剩余类与完全剩余系ppt课件
- 格式:ppt
- 大小:618.50 KB
- 文档页数:24
一、同餘,剩餘類與剩餘系(a ) 同餘的性質:(1) a ≡b (mod m ),c ≡d (mod m ),則 a ±c ≡b ±d (mod m ) 且ac ≡bd (mod m )。
(2) a ≡b (mod m ),c ∈N ,則 ac ≡bc (mod cm )。
(3) a ≡b (mod m ),n ∈N 且 m n ,則 a ≡b (mod n )。
(4) 若a ≡b (mod m ),則 (a ,m )=(b ,m )。
(5) 整數a ,b ,則 ab ≡1 (mod m ) iff (a ,m )=1。
(b ) 剩餘類:m 為正整數,將全體整數按照對模m 的餘數進行分類,餘數為r (10-≤≤m r ) 的所有整數歸為一類,記為K r (r =0,1,..,m -1),每一類K r 均稱為模m 的剩餘類 (同餘類)。
剩餘類K r 是數集K r ={mq +r m 是模,r 是餘數,q ∈Z }={a Z a ∈且)(mod m r a ≡}, 它是一個以m 為公差的(雙邊無窮)等差數集。
並具有如下的性質:(1) 1210-⋃⋃⋃⋃=m K K K K Z 且∅=⋂j i K K (j i ≠)。
(2) 對於任意的Z n ∈,有唯一的r 0使0r K n ∈。
(3) 對於任意的a 、b Z ∈,a 、b r K ∈ ⇔ )(mod m b a ≡(c ) 完全剩餘系:設K 0,K 1,…,K m-1是模m 的全部剩餘類,從每個K r 中取任取一個數a r ,這m 個數a 0,a 1,…,a m-1組成的一個數組稱為模m 的一個完全剩餘系。
(d ) 簡化剩餘系:如果一個模m 的剩餘類K r 中任一數都與m 互質,就稱K r 是一個與模m 互質的剩餘類。
在與模m 互質的每個剩餘類中,任取一個數 (共)(m ϕ個) 所組成的數組,稱為模m 的一個簡化剩餘系。
(二) 高觀點:同餘類環(ring)1.等價關係:給集合S中一個關係”~”。
§2 剩余类及完全剩余系定义 设m 是一个给定的正整数,()0,1,,1r K r m =-表示所有形如()0,1,2,qm r q +=±±的整数组成的集合,则称011,,,m K K K -为模m 的剩余类.定理1 设0110,,,,m m K K K ->是模m 的剩余类,则(ⅰ)每一整数必包含于某一个类里,而且只能包含于一个类里; (ⅱ)两个整数,x y 属于同一类的充分必要条件是()mod .x y m ≡证 (ⅰ)设a 是任意一个整数,则由带余除法,得,0a qm r r m =+≤<,故.r a K ∈故每一整数必包含于某一类里. 又设,r a K ∈且r a K '∈,这里0,0r m r m '≤<≤<,则存在整数,q q '使得,.a mq r a mq r ''=+=+于是,|,|.m r r m r r ''--但是0r r m '≤-<,故0,0,.r r r r r r '''-=-== (ⅱ)设,a b 是两个整数,并且都在r K 内,则存在整数12,q q 分别使得12,.a q m r b q m r =+=+故()mod .a b m ≡反之,若()mod a b m ≡,则由同余的定义知,,a b 被m 除所得的余数相同,设余数都为()0r r m ≤<,则a 和b 都属于同一类r K . 定义 在模m 的剩余类011,,,m K K K -中,各取一数,0,1,,1j j a C j m ∈=-,此m 个数011,,,m a a a -称为模m 的一个完全剩余系.推论 m 个整数作成模m 的一个完全剩余系的充分必要条件是这m 个整数两两对模m不同余.证 充分性 设12,,,m a a a 是m 个两两对模m 不同余的整数. 由定理1知,每个整数i a 必在模m 的m 个剩余类011,,,m K K K -中某一剩余类里,且只能在一个剩余类里. 因12,,,m a a a 是m 个两两对模m 不同余的整数,故有定理1得,12,,,m a a a 分别属于不同的剩余类,故12,,,m a a a 是模m 的一个完全剩余系.必要性 设12,,,m a a a 是模m 的一个完全剩余系,则由完全剩余系的定义得,这m 个数分别属于不同的m 个剩余类011,,,m K K K -. 由定理1得,12,,,m a a a 两两对模m 不同余. 0,1,,1m -是模m 的一个完全剩余系.当m 为奇数时,11,,1,0,1,,22m m ----是模m 的一个完全剩余系. 