第五章放大器基本结构
- 格式:ppt
- 大小:13.79 MB
- 文档页数:37
同相放大器结构原理运放电路被当作运算放大器应用时,必须工作于闭环状态——将OUT 端输出电压引回IN-端构成负反馈通路,如果OUT端与IN-端直接短接,即将输出电压信号全部地引回至反相输入端,则放大器将失掉电压放大能力,处于电压跟随器的工作状态。
1、电路跟随器图1 电压跟随器的电路形式之一以图1中的a电路为例,以输入、输入的原始状态对地电压为0V为静态工作点,分析电压跟随器电路的工作原理。
当放大器同相输入端由原始状态跃升为1V输入信号电压时,因输入端IN+> IN-,Q1开始导通,使输出端向+15V靠近;因输出端反馈信号全部馈回IN-反相输入端的缘故,由放大器脾性可知,至IN-端电压也为1V,两输入端电压相等时,电路进入平衡状态;当IN+端输入负电压信号时,此时因IN-> IN+,Q2导通,使输出电压向-15V靠近,直至两输入端电压相等时,电路进行平衡状态。
由此推知,当IN+端输入电源范围以内的电压信号,其输出端也必然输出相应的相等的输出电压。
由电压跟随器电路,可以找到该电路的两个基本特点:(1)、闭环状态下,当电路达到平衡状态后(实际上,电路的控制速度非常之快,当我们下笔测量时,调整过程已经结束),两输入端电压相等,即其电压差为0V;(2)、针对电压跟随器这个“特型电路”,其三端——两个输入端和输出端电压——是完全相等的。
若有不等,即电路是坏掉的。
上述(1)即教科书中说到的“虚短”概念,适用于一切由运放构成的放大器电路。
那么既然输入、输出电压是完全相等的(即无电压放大作用),添加该级放大器岂不是无用的?答案是否定的。
电压跟随器是一个阻抗变换器,变输入高阻为低阻输出,提高带载能力,置身于前、后级电路之间,起到隔离和缓冲作用。
如MCU信号输出端口输出2V电压信号时,因拉电流能力约1mA左右,无法直接驱动发光二极管,接入电压跟随器后,同样的电压幅度,则具备了驱动发光二极管的能力。
晶体管放大器构造原理图解功率放大器的作用是未来自前置放大器的信号放大到足够能推进相应扬声器系统所需的功率。
就其功率来说远比前置放大器简单,就其耗费的电功率来说远比前置放大器为大,因为功率放大器的实质就是将沟通电能“转变”为音频信号,自然此中不行防止地会有能量损失,此中尤以甲类放大和电子管放大器为甚。
一、功率放大器的构造功率放大器的方框图如图1-1 所示。
1、差分对管输入级输入级主要起缓冲作用。
输入输入阻抗较高时,往常引入必定量的负反应,增添整个功放电路的稳固性和降低噪声。
前置激励级的作用是控制后来的激励级和功绩输出级两推挽管的直流均衡,并供应足够的电压增益。
激励级则给功率输出级供应足够大的激励电流及稳固的静态偏压。
激励级和功率输出级则向扬声器供应足够的激励电流,以保证扬声器正确放音。
其他,功率输出级还向保护电路、指示电路供应控制信号和向输入级供应负反应信号(有必需时)。
一、放大器的输入级功率放大器的输入级几乎一律都采纳差分对管放大电路。
因为它办理的信号很弱,由电压差分输入给出的是与输入端口处电压基本上没关的电流输出,加之他的直流失调量很小,固定电流不再一定经过反应网络,所以其线性问题简单办理。
事实上,它的线性远比单管输入级为好。
图1-2 示出了 3种最常用的差分对管输入级电路图。
图 1-2 种差分对管输入级电路1、加有电流反射镜的输入级在输入级电路中,输入对管的直流均衡是极其重要的。
为了获得精准的均衡,在输入级中加上一个电流反射镜构造,如图1-3 所示。
它能够迫使对管两集电极电流近于相等,进而能够对二次谐波正确地加以抵消。
其他,流经输入电阻与反应电阻的两基极电流因不相等所造成的直流失调也变得更小了,三次谐波失真也降为不加电流反射镜时的四分之一。
在均衡优秀的输入级中,加上一个电流反射镜,起码可把总的开环增益提升6Db。
而对于预先未能获得足够好均衡的输入级,加上电流反射镜后,则提升量最大可达 15dB 。
光纤放大器结构及原理
光纤放大器的基本结构主要包括信号源、泵浦源、掺杂光纤、耦合器、隔离器等部分。
