剩余类与完全剩余系
- 格式:ppt
- 大小:837.50 KB
- 文档页数:55
一、同餘,剩餘類與剩餘系(a ) 同餘的性質:(1) a ≡b (mod m ),c ≡d (mod m ),則 a ±c ≡b ±d (mod m ) 且ac ≡bd (mod m )。
(2) a ≡b (mod m ),c ∈N ,則 ac ≡bc (mod cm )。
(3) a ≡b (mod m ),n ∈N 且 m n ,則 a ≡b (mod n )。
(4) 若a ≡b (mod m ),則 (a ,m )=(b ,m )。
(5) 整數a ,b ,則 ab ≡1 (mod m ) iff (a ,m )=1。
(b ) 剩餘類:m 為正整數,將全體整數按照對模m 的餘數進行分類,餘數為r (10-≤≤m r ) 的所有整數歸為一類,記為K r (r =0,1,..,m -1),每一類K r 均稱為模m 的剩餘類 (同餘類)。
剩餘類K r 是數集K r ={mq +r m 是模,r 是餘數,q ∈Z }={a Z a ∈且)(mod m r a ≡}, 它是一個以m 為公差的(雙邊無窮)等差數集。
並具有如下的性質:(1) 1210-⋃⋃⋃⋃=m K K K K Z 且∅=⋂j i K K (j i ≠)。
(2) 對於任意的Z n ∈,有唯一的r 0使0r K n ∈。
(3) 對於任意的a 、b Z ∈,a 、b r K ∈ ⇔ )(mod m b a ≡(c ) 完全剩餘系:設K 0,K 1,…,K m-1是模m 的全部剩餘類,從每個K r 中取任取一個數a r ,這m 個數a 0,a 1,…,a m-1組成的一個數組稱為模m 的一個完全剩餘系。
(d ) 簡化剩餘系:如果一個模m 的剩餘類K r 中任一數都與m 互質,就稱K r 是一個與模m 互質的剩餘類。
在與模m 互質的每個剩餘類中,任取一個數 (共)(m ϕ個) 所組成的數組,稱為模m 的一個簡化剩餘系。
(二) 高觀點:同餘類環(ring)1.等價關係:給集合S中一個關係”~”。
完系、简系、剩余类定义1.剩余类:把关于模m同余的数归于一类,每类称为一个模m的剩余类. 即由关于模m同余的数组成的集合,每一个集合叫做关于模m的一个剩余类(又叫同余类).共有m个剩余类.设K r是余数为r的剩余类, 则K r={qm+r| m是模, r是余数, q∈Z}={a |a∈Z且a≡r(mod m)}.剩余类的性质:⑴Z=K0∪K1∪K2∪…∪K m−1,当i≠j时,K i∩K j=Ø;⑵对于∨−n∈Z,有唯一的r∈{0, 1, 2, …, m−1},使得n∈K r;⑶对∨−a, b∈Z,a, b∈K r ⇔a≡b (mod m)定义2.完系:设K0,K1,…,K m−1是模m的m个剩余类,从K r中各取一数a r 作为代表,则这样的m个数a0,a1,…,a m−1称为模m的一个完全剩余系,简称m的完系. 例如:1, 2, 3, …, m.若一组数y1, y2, …, y s满足:对任意整数a有且仅有一个y j,使得a≡y j (mod m),则y1, y2, …, y s是模m的完全剩余系.模m的完全剩余系有无穷多个,但最常用的是下面两个:①最小非负剩余系:0, 1, 2, 3, …, m−1;②最小绝对值剩余系:(随m的奇偶性略有区别) 当m=2k+1时,为−k, −k+1, …, −1, 0, 1, 2, …, k−1, k;当m=2k时,为−k+1, −k+2, …, −1, 0, 1, 2, …, k或−k, −k+1, …, −1, 0, 1, 2, …, k−2, k−1.例如,集合{0, 6, 7, 13, 24}是模5的一个完全剩余系,集合{0, 1, 2, 3, 4}是模5的最小非负完全剩余系.性质:(i) m个整数构成模m的一完全剩余系⇔两两对模m不同余;(ii) 若(a, m)=1,则x与ax+b同时跑遍模m的完全剩余系.完全剩余系的判断方法:定理1:a1, a2,…, a m是模m的一个完全剩余系⇔a i≡/a j (mod m), i≠j;定理2:设(a, m)=1, b∈Z, 若x1, x2, , x m是模m的一个完全剩余系,则ax1+b, ax2+b, …, ax m+b也是模m的一个完全剩余系;特别地,m个连续的整数构成模m的一个完系.设K r是模的一个剩余类, 若a, b∈K r,则a≡b(mod m), 于是(a, m)=(b, m).因此,若(a, m)=1,则K r中的任一数均与m互质, 这样,又可给出如下定义:定义3.简系:如果r与m互质,那么K r中每一个数均与m互质,称K r为与模m互质的剩余类.这样的剩余类共有φ(m)个,从中各取一个代表(共取φ(m)个),它们称为模m的简化剩余系,简称简系.当m为质数p时,简系由p−1个数组成.又如:m=6,在模6的六个剩余类中:K1={…, −11, −5, 1, 7, 13,…} K5={…, −7, −1, 5, 11, 17,…}是与模6互质的剩余类,数组1, 5;7, −7;1, −1;等等都是模6的简系.性质:①K r与模m互质⇔K r中有一个数与m互质;②与模m互质的剩余类的个数等于φ(m);③若(a, m)=1, 则x与ax同时跑遍模m的简化剩余系.简化剩余系的判断方法:定理3:a1,a2,…,aφ(m)是模m的简化剩余系⇔(a i, m)=1, 且a i≡/a j(mod m) (i≠j, i, j=1, 2, …, φ(m)).定理4:在模m的一个完全剩余系中,取出所有与m互质的数组成的数组,就是一个模m的简化剩余系.定理5:设(k, m)=1, 若a1, a2, …, aφ(m)是模m的简系, 则ka1, ka2, …, kaφ(m)也是模m的简系.这三个定理中,定理3与定理5是简化剩余系的判别方法,定理4是它的构造方法. 显然,模m的简化剩余系有无穷多个,但常用的是“最小简化剩余系”,即由1,2,…,m -1中与m 互质的那些数组成的数组.说明:由于任何整数都属于模m 的某一剩余类,所以,在研究某些整数性质时,选取适当的(模)m ,然后在模m 的每个剩余类中取一个“代表数”(即组成一个完全剩余系),当弄清了这些代表数的性质后,就可弄清对应的剩余类中所有数的性质,进而弄清全体整数的性质,这就是引入剩余类和完全剩余系的目的.例1、设n 为偶数,a 1, a 2,…, a n 与b 1, b 2,…, b n 均为模n 的完全剩余系,试证:a 1+b 1, a 2+b 2,…, a n +b n 不是模的完全剩余系.