1.4.1全称量词与存在量词练习题
- 格式:doc
- 大小:41.00 KB
- 文档页数:2
全称量词与存在量词练习题→ 逻辑推理与存在量词练习题
全称量词与存在量词练题
问题1:
在下列选项中,哪一个是全称量词?
A) 每个
B) 一些
C) 没有
D) 部分
问题2:
下列哪个陈述是存在量词?
A) 所有人都有手机。
B) 某些人没有兄弟姐妹。
C) 不是每个人都喜欢冰淇淋。
D) 每个孩子都去了公园。
问题3:
下列哪个选项是全称量词?
A) 很多
B) 少数
C) 极少数
D) 全部
问题4:
以下哪个描述是存在量词?
A) 一切生物都需要水。
B) 某些花是红色的。
C) 并非所有的人都会游泳。
D) 每个人都有权利表达自己的观点。
问题5:
请选择一个存在量词。
A) 总是
B) 永远
C) 有时
D) 从不
问题6:
下列哪个选项是全称量词?
A) 少数
B) 绝大多数
C) 部分
D) 大部分
问题7:
以下哪个陈述是存在量词?
A) 人人有天赋。
B) 部分鸟儿会飞。
C) 每个人都需要睡眠。
D) 并非每个人都喜欢运动。
问题8:
请选择一个全称量词。
A) 偶尔
B) 有时候
C) 每个
D) 一些
逻辑推理与存在量词练题到此结束。
这是关于全称量词和存在量词的练习题,通过选择正确的答案来测试对这些概念的理解。
每个问题后面列出了四个选项,请选择正确的选项作为答案。
一、选择题1.下列全称命题中真命题的个数是( )①末位是0的整数,可以被2整除;②角平分线上的点到这个角的两边的距离相等;③正四面体中两侧面的夹角相等;A .1B .2C .3D .42.下列存在性命题中假命题的个数是( )①有的实数是无限不循环小数; ②有些三角形不是等腰三角形; ③有的菱形是正方形;A .0B .1C .2D .33.下列命题为存在性命题的是( )A .偶函数的图象关于y 轴对称B .正四棱柱都是平行六面体C .不相交的两条直线是平行直线D .有很多实数不小于34. 下列命题中为全称命题的是( )A.圆内接三角形中有等腰三角形B.存在一个实数与它的相反数的和不为0C.矩形都有外接圆D.过直线外一点有一条直线和已知直线平行5.下列命题中,真命题的是( )A.一元二次方程都有两个实数根B.一切实数都有算术根C.有些直线没有倾斜角D.存在体积相等的球和正方体6. 命题“所有自然数的平方都是正数”的否定为( )A. 所有自然数的平方都不是正数B. 有的自然数的平方是正数C. 至少有一个自然数的平方是正数D. 至少有一个自然数的平方不是正数7. 命题“存在一个三角形,内角和不等于1800”的否定为( )A .存在一个三角形,内角和等于1800B .所有三角形,内角和都等于1800C .所有三角形,内角和都不等于1800D .很多三角形,内角和不等于18008. “220a b +≠”的含义是( )A .,a b 不全为0B . ,a b 全不为0C .,a b 至少有一个为0D .a 不为0且b 为0,或b 不为0且a 为09. 命题p :存在实数m ,使方程x 2+mx +1=0有实数根,则“非p ”形式的命题是( )A .存在实数m ,使得方程x 2+mx +1=0无实根;B .不存在实数m ,使得方程x 2+mx +1=0有实根;C .对任意的实数m ,使得方程x 2+mx +1=0有实根;D .至多有一个实数m ,使得方程x 2+mx +1=0有实根;10. “至多四个”的否定为 ( )A .至少有四个B .至少有五个C .有四个D .有五个二、填空题11.命题“存在一个三角形没有外接圆”的否定是___________________ ;12.命题“∀x ∈R ,x 2-x+3>0”的否定是______________;13.将“勾股定理”改写为含有量词的形式是;14.“末位数字是0或5的整数能被5整除”的否定形式是;否命题是;三、解答题15.用符号“∀”与“∃”表示含有量词的命题(1)实数的平方大于等于0(2)存在一对实数,使2x+3y+3>0成立16.判断下列命题是全称命题还是存在性命题,并写出全称量词和存在量词(1)有的集合没有真子集;(2)三角形中两边之和大于第三边;17.写出下列命题的否定:(1)存在实数x是方程5x-12=0的根;(2)对于任意实数x,存在实数y,使x+y>0;18. 用全称量词和存在量词符号“∀”、“∃”翻译下列命题,并写出它们的否定:(1)若2x>4,则x>2;(2)若m≥0,则x2+x-m=0有实数根;19. 已知a、b为实数,若x2+a x+b≤0 有非空解集,则a2-4b≥0。
