第三章 (5) 同余、剩余类、完全剩余系
- 格式:pdf
- 大小:394.50 KB
- 文档页数:39
一、同餘,剩餘類與剩餘系(a ) 同餘的性質:(1) a ≡b (mod m ),c ≡d (mod m ),則 a ±c ≡b ±d (mod m ) 且ac ≡bd (mod m )。
(2) a ≡b (mod m ),c ∈N ,則 ac ≡bc (mod cm )。
(3) a ≡b (mod m ),n ∈N 且 m n ,則 a ≡b (mod n )。
(4) 若a ≡b (mod m ),則 (a ,m )=(b ,m )。
(5) 整數a ,b ,則 ab ≡1 (mod m ) iff (a ,m )=1。
(b ) 剩餘類:m 為正整數,將全體整數按照對模m 的餘數進行分類,餘數為r (10-≤≤m r ) 的所有整數歸為一類,記為K r (r =0,1,..,m -1),每一類K r 均稱為模m 的剩餘類 (同餘類)。
剩餘類K r 是數集K r ={mq +r m 是模,r 是餘數,q ∈Z }={a Z a ∈且)(mod m r a ≡}, 它是一個以m 為公差的(雙邊無窮)等差數集。
並具有如下的性質:(1) 1210-⋃⋃⋃⋃=m K K K K Z 且∅=⋂j i K K (j i ≠)。
(2) 對於任意的Z n ∈,有唯一的r 0使0r K n ∈。
(3) 對於任意的a 、b Z ∈,a 、b r K ∈ ⇔ )(mod m b a ≡(c ) 完全剩餘系:設K 0,K 1,…,K m-1是模m 的全部剩餘類,從每個K r 中取任取一個數a r ,這m 個數a 0,a 1,…,a m-1組成的一個數組稱為模m 的一個完全剩餘系。
(d ) 簡化剩餘系:如果一個模m 的剩餘類K r 中任一數都與m 互質,就稱K r 是一個與模m 互質的剩餘類。
在與模m 互質的每個剩餘類中,任取一個數 (共)(m ϕ個) 所組成的數組,稱為模m 的一個簡化剩餘系。
(二) 高觀點:同餘類環(ring)1.等價關係:給集合S中一個關係”~”。
型剩余类及完全剩余系定义设m是一个给定的正整数,K r r 0,1,”,m 1表示所有形如qm r q 0, 1, 2,川的整数组成的集合,则称K。
,©,川,K m1为模m的剩余类•定理1设m 0, K°K,川,心1是模m的剩余类,则(i)每一整数必包含于某一个类里,而且只能包含于一个类里;(ii)两个整数x, y属于同一类的充分必要条件是x y modm .证(i)设a是任意一个整数,则由带余除法,得 a qm r ,0 r m,故a K r.故每一整数必包含于某一类里.又设a K r,且a K r,这里0 r m,0 r m,则存在整数q, q使得a mq r,a mq r .于是,m| r r , m| r r .但是0 r r m,故r r 0,r r 0,r r .(ii)设a,b是两个整数,并且都在K r内,则存在整数q1,q2分别使得a q1m r ,b q2m r.故a b modm .反之,若a b modm,则由同余的定义知,a,b被m除所得的余数相同,设余数都为r 0 r m,则a和b都属于同一类K r.定义在模m的剩余类K0,K1^|,K m 1中,各取一数a j C j, j 0,1川,m 1,此m个数a0 ,a1,川,a m 1称为模m的一个完全剩余系.推论m个整数作成模m的一个完全剩余系的充分必要条件是这m个整数两两对模m 不同余.证充分性设a1,a2,|#,a m是m个两两对模m不同余的整数.由定理1知,每个整数a i必在模m的m个剩余类K0,K1,川,K m1中某一剩余类里,且只能在一个剩余类里.因a1,a2,|||,a m是m个两两对模m不同余的整数,故有定理1得,a「a2,川,a m分别属于不同的剩余类,故a i ,a 2,川,a m 是模m 的一个完全剩余系必要性 设a i ,a 2,川,a m 是模m 的一个完全剩余系,则由完全剩余系的定义得,这 m 个数分别属于不同的m 个剩余类K 0, K 1^|,K m1-由定理1得,a 1,a 2^| ,a m 两两对模m 不 同余•0,1,川,m 1是模m 的一个完全剩余系号,川,1,0,1,川,号 是模m 的一个完全剩余系定理2设m 是一个正整数,a,b 都为整数, a,m 1,若x 通过模m 的一个完全剩余系,则ax b 也通过模m 的一个完全剩余系.