证明:假设a 1+b 1, a 2+b 2,…, a n +b n 是模的完全剩余系. ∴1(1)()1+2++(mod )22n i i i n n n a b n n =++≡≡≡∑ ∵a 1, a 2,…, a n 也是模的完全剩余系. ∴11(1)(mod )22n n i i i n n n a i n ==+≡=≡∑∑,同理有:1(mod )2n i i n b n =≡∑ 1()0(mod )n i i i a b n n =∴+≡≡∑,∴n |n2, 矛盾!故假设不成立,从而原命题成立.例2、设m >1, (a , m )=1,b ∈Z , 求和:∑-=+⋅10}{m i mb i a , 其中{x }为x 的小数部分. 解:∵i 取遍模m 的完系,令x i =a ·i +b ,则也取遍模m 的完系.故11110000111{}{}{}(1)22m m m m i i i k k x a i b k k m m m m m m m m ----====⋅+-====⨯-=∑∑∑∑总结:若a 1, a 2,…, a m 是模m 的一个完系,则①a 1+a 2+…+a m ≡1+2+…+m (mod m );②a 1·a 2·……·a m ≡1·2·…·m (mod m ); ③(a 1)n +(a 2)n +…+(a m )n ≡1n +2n +…+m n (mod m ).例3、已知m , n 为正整数, 且m 为奇数, (m , 2n -1)=1. 证明:m |∑=m k n k1.证明:∵1, 2, …, m 构成模m 的完系, (m , 2)=1,∴2, 4, …, 2m 也构成模m 的完系.∴)(mod )2(11m k k m k n m k n ∑∑==≡,即)(mod 0)12(1m k m k n n ≡-∑=. ∵(m , 2n -1)=1,∴∑=m k n k m 1|得证. 例4、求八个整数n 1, n 2,…, n 8满足:对每个整数k (-2014<k <2014),有八个整数a 1, a 2,…, a n ∈{−1, 0, 1},使得k =a 1n 1+a 2n 2+…+a 8n 8解:令G ={k | k =a 1+a 2·2+a 3·32+…+a n +1·3n ,a i ∈{−1, 0, 1},i =1,2,…,n +1}.显然max G =1+3+32+…+3n =3n +1-12(记为H ),min G =-1-3-32+…-3n =-H . 且G 中的元素个数有3n +1=2H +1个, 又∵G 中任意两数之差的绝对值不超过2H ,∴G 中的数对模2H +1不同余,∴G 的元素恰好是模2H +1的一个绝对值最小的完系,于是凡满足-H ≢k ≢H 的任意整数都属于G ,且可唯一地表示为a 1+a 2·2+a 3·32+…+a n +1·3n 形式,当n =7时,H =3208>2014,而n =6时,H =1043<2014,故n 1=1,n 2=3,…,n 8=37为所求.例5、已知p 为大于3的质数,且112+122+132+…+1(p -1)2=a b,a ,b ∈N *. (a , b )=1,证明:p a . 证明:对于不超过p −1的自然数k ,由于(k , p )=1,所以存在唯一的不超过p −1的自然数x ,满足1(mod )kx p ≡而且,当k =1或p −1有x =1或p −1,当22k p ≤≤-时,有22,x p x k ≤≤-≠,故当k 取遍1,2,……,p −1时,x 也取遍1,2,……,p −1,因为(,(1)!)1,1(mod )p p kx p -=≡由可得到(1)!(1)!(1)!(mod )(1)!(mod ),p p kx p p p x p k--≡--≡或所以 2211222211((1)!)((1)!)(1)(21)((1)!)((1)!)(mod )6p p k x p a p p p p p x p p b k --==----=≡-≡-∑∑ 因为p 是大于3的素数,所以p −1不小于4,所以(p −1)!含有因数6, 从而2(1)(21)((1)!)0(mod )6p p p p p ---≡,即2((1)!)0(mod )p a p b -≡, 因为(,(1)!)1p p -=,所以2(,((1)!))1p p -=,从而0(mod )0(mod )a p a p b≡⇒≡ 例6、(2003克罗地亚奥林匹克) 对于所有奇质数p 和正整数n (n ≣p ),试证:p n C ≡[n p] (mod p)例7、(第26届IMO) 设n 为正整数,整数k 与n 互质,且0<k <n . 令M ={1, 2, …, n −1}(n ≣3), 给M 中每个数染上黑白两种染色中的一种,染法如下:⑴对M 中的每个i ,i 与n −i 同色,⑵对M 中每个i ,i ≠k ,i 与|k −i |同色,试证:M 中所有的数必为同色.证明:∵(k , n )=1且0,1,2,…,n −1是一个模n 的最小非负完系,∴0·k ,1·k ,2·k ,…,(n −1)·k 也是一个模n 的完全剩余系.若设r j ≡j ·k (mod n )(其中1≢r j ≢n -1,j =1,2,…,n -1) ,则M ={1,2,…,n −1}={121,,,-n r r r } 下面只要证明r j 与r j +1(j =1,2,…,n −2)同色即可. 因为若如此,当r 1颜色确定后,M 中所有的数都r 1与同色. 由于(j +1)k ≡r j +1(mod n ),则r j +k ≡r j +1(mod n ),因此若r j +k <n ,则r j +1=r j +k ,由条件⑵知r j +1与| r j +1-k |=r j 同色;若r j +k >n ,由r j +1=r j +k -n ,由条件⑴知k -r j +1=n —r j 与n -(n —r j )=r j 同色,即k -r j +1与r j 同色, 由条件⑵知k -r j +1与|k -(k -r j +1)|=r j +1同色,因此r j +1与r j 同色.综上:此r j +1与r j 同色. 故M 中所有的数必为同色.例8、(2001第42届IMO)设n 为奇数且大于1,k 1, k 2,…, k n 为给定的整数,对于1, 2, …, n 的n !个排列中的每一个排列a =(a 1, a 2,…, a n ),记S (a )=∑=n i i ia k 1,试证:有两个排列b 和c ,使得n !| S (b )-S (c ).证明:假设对任意两个不同的b 和c ,均有S (b )≡/S (c )(mod n !),则当a 取遍所有1,2,…,n 的n !个排列时, S (a )也取遍模n !的一个完全剩余系,且每个剩余系恰好经过一次,所以()aS a ∑≡1+2+3+…+n !(mod n !)≡12(n !+1)n !≡n !2×n !