阿伏伽德罗定律
- 格式:ppt
- 大小:8.51 MB
- 文档页数:34
《阿伏加德罗定律》讲义一、什么是阿伏加德罗定律阿伏加德罗定律是化学中的一个重要定律,它指出:在相同的温度和压强下,相同体积的任何气体都含有相同数目的粒子(分子、原子或离子)。
为了更好地理解这个定律,我们先来思考一个简单的例子。
想象有两个相同大小的气球,一个充满了氢气,另一个充满了氧气。
如果在温度和压强都相同的条件下,这两个气球的体积相同,那么根据阿伏加德罗定律,气球内氢气和氧气的粒子数目是相等的。
这个定律的提出,为我们研究气体的性质和进行相关的化学计算提供了重要的依据。
二、阿伏加德罗定律的数学表达式阿伏加德罗定律可以用一个简单的数学表达式来表示:V₁/ n₁= V₂/ n₂。
其中,V₁和 V₂分别表示两种气体的体积,n₁和 n₂分别表示它们的物质的量。
这个表达式告诉我们,在同温同压下,气体体积与物质的量成正比。
比如说,如果我们知道一种气体的体积和物质的量,又知道另一种气体的体积或者物质的量中的一个量,就可以通过这个公式计算出另一个量。
三、阿伏加德罗定律的推论基于阿伏加德罗定律,我们可以推导出一些非常有用的结论。
1、同温同压下,气体的体积比等于物质的量之比假设在相同的温度和压强下,有气体 A 和气体 B,它们的体积分别为 V₁和 V₂,物质的量分别为 n₁和 n₂。
根据阿伏加德罗定律的表达式 V₁/ n₁= V₂/ n₂,我们可以得到 V₁/ V₂= n₁/ n₂。
这意味着,如果我们知道两种气体的物质的量之比,就可以直接得出它们的体积之比;反之亦然。
2、同温同体积下,气体的压强比等于物质的量之比同样在一定温度和体积下,气体 A 和气体 B 的压强分别为 P₁和P₂,物质的量分别为 n₁和 n₂。
由理想气体状态方程 PV = nRT(其中 P 是压强,V 是体积,n 是物质的量,R 是气体常数,T 是温度),当温度和体积不变时,P₁/ n₁= P₂/ n₂,即 P₁/ P₂= n₁/n₂。
这个推论在研究化学反应中气体压强的变化时非常有用。
一、与“阿伏加德罗常数和阿伏加德罗定律”有关知识点归纳(一)阿伏加德罗常数有关知识归纳1. 阿伏加德罗常数旳概念及理解⑴概念:1 mol任何粒子旳粒子数叫阿伏加德罗常数, 一般用“NA”表达, 而6.02×1023是阿伏加德罗常数旳近似值。
⑵概念旳理解: ①阿伏加德罗常数旳实质是1mol任何粒子旳粒子数, 即12g12C所含旳碳原子数。
②不能说“含6. 02×1023个粒子旳物质旳量为1mol”, 只能说“含阿伏加德罗常数个粒子旳物质旳量为1mol”。
③阿伏加德罗常数与6.02×1023不能等同, 阿伏加德罗常数不是一种纯数, 它有单位, 其单位为“mol-1”, 而6.02×1023只是一种近似值, 它无单位。
2. 与阿伏加德罗常数有关旳概念及其关系①物质旳量物质旳量(n)、阿伏加德罗常数(NA)与粒子数(N)之间旳关系: n=N/NA。
②摩尔质量摩尔质量(Mr)、阿伏加德罗常数(NA)与一种分子(或原子)真实质量(mr)之间旳关系: mr=Mr/ NA。
③物质旳质量物质旳质量(m)、阿伏加德罗常数(NA)与粒子数(N)之间旳关系: m/Mr=N/ NA。
④气体体积气体体积(V)、阿伏加德罗常数(NA)与粒子数(N)之间旳关系:V/Vm=N/NA, 当气体在原则状况时, 则有:V/22.4=N/ NA。
⑤物质旳量浓度物质旳量浓度(cB)、溶液旳体积(V)与物质旳量(nB)之间旳关系: cB= nB/V,根据溶液中溶质旳构成及电离程度来判断溶液中旳粒子数。
3. 有关阿伏加德罗常数试题旳设陷方式命题者为了加强对考生旳思维能力旳考察, 往往故意设置某些陷阱, 增大试题旳辨别度。
陷阱旳设置重要有如下几种方面:⑴状态条件考察气体时常常给出非原则状况(如常温常压)下旳气体体积, 这就不能直接用“22.4L/mol”进行计算。
⑵物质旳状态考察气体摩尔体积时, 命题者常用在原则状况下某些易混淆旳液体或固体作“气体”来设问, 困惑学生。