第一章第四节 基础训练题(100分,60分钟)一、选择题(每小题5分,共20分)1.下列说法中,正确的个数是( )①存在一个实数,使2240x x -+-=;②所有的质数都是奇数;③斜率相等的两条直线都平行;④至少存在一个正整数,能被5和7整除。
A.1B.2C.3D.42.下列命题中,是正确的全称命题的是( )A.对任意的,a b R ∈,都有222220a b a b +--+<;B.菱形的两条对角线相等;C.x x ∃=;D.对数函数在定义域上是单调函数。
3.下列命题的否定不正确的是( )A.存在偶数2n 是7的倍数;B.在平面内存在一个三角形的内角和大于180;C.所有一元二次方程在区间[-1,1]内都有近似解;D.存在两个向量的和的模小于这两个向量的模。
4.命题22:0(,)p a b a b R +<∈;命题22:0(,)q a b a b R +≥∈,下列结论正确地为( )A.p q ∨为真 B.p q ∧为真 C.p ⌝为假 D. q ⌝为真二、填空题(每小题4分,共16分)5.写出命题“每个函数都有奇偶性”的否定 。
6.全称命题,()x M p x ∀∈的否定是 。
7.命题“存在实数,x y ,使得1x y +>”,用符号表示为 ;此命题的否定是 (用符号表示),是 命题(添“真”或“假”)。
8.给出下列4个命题:①0a b a b ⊥⇔=;②矩形都不是梯形;③22,,1x y R x y ∃∈+≤;④任意互相垂直的两条直线的斜率之积等于-1。
其中全称命题是 。
三、解答题:(26分)9.(10分)已知二次函数22()2(2)2f x x a x a a =----,若在区间[0,1]内至少存在一个实数b ,使()0f b >,则实数a 的取值范围是 。
10.(16分)判断下列命题的真假,并说明理由:(1)x R ∀∈,都有2112x x -+>; (2),αβ∃,使cos()cos cos αβαβ-=-;(3),x y N ∀∈,都有x y N -∈;(4),x y Z ∃∈3y +=。
1.4.1~1.4.2全称量词、存在量词班级:姓名:_____________一、选择题1.下列命题中全称命题的个数为()①平行四边形的对角线互相平分;②梯形有两边平行;③存在一个菱形,它的四条边不相等.A.0 B.1C.2D.32.对给出的下列命题:①∀x∈R,-x2<0;②∃x∈Q,x2=5;③∃x∈R,x2-x-1=0;④若p:∀x ∈N,x2≥1,则¬p:∃x∈N,x2<1.其中是真命题的是()A.①③B.②④C.②③D.③④3.设命题p:∃n∈N,n2>2n,则¬p为()A.∀n∈N,n2>2nB.∃n∈N,n2≤2nC.∀n∈N,n2≤2nD.∃n∈N,n2=2n4.下列命题中,是真命题且是全称命题的是()A.对任意的a、b∈R,都有a2+b2-2a-2b+2<0B.菱形的两条对角线相等C.∃x∈R,x2=xD.对数函数在定义域上是单调函数5.命题“有些实数的绝对值是正数”的否定是()A.∀x∈R,|x|>0 B.∃x0∈R,|x0|>0C.∀x∈R,|x|≤0 D.∃x0∈R,|x0|≤06.已知命题“∀a、b∈R,如果ab>0,则a>0”,则它的否命题是()A.∀a、b∈R,如果ab<0,则a<0B.∀a、b∈R,如果ab≤0,则a≤0C.∃a、b∈R,如果ab<0,则a<0D.∃a、b∈R,如果ab≤0,则a≤0二、填空题7.下列特称命题是真命题的序号是__________________.①有些不相似的三角形面积相等;②存在一实数x0,使x20+x0+1<0;③存在实数a ,使函数y =ax +b 的值随x 的增大而增大;④有一个实数的倒数是它本身.8.命题“过平面外一点与已知平面平行的直线在同一平面内”的否定为__________________.9.已知命题p :∀x ∈R ,x 2-x +14<0,命题q :∃x 0∈R ,sin x 0+cos x 0=2,则p ∨q ,p ∧q ,¬p ,¬q 中是真命题的有__________________.10.若“∀x ∈⎣⎡⎦⎤0,π4,tan x ≤m ”是真命题,则实数m 的最小值为__________________. 三、解答题11.判断下列命题的真假:(1)若a >0,且a ≠1,则对任意实数x ,a x >0;(2)∃T 0∈R ,使|sin(x +T 0)|=|sin x |;(3)∃x 0∈R ,x 20+1<0.12.写出下列命题的否定并判断真假:(1)不论m 取何实数,方程x 2+x -m =0必有实数根;(2)所有末位数字是0或5的整数都能被5整除;(3)某些梯形的对角线互相平分;(4)被8整除的数能被4整除.。