+n !2≡n !2(mod n !) (n >1)其中()a S a ∑表示对取遍个排列求和(下同),下面用另一种方法计算1()()ni i a a i S a k a ==∑∑∑:对于k 1,i ∈{1,2,…,n },a i =1时,剩n -1个数,有(n -1)!个排列,a i =2时,有(n -1)!个排列,…∴k 1的系数为(n -1)!·(1+2+…+n )=12(n +1)!. ∴()a S a ∑=(1)!2n +1n i i k =∑ 但()a S a ∑=(1)!2n +1n i i k =∑≡0(mod n !) (∵n 为奇数),∴n !2≡0(mod n !), 矛盾. ∴n !| S (b )-S (c ).例9、设m 是给定的整数. 求证:存在整数a ,b 和k . 其中a ,b 均为奇数,k ≣0,使得2m =a 19+b 99+k ·21999.另解:设x ,y 为奇数,若x ≡/y (mod 21999),则x 19-y 19=(x -y )(x 18+x 17y +…+xy 17+y 18),∵x 18+x 17y +…+xy 17+y 18为奇数,∴x 18+x 17y +…+xy 17+y 18与21999互质,∴x 19≡/y 19(mod 21999)故当a 取遍模21999的简化剩余系时,a 19也取遍模21999的简化剩余系,∴一定存在a ,使得a 19≡2m -1(mod 21999),并且有无穷多个这样的a ,故2m -1-a 19=k ·21999令b =1,则2m =a 19+b 99+k ·21999. 当a 足够小时,不难知k ≣0.。
2.2 剩余类与完全剩余系一、剩余类与完全剩余系本讲约定m 是正整数.由上一讲同余的基本性质可知:对于给定的模m ,整数的同余关系是一个等价关系.因此可将全体整数按“对模m 是否同余”分为若干个两两不相交的集合,使得同一个集合中任意两个数对模m 一定同余,而不在同一个集合中的任意两个数对模m 一定不同余.这些集合就是模m 的剩余类.定义 1 对模m 与已知整数a 同余的所有整数构成的集合,称为模m 的剩余类(或模m 的同余类),记为[]m a由定义1立即得到: 定理1 (1) []{}{}|(mod )|m ax x a m a km k =∈Z ≡=+∈Z ;(2) [][]m m ab =的充要条件()mod a b m ≡;(3) 对任意,a b ∈Z ,或者[][]m m ab =或者[][]m m a b =∅ ;可见,模m 的剩余类与选取其中哪个数作为代表元并无关系.同一剩余类中任意两个整数对模m 同余,属于不同剩余类的任意两个整数对模m 不同余. 定理2 对于给定的模m ,有且仅有m 个不同的剩余类,即[][][][]0,1,2,1m m m m m - .证明 由于0,1,2,3,…,m-1这m 个数对模m 两两不同余,所以[][][]0,1,2,m m m []1m m -是m 个两两不同的模m 的剩余类,如果还有一个模m 的剩余类[]m t,则由带余除法定理,可得,,,0,t mq r q r r m =+∈Z ≤<故()mod t r m ≡,而r 为0,1,2,,1m - 中的某一个数,所以[][]m m t r =.例1 当6m =时,模6的剩余类共有6个,它们是[]{}{}[]{}{}[]{}{}6666660,12,6,0,6,12,[1],11,5,1,7,13,2,10,4,2,8,14,[3],9,3,3,9,15,4,8,2,4,10,16,[5],7,1,5,11,17,=--=--=--=--=--=--而且整数集[]560k k =Z = .定理3 (1)在任意取定的1m +个整数中,必有两个数对模m 同余; (2)存在m 个数对模m 两两不同余.证明 (1)由定理2知,有且仅有m 个不同的模m 的剩余类,即[][][][]0,1,2,1,m m m m m - 所以1m +个数中必有两个数属于同一个模m 的剩余类,即这两个数对模m 同余.(2)在每个剩余类[]()0,1,2,m rr m = 中取定一个数r x ,作代表,这样就得到m 个两两对模m 不同余的数01,1,,m x x x - .这就证明了(2).由此引出完全剩余系的概念:定义2 从模m 的每一个剩余类中各取一个数,得到一个由m 个数组成的集合,称为模m 的一个完全剩余系.下面是几个常用的完全剩余系:(1)把{}0,1,,1m - 称为模m 的最小非负完全剩余系; (2)把{}1,2,,m 称为模m 的最小正完全剩余系;(3)把()(){}1,2,,1,0m m ----- 称为模m 的最大非正完全剩余系; (4)把(){},1,,2,1m m ----- 称为模m 的最大负完全剩余系; (5)当m 是奇数时,把11,1,0,1,,22m m --⎧⎫--⎨⎬⎩⎭ 称为模m 的绝对最小完全剩余系;当m 是偶数时,把1,1,0,1,,22mm ⎧⎫-+-⎨⎬⎩⎭ 或,1,0,1,,122m m ⎧⎫---⎨⎬⎩⎭ 称为模m的绝对最小完全剩余系;显然,模m 的完全剩余系有无数多个.如果{}12,,,m y y y 是模m 的一个完全剩余系,那么对任意整数a ,这m 个数中有且仅有一个i y 与a 对模m 同余.综上,模m 的一个完全剩余系就是m 个两两不同余的整数. 例2 证明:{}11,4,18,20,32--是模5的一个完全剩余系.定理4 设1|m m .那么,对任意的r ,有[][]1m m r r ⊆,等号当且1m m =成立.更精确地说,若12,,,d l l l 是模1md m =的一组完全剩余系,则有[]11j m m j d r r l m ≤≤⎡⎤=+⎣⎦ ,右边并式中的d 个模m 的剩余类两两不同.特别地有:[][]10m m j dr r jm ≤<=+.证明 我们把剩余类[]1m r 中的数按模m 来分类.对[]1m r 中任意两个数11,r k m +21r k m +,()1121mod r k m r k m m +≡+成立的充要条件是()12mod k k d ≡. ■ 由此推出右边和式中的d 个模m 的剩余类是两两不同的,且[]1m r 中的任一数1,r km +必属于其中的一个剩余类.另一方面,对任意的j 必有[]1111,j j m m m r l m r l m r ⎡⎤⎡⎤+⊆+=⎣⎦⎣⎦这就证明了所要的结论.例3 奇数按照模6可以分成哪几类,偶数按照模6可以分成哪几类? 解 {全体奇数}=[][][][]26661135= ; {全体偶数}=[][][][]26660024= .二、完全剩余系的性质定理5 设a 是整数,(),1a m =,b 是任意整数,若x 遍历模m 的完全剩余系,则ax b +所取的值也遍历模m 的完全剩余系. 