阿伏加德罗定律(Avogadro's hypothesis)定义:同温同压同体积的气体含有相同的分子数。
推论:(1)同温同压下,V1/V2=n1/n2(2)同温同体积时,p1/p2=n1/n2=N1/N2(3)同温同压等质量时,V1/V2=M2/M1(4)同温同压同体积时,M1/M2=ρ1/ρ2同温同压下,相同体积的任何气体含有相同的分子数,称为阿伏加德罗定律。
气体的体积是指所含分子占据的空间,通常条件下,气体分子间的平均距离约为分子直径的10倍,因此,当气体所含分子数确定后,气体的体积主要决定于分子间的平均距离而不是分子本身的大小。
分子间的平均距离又决定于外界的温度和压强,当温度、压强相同时,任何气体分子间的平均距离几乎相等(气体分子间的作用微弱,可忽略),故定律成立。
该定律在有气体参加的化学反应、推断未知气体的分子式等方面有广泛的应用。
阿伏加德罗定律认为:在同温同压下,相同体积的气体含有相同数目的分子。
1811年由意大利化学家阿伏加德罗提出假说,后来被科学界所承认。
这一定律揭示了气体反应的体积关系,用以说明气体分子的组成,为气体密度法测定气态物质的分子量提供了依据。
对于原子分子说的建立,也起了一定的积极作用。
中学化学中,阿伏加德罗定律占有很重要的地位。
它使用广泛,特别是在求算气态物质分子式、分子量时,如果使用得法,解决问题很方便。
下面简介几个根据克拉伯龙方程式导出的关系式,以便更好地理解和使用阿佛加德罗定律。
克拉伯龙方程式通常用下式表示:PV=nRT……①P表示压强、V表示气体体积、n表示物质的量、T表示绝对温度、R表示气体常数。
所有气体R值均相同。
如果压强、温度和体积都采用国际单位(SI),R=8.31帕〃米3/摩尔〃开。
如果压强为大气压,体积为升,则R=0.082大气压〃升/摩尔〃度。
因为n=m/M、ρ=m/v(n—物质的量,m—物质的质量,M—物质的摩尔质量,数值上等于物质的分子量,ρ—气态物质的密度),所以克拉伯龙方程式也可写成以下两种形式:Pv=m/MRT……②和Pm=ρRT……③以A、B两种气体来进行讨论。
阿伏加德罗定律(Avogadro's hypothesis)同温同压下,相同体积的任何气体含有相同的分子数,称为阿伏加德罗定律。
气体的体积是指所含分子占据的空间,通常条件下,气体分子间的平均距离约为分子直径的10倍,因此,当气体所含分子数确定后,气体的体积主要决定于分子间的平均距离而不是分子本身的大小。
道尔顿分压定律(也称道尔顿定律)描述的是理想气体的特性。
这一经验定律是在1801年由约翰·道尔顿所观察得到的。
在任何容器内的气体混合物中,如果各组分之间不发生化学反应,则每一种气体都均匀地分布在整个容器内,它所产生的压强和它单独占有整个容器时所产生的压强相同[1]。
也就是说,一定量的气体在一定容积的容器中的压强仅与温度有关。
例如,零摄氏度时,1mol 氧气在22.4L 体积内的压强是101.3kPa 。
如果向容器内加入1mol 氮气并保持容器体积不变,则氧气的压强还是101.3kPa,但容器内的总压强增大一倍。
可见,1mol 氮气在这种状态下产生的压强也是101.3kPa 。
气体的弥散物体的分子不需外力,而靠自己(分子)的运动,向另外地方移动或进入另一物体内的现象称弥散或扩散。
[((一)早期阶段通过临床机械通气曾经历过漫长的发展过程。
在古罗马帝国时代,著名医生盖伦(Galen)曾经作过这样的记载:通过死亡动物咽部的芦苇向气管内吹气,可发现动物的肺达到最大的膨胀。
1543年,Vesalius在行活体解剖时,采用类似盖伦介绍的方法,使开胸后萎陷的动物肺重新复张。
1664年,Hooke 把一根导气管放入气管,并通过一对风箱进行通气,发现可以使狗存活超过一个小时。
1774年,Tossach首次运用口对口呼吸,成功地对一例患者进行复苏。
Fothergill还建议在口对口呼吸不能吹入足够气体时,可使用风箱替代吹气。
之后不久,在英国皇家慈善协会(Royal Humanne Society)的支持下,基于这种风箱技术的急救方法被推荐用于溺水患者的复苏,并在欧洲被广泛接受。