其中,掺杂光纤是核心部件,实现信号光的放大。
耦合器将信号光和泵浦光有效耦合进掺杂光纤。
隔离器用来防止反向传输光对光器件的损伤,确保放大器稳定工作。
光纤放大器的原理基于激光的受激辐射,通过将泵浦光的能量转变为信号光的能量实现放大作用。
在光纤中掺杂稀土离子(如铒、镨、铥等)作为激光活性物质,当适当的光信号通过时,亚稳态电子会发生受激辐射效应,放射出大量同波长光子,从而实现信号光的放大。
光纤放大器的种类有很多,其中掺铒光纤放大器(EDFA)是最常用的一种。
EDFA的组成基本上包括了掺铒光纤、泵浦激光器、光合路器几个部分。
基于不同的用途,掺铒光纤放大器已经发展出多种不同的结构。
以上内容仅供参考,如需更全面准确的信息,可以查阅光纤通信相关的书籍或文献,也可以咨询该领域的专家。
晶体管放大器结构原理图解功率放大器的作用是将来自前置放大器的信号放大到足够能推动相应扬声器系统所需的功率。
就其功率来说远比前置放大器简单,就其消耗的电功率来说远比前置放大器为大,因为功率放大器的本质就是将交流电能“转化”为音频信号,当然其中不可避免地会有能量损失,其中尤以甲类放大和电子管放大器为甚。
一、功率放大器的结构功率放大器的方框图如图1-1所示。
1、差分对管输入级输入级主要起缓冲作用。
输入输入阻抗较高时,通常引入一定量的负反馈,增加整个功放电路的稳定性和降低噪声。
前置激励级的作用是控制其后的激励级和功劳输出级两推挽管的直流平衡,并提供足够的电压增益。
激励级则给功率输出级提供足够大的激励电流及稳定的静态偏压。
激励级和功率输出级则向扬声器提供足够的激励电流,以保证扬声器正确放音。
此外,功率输出级还向保护电路、指示电路提供控制信号和向输入级提供负反馈信号(有必要时)。
一、放大器的输入级功率放大器的输入级几乎一律都采用差分对管放大电路。
由于它处理的信号很弱,由电压差分输入给出的是与输入端口处电压基本上无关的电流输出,加之他的直流失调量很小,固定电流不再必须通过反馈网络,所以其线性问题容易处理。
事实上,它的线性远比单管输入级为好。
图1-2示出了3种最常用的差分对管输入级电路图。
图1-2种差分对管输入级电路1、加有电流反射镜的输入级在输入级电路中,输入对管的直流平衡是极其重要的。
为了取得精确的平衡,在输入级中加上一个电流反射镜结构,如图1-3所示。
它能够迫使对管两集电极电流近于相等,从而可以对二次谐波准确地加以抵消。
此外,流经输入电阻与反馈电阻的两基极电流因不相等所造成的直流失调也变得更小了,三次谐波失真也降为不加电流反射镜时的四分之一。
在平衡良好的输入级中,加上一个电流反射镜,至少可把总的开环增益提高6Db。
而对于事先未能取得足够好平衡的输入级,加上电流反射镜后,则提高量最大可达15dB。
另一个结果是,起转换速度在加电流反射镜后,大致提高了一倍。
放大电路的工作原理
放大电路是电子设备中常见的一种电路,它可以将输入信号放大到所需的幅度,从而实现信号的增强和处理。
放大电路的工作原理主要包括放大器的基本结构、放大器的工作原理和放大器的分类。
首先,放大电路的基本结构包括输入端、输出端和放大器。
输入端接收输入信号,输出端输出放大后的信号,而放大器则是实现信号放大的关键部件。
放大器通常由电子元件如晶体管、电阻、电容等组成,通过这些元件的协同作用,实现对输入信号的放大。
其次,放大电路的工作原理是利用放大器对输入信号进行放大。
当输入信号进
入放大器后,放大器会根据其内部的电路结构和工作原理,对输入信号进行放大处理,从而得到放大后的输出信号。
放大器通常会根据信号的不同特性,采用不同的放大方式,如电压放大、电流放大、功率放大等。
最后,放大电路根据其工作原理和放大方式,可以分为多种不同类型的放大器,如电压放大器、功率放大器、运放放大器等。
每种放大器都有其特定的应用场景和工作特性,可以根据实际需求选择合适的放大器类型。
总的来说,放大电路的工作原理是通过放大器对输入信号进行放大处理,从而
得到所需的输出信号。
放大电路在电子设备中有着广泛的应用,是实现信号处理和增强的重要组成部分。
通过对放大电路的工作原理和分类的了解,可以更好地理解其在电子设备中的作用和应用。