当m 为偶数时,,1,,1,0,1,,1222m m m --+--与1,,1,0,1,,1,222m m m-+--都是模m 的完全剩余系.定理2 设m 是一个正整数,,a b 都为整数,(),1a m =,若x 通过模m 的一个完全剩余系,则ax b +也通过模m 的一个完全剩余系. 证 设x 通过模m 的完全剩余系12,,,m a a a .下面证明ax b +也通过模m 的一个完全剩余系.根据定理1的推论,只需证明12,,,m aa b aa b aa b +++两两对模m 不同余.因12,,,m a a a 是模m 的一个完全剩余系,故由定理1的推论得,12,,,m a a a 两两对模m 不同余.下面用反证法证明12,,,m aa b aa b aa b +++两两对模m 不同余.假设12,,,m aa b aa b aa b +++不是两两对模m 不同余,则其中有两个数对模m 同余,设()mod ,1i j aa b a b m i j m +≡+≤<≤,则()m o d .i j aa a m ≡因(),1a m =,故()m o d .i j a a m ≡这与12,,,m a a a 两两对模m 不同余矛盾.定理3 设()12120,0,,1m m m m >>=,而12,x x 分别通过模12,m m 的一个完全剩余系,则2112m x m x +通过模12m m 的一个完全剩余系.证 当12,x x 分别通过模12,m m 的一个完全剩余系时,2112m x m x +共取了12m m 个整数值,下面证明这12m m 个整数两两对模12m m 不同余.设()2112211212mod m x m x m x m x m m ''''''+≡+, (1) 其中,i i x x '''是i x 所通过的模i m 的完全剩余系中的数,1,2.i =由(1)得,()211221121mod m x m x m x m x m ''''''+≡+,从而()21211mod m x m x m '''≡.因()12,1m m =,故()111mod .x x m '''≡又因11,x x '''是模1m 的完全剩余系中的数,故11.x x '''=同理,22.x x '''= 故当12,x x 分别通过模12,m m 的一个完全剩余系时,2112m x m x +共取了12m m 个整数值,下面证明这12m m 个整数两两对模12m m 不同余.从而由定理1的推论得,这12m m 个整数作成模12m m 的一个完全剩余系. 定义 0,1,,1m -叫做模m 的最小非负完全剩余系;当m 是奇数时,11,,1,0,1,,22m m ----叫做模m 的绝对最小完全剩余系;当m 是偶数时,,,1,0,1,,122m m ---或1,,1,0,1,,22m m-+-叫做模m 的绝对最小完全剩余系. 作业 P57: 1,2,3,4,习题解答1.证明,0,1,,1,0,1,,1,s t s t t x u p v u p v p t s --=+=-=-≤是模s p 的一个完全剩余系。
完系、简系、剩余系 知识扫描若按对某一模m 的余数进行分类,就可以引入所谓的剩余类和完全剩余类的概念。
定义2:设m N +∈,把全体整数按其对模m 的余数r (0≤r ≤m-1)归为一类,记为r k ,每一类()0,1,2,,1r k r m =-均称为模m 的剩余类(又叫同余类),同一类中任一数称为该类中另一类数的剩余。
根据定义,剩余类具有如下性质:()()()}{()()0012101=20,1,2,,13,,,mod .m i j r r Z k k k k k k i j n Z r m n k a b Z a b k a b m -⋃⋃⋃⋃⋂=∅≠∀∈∈-∈∀∈∈⇔≡,而对于,有唯一的,使得对定义3:设0121,,m k k k k -是模m 的全部剩余类,从每个r k 中任取一个数r a ,这m 个数0121,,,,m a a a a -组成的一个组称为模m 的一个完全剩余系,简称完系。
显然,模m 的完全剩余系有无穷多个,但最常用的是下面两个:()10,1,21;m -最小非负剩余系:,, ()221m m k =+最小绝对值剩余系:它随的奇偶性不同而略有不同。