证 设x 通过模m 的完全剩余系a 1, a 2^ |, a m .下面证明ax b 也通过模m 的一个完全 剩余系.根据定理1的推论,只需证明aa 1 b,aa 2 b,川,aa m b 两两对模m 不同余.因厲赴,川,a m 是模m 的一个完全剩余系,故由定理 1的推论得,a 「a 2,川,a m 两两对 模m 不同余.下面用反证法证明 aa 1 b,aa 2 b,川,aa m b 两两对模 m 不同余.假设 aa 1 b,aa 2 b,川,aa m b 不是两两对模 m 不同余,则其中有两个数对模 m 同余,设aa i b a j b modm ,1 i j m ,贝U aa a j modm .因 a, m 1 , 故 a i a j modm .这与a 「a 2,川,a m 两两对模m 不同余矛盾.定理3设m , 0,m 2 0, m,, m 21,而x 1, x 2分别通过模 , m 2的一个完全剩余系,则m ?X 1 gX 2通过模gm ?的一个完全剩余系.证 当x-i , x 2分别通过模 m“ m 2的一个完全剩余系时, 值,下面证明这 gm 2个整数两两对模 m 1m 2不同余.设m 2为 m]X 2 m 2x 1 gx ? modm ^m ?,其中x,X i 是X i 所通过的模m i 的完全剩余系中的数,i 1,2.当m 为奇数时, 当m 为偶数时, m2 都是模m 的完全剩余系.1与号训‘仙川号m 2m m 1x 2共取了 mim 2个整数(1)由(1)得, m2X! m(x2叫為m1x2modg ,从而叫為m2% mod m .因mi,m21,故% x i modm -又因x),x1是模的完全剩余系中的数,故捲洛.同理,X2 X2.故当x1, x2分别通过模m i, m2的一个完全剩余系时,m2m m|x2共取了m^m?个整数值, 下面证明这m i m)2个整数两两对模m i m2不同余.从而由定理1的推论得,这m^m?个整数作成模mim2的一个完全剩余系.定义0,1^|,m 1叫做模m的最小非负完全剩余系;当m是奇数时,m 4 d I L 1 1 a m •d ,|||, 1,0,1,|||, 叫做模m的绝对最小完全剩余系;当m是偶数时,号,川,1,o,1, 忙1或m训,仙川,m叫做模m的绝对最小完全剩余系.作业P57: 1,2,3,4 ,习题解答1.证明X u p st v,u 0,1j||, p s t 1,v 0,1,|||,p t 1,t s是模p s的一个完全剩余系。
完系、简系、剩余系 知识扫描若按对某一模m 的余数进行分类,就可以引入所谓的剩余类和完全剩余类的概念。
定义2:设m N +∈,把全体整数按其对模m 的余数r (0≤r ≤m-1)归为一类,记为r k ,每一类()0,1,2,,1r k r m =-均称为模m 的剩余类(又叫同余类),同一类中任一数称为该类中另一类数的剩余。
根据定义,剩余类具有如下性质:()()()}{()()0012101=20,1,2,,13,,,mod .m i j r r Z k k k k k k i j n Z r m n k a b Z a b k a b m -⋃⋃⋃⋃⋂=∅≠∀∈∈-∈∀∈∈⇔≡,而对于,有唯一的,使得对定义3:设0121,,m k k k k -是模m 的全部剩余类,从每个r k 中任取一个数r a ,这m 个数0121,,,,m a a a a -组成的一个组称为模m 的一个完全剩余系,简称完系。
显然,模m 的完全剩余系有无穷多个,但最常用的是下面两个:()10,1,21;m -最小非负剩余系:,, ()221m m k =+最小绝对值剩余系:它随的奇偶性不同而略有不同。
当时,为-k,-k+1,,-1,0,1,2,,k-1,k当m=2k 时,为-(k-1),-(k-2),,-1,0,1,2,,k 或-k,-(k-1),,-1,0,,k-1关于完全剩余系,有以下判别法:()()()()121121121,,,,1mod ;2,1,,,,,,,,m m i j m m m m a a a a m i j m a a m b m c a a a a m ba c ba c ba c m --⇔≤<≤≡=+++个整数是模的一个完系当时,设为任意整数,若是模的一个完系,则也是模的一个完系。