证明 设{}12,,,m x x x 是模m 的一个完全剩余系,则当x 依次取值12,,,mx x x 时,ax b +所取的m 个值为12,,m ax b ax b ax b +++ .如果()mod i j ax b ax b m +≡+,则()mod i j ax ax m ≡,由于(),1a m =.则()mod i j x x m ≡,于是i j =.因而{}12,,m ax b ax b ax b +++ 也是模m 的完全剩余系.■例4 证明:{}7,12,17,22,27,32是模6的一个完全剩余系. 证明 7507,12517,17527=⨯+=⨯+=⨯+22537,27547,32557=⨯+=⨯+=⨯+ .因为()5,61=,所以由定理5知,当x 遍历模6的最小非负完全剩余系{}0,1,2,3,4,5时,57x +所取的值,即{}7,12,17,22,27,32也是模6的完全剩余系.定理 6 设,a b 是两个整数,且(),1a b =,若x 遍历模b 的完全剩余系,y 遍历模a 的完全剩余系,c 是任意整数,则ax by c ++所取的值组成模ab 的完全剩余系. 例5 利用模10和模199的完全剩余系表示模1990的完全剩余系. 解:()199,101,199101990.=⨯=设{}12,10,,x x x 是模m 的一个完全剩余系,{}12,199,,y y y 是模199的一个完全剩余系,那么{}19910,1,2,10,1,2,,199i j x y i j +== 组成模1990的一个完全剩余系.习题2.21.验证下列各组整数是否为模8的完全剩余系:{}{}{}{}1,3,5,7,9,11,13,152,4,6,8,10,17,21,237,9,12,17,22,27,322,2,3,3,5,6,7,8---------(1);(2);(3);(4).2.验证下列各组整数是否为模7的简化剩余系:{}{}{}{}8,16,24,32,40,482,4,6,2,4,61,3,5,9,11,12,132,22,42,62,82---(1);(2);(3);(4).3.(1)求模9 的一个完全剩余系,使其中每个数都是奇数; (2)求模9 的一个完全剩余系,使其中每个数都是偶数; (3)对于模10来说,能实现(1)和(2)的要求吗?(4)请找出规律,并证明。
高中数学竞赛 数论剩余类与剩余系1.剩余类的定义与性质(1)定义1 设m 为正整数,把全体整数按对模m 的余数分成m 类,相应m 个集合记为:K 0,K 1,…,K m-1,其中K r ={qm+r|q ∈Z,0≤余数r ≤m-1}称为模m 的一个剩余类((2)2.(1)a r ,得m 个数特别地,完全为偶数时,,2-m (2)证明:即证a 0,a 1,…,a m-1与aa 0+b, aa 1+b,…,aa m-1+b 同为模m 的完全剩余系,因a 0,a 1,…,a m-1为模m 的完系时,若aa i +b ≡aa j +b(modm),则a i ≡a j (modm),矛盾!反之,当aa 0+b, aa 1+b,…,aa m-1+b 为模m 的完系时,若a i ≡a j (modm),则有aa i +b ≡aa j +b(modm),也矛盾!(ⅲ)设m 1,m 2是两个互质的正整数,而x,y 分别遍历模m 1,m 2的完系,则m2x+m1y历遍模m1m2的完系.证明:因x,y分别历遍m1,m2个整数,所以,m2x+m1y历遍m1m2个整数.假定m2x/+m1y/≡m2x//+m1y//(modm1m2),其中x/,x//是x经历的完系中的数,而y/,y//是y经历的完系中的数.因(m1,m2)=1,所以,m2x/≡m2x//(modm1),m1y/≡m1y// (modm2),从而x/≡x//(modm1),y/≡y//(modm2),矛盾!3.(1).在与模m的一个(2)(ϕm)x1≡x2,则a1,a2,…,aφ(m)是模m的一个既约剩余系.证明:因a1,a2,…,aφ(m)是)m(ϕ个与m互质的整数,并且两两对模m不同余,所以,a1,a2,…,aφ(m)属于)m(ϕ个剩余类,且每个剩余类都与m互质,故a1,a2,…,aφ(m)是模m的一个既约剩余系.(ⅴ)设m1,m2是两个互质的正整数,而x,y分别历遍模m1,m2的既约剩余系,则m 2x+m 1y 历遍模m 1m 2的既约剩余系.证明:显然,既约剩余系是完系中所有与模互质的整数做成的.因x,y 分别历遍模m 1,m 2的完系时,m 2x+m 1y 历遍模m 1m 2的完系.由(m 1,x )=(m 2,y )=1,(m 1,m 2)=1得(m 2x,m 1)=(m 1y,m 2)=1,所以,(m 2x+m 1y,m 1)=1,(m 2x+m 1y,m 2)=1,故 (m 2x+m 1y, m 1m 2)=1.反之若(m 2x+m 1y, m 1m 2)=1,则(m 2x+m 1y,m 1)=(m 2x+m 1y,m 2) =1,1m 2的既)(2m ϕ)., 1,α(4.欧拉欧拉(Euler)定理 设m 是大于1的整数,(a ,m)=1,则)(m od 1)(m a m ≡ϕ. 证明:设r 1,r 2,…,r )(m ϕ是模m 的既约剩余系,则由性质3知a r 1,a r 2,…,a r )(m ϕ也是模m 的既约剩余系,所以, a r 1a r 2…a r )(m ϕ≡r 1r 2…r )(m ϕ(modm),即≡)(21)(m m r r r a ϕϕ)(21m r r r ϕ ,因()(21m r r r ϕ ,m)=1,所以,)(m od 1)(m a m ≡ϕ.推论(Fermat 定理) 设p 为素数,则对任意整数a 都有)(m od p a a p ≡.证明:若(a , p )=1,由1)(-=p p ϕ及Euler 定理得)(m od 11p a p ≡-即)(m od p a a p ≡;若(a , p )≠1,则p |a ,显然有)(m od p a a p ≡.例1设m>0,证明必有一个仅由0或1构成的自然数a 是m 的倍数.证明:考虑数字全为1的数:因1,11,111,1111,…中必有两个在modm 的同一剩余类中,它们的差即为所求的a .例(m 整除,.例m,使得2011|f n f 3因所以,例,是整数序列负整数假设对每个正整数:在数列123,,,a a a 中,每个整数都刚好出现一次.证明:数列各项同时减去一个整数不改变本题的条件和结论,故不妨设a 1=0.此时对每个正整数k 必有∣a k ∣<k:若∣a k ∣≥k,则取n=∣a k ∣,则a 1≡a k ≡0(mod n),矛盾.现在对k 归纳证明a 1,a 2,…,a k 适当重排后是绝对值小于k 的k 个相邻整数.k=1显然.