当时,为-k,-k+1,,-1,0,1,2,,k-1,k当m=2k 时,为-(k-1),-(k-2),,-1,0,1,2,,k 或-k,-(k-1),,-1,0,,k-1关于完全剩余系,有以下判别法:()()()()121121121,,,,1mod ;2,1,,,,,,,,m m i j m m m m a a a a m i j m a a m b m c a a a a m ba c ba c ba c m --⇔≤<≤≡=+++个整数是模的一个完系当时,设为任意整数,若是模的一个完系,则也是模的一个完系。
特别地,任意m 个连续的整数构成模m 的一个剩余系。
设m 为一正整数,由于在0,1,2,…,m-1中与m 互质的数的个数是由m 唯一确定的一个正整数,因此可以给出以下定义:定义4:m 为一正整数,把0,1,2,…,m-1中与m 互质的数的个数叫做m 的欧拉函数,记为()m 。
完系、简系、剩余类定义1.剩余类:把关于模m同余的数归于一类,每类称为一个模m的剩余类. 即由关于模m同余的数组成的集合,每一个集合叫做关于模m的一个剩余类(又叫同余类).共有m个剩余类.设K r是余数为r的剩余类, 则K r={qm+r| m是模, r是余数, q∈Z}={a |a∈Z且a≡r(mod m)}.剩余类的性质:⑴Z=K0∪K1∪K2∪…∪K m−1,当i≠j时,K i∩K j=Ø;⑵对于∨−n∈Z,有唯一的r∈{0, 1, 2, …, m−1},使得n∈K r;⑶对∨−a, b∈Z,a, b∈K r ⇔a≡b (mod m)定义2.完系:设K0,K1,…,K m−1是模m的m个剩余类,从K r中各取一数a r 作为代表,则这样的m个数a0,a1,…,a m−1称为模m的一个完全剩余系,简称m的完系. 例如:1, 2, 3, …, m.若一组数y1, y2, …, y s满足:对任意整数a有且仅有一个y j,使得a≡y j (mod m),则y1, y2, …, y s是模m的完全剩余系.模m的完全剩余系有无穷多个,但最常用的是下面两个:①最小非负剩余系:0, 1, 2, 3, …, m−1;②最小绝对值剩余系:(随m的奇偶性略有区别) 当m=2k+1时,为−k, −k+1, …, −1, 0, 1, 2, …, k−1, k;当m=2k时,为−k+1, −k+2, …, −1, 0, 1, 2, …, k或−k, −k+1, …, −1, 0, 1, 2, …, k−2, k−1.例如,集合{0, 6, 7, 13, 24}是模5的一个完全剩余系,集合{0, 1, 2, 3, 4}是模5的最小非负完全剩余系.性质:(i) m个整数构成模m的一完全剩余系⇔两两对模m不同余;(ii) 若(a, m)=1,则x与ax+b同时跑遍模m的完全剩余系.完全剩余系的判断方法:定理1:a1, a2,…, a m是模m的一个完全剩余系⇔a i≡/a j (mod m), i≠j;定理2:设(a, m)=1, b∈Z, 若x1, x2, , x m是模m的一个完全剩余系,则ax1+b, ax2+b, …, ax m+b也是模m的一个完全剩余系;特别地,m个连续的整数构成模m的一个完系.设K r是模的一个剩余类, 若a, b∈K r,则a≡b(mod m), 于是(a, m)=(b, m).因此,若(a, m)=1,则K r中的任一数均与m互质, 这样,又可给出如下定义:定义3.简系:如果r与m互质,那么K r中每一个数均与m互质,称K r为与模m互质的剩余类.这样的剩余类共有φ(m)个,从中各取一个代表(共取φ(m)个),它们称为模m的简化剩余系,简称简系.当m为质数p时,简系由p−1个数组成.又如:m=6,在模6的六个剩余类中:K1={…, −11, −5, 1, 7, 13,…} K5={…, −7, −1, 5, 11, 17,…}是与模6互质的剩余类,数组1, 5;7, −7;1, −1;等等都是模6的简系.性质:①K r与模m互质⇔K r中有一个数与m互质;②与模m互质的剩余类的个数等于φ(m);③若(a, m)=1, 则x与ax同时跑遍模m的简化剩余系.简化剩余系的判断方法:定理3:a1,a2,…,aφ(m)是模m的简化剩余系⇔(a i, m)=1, 且a i≡/a j(mod m) (i≠j, i, j=1, 2, …, φ(m)).定理4:在模m的一个完全剩余系中,取出所有与m互质的数组成的数组,就是一个模m的简化剩余系.定理5:设(k, m)=1, 若a1, a2, …, aφ(m)是模m的简系, 则ka1, ka2, …, kaφ(m)也是模m的简系.这三个定理中,定理3与定理5是简化剩余系的判别方法,定理4是它的构造方法. 显然,模m的简化剩余系有无穷多个,但常用的是“最小简化剩余系”,即由1,2,…,m -1中与m 互质的那些数组成的数组.