特别地,任意m 个连续的整数构成模m 的一个剩余系。
设m 为一正整数,由于在0,1,2,…,m-1中与m 互质的数的个数是由m 唯一确定的一个正整数,因此可以给出以下定义:定义4:m 为一正整数,把0,1,2,…,m-1中与m 互质的数的个数叫做m 的欧拉函数,记为()m j 。
完系、简系、剩余类定义1.剩余类:把关于模m同余的数归于一类,每类称为一个模m的剩余类. 即由关于模m同余的数组成的集合,每一个集合叫做关于模m的一个剩余类(又叫同余类).共有m个剩余类.设K r是余数为r的剩余类, 则K r={qm+r| m是模, r是余数, q∈Z}={a |a∈Z且a≡r(mod m)}.剩余类的性质:⑴Z=K0∪K1∪K2∪…∪K m−1,当i≠j时,K i∩K j=Ø;⑵对于∨−n∈Z,有唯一的r∈{0, 1, 2, …, m−1},使得n∈K r;⑶对∨−a, b∈Z,a, b∈K r ⇔a≡b (mod m)定义2.完系:设K0,K1,…,K m−1是模m的m个剩余类,从K r中各取一数a r 作为代表,则这样的m个数a0,a1,…,a m−1称为模m的一个完全剩余系,简称m的完系. 例如:1, 2, 3, …, m.若一组数y1, y2, …, y s满足:对任意整数a有且仅有一个y j,使得a≡y j (mod m),则y1, y2, …, y s是模m的完全剩余系.模m的完全剩余系有无穷多个,但最常用的是下面两个:①最小非负剩余系:0, 1, 2, 3, …, m−1;②最小绝对值剩余系:(随m的奇偶性略有区别) 当m=2k+1时,为−k, −k+1, …, −1, 0, 1, 2, …, k−1, k;当m=2k时,为−k+1, −k+2, …, −1, 0, 1, 2, …, k或−k, −k+1, …, −1, 0, 1, 2, …, k−2, k−1.例如,集合{0, 6, 7, 13, 24}是模5的一个完全剩余系,集合{0, 1, 2, 3, 4}是模5的最小非负完全剩余系.性质:(i) m个整数构成模m的一完全剩余系⇔两两对模m不同余;(ii) 若(a, m)=1,则x与ax+b同时跑遍模m的完全剩余系.完全剩余系的判断方法:定理1:a1, a2,…, a m是模m的一个完全剩余系⇔a i≡/a j (mod m), i≠j;定理2:设(a, m)=1, b∈Z, 若x1, x2, , x m是模m的一个完全剩余系,则ax1+b, ax2+b, …, ax m+b也是模m的一个完全剩余系;特别地,m个连续的整数构成模m的一个完系.设K r是模的一个剩余类, 若a, b∈K r,则a≡b(mod m), 于是(a, m)=(b, m).因此,若(a, m)=1,则K r中的任一数均与m互质, 这样,又可给出如下定义:定义3.简系:如果r与m互质,那么K r中每一个数均与m互质,称K r为与模m互质的剩余类.这样的剩余类共有φ(m)个,从中各取一个代表(共取φ(m)个),它们称为模m的简化剩余系,简称简系.当m为质数p时,简系由p−1个数组成.又如:m=6,在模6的六个剩余类中:K1={…, −11, −5, 1, 7, 13,…} K5={…, −7, −1, 5, 11, 17,…}是与模6互质的剩余类,数组1, 5;7, −7;1, −1;等等都是模6的简系.性质:①K r与模m互质⇔K r中有一个数与m互质;②与模m互质的剩余类的个数等于φ(m);③若(a, m)=1, 则x与ax同时跑遍模m的简化剩余系.简化剩余系的判断方法:定理3:a1,a2,…,aφ(m)是模m的简化剩余系⇔(a i, m)=1, 且a i≡/a j(mod m) (i≠j, i, j=1, 2, …, φ(m)).定理4:在模m的一个完全剩余系中,取出所有与m互质的数组成的数组,就是一个模m的简化剩余系.定理5:设(k, m)=1, 若a1, a2, …, aφ(m)是模m的简系, 则ka1, ka2, …, kaφ(m)也是模m的简系.这三个定理中,定理3与定理5是简化剩余系的判别方法,定理4是它的构造方法. 显然,模m的简化剩余系有无穷多个,但常用的是“最小简化剩余系”,即由1,2,…,m -1中与m 互质的那些数组成的数组.