随机过程第3-4讲
- 格式:pdf
- 大小:355.39 KB
- 文档页数:23
第四章 Markov 过程本章我们先讨论一类特殊的参数离散状态空间离散的随机过程,参数为0{0,1,2,}T N ==L ,状态空间为可列{1,2,}I =L 或有限{1,2,,}I n =L 的情况,即讨论的过程为Markov 链。
Markov 链最初由Markov 于1906年引入,至今它在自然科学、工程技术、生命科学及管理科学等诸多领域中都有广泛的应用。
之后我们将讨论另一类参数连续状态空间离散的随机过程,即纯不连续Markov 过程。
§4.1 Markov 链的定义与性质一、Markov 链的定义定义 4.1设随机序列{;0}n X n ≥的状态空间为I ,如果对0n N ∀∈,及0110011,,,,,{,,,}0n n n n i i i i I P X i X i X i +∈===>L L ,有:11001111{,,,}{}n n n n n n n n P X i X i X i X i P X i X i ++++=======L (4.1.0)则称{;0}n X n ≥为Markov 链。
注1:等式(4.1.0)刻画了Markov 链的特性,称此特性为Markov 性或无后效性,简称为马氏性。
Markov 链也称为马氏链。
定义4.2 设{;0}n X n ≥为马氏链,状态空间为I ,对于,i j I ∀∈,称1{}()ˆn n i j P X j X i p n +===为马氏链{;0}n X n ≥在n 时刻的一步转移概率。
注2:一步转移概率满足:()0,,()1,i j i jj Ip n i j Ipn i I ∈≥∈=∈∑若对于,i j I ∀∈,有1{}()ˆn n i j i j P X j X i p n p +===≡即上面式子的右边与时刻n 无关,则称此马氏链为齐次(或时齐的)马氏链。
设{}0()(0),p i P X i i I ==∈,如果对一切i I ∈都有00()0,()1i Ip i p i ∈≥=∑,称0()p i 为马氏链的初始分布。
马尔可夫过程排队过程1 排队过程的基本参数和问题排队模型的一般描述:A/R/S/N排队系统的基本参数排队的基本问题排队问题的李特公式2.排队问题的分析方法3. 排队问题的Little定律4.排队问题举例:例1 排队问题M/M/1/∞(无限队长)ξ是一个参数连续状态离散的马尔可夫过程。
(1)()t(2) 求解Q矩阵:(3) 研究稳态t→∞的状态概率分布(4) 达到稳定状态后,系统中顾客的平均数L,(5) 达到稳定状态后,系统中排队等待顾客的平均值L Q,(6) 达到稳定状态后,顾客在系统中的平均时间W,(7) 达到稳定状态后,顾客在系统中等待的平均时间WQ:(8) Little定律:M/M/1/∞排队模型总结:系统中平均的顾客数和平均延迟与负载的关系:例2 排队问题M/M/1/N(有限队长)例3 顾客成批到达的排队问题例4 电话交换问题(M/M/N/N)例5 M/M/s/∞排队系统例6 队长为k>s、s个服务员的排队问题M/M/s/k例7 机器维修问题1 排队过程的基本参数和问题排队模型的一般描述:A/R/S/N排队系统的基本参数A :顾客到达系统的规律(典型的是泊松到达率),R :顾客在系统中接受服务的规律(典型的是负指数分布), S :系统中服务人员的个数(典型的是一个服务员), N :系统中排队队长的限制(典型的有限队长N )。
排队的基本问题在排队系统的平均顾客数L , 在排队等候的平均顾客数L Q , 顾客在系统中平均花费的时间W , 顾客在排队等候的平均时间W Q 。
排队问题的李特公式W L λ=,Q Q W L λ=2.排队问题的分析方法马尔可夫模型的排队问题,M/M/……确定:系统状态转换图, Q 矩阵,稳态的线性方程组,得到:稳态分布的递推关系和稳态解,分析:系统中的平均顾客数、平均队长、系统中的时间、平均等待时间、李特公式。
3. 排队问题的Little 定律W L λ=,Q Q W L λ=排队系统中普适性的定律,统计量服从的公式,对到达过程、服务时间分布、服务规则无特殊要求。