说明:由于任何整数都属于模m 的某一剩余类,所以,在研究某些整数性质时,选取适当的(模)m ,然后在模m 的每个剩余类中取一个“代表数”(即组成一个完全剩余系),当弄清了这些代表数的性质后,就可弄清对应的剩余类中所有数的性质,进而弄清全体整数的性质,这就是引入剩余类和完全剩余系的目的.例1、设n 为偶数,a 1, a 2,…, a n 与b 1, b 2,…, b n 均为模n 的完全剩余系,试证:a 1+b 1, a 2+b 2,…, a n +b n 不是模的完全剩余系.证明:假设a 1+b 1, a 2+b 2,…, a n +b n 是模的完全剩余系. ∴1(1)()1+2++(mod )22n i i i n n n a b n n =++≡≡≡∑ ∵a 1, a 2,…, a n 也是模的完全剩余系. ∴11(1)(mod )22n n i i i n n n a i n ==+≡=≡∑∑,同理有:1(mod )2n i i n b n =≡∑ 1()0(mod )n i i i a b n n =∴+≡≡∑,∴n |n2, 矛盾!故假设不成立,从而原命题成立.例2、设m >1, (a , m )=1,b ∈Z , 求和:∑-=+⋅10}{m i mb i a , 其中{x }为x 的小数部分. 解:∵i 取遍模m 的完系,令x i =a ·i +b ,则也取遍模m 的完系.故11110000111{}{}{}(1)22m m m m i i i k k x a i b k k m m m m m m m m ----====⋅+-====⨯-=∑∑∑∑总结:若a 1, a 2,…, a m 是模m 的一个完系,则①a 1+a 2+…+a m ≡1+2+…+m (mod m );②a 1·a 2·……·a m ≡1·2·…·m (mod m ); ③(a 1)n +(a 2)n +…+(a m )n ≡1n +2n +…+m n (mod m ).例3、已知m , n 为正整数, 且m 为奇数, (m , 2n -1)=1. 证明:m |∑=m k n k1.证明:∵1, 2, …, m 构成模m 的完系, (m , 2)=1,∴2, 4, …, 2m 也构成模m 的完系.∴)(mod )2(11m k k m k n m k n ∑∑==≡,即)(mod 0)12(1m k m k n n ≡-∑=. ∵(m , 2n -1)=1,∴∑=m k n k m 1|得证. 例4、求八个整数n 1, n 2,…, n 8满足:对每个整数k (-2014<k <2014),有八个整数a 1, a 2,…, a n ∈{−1, 0, 1},使得k =a 1n 1+a 2n 2+…+a 8n 8解:令G ={k | k =a 1+a 2·2+a 3·32+…+a n +1·3n ,a i ∈{−1, 0, 1},i =1,2,…,n +1}.显然max G =1+3+32+…+3n =3n +1-12(记为H ),min G =-1-3-32+…-3n =-H . 且G 中的元素个数有3n +1=2H +1个, 又∵G 中任意两数之差的绝对值不超过2H ,∴G 中的数对模2H +1不同余,∴G 的元素恰好是模2H +1的一个绝对值最小的完系,于是凡满足-H ≢k ≢H 的任意整数都属于G ,且可唯一地表示为a 1+a 2·2+a 3·32+…+a n +1·3n 形式,当n =7时,H =3208>2014,而n =6时,H =1043<2014,故n 1=1,n 2=3,…,n 8=37为所求.例5、已知p 为大于3的质数,且112+122+132+…+1(p -1)2=a b,a ,b ∈N *. (a , b )=1,证明:p a . 证明:对于不超过p −1的自然数k ,由于(k , p )=1,所以存在唯一的不超过p −1的自然数x ,满足1(mod )kx p ≡而且,当k =1或p −1有x =1或p −1,当22k p ≤≤-时,有22,x p x k ≤≤-≠,故当k 取遍1,2,……,p −1时,x 也取遍1,2,……,p −1,因为(,(1)!)1,1(mod )p p kx p -=≡由可得到(1)!(1)!(1)!(mod )(1)!(mod ),p p kx p p p x p k--≡--≡或所以 2211222211((1)!)((1)!)(1)(21)((1)!)((1)!)(mod )6p p k x p a p p p p p x p p b k --==----=≡-≡-∑∑ 因为p 是大于3的素数,所以p −1不小于4,所以(p −1)!