说明:由于任何整数都属于模m 的某一剩余类,所以,在研究某些整数性质时,选取适当的(模)m ,然后在模m 的每个剩余类中取一个“代表数”(即组成一个完全剩余系),当弄清了这些代表数的性质后,就可弄清对应的剩余类中所有数的性质,进而弄清全体整数的性质,这就是引入剩余类和完全剩余系的目的.例1、设n 为偶数,a 1, a 2,…, a n 与b 1, b 2,…, b n 均为模n 的完全剩余系,试证:a 1+b 1, a 2+b 2,…, a n +b n 不是模的完全剩余系.证明:假设a 1+b 1, a 2+b 2,…, a n +b n 是模的完全剩余系. ∴1(1)()1+2++(mod )22n i i i n n n a b n n =++≡≡≡∑ ∵a 1, a 2,…, a n 也是模的完全剩余系. ∴11(1)(mod )22n n i i i n n n a i n ==+≡=≡∑∑,同理有:1(mod )2n i i n b n =≡∑ 1()0(mod )n i i i a b n n =∴+≡≡∑,∴n |n2, 矛盾!故假设不成立,从而原命题成立.例2、设m >1, (a , m )=1,b ∈Z , 求和:∑-=+⋅10}{m i mb i a , 其中{x }为x 的小数部分. 解:∵i 取遍模m 的完系,令x i =a ·i +b ,则也取遍模m 的完系.故11110000111{}{}{}(1)22m m m m i i i k k x a i b k k m m m m m m m m ----====⋅+-====⨯-=∑∑∑∑总结:若a 1, a 2,…, a m 是模m 的一个完系,则①a 1+a 2+…+a m ≡1+2+…+m (mod m );②a 1·a 2·……·a m ≡1·2·…·m (mod m ); ③(a 1)n +(a 2)n +…+(a m )n ≡1n +2n +…+m n (mod m ).例3、已知m , n 为正整数, 且m 为奇数, (m , 2n -1)=1. 证明:m |∑=m k n k1.证明:∵1, 2, …, m 构成模m 的完系, (m , 2)=1,∴2, 4, …, 2m 也构成模m 的完系.∴)(mod )2(11m k k m k n m k n ∑∑==≡,即)(mod 0)12(1m k m k n n ≡-∑=. ∵(m , 2n -1)=1,∴∑=m k n k m 1|得证. 例4、求八个整数n 1, n 2,…, n 8满足:对每个整数k (-2014<k <2014),有八个整数a 1, a 2,…, a n ∈{−1, 0, 1},使得k =a 1n 1+a 2n 2+…+a 8n 8解:令G ={k | k =a 1+a 2·2+a 3·32+…+a n +1·3n ,a i ∈{−1, 0, 1},i =1,2,…,n +1}.显然max G =1+3+32+…+3n =3n +1-12(记为H ),min G =-1-3-32+…-3n =-H . 且G 中的元素个数有3n +1=2H +1个, 又∵G 中任意两数之差的绝对值不超过2H ,∴G 中的数对模2H +1不同余,∴G 的元素恰好是模2H +1的一个绝对值最小的完系,于是凡满足-H ≢k ≢H 的任意整数都属于G ,且可唯一地表示为a 1+a 2·2+a 3·32+…+a n +1·3n 形式,当n =7时,H =3208>2014,而n =6时,H =1043<2014,故n 1=1,n 2=3,…,n 8=37为所求.例5、已知p 为大于3的质数,且112+122+132+…+1(p -1)2=a b,a ,b ∈N *. (a , b )=1,证明:p a . 证明:对于不超过p −1的自然数k ,由于(k , p )=1,所以存在唯一的不超过p −1的自然数x ,满足1(mod )kx p ≡而且,当k =1或p −1有x =1或p −1,当22k p ≤≤-时,有22,x p x k ≤≤-≠,故当k 取遍1,2,……,p −1时,x 也取遍1,2,……,p −1,因为(,(1)!)1,1(mod )p p kx p -=≡由可得到(1)!(1)!(1)!(mod )(1)!(mod ),p p kx p p p x p k--≡--≡或所以 2211222211((1)!)((1)!)(1)(21)((1)!)((1)!)