设a 1,a 2,…,a k 适当重排后为-(k -1-i),…,0,…,i (0≤i ≤k -1),由于a 1,a 2,…,a k ,a k+1是(mod k+1)的一个完全剩余系,故必a k+1≡i+1(mod k+1), 但∣a k+1∣<k+1,因此a k+1只能是i+1或-(k -i),从而a 1,a 2,…,a k ,a k+1适当重排后是绝对值小于k+1的k+1个相邻整数.由此得到:1).任一整数在数列中最多出现一次;2).若整数u 和v (u<v) 都出现在数列中,则u 与v 之间的所有整数也出现在数列中.得到:例,(i,j)也历mod2n 的和≡例可被,且是周期数列,所以, 数列{a n }中存在无穷多项可被2011整除.例7证明:存在无穷多个正整数n,使得n 2+1∤n!.证明:引理1对素数p >2,⇔≡)4(mod 1p 存在x(1≤x ≤p -1)使)(m od 12p x -≡. 证:充分性:因对1≤x ≤p -1,( p ,x)=1,所以,)(mod 1)(2121p x x p p ≡=--,≡-212)(p x)(mod 1)1(21p p ≡--,所以,21-p 为偶数,即).4(mod 1≡p 必要性:因1≤x ≤p -1时,x,2x,…,(p -1)x 构成modp 的既约剩余系,所以,存在1≤a ≤p -1,使得a x ≡-1(mod p ),若不存在a (1≤a ≤p -1), a =x,使a x ≡-1(mod p ),则这样的a ,x 共配成21-p 对,则有)(mod 1)!1()1(21p p p -≡-≡--,即21-p 为奇数,与 p 2证a =4(p 1p 设2p 1 p 2…12x -≡,相应的x 例(1)(2)n n+1n (n=1,2, …),且每个a n 都是f(x)的周期.证明:(1)设T=nm (正整数m,n 互质,且n ≥2),因(m,n)=1,所以,m,2m,…,nm 构成 modn 的完系,故存在k ∈N *使得km ≡1(modn),即存在t ∈N *使得km=nt+1,因f(x)=f(x+kT)=f(x+n km )=f(x+t+n 1)=f(x+n 1),所以n1是周期. 设n=kp ,其中k ∈N *, p 为素数,则n k p 11⋅=是周期.故存在素数p,使p 1是周期. (2)当T 为无理数时,取a 1=T,则T 为无理数, 0<T<1.设k≤n 时存在无理数a k ,使得0<a k <a k-1<1,且a k 是周期.对k+1,总存在存在u,v ∈N *,使得0<u a k -v<a k <1,取例解:,对任意}包含了modn+1零剩余,≤k ≤n, a 1+a 2+取例. 例11求所有的奇质数p ,使得∑=-11|k p k p .例12求所有质数p ,使得2122213)()()(|-+++p p p p C C C p .例13设n 为大于1的奇数,k 1,k 2,…,k n 是n 个给定的整数,对1,2,…,n 的每一个排列a=(a 1,a 2,…,a n ),记S(a)=∑=ni i i a k 1.证明:存在两个1,2,…,n 的排列b 和c(b ≠c),使得n!|S(b)-S(c).证明:如果对1,2,…,n 的任意两个不同排列b 和c(b ≠c),都有n!∤S(b)-S(c),那么当a 取遍所有排列时(共n!个),S(a)遍历模n!的一个完系, 因此,有∑a a S )(≡1+2+…+n!≡2!2)1!(!n n n ≡+(modn!) ①, 另一方面,我们有 ∑a a S )(=)!(mod 0)1(!])!1[(n k n n j n k a k a k n i n n in i i n i i ≡+=-==∑∑∑∑∑∑∑ ②. 由①∑a .例modm 因(m,2n 例x 例在A同余方程与同余方程组1.同余方程(组)及其解的概念定义1 给定正整数m 及n 次整系数多项式0111)(a x a x a x a x f n n n n ++++=--,则同余式f(x)≡0(modm)①叫做模m 的同余方程,若a n 0(modm),则n 叫做方程①的次数.若x=a是使f(a)≡0(modm)成立的一个整数,则x≡a(modm)叫做方程①的一个解,即把剩余类a(modm)叫做①的一个解.若a1(modm),a2(modm)均为方程①的解,且a1,a2对模m不同余,就称它们是方程①的不同解.由此可见,只需在模m的任一组完系中解方程①即可.例12解:例2解:.2.设a x解,例3解:tx即)8-≡x.3,1-(mod≡t),1,08(mod1=4+例4解方程12x≡6(mod9).因(12,9)=3,且-1是一个特解,所以,方程12x≡6(mod9)的解为:(modx即)8t5,2,1,≡t≡-x.(mod),2,1,083+1=-3.同余方程组定义3给定正整数m 1,m 2,…,m k 和整系数多项式f 1(x),f 2(x),…,f k (x),则同余式组 ⎪⎪⎩⎪⎪⎨⎧≡≡≡)(mod 0)()(mod 0)()(mod 0)(2211k k m x f m x f m x f ②,叫做同余方程组.若x=a 是使f j (a )≡0(modm j )(1≤j ≤k)成立的一个整数,则x ≡a (modm)叫做方程组②的一个解,即把剩余类a (modm)叫做②的一个解.例5解:⎩⎨⎧-≡≡13x x .M=m 1m ⎪⎪⎩⎪⎪⎨⎧≡≡≡21k a x a x a x 其中M j ).(2)j j j j 则x ≡y (modm j ),即m j |x -y ,因m 1,m 2,…,m k 两两互质,所以M| x-y 即x ≡y (modM). 注:(1)存在无穷多个整数x 满足同余方程组③,这些x 属于同一模m 的剩余类;(2)同余方程组③仅有一个解x ≡a 1M 1M 1-1+a 2M 2M 2-1+…+a k M k M k -1(modM).(3)当(a ,m i )=1(=1,2,…,n)时,同余方程组⎪⎪⎩⎪⎪⎨⎧≡≡≡⇔⎪⎪⎩⎪⎪⎨⎧≡≡≡---)(mod )(mod )(mod )(mod )(mod )(mod 12211112211k k k k m a a x m a a x m a a x m a ax m a ax m a ax仍然具有定理结论. 这在数论解题中具有重要应用.例6“今有物不知其数,三三数之余二,五五数之余三,七七数之余二,问物几何”.解,352115≡x 例.解:210×210-1≡210-1≡1(mod11)⇔210-1≡1(mod11),所以,同余方程组的解为: )2310(mod 2111637121010330438553462≡=⨯+⨯+⨯+⨯≡x ,即x=2310k+2111(k ∈N).