含有因数6, 从而2(1)(21)((1)!)0(mod )6p p p p p ---≡,即2((1)!)0(mod )p a p b -≡, 因为(,(1)!)1p p -=,所以2(,((1)!))1p p -=,从而0(mod )0(mod )a p a p b≡⇒≡ 例6、(2003克罗地亚奥林匹克) 对于所有奇质数p 和正整数n (n ≣p ),试证:p n C ≡[n p] (mod p)例7、(第26届IMO) 设n 为正整数,整数k 与n 互质,且0<k <n . 令M ={1, 2, …, n −1}(n ≣3), 给M 中每个数染上黑白两种染色中的一种,染法如下:⑴对M 中的每个i ,i 与n −i 同色,⑵对M 中每个i ,i ≠k ,i 与|k −i |同色,试证:M 中所有的数必为同色.证明:∵(k , n )=1且0,1,2,…,n −1是一个模n 的最小非负完系,∴0·k ,1·k ,2·k ,…,(n −1)·k 也是一个模n 的完全剩余系.若设r j ≡j ·k (mod n )(其中1≢r j ≢n -1,j =1,2,…,n -1) ,则M ={1,2,…,n −1}={121,,,-n r r r } 下面只要证明r j 与r j +1(j =1,2,…,n −2)同色即可. 因为若如此,当r 1颜色确定后,M 中所有的数都r 1与同色. 由于(j +1)k ≡r j +1(mod n ),则r j +k ≡r j +1(mod n ),因此若r j +k <n ,则r j +1=r j +k ,由条件⑵知r j +1与| r j +1-k |=r j 同色;若r j +k >n ,由r j +1=r j +k -n ,由条件⑴知k -r j +1=n —r j 与n -(n —r j )=r j 同色,即k -r j +1与r j 同色, 由条件⑵知k -r j +1与|k -(k -r j +1)|=r j +1同色,因此r j +1与r j 同色.综上:此r j +1与r j 同色. 故M 中所有的数必为同色.例8、(2001第42届IMO)设n 为奇数且大于1,k 1, k 2,…, k n 为给定的整数,对于1, 2, …, n 的n !个排列中的每一个排列a =(a 1, a 2,…, a n ),记S (a )=∑=n i i ia k 1,试证:有两个排列b 和c ,使得n !| S (b )-S (c ).证明:假设对任意两个不同的b 和c ,均有S (b )≡/S (c )(mod n !),则当a 取遍所有1,2,…,n 的n !个排列时, S (a )也取遍模n !的一个完全剩余系,且每个剩余系恰好经过一次,所以()aS a ∑≡1+2+3+…+n !(mod n !)≡12(n !+1)n !≡n !2×n !+n !2≡n !2(mod n !) (n >1)其中()a S a ∑表示对取遍个排列求和(下同),下面用另一种方法计算1()()ni i a a i S a k a ==∑∑∑:对于k 1,i ∈{1,2,…,n },a i =1时,剩n -1个数,有(n -1)!个排列,a i =2时,有(n -1)!个排列,…∴k 1的系数为(n -1)!·(1+2+…+n )=12(n +1)!. ∴()a S a ∑=(1)!2n +1n i i k =∑ 但()a S a ∑=(1)!2n +1n i i k =∑≡0(mod n !) (∵n 为奇数),∴n !2≡0(mod n !), 矛盾. ∴n !| S (b )-S (c ).例9、设m 是给定的整数. 求证:存在整数a ,b 和k . 其中a ,b 均为奇数,k ≣0,使得2m =a 19+b 99+k ·21999.另解:设x ,y 为奇数,若x ≡/y (mod 21999),则x 19-y 19=(x -y )(x 18+x 17y +…+xy 17+y 18),∵x 18+x 17y +…+xy 17+y 18为奇数,∴x 18+x 17y +…+xy 17+y 18与21999互质,∴x 19≡/y 19(mod 21999)故当a 取遍模21999的简化剩余系时,a 19也取遍模21999的简化剩余系,∴一定存在a ,使得a 19≡2m -1(mod 21999),并且有无穷多个这样的a ,故2m -1-a 19=k ·21999令b =1,则2m =a 19+b 99+k ·21999. 当a 足够小时,不难知k ≣0.。