(mod )6p p k x p a p p p p p x p p b k --==----=≡-≡-∑∑ 因为p 是大于3的素数,所以p −1不小于4,所以(p −1)!含有因数6, 从而2(1)(21)((1)!)0(mod )6p p p p p ---≡,即2((1)!)0(mod )p a p b -≡, 因为(,(1)!)1p p -=,所以2(,((1)!))1p p -=,从而0(mod )0(mod )a p a p b≡⇒≡ 例6、(2003克罗地亚奥林匹克) 对于所有奇质数p 和正整数n (n ≣p ),试证:p n C ≡[n p] (mod p)例7、(第26届IMO) 设n 为正整数,整数k 与n 互质,且0<k <n . 令M ={1, 2, …, n −1}(n ≣3), 给M 中每个数染上黑白两种染色中的一种,染法如下:⑴对M 中的每个i ,i 与n −i 同色,⑵对M 中每个i ,i ≠k ,i 与|k −i |同色,试证:M 中所有的数必为同色.证明:∵(k , n )=1且0,1,2,…,n −1是一个模n 的最小非负完系,∴0·k ,1·k ,2·k ,…,(n −1)·k 也是一个模n 的完全剩余系.若设r j ≡j ·k (mod n )(其中1≢r j ≢n -1,j =1,2,…,n -1) ,则M ={1,2,…,n −1}={121,,,-n r r r } 下面只要证明r j 与r j +1(j =1,2,…,n −2)同色即可. 因为若如此,当r 1颜色确定后,M 中所有的数都r 1与同色. 由于(j +1)k ≡r j +1(mod n ),则r j +k ≡r j +1(mod n ),因此若r j +k <n ,则r j +1=r j +k ,由条件⑵知r j +1与| r j +1-k |=r j 同色;若r j +k >n ,由r j +1=r j +k -n ,由条件⑴知k -r j +1=n —r j 与n -(n —r j )=r j 同色,即k -r j +1与r j 同色, 由条件⑵知k -r j +1与|k -(k -r j +1)|=r j +1同色,因此r j +1与r j 同色.综上:此r j +1与r j 同色. 故M 中所有的数必为同色.例8、(2001第42届IMO)设n 为奇数且大于1,k 1, k 2,…, k n 为给定的整数,对于1, 2, …, n 的n !个排列中的每一个排列a =(a 1, a 2,…, a n ),记S (a )=∑=n i i ia k 1,试证:有两个排列b 和c ,使得n !| S (b )-S (c ).证明:假设对任意两个不同的b 和c ,均有S (b )≡/S (c )(mod n !),则当a 取遍所有1,2,…,n 的n !个排列时, S (a )也取遍模n !的一个完全剩余系,且每个剩余系恰好经过一次,所以()aS a ∑≡1+2+3+…+n !(mod n !)≡12(n !+1)n !≡n !2×n !+n !2≡n !2(mod n !) (n >1)其中()a S a ∑表示对取遍个排列求和(下同),下面用另一种方法计算1()()ni i a a i S a k a ==∑∑∑:对于k 1,i ∈{1,2,…,n },a i =1时,剩n -1个数,有(n -1)!个排列,a i =2时,有(n -1)!个排列,…∴k 1的系数为(n -1)!·(1+2+…+n )=12(n +1)!. ∴()a S a ∑=(1)!2n +1n i i k =∑ 但()a S a ∑=(1)!2n +1n i i k =∑≡0(mod n !) (∵n 为奇数),∴n !2≡0(mod n !), 矛盾. ∴n !| S (b )-S (c ).例9、设m 是给定的整数. 求证:存在整数a ,b 和k . 其中a ,b 均为奇数,k ≣0,使得2m =a 19+b 99+k ·21999.另解:设x ,y 为奇数,若x ≡/y (mod 21999),则x 19-y 19=(x -y )(x 18+x 17y +…+xy 17+y 18),∵x 18+x 17y +…+xy 17+y 18为奇数,∴x 18+x 17y +…+xy 17+y 18与21999互质,∴x 19≡/y 19(mod 21999)故当a 取遍模21999的简化剩余系时,a 19也取遍模21999的简化剩余系,∴一定存在a ,使得a 19≡2m -1(mod 21999),并且有无穷多个这样的a ,故2m -1-a 19=k ·21999令b =1,则2m =a 19+b 99+k ·21999. 当a 足够小时,不难知k ≣0.。
