,3.14和227是有理数,不是无理数,所以无理数有2p (共2个).故选:B .5.(2024•阳谷县一模)下列各数为无理数的是( )A .3.14B .13C D 【分析】根据无理数的定义进行判断即可.【解答】解:A .3.14是有限小数,属于有理数,故本选项不符合题意;B .13是分数,属于有理数,故本选项不符合题意;C =D 3=-,是整数,属于有理数,故本选项不符合题意.故选:C .6.(2023秋•威海期末)下列实数是无理数的是( )A .227B C .28D .3.14【分析】无理数即无限不循环小数,据此进行判断即可.【解答】解:A .227是分数,属于有理数,不符合题意;B 是无理数,符合题意;C .28是整数,属于有理数,不符合题意;D .3.14是有限小数,属于有理数,不符合题意.故选:B .7.(2024•天桥区开学)下列各数中,属于无理数的是( )A B C .227-D .0.4【分析】根据无理数的定义进行解答即可.是无理数;3=,227-,0.4是有理数.故选:A .8.(2023秋•沂源县期末)实数0.618,0,4p 中,无理数的个数是( )A .1B .2C .3D .4【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.【解答】解:4p 是无理数,故选:C .9.(2023秋•泰山区期末)下列各数中不是无理数的是( )A .2pB C D .【分析】根据无理数的定义解答即可.【解答】解:A .2p是无理数,故本选项不符合题意;B 是无理数,故本选项不符合题意;C 2=,是整数,属于有理数,故本选项符合题意;D .是无理数,故本选项不符合题意.故选:C .10.(2023秋•市南区期末)在下列实数74-,1.010010001,2p -无理数的个数有( )A .1个B .2个C .3个D .4个【分析】无理数是无限不循环小数,利用这个定义即可判断.3=-=,所以在实数74-,1.010010001,2p -2p -,共2个.故选:B .11.(2023秋•环翠区期末)下列各数:23,5p +,1.010010001,1.7&,其中无理数有( )A .4个B .3个C .2个D .1个【分析】根据无理数的定义解答即可.3=-,5p +是无理数,共2个.故选:C .12.(2023秋•章丘区期末)在实数,0,p ( )个.A .1B .2C .3D .4【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此解答即可.【解答】解:0.5=-,是有限小数,属于有理数;0是整数,属于有理数;p 是无理数;是无理数;3=是有理数.\无理数共有2个.故选:B .13.(2024•从江县一模)在实数1-12,3.14中,无理数是( )A .1-BC .12D .3.14【分析】无理数即无限不循环小数,据此进行判断即可.【解答】解:实数1-12,3.14故选:B .14.(2024春•东港区校级月考)在 1.732-,p ,3.14,2+,3.212212221¼,3.14这些数中,无理数的个数为( )A.5B.2C.3D.4【分析】根据无理数的定义:无限不循环小数,据此即可判断.p,2+,3.212212221¼共4个.故选:D.。