例8证明:对任意n 个两两互质的正整数:m 1,m 2,…,m n ,总存在n 个连续的自然数k+1,k+2,…,k+n 使得m i |k+i(i=1,2,…,n).证明:由剩余定理知,总存在整数k 使得⎪⎪⎩⎪⎪⎨⎧-≡-≡-≡)(mod )(mod 2)(mod 121n m n k m k m k,即存在连续的自然数k+1,k+2,…,k+n 使得m i |k+i(i=1,2,…,n).例9证明:对任意n ∈N *,存在n 个连续正整数它们中每一个数都不是素数的幂(当 数⎪⎪⎩⎪⎪⎨⎧-≡-≡-≡21n m m m例,且A 例 {k +a n }⎩⎨⎧-≡≡)(mod 102p x x 123⎪⎩-≡)(mod 232p x 2的最小正整数a 2=38.假定a 1,a 2,…,a n 都已确定,则取a n+1适合⎪⎪⎩⎪⎪⎨⎧-≡-≡≡+)(mod )(mod 1)(mod 0121n p n x p x p x 且大于a n 的最小正整数,由剩余定理知满足条件的a n+1存在.则上述递推关系定义的数列{a n }满足题意:因对任意k ∈N *,当n ≥k+1时,都有k+a n ≡0(mod p k+1),由{a n }递增可知{k +a n }从第k+2项起每一项都是p k+1的倍数,且都大于p k+1,所以,数列{k +a n }中至多有k+1项为素数.例12是否存在一个由正整数组成的数列,使得每个正整数都恰在该数列中出现一次,且对任意正整数k ,该数列的前k 项之和是k 的倍数?解:,S=a 1+a 2⎩⎨⎧++≡+t r S r S {a n }例的质因数.例例。
数论-剩余类、完全剩余系、缩系、欧拉函数剩余类:∀ 0≤r≤m-1(m≥1),Cr={x∈Z | x≡ r (mod m)}={m*q+r|q∈Z}=[r](除m余r的所有数集合),则C0,C1,C2,...,Cm-1为模m的剩余类(共有m个)性质1:①∀ x∈Z, ∃ 0≤r≤m-1,x∈Cr(Cr的定义)②x,y ∈Cj,0≤j≤m-1,当且仅当x≡y (mod m)完全剩余系:定义:a0,a1,a2,...,am-1是模m的⼀组完全剩余系《=》aj∈Cj, 0≤j≤m-1⾮负最⼩完全剩余:0,1,2,...,m-1性质2:{a1,a2,...,am-1}是模m的⼀组完全剩余系,当且仅当∀ 1≤i<j≤m,ai ≠ aj (mod m)性质3:若(k,m)=1,a1,a2,...,am是模m的⼀组完全剩余系,则k*a1,k*a2,...,k*am-1是模m的⼀组完全剩余系证明:(证明他们之间两两不同余)∀ 1≤i<j≤m,假设 k*ai ≡ k*aj (mod m)则 m | k*(ai-aj)∵(m,k)=1 ∴ m | (ai-aj)∴ai ≡ aj (mod m)⼜∵ ai ≠ aj (mod m),与假设相⽭盾,故假设不成⽴,即k*a1,k*a2,...,k*am-1之间两两不同余,是模m的⼀组完全剩余系性质4:若(m,n)=1,a1,a2,...,am和b1,b2,...,bn分别为模m和模n的完全剩余系,则{n*ai+m*bj | 1≤i≤m ,1≤j≤n}是模m*n的⼀组完全剩余系证明:(证明在集合内两两不同余)假设:n*a+m*b≡ n*α+m*β(mod m*n)其中 a,α∈{a1,a2,...,am}, b,β∈(b1,b2,...,bn)故 m*n | n*(a-α)+m*(b-β)故m | n*(a-α)+m*(b-β)∵(m,n)=1,故m|(a-α)即a ≡α (mod m)⼜∵ a,α∈{a1,...,am},,故 a ≠ α (mod m)与假设⽭盾,同理可证b ≡β (mod n)与假设⽭盾故假设不成⽴,即n*a+m*b ≠ n*α+m*β(mod m*n),根据性质2,可知{n*ai+m*bj | 1≤i≤m ,1≤j≤n}是模m*n的⼀组完全剩余系性质5:若n≥3,a1,a2,...,an和b1,b2,...,bn为模m的完全剩余系,则a1*b1,a2*b2,...,an*bn不为模m的⼀组完全剩余系性质6:设p为素数,则(p-1)! +1 ≡ 0 (mod p)(威尔逊定理)(这⾥先举例把,证明太复杂了以后补上)若p=2,则1!+1=2≡0 (mod 2)若p=3,则2!+1=3≡0 (mod 3)若p=5,则4!+1=25≡0(mod 5)若p=7,则6!+1=721≡0 (mod 7)...()缩系定义:剩余类中与m互素的剩余类集合数学公式表⽰:(Z/mz)*={Cr | 0≤r≤m-1, (r,m)=1}中的元素叫做与模m互素的剩余类(这⾥的元素即是集合)|(Z/mz)*| ==>m的剩余类中与m互素的剩余类集合的个数(是有限个)欧拉函数:φ(m)=|(Z/mz)*| 或φ(m)={r | 0≤r≤m-1,(m,r)=1}(⼀个r与⼀个剩余类(模m余r)⼀⼀对应)如何求⼀个数的欧拉函数?例:对于φ(1),完全剩余系{0},(0,1)=1,故存在⼀个,即φ(1)=1对于φ(2),完全剩余系{0,1},(0,2)=2,(1,2)=1,故存在⼀个,即φ(2)=1对于φ(3),完全剩余系{0,1,2},(0,3)=3,(1,3)=1,(2,3)=1,故存在两个,即φ(3)=2(这⾥以⾮负最⼩完全剩余系来为代表)⼀个关于欧拉函数的结论:若p为素数,则φ(p)=p-1性质1:设(Z/mz)*={Cr1,Cr2,...,Crφ(m)},其中0≤r1,r2,...,rφ(m)≤m-1,a1,a2,...,aφ(m)是模m的⼀组缩系,则ai∈Cri, 1≤i≤φ(m)性质2:缩系中有φ(m)个元素性质3:若a1,a2,..,aφ(m)个与m互素的数构成模m的⼀组缩系,当且仅当元素两两不同余性质4:(a,m)=1,{a1,a2,...,aφ(m)}是模m的⼀组缩系,则{a*a1,a*a2,...,a*aφ(m)}也构成模m的⼀组缩系性质5:设m≥2,(a,m)=1,则a**(φ(m)) ≡ 1 (mod m)证明:设r1,r2,...,rφ(m)是模m的⼀组缩系,则a*r1,a*r2,...,a*rφ(m)也为模m的⼀组缩系 a*r1 ≡ <a*r1> (mod m) a*r2 ≡ <a*r2> (mod m) . . . a*rφ(m) ≡<a*rφ(m)> (mod m)其中{a*r1,a*r2,...,a*rφ(m)}和{<a*r1>,<a*r2>,...,<a*rφ(m)>}都为模m的⼀组缩系左边相乘,右边相乘得:(a*r1) *(a*r2) *...*(a*rφ(m)) ≡ r1*r2*...*rφ(m) (mod m)a**(φ(m)) *(r1*r2*...*rφ(m)) ≡ r1*r2*...