人教新课标版(A )高二选修1-1 1.4.1 全称量词与存在量词同步练习题【基础演练】题型一:全称量词与存在量词短语“对所有的”,“对任意一个”在逻辑中通常叫做全称量词,用符号“∀”表示,短语“存在一个”,“至少有一个”,在逻辑中通常叫做存在量词,用符号“∃”表示,请根据以上知识解决以下1~4题。
1. 用符号“∀”、 “∃”表达下列命题。
(1)实数都能写成小数形式;(2)凸n 边形的外角和都等于2π;(3)任一个实数乘-1都等于它的相反数;(4)存在实数x ,使得23x x >;(5)对任意角a ,都有1cos sin 22=+a a2. 把下列命题写成含有量词的命题。
(1)余弦定理;(2)正弦定理。
3. 试用不同的全称量词表达命题“四边形x 的内角和为360°”。
4. 试用不同的存在量词表达命题“存在实数x 使得x x =2成立”。
题型二:全称命题与特使命题含有全称量词的命题叫全称命题,可用符号简记为“)(,x P M x ∈∀”,含有存在量词的命题叫特称命题,可用符号简记为“)(,x P M x ∈∃”,请根据以上知识解决以下5~7题。
5.判断下列命题是全称命题还是特称命题,并判断其真假。
(1)对数函数都是单调函数;(2)至少有一个整数,它既能被2整除,又能被5整除;(3){}是无理数︱x x x ∈∀,2x 是无理数。
(4) {}Z x x x ∈∈∃︱,0log 2>x6. 判断下列语句是不是全称命题或者特称命题,如果是,用量词符号表达出来:(1)中国的所有江河都流入太平洋;(2)0不能作除数(3)任何一个实数除以1,仍等于这个实数。
(4)每一个向量都有方向吗?7. 判断下列命题的真假:(1)在平面直角坐标系中,任意有序实数对(x,y )都对应一点P ;(2)存在一个函数,既是偶函又是奇函数;(3)每一条线段的长充考取有用正有理数表示:(4)存在一个实数,使等式082=++x x 成立。
高中数学专题1.4.1-1.4.2 全称量词、存在量词练习(含解析)新人教A版选修2-1编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中数学专题1.4.1-1.4.2 全称量词、存在量词练习(含解析)新人教A版选修2-1)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中数学专题1.4.1-1.4.2 全称量词、存在量词练习(含解析)新人教A版选修2-1的全部内容。
1全称量词、存在量词一、选择题1.已知命题p:∀x∈R,2x<3x;命题q:∃x∈R,x3=1-x2,则下列命题中为真命题的是( ) A.p∧q B.(¬p)∧qC.p∧(¬q)D.(¬p)∧(¬q)[答案] B2.下列命题中,真命题是()A.∀x∈R,x2≥xB.命题“若x=1,则x2=1”的逆命题C.∃x0∈R,x错误!≥x0D.命题“若x≠y,则sin x≠sin y”的逆否命题[答案] C[解析] ∵x2-x≥0的解为x≤0或x≥1,∴存在x0∈{x|x≤0或x≥1},使x错误!≥x0,故C 为真命题.3.命题“存在x∈Z,使x2+2x+m≤0成立"的否定是( )A.存在x∈Z,使x2+2x+m>0B.不存在x∈Z,使x2+2x+m〉0C.对于任意x∈Z,都有x2+2x+m≤0D.对于任意x∈Z,都有x2+2x+m〉0[答案] D[解析] 特称命题的否定是全称命题.二、填空题4.命题“有些负数满足不等式(1+x)(1-9x)〉0"用“∃"或“∀”可表述为________________.[答案]∃x0<0,使(1+x0)(1-9x0)>05.写出命题:“对任意实数m,关于x的方程x2+x+m=0有实根”的否定为:________________________________________________________________________.[答案]存在实数m,关于x的方程x2+x+m=0没有实根2三、解答题6.已知命题p:实数x满足x2-2x-8≤0;命题q:实数x满足|x-2|≤m(m>0).(1)当m=3时,若“p∧q”为真,求实数x的取值范围;(2)若“¬p”是“¬q"的必要不充分条件,求实数m的取值范围.[解析] (1)若p真:-2≤x≤4;当m=3时,若q真:-1≤x≤5,∵“p∧q”为真,∴-1≤x≤4.(2)∵“¬p”是“¬q"的必要不充分条件,∴p是q的充分不必要条件.q:2-m≤x≤2+m,∴{2-m≤-2,4≤2+m,且等号不同时取得,∴m≥4。