(教师用)1.2.2 数轴(新授课)【理论支持】在小学的时候,学生已有这样的知识基础:温度计、位置关系图,直线和非负有理数.进入中学之后非负有理数扩充为有理数.这时候4个知识(温度计、位置关系图、直线、有理数)是彼此无关的,特别是在有理数与直线之间,差异非常显著.数轴学习的过程,就是沟通有理数与直线的联系的过程.首先由温度计、位置关系图提炼出数轴的几何结构,然后建立有理数与直线上点的对应,这就得出数轴.而这个数轴作为桥梁就把看上去无关的两个无穷集合建立起联系,一方面数的性质可以直观地表示在图形上,另一方面在图形上又可以形象而具体地研究数的性质.本节是在引进了负数及分析了有理数的分类后给出的.数轴是理解有理数的概念与运算的重要工具,利用这个数学工具不但可以理解有理数的概念、大小比较等,还可以利用它来解决一些实际问题:包括绝对值,有理数的运算等,非常直观地把数与点结合起来,渗透着初步的数形结合的思想.对以后的知识概念及实际问题的解决起着举足轻重的作用. 在数轴上表示出相应的有理数以【教学重难点】1. 重点:正确掌握数轴画法和用数轴上的点表示有理数.2. 难点:有理数和数轴上的点的对应关系.【课时安排】一课时【教学设计】课前延伸一、基础知识填空及答案.1. 如果节约用水30吨记为+30吨,那么浪费20吨记为 吨.2. 如果4年后记作+4,那么8年前记作 .3. 如果运出货物7吨记作-7吨,那么+100吨表示 .4. 给出下列说法:①0是整数;②312 是负分数;③4.2不是正数;④自然数一定是正数;⑤负分数一定是负有理数.其中正确的有_______________(填写序号). 〖答案〗 1.-20;2.-8;3.运进货物100吨;4.①②⑤.〖设计说明〗温故而知新.通过这一题组使学生回忆已建立起来的的正、负数的概念,进一步理解用正、负数表示具有相反意义的量.同时结合生活中的实例使学生以轻松愉快的心情进入了本节课的学习,也使学生体会到数学来源于实践,同时对新知识的学习有了期待,为学生理解用数轴上的点来表示有理数打下基础,为顺利完成教学任务作了思想上的准备.二、预习思考题及答案.1.每个有理数都可以用数轴上的以下哪项来表示().A.一个点 B.线 C.单位 D.长度2.数轴上原点表示的数是______.3.学校、家、书店在一条南北走向的大街上,学校在家南边20m,书店在家北边100m,张明同学从家出发,向北走50m,接着又向北走-70m,此时张明在__________.〖答案〗1.A;2.0;3.学校.〖设计说明〗预习能增强求知欲望,带着预习中的问题听课,就能启动好奇心和求知欲,能调动学习的积极性,同时也培养学生的自学的能力.通过这一题组训练,可以使学生对用数轴上的点来表示有理数有感性的认识,这为学生解决探索新知,进一步理解有理数与数轴上的点的对应关系打下伏笔.课内探究一、回忆旧知,创设情境,引入新课前面我们通过温度计、海平面等(课件显示温度计和海平面示意图)引进了负数的概念,从而将小学学过的数扩充到有理数.请问:什么叫做有理数?学生回答后教师拿出一演示温度计,请大家看,这是一支温度计,它的用途大家是知道的.但是你会读温度计吗?请前面的一位同学们读出此时教室里的温度.师生讨论后提出问题:在一条东西向的马路上,有一个汽车站,汽车站东3 m和7.5 m处分别有一棵柳树和一棵杨树,汽车站西3 m和4.8 m处分别有一棵槐树和一根电线杆,试画图表示这一情境.思考:怎样用数简明地表示这些树、电线杆与汽车站的相对位置关系(方向、距离)?如图,我们画一条直线表示马路,从左到右表示从西向东的方向,在直线上任取一个点O表示汽车站的位置,规定1个单位长度(线段OA的长)代表1m长.于是点B表示柳树的位置,与点O距离3个单位长度.柳树可以用点O右边,与点O距离3个单位长度的点B 来表示.杨树可以用点O右边,与点O距离7.5个单位长度的点C来表示;槐树可以用点O 左边,与点O距离3个单位长度的点D来表示;电线杆可以用点O左边,与点O距离4.8个单位长度的点E来表示.