*rφ(m) (mod m)即a**(φ(m)) ≡ 1 (mod m)性质6:设p为素数,则a**p=a (mod p)证明:若(a,p)=1根据性质5可知,a**(φ(p)) ≡ 1 (mod p)∵p为素数∴φ(p)=p-1∴a**(p-1) ≡ 1 (mod p)即a**p ≡ a (mod p)若(a,p)≠1,p为素数,则p|a ∴a**p ≡ a (mod p)(余数为0)性质7:m≥1,n≥1,(m,n)=1,a1,a2,...aφ(m), b1,b2,...,bφ(n)分别是模m和模n的⼀组缩系,则{n*ai+m*bj | 0≤i≤φ(m), 0≤j≤φ(n)}是模m*n的⼀组缩系推论:若(m,n)=1,则φ(m*n)=φ(m)*φ(n)性质8:设n的标准分解n=(p1**a1)*(p2**a2)*...*(pk**ak) (p≥2,且其中p1<p2<...<pk,都为素数)则φ(n)=n*(1-1/p1)*...*(1-1/pk),且(元素之间两两同余)证明:∵((pi**a1),(pj**aj))=1∴φ(n)=φ(p1**a1)*φ(p2**a2)*...*φ(pk**ak)∵(x,p**a)=1,当且仅当(x,p)=1∴集合{1,2,3,...,p**a}中与p**不互素的元素有{p,2*p,...,(p**a-1)*p},共有p**a-1个,故a互素的有(p**a-p**a-1)个故φ(p**a)=(p**a-p**(a-1))=p**a(1-1/p)故φ(n)=p1**a1(1-1/p1)*p2**a2(1-1/p2)*...*pk**ak(1-1/pk)=(p1**a1)*(p2**a2)*...*(pk**ak) *((1-1/p1)*...*(1-1/pk)) =n*(1-1/p1)*...*(1-1/pk),得证。
高中数学竞赛 数论剩余类与剩余系1.剩余类的定义与性质(1)定义1 设m 为正整数,把全体整数按对模m 的余数分成m 类,相应m 个集合记为:K 0,K 1,…,K m-1,其中K r ={qm+r|q ∈Z,0≤余数r ≤m-1}称为模m 的一个剩余类(也叫同余类)。
K 0,K 1,…,K m-1为模m 的全部剩余类.(2)性质(ⅰ)i m i K Z 10-≤≤= 且K i ∩K j =φ(i ≠j). (ⅱ)每一整数仅在K 0,K 1,…,K m-1一个里.(ⅲ)对任意a 、b ∈Z ,则a 、b ∈K r ⇔a ≡b(modm).2.剩余系的定义与性质(1)定义2 设K 0,K 1,…,K m-1为模m 的全部剩余类,从每个K r 里任取一个a r ,得m 个数a 0,a 1,…,a m-1组成的数组,叫做模m 的一个完全剩余系,简称完系. 特别地,0,1,2,…,m -1叫做模m 的最小非负完全剩余系.下述数组叫做模m 的绝对最小完全剩余系:当m 为奇数时,21,,1,0,1,,121,21--+----m m m ;当m 为偶数时,12,,1,0,1,,12,2--+--m m m 或2,,1,0,1,,12m m -+-. (2)性质(ⅰ)m 个整数构成模m 的一完全剩余系⇔两两对模m 不同余. (ⅱ)若(a,m)=1,则x 与ax+b 同时遍历模m 的完全剩余系.证明:即证a 0,a 1,…,a m-1与aa 0+b, aa 1+b,…,aa m-1+b 同为模m 的完全剩余系, 因a 0,a 1,…,a m-1为模m 的完系时,若aa i +b ≡aa j +b(modm),则a i ≡a j (modm), 矛盾!反之,当aa 0+b, aa 1+b,…,aa m-1+b 为模m 的完系时,若a i ≡a j (modm),则有 aa i +b ≡aa j +b(modm),也矛盾!(ⅲ)设m1,m2是两个互质的正整数,而x,y分别遍历模m1,m2的完系,则m2x+m1y历遍模m1m2的完系.证明:因x,y分别历遍m1,m2个整数,所以,m2x+m1y历遍m1m2个整数.假定m2x/+m1y/≡m2x//+m1y//(modm1m2),其中x/,x//是x经历的完系中的数,而y/,y//是y经历的完系中的数.因(m1,m2)=1,所以,m2x/≡m2x//(modm1),m1y/≡m1y// (modm2),从而x/≡x//(modm1),y/≡y//(modm2),矛盾!3.既约剩余系的定义与性质(1)定义3如果剩余类K r里的每一个数都与m互质,则K r叫与m互质的剩余类.在与模m互质的全部剩余类中,从每一类中任取一个数所做成的数组,叫做模m的一个既约(简化)剩余系.如:模5的简系1,2,3,4;模12的简系1,5,7,11.(2)性质(ⅰ)K r与模m互质⇔K r中有一个数与m互质;证明:设a∈K r,(m,a)=1,则对任意b∈K r,因a≡b≡r(modm),所以,(m,a)=(m,r)= (m,b)=1,即K r与模m互质.(ⅱ)与模m互质的剩余类的个数等于)m(ϕ,即模m的一个既约剩余系由)m(ϕ个整数组成()m(ϕ为欧拉函数);(ⅲ)若(a,m)=1,则x与ax同时遍历模m的既约剩余系.证明:因(a,m)=1,(x,m)=1,所以,(ax,m)=1.若ax1≡ax2(modm),则有x1≡x2(modm),矛盾!(ⅳ)若a1,a2,…,aφ(m)是)m(ϕ个与m互质的整数,并且两两对模m不同余,则a1,a2,…,aφ(m)是模m的一个既约剩余系.证明:因a1,a2,…,aφ(m)是)m(ϕ个与m互质的整数,并且两两对模m不同余,所以,a1,a2,…,aφ(m)属于)m(ϕ个剩余类,且每个剩余类都与m互质,故a1,a2,…,aφ(m)是模m 的一个既约剩余系.(ⅴ)设m 1,m 2是两个互质的正整数,而x,y 分别历遍模m 1,m 2的既约剩余系,则m 2x+m 1y 历遍模m 1m 2的既约剩余系.证明:显然,既约剩余系是完系中所有与模互质的整数做成的.因x,y 分别历遍模m 1,m 2的完系时,m 2x+m 1y 历遍模m 1m 2的完系.由(m 1,x )=(m 2,y )=1, (m 1,m 2)=1得(m 2x,m 1)=(m 1y,m 2)=1,所以,(m 2x+m 1y,m 1)=1,(m 2x+m 1y,m 2)=1,故 (m 2x+m 1y, m 1m 2)=1.反之若(m 2x+m 1y, m 1m 2)=1,则(m 2x+m 1y,m 1)=(m 2x+m 1y,m 2) =1,所以,(m 2x,m 1)=(m 1y,m 2)=1,因(m 1,m 2)=1,所以,(m 1,x )=(m 2,y )=1.证毕.推论1若m 1,m 2是两个互质的正整数,则)()()(2121m m m m ϕϕϕ=.