剩余类、剩余系、完全剩余系和简化剩余系学习笔记经常在⼀些数论题题解中看到剩余类、剩余系、完全剩余系、简化剩余系这⼏个名词,但总感觉⾃⼰对它们的概念理解得不是很深,⽽且还经常混淆,故写篇博客记录下⾃⼰所理解的剩余系相关知识,如有错误,欢迎路过的⼤佬指正。
剩余类(同余类)定义n n r∈[0,n−1]n C r=n∗x+r,x∈Znn=1145,r=14C14=1145x+141145−1131,14,1159性质剩余系定义n n n x x xnn=1145r={11,4,5,14}114514性质完全剩余系(完系)定义n n n n nnn=5{0,1,2,3,4}5{5,1,8,−3,14}5性质n r a∈Z,b∈Z gcd(n,a)=1a∗r i+b (i∈[0,n−1])n证明:命题 1 :如果r是⼀个模n的剩余系,那r i+b⼀定也构成⼀个模n的完全剩余系。
反证法,若r i+b不构成⼀个模n的完全剩余系,则存在两个元素同余n,即有r x+b≡r y+b(mod n),同余式两边同时减去b,有r x≡r y(mod n),与r是⼀个模n的剩余系这⼀前提⽭盾,命题 1 得证。
命题 2:若r是⼀个模n的完全剩余系,对于任意的整数a,若有gcd(a,n)=1,则a∗r i也构成⼀个模n的完全剩余系。
同样是反证法,若结论不成⽴,则有a∗r x≡a∗r y(mod n),因为gcd(a,n)=1,所以⼀定存在a mod p的逆元inv(a),同余式两边同时乘以inv(a),则有r x≡r y(mod n),与前提⽭盾,命题 2 得证。
这俩个命题都得证,所以a∗r i构成⼀个模n的完全剩余系,a∗r i+b也构成⼀个模n的完全剩余系,故性质得证。
简化剩余系(既约剩余系、缩系)定义nφ(n)n r nφ(n)φ(n)nn=10{1,3,7,9}10n=5{1,8,7,14}5n n性质n r a∈Z gcd(n,a)=1a∗r i n 参考资料国际惯例。
同余式知识定位数论是初中数学竞赛比较重要的一个知识点,在历年竞赛中占据非常发比例,其中同余理论是初等数论中的重要内容之一,其同余式概念及应用,剩余系概念要熟练掌握。
本文归纳总结了同余的若干性质,将通过例题来说明这些方法的运用。
知识梳理1、同余概念定义1:给定一个正整数m,如果用m去除a,b所得的余数相同,则称a与b对模m 同余,记作a≡b(modm),并读作a同余b,模m。
(1)若a与b对模m同余,由定义1,有a=mq1+r,b=mq2+r.所以a-b=m(q1-q2),即m|a-b。
反之,(2)若m|a-b,设a=mq1+r1,b=mq2+r2,0≤r1,r2≤m-1,则有m|r1-r2.因|r1-r2|≤m-1,故r1-r2=0,即r1=r2。
于是,我们得到同余的另一个等价定义:定义2:若a与b是两个整数,并且它们的差a-b能被一正整数m整除,那么,就称a与b对模m同余.2、同余定理定理1:(1)a≡a(modm).(2)若a≡b(modm),则b≡a(modm).(3)若a≡b(modm),b≡c(modm),则a≡c(modm).定理2:若a≡b(modm),c≡d(modm),则a±c≡b±d(modm),ac≡bd(modm).证:由假设得m|a-b,m|c-d,所以m|(a±c)-(b±d),m|c(a-b)+b(c-d),即a±c≡b±d(modm),ac≡bd(modm).由此我们还可以得到:若a≡b(modm),k是整数,n是自然数,则a±k≡b±k(modm),ak≡bk(modm),a n≡b n(modm).定理3:若ac≡bc(modm),且(c,m)=1,则a≡b(modm).定理4: 若n ≥2,a ≡b(modm 1),a ≡b(modm 2),…………a ≡b(modm n ),且M=[m 1,m 2,…,m n ]表示m 1,m 2,…,m n 的最小公倍数,则a ≡b(modM)3、剩余类和完全剩余系全体整数集合可按模m 来划分:当且仅当()mod a b m ≡时,a 和b 属于同一类。