功率放大器的基本结构和工作原理功率放大器的基本结构和工作原理功率放大器的基本结构和工作原理扩音机是一种对声音信号进行放大的电子设备,其基本结构如图5-1所示,常分为前置放大器(简称前级)和功率放大器(简称后级)两大部分。
前置放大器通常由输人选择与均衡放大电路、等响音量控制电路、音调控制电路等组成,而功率放大器常由功率放大电路和扬声器保护电路组成。
扩音机工作时,输人选择电路主要对收音调谐器、录音座、CD唱机和Av辅助输入等信号源的信号进行选择切换控制,得出所需的信号输入,输入后的信号经均衡放大电路进行频率特性的校正和放大,使输入信号的频率特性变得较为平坦,同时使各种信号源输入的信号电平基本趋于一致,避免在转换不同的信号源时,声音响度出现较大的变化,影响使用效果。
均衡放大后的信号则由等响音量控制电路控制信号的强弱,从而调节音量的大小。
等响控制的目的主要是在音量较小时提升高、低频信号成分,以补偿人耳听觉的不足,在低响度时得到较丰满的声音信号。
而音调控制电路则主要是根据个人的喜好调节电路的频率特性,适当提升或衰减声音中的高、低频成分,以满足听音者的需求。
经前置放大器放大处理后的信号被送人功率放大器进行功率放大,以推动扬声器重放出声音。
扩音机中为了保护扬声器免受电路冲击电流的干扰,或在电路出现故障时烧毁扬声器,常在功率放大器中加入扬声器保护电路。
在高保真的音响设备中,扩音机常有两种组合结构形式,一种是把前置放大器和功率放大器组合在一起,称作合并式扩音机,这种形式把“前置”和“功放”合并在一起,这时由于小信号电压放大的前置级和大信号电流放大的功率放大在电性能上不能互相兼顾,因而不能使扩音机达到最佳的工作状态,特别是前、后级的电源馈电,电源变压器的电磁干扰,印制电路板的走线排列,共用地线的走向等方面总会存在一定的相互干扰,影响整机性能的提高。
另一形式是在设计制造上把前置放大器和功率放大器彻底分开,分别使用独立电源,单独的机壳,使前、后级之间互不干扰,形成前、后级分体式的结构,在使用时再把它们用信号传输线连接起来,这种分体式结构的扩音机可获得极高的性能指标。
第五章光放大器5.1 光放大器一般概念一、中继距离所谓中继距离是指传输线路上不加放大器时信号所能传输的最大距离。
当信号在传输线上传输时,由于传输线的损耗会使信号不断衰减,信号传输的距离越长,其衰减程度就越多,当信号衰减到一定程度后,对方就收不到信号。
为了延长通信的距离往往要在传输线路上设置一些放大器,也称为中继器,将衰减了的信号放大后再继续传输,显然,中继器越多,传输线的成本就越高,通信的可靠性也会降低,若某一中继器出现故障,就会影响全线的通信。
在通信系统设计中,传输线路的损耗是要考虑的基本因素,下表列出了电缆和光纤每千可见,光纤的传输损耗较之电缆要小很多,所以能实现很长的中继距离。
在1550nm波长区,光纤的衰减系统可低至0.2dB/km,它对降低通信成本,提高通信的可靠性及稳定性具有特别重大的意义。
二、光放大器光信号沿光纤传输一定距离后,会因为光纤的衰减特性而减弱,从而使传输距离受到限制。
通常,对于多模光纤,无中继距离约为20多公里,对于单模光纤,不到80公里。
为了使信号传送的距离更大,就必须增强光信号。
光纤通信早期使用的是光-电-光再生中继器,需要进行光电转换、电放大、再定时脉冲整形及电光转换,这种中继器适用于中等速率和单波长的传输系统。
对于高速、多波长应用场合,则中继的设备复杂,费用昂贵。
而且由于电子设备不可避免地存在着寄生电容,限制了传输速率的进一步提高,出现所谓的“电子瓶颈”。
在光纤网络中,当有许多光发送器以不同比特率和不同格式将光发送到许多接收器时,无法使用传统中继器,因此产生了对光放大器的需要。
经过多年的探索,科学家们已经研制出多种光放大器。
光放大器的作用如图5.1所示。
图5.1与传统中继器比较起来,它具有两个明显的优势,第一,它可以对任何比特率和格式的信号都加以放大,这种属性称之为光放大器对任何比特率和信号格式是透明的。
第二,它不只是对单个信号波长,而是在一定波长范围内对若干个信号都可以放大。