(板书课题:1.2.2 数轴)〖设计说明〗创设情境,呈现温度计,位置线图等思维材料,让学生从生活中发现数学问题,同时也让学生感受到可用数轴来表示生活中的位置关系,非常简洁明了,激发学生的求知欲.二、探索新知,讲授新课不知大家注意到没有,在我们的大屏幕上的图形和这个温度计,它们虽然形状、位置、物质的构成等都很不相同,但却有共同的性质,就是通过图线从数量上表示事物,如表示温度、位置等.(板书:用图线来表示事物的数量特征)为了表示事物的数量特征,这些图线应该有便于表示数量的构造,大家仔细观察一下温度计,其刻度线在结构上都有些什么特点?(讨论稍事停顿)通过观察,总结出来的两个结构特征非常好.(板书:有计算的起点.(0℃;汽车站),有表示相反意义的方向.(上、下;东、西))一格就是一个测量温度的单位,叫做度,有了起点,有了单位,就可以去测量了,用测量出来的数值就可以表示温度了.所以,用图线表示事物的数量特征还要有一个单位长度.(板书:有计算的单位.(度;米)这是一条水平放置的特殊直线,可以用来表示数,其上有温度计或位置线图的那3个特征:(1)有相当于0℃或汽车的点,即图中的O点,叫做原点.(2)规定了方向.图中从原点向右为正方向,向左为负方向,相当于温度计中0℃以上为正,0℃以下为负.(3)选取了适当长度作为单位长度,相当于温度计上每1℃占1小格的长度.这样的直线比原先多了原点、正方向、单位长度,我们给它起个新名字,叫做数轴.(板书:规定了原点、正方向和单位长度的直线叫做数轴)三、动手操作,巩固新知有了数轴的名称和定义之后,我们来介绍数轴怎么画,然后说数轴有什么用.在数轴的定义中出现了4个词:原点、正方向、单位长度、直线,画数轴主要就是落实这4个词,大家先对照屏幕上的图画一条数轴,然后总结步骤.教师巡视,学生画完数轴,教师点评例1 判断下列图形哪些图形是数轴.(1) (2) (3)(4) (5)解:第(1)个图不是数轴,因为它没有箭头第(2)个图不是数轴,因为它缺少单位长度.第(3)个图不是数轴,因为原点两边的单位长度不一致.第(4)个图不是数轴,因为它还缺少原点.第(5)个图是数轴.根据数轴的定义,只有具备了原点、正方向、单位长度的直线才是数轴,我们把原点、正方向、单位长度称为数轴的三要素.(板书:数轴的三要素).数轴的三素缺一不可.四、解决问题、拓展创新了解数轴不是目的,我们应该掌握两个方面的能力:将已知数在数轴上表示出来;说出数轴上已知点表示的数.首先我们用数轴来表示数.分两步进行:第1步,表示整数.如图将整数放在数轴的刻度点上,0与原点对应,正整数与原点右方的刻度点对应,负整数与原点左方的刻度点对应(即将整数分为三类放到数轴上).于是,每一个整数都可以在数轴上找到一个刻度点;反之,每一个刻度点都可以找到一个整数.不同的整数对应不同的刻度点,不同的刻度点对应不同的整数.第2步,表示分数.由于每一个分数都一定在某两个相邻的整数之间,于是,我们就在这两个相邻的整数所对应的相邻刻度点之间表示分数.这样,所有的有理数都可以用数轴上的点来表示.请看下面的题目例2 画出一个单位长度是1厘米的数轴,并在数轴画出表示下列各数的点:2,-1.5,0,-2,2.5.数2在原点右方第2个刻度处,我们在该刻度上画一实心黑点,并在黑点的上方记上2.数-1.5在原点左方第1与第2个刻度之间,我们取-2与-1的中点画一实心黑点,并在黑点上方记上-1.5.数0在原点处,将原点画成实心黑点,并在黑点上方记上0.数-2在原点左边第2个刻度处,在该刻度上画一实心黑点,并在黑点上方记上-2.数2.5原点右边第2与第3个刻度之间,在2与3的中点画一实心黑点,并在黑点上方记上2.5.如图,例3 如图,(1)写出数轴上的A 、B 、C 、D 、E 、F 点表示的有理数.