证明:因当x,y 分别历遍模m 1,m 2的既约剩余系时,m 2x+m 1y 也历遍模m 1m 2的既约剩余系,即m 2x+m 1y 取遍)(21m m ϕ个整数,又x 取遍)(1m ϕ个整数,y 取遍 )(2m ϕ个整数,所以, m 2x+m 1y 取遍)()(21m m ϕϕ个整数,故)()()(2121m m m m ϕϕϕ=.推论2 设整数n 的标准分解式为k k p p p n ααα 2121=(k p p ,,1 为互异素数, *1,,N k ∈αα ),则有)11()11)(11()(21kp p p n n ---= ϕ. 证明:由推论1得)()()()(2121k k p p p n αααϕϕϕϕ =,而1)(--=αααϕp p p ,(即从1到αp 这αp 个数中,减去能被p 整除的数的个数),所以,)())(()(11221112211------=kk k k p p p p p p n ααααααϕ )11()11)(11(21kp p p n ---= . 4.欧拉(Euler)与费尔马(Fermat)定理欧拉(Euler)定理 设m 是大于1的整数,(a ,m)=1,则)(m od 1)(m a m ≡ϕ. 证明:设r 1,r 2,…,r )(m ϕ是模m 的既约剩余系,则由性质3知a r 1,a r 2,…,a r )(m ϕ也是模m 的既约剩余系,所以, a r 1a r 2…a r )(m ϕ≡r 1r 2…r )(m ϕ(modm),即≡)(21)(m m r r r a ϕϕ )(21m r r r ϕ ,因()(21m r r r ϕ ,m)=1,所以,)(m od 1)(m a m ≡ϕ.推论(Fermat 定理) 设p 为素数,则对任意整数a 都有)(m od p a a p ≡.证明:若(a , p )=1,由1)(-=p p ϕ及Euler 定理得)(m od 11p a p ≡-即)(m od p a a p ≡;若(a , p )≠1,则p |a ,显然有)(m od p a a p ≡.例1设m>0,证明必有一个仅由0或1构成的自然数a 是m 的倍数.证明:考虑数字全为1的数:因1,11,111,1111,…中必有两个在modm 的同一剩余类中,它们的差即为所求的a .例2证明从任意m 个整数a 1,a 2,…,a m 中,必可选出若干个数,它们的和(包括只一个加数)能被m 整除.证明:考虑m 个数a 1,a 1+a 2,a 1+a 2+a 3,…,a 1+a 2+…+a m ,如果其中有一个数能被m 整除,则结论成立,否则,必有两个数属于modm 的同一剩余类,这两个数的差即满足要求.例3设f(x)=5x+2=f 1(x), f n+1(x)=f[f n (x)].求证:对任意正整数n,存在正整数m,使得2011|f n (m).证明:因f 2(x)=f[f(x)]=5(5x+2)+2=52x+5×2+2,f 3(x)=f[f 2(x)]=53x+52×2+5×2+2,..., f n (x)=5n x+5n-1×2+5n-2×2+ (2)因(5n ,2011)=1,所以,x 与f n (x)同时历遍mod2011的完系,1≤x ≤2011,所以,存在正整数m(1≤m ≤2011)使得f n (m)≡0(mod2011),即2011|f n (m).例4设123,,,a a a 是整数序列,其中有无穷多项为正整数,也有无穷多项为 负整数.假设对每个正整数n ,数123,,,,n a a a a 被n 除的余数都各不相同.证明:在数列123,,,a a a 中,每个整数都刚好出现一次.证明:数列各项同时减去一个整数不改变本题的条件和结论,故不妨设a 1=0.此时对每个正整数k 必有∣a k ∣<k:若∣a k ∣≥k,则取n=∣a k ∣,则a 1≡a k ≡0(mod n),矛盾.现在对k 归纳证明a 1,a 2,…,a k 适当重排后是绝对值小于k 的k 个相邻整数.k=1显然.设a 1,a 2,…,a k 适当重排后为-(k -1-i),…,0,…,i (0≤i ≤k -1),由于a 1,a 2,…,a k ,a k+1是(mod k+1)的一个完全剩余系,故必a k+1≡i+1(mod k+1), 但 ∣a k+1∣<k+1,因此a k+1只能是i+1或-(k -i),从而a 1,a 2,…,a k ,a k+1适当重排后是绝对值小于k+1的k+1个相邻整数.由此得到:1).任一整数在数列中最多出现一次;2).若整数u 和v (u<v) 都出现在数列中,则u 与v 之间的所有整数也出现在数列中.最后由正负项均无穷多个(即数列含有任意大的正整数及任意小的负整数)就得到:每个整数在数列中出现且只出现一次.例5偶数个人围着一张圆桌讨论,休息后,他们依不同次序重新围着圆桌坐下,证明至少有两个人,他们中间的人数在休息前与休息后是相等的。
剩余类、剩余系、完全剩余系和简化剩余系学习笔记经常在⼀些数论题题解中看到剩余类、剩余系、完全剩余系、简化剩余系这⼏个名词,但总感觉⾃⼰对它们的概念理解得不是很深,⽽且还经常混淆,故写篇博客记录下⾃⼰所理解的剩余系相关知识,如有错误,欢迎路过的⼤佬指正。
剩余类(同余类)定义n n r∈[0,n−1]n C r=n∗x+r,x∈Znn=1145,r=14C14=1145x+141145−1131,14,1159性质剩余系定义n n n x x xnn=1145r={11,4,5,14}114514性质完全剩余系(完系)定义n n n n nnn=5{0,1,2,3,4}5{5,1,8,−3,14}5性质n r a∈Z,b∈Z gcd(n,a)=1a∗r i+b (i∈[0,n−1])n证明:命题 1 :如果r是⼀个模n的剩余系,那r i+b⼀定也构成⼀个模n的完全剩余系。
反证法,若r i+b不构成⼀个模n的完全剩余系,则存在两个元素同余n,即有r x+b≡r y+b(mod n),同余式两边同时减去b,有r x≡r y(mod n),与r是⼀个模n的剩余系这⼀前提⽭盾,命题 1 得证。
命题 2:若r是⼀个模n的完全剩余系,对于任意的整数a,若有gcd(a,n)=1,则a∗r i也构成⼀个模n的完全剩余系。
同样是反证法,若结论不成⽴,则有a∗r x≡a∗r y(mod n),因为gcd(a,n)=1,所以⼀定存在a mod p的逆元inv(a),同余式两边同时乘以inv(a),则有r x≡r y(mod n),与前提⽭盾,命题 2 得证。
这俩个命题都得证,所以a∗r i构成⼀个模n的完全剩余系,a∗r i+b也构成⼀个模n的完全剩余系,故性质得证。
简化剩余系(既约剩余系、缩系)定义nφ(n)n r nφ(n)φ(n)nn=10{1,3,7,9}10n=5{1,8,7,14}5n n性质n r a∈Z gcd(n,a)=1a∗r i n 参考资料国际惯例。