(2)点G 使线段BG 的长度是单位长度的54,点H 使线段HA 的长度是单位长度的65,试求出点G 、H 表示的有理数.解:(1)A 点表示数-3,B 点表示数5.5,C 点表示数3,D 点表示数-1.5,E 点表示数-3.5,F 点表示数0.(2)B 点表示数5.5,而G 使线段BG 的长度是单位长度的54,由于点G 既可能在点B 的左边,也可能在点B 的右边,因此点G 表示的数应该是5.5+0.8=6.3或5.5-0.8=4.7,也就是说点G 表示的数是6.3或4.7.点H 使线段HA 的长度是单位长度的65,点H 可能在点A 的左边也可能在其右边,因此点H 表示的数是-3-65=-623或-3+65=-613,也就是说点H 也有两解,表示的数是-623或-613. 〖设计说明〗本问题主要考察学生对数轴的理解能力以及数形结合的初步认识,同时考察学生的分类讨论的思想的应用,因此问题较为复杂,在解决的过程中教师应适当的点拨和启发,使学生能够顺利完成讨论.五、课堂小结:1.掌握数轴的定义及数轴的三要素:原点、单位长度、正方向.2.掌握用数轴上的点表示有理数的方法.3.数轴上原点右边的点表示正数;原点左边的点表示负数,原点表示数0,是正、负数的分界点.〖设计说明〗课堂小结可以使通过小结回顾新知识,加强学生的记忆,巩固新知识;并使有关的教学内容系统连贯和相对完整;更使学生感到“言已尽而意无穷”,跨越课堂教学和课后休闲的时空界限,课后学生还会自觉“回味咀嚼”,获得更多教益.B C D E F A六、查预习情况:明确检查方法学生口答后点评.七、课堂反馈训练:1.在数轴上原点左边的点表示_____数, 原点右边的点表示 数, 原点表示的数是 . 〖参考答案〗负,正,0.2.在数轴上与原点距离2个单位长度的点表示的数有 个,为 .〖参考答案〗两,2和-2.3.如图所画出的数轴正确的是 ( )〖参考答案〗C .4.在数轴上,原点及原点右边的点表示的数是( )A. 正数B. 负数C. 正整数D. 非负数.〖参考答案〗D .5.一个点从数轴的原点开始,先向左移动3个单位长度,再向右移动6个单位长度,这个点最终所对应的数是( )A .+6B .-3C .+3D .-9〖参考答案〗C .〖设计说明〗当堂训练,当堂反馈的这一环节的实施不但使学生对所学的新知识得到及时巩固和提升,同时又使得还存在模糊认识的学生得到进一步澄清,这就让学生在学习新知识的第一时间得到最清晰的认识,这正是高效的价值所在.课后提升课后练习题及答案:1.在数轴上,表示-5的数在原点的 侧,它到原点的距离是 个单位长度.2.在数轴上,把表示3的点沿着数轴向负方向移动5个单位,则与此位置相对应的数是 .3.下列结论正确的有( )个.① 规定了原点,正方向和单位长度的直线叫数轴;② 最小的整数是0;③ 正有理数、负有理数和零统称有理数; ④ 数轴上的点都表示有理数.A . 0B .1C .2D .34.在数轴上,A 点和B 点所表示的数分别为-2和1,若使A 点表示的数是B 点表示的数的3倍,应把A 点( )A .向左移动5个单位B .向右移动5个单位C .向右移动4个单位D .向左移动1个单位或向右移动5个单位5.在数轴上画出表示下列各数的点 .-3,-1,212,-14,0,+3,431 . 6.在数轴上,老师不小心把一滴墨水滴在画好的数轴上,如图所示,试根据图中标出的数值判断被墨水盖住的整数,并把它写出来.0 0 0 1 1 1 2 A B C D〖参考答案〗1.左,5; 2.-2; 3.C; 4.B;5.6.-12,-11,-10,-9,-8,11,12,13,14,15,16,17.。