第十七章-光的衍射
- 格式:pptx
- 大小:970.59 KB
- 文档页数:33
大学物理光的衍射课件CONTENTS •光的衍射现象与基本原理•典型衍射实验及其分析•衍射光栅及其应用•晶体中的X射线衍射•激光全息与光学信息处理•总结与展望光的衍射现象与基本原理01光在传播过程中遇到障碍物或小孔时,偏离直线传播的现象。
包括菲涅尔衍射和夫琅禾费衍射等。
衍射是光波遇到障碍物后产生的偏离直线传播的现象,而干涉是光波叠加产生的加强或减弱的现象。
衍射现象的定义衍射的种类衍射与干涉的区别光的衍射现象惠更斯-菲涅尔原理惠更斯原理介质中任一波面上的各点,都可以看做发射子波的波源,即可作为新波源产生球面次波,其后任意时刻这些子波的包迹面就是新的波面。
菲涅尔原理在光传播的过程中,光波前上的每一点都可以看作是新的光源,发出球面次波,这些次波在空间中相遇并相互叠加,形成新的光波前。
惠更斯-菲涅尔原理的意义解释了光的衍射现象,并为波动光学的发展奠定了基础。
03基尔霍夫衍射公式的应用用于计算各种衍射现象的振幅和相位分布,如单缝衍射、双缝干涉等。
01基尔霍夫衍射公式的表达式描述了光波在衍射屏上的振幅分布与观察屏上的振幅分布之间的关系。
02公式中各物理量的含义包括衍射屏上的复振幅分布、观察屏上的复振幅分布、光源到衍射屏的距离、衍射屏到观察屏的距离等。
基尔霍夫衍射公式典型衍射实验及其分析02单缝衍射实验装置与原理01通过单缝的衍射实验,可以观察到光波通过狭窄缝隙后的衍射现象。
实验装置包括光源、单缝、屏幕等部分。
当单色光波通过宽度与波长相当的单缝时,会在屏幕上形成明暗相间的衍射条纹。
衍射条纹特点02单缝衍射条纹呈现中间亮、两侧暗的特点。
亮条纹的间距随着衍射角的增大而减小,暗条纹则相反。
条纹间距与单缝宽度、光波长以及观察距离有关。
衍射公式与计算03根据惠更斯-菲涅尔原理,可以推导出单缝衍射的公式,用于计算衍射条纹的位置和强度分布。
双缝干涉与衍射实验装置与原理双缝干涉与衍射实验采用双缝作为分波前装置,通过两束相干光波的叠加产生干涉和衍射现象。
一、选择题 [ B ]1、(基础训练1)在单缝夫琅禾费衍射实验中,波长为λ的单色光垂直入射在宽度为a =4 λ 的单缝上,对应于衍射角为30°的方向,单缝处波阵面可分成的半波带数目为(A ) 2 个 (B ) 4 个 (C ) 6 个 (D ) 8 个 【答】已知a =4 λ,θ=30°,1sin 4422a λθλ∴=⨯=⨯,半波带数目N = 4. [ C ]2、(基础训练5)一单色平行光束垂直照射在宽度为1.0 mm 的单缝上,在缝后放一焦距为2.0 m的会聚透镜。
已知位于透镜焦平面处的屏幕上的中央明条纹宽度为2.0 mm ,则入射光波长约为(A )100 nm (B )400 nm (C )500 nm (D )600 nm 【答】中央明条纹宽度为2, 5002x ax fnm afλλ∆⋅∆≈∴== [ B ]3、(基础训练6)一束平行单色光垂直入射在光栅上,当光栅常数(a + b )为下列哪种情况时(a代表每条缝的宽度),k =3、6、9 等级次的主极大均不出现?(A )a +b =2 a (B )a +b =3 a (C )a +b =4 a (A )a +b =6 a【答】光栅缺级:()sin sin 'a b k a k θλθλ+=⎧⎨=⎩,缺级的主极大的级次为',2,3,...a b a b a b a bk k a a a a++++==,k 应为整数,依题意,k=3,6,9缺级,所以a+b=3a 符合。
[ D ]4、(基础训练10)孔径相同的微波望远镜和光学望远镜相比较,前者分辨本领较小的原因是 (A ) 星体发出的微波能量比可见光能量小 (B ) 微波更易被大气所吸收 (C ) 大气对微波的折射率较小 (D ) 微波波长比可见光波长大 【答】分辨本领为11.22RdR θλ==,孔径d 相同时,R 与波长λ成反比关系。
微波波长比可见光波长大,所以微波望远镜分辨本领较小。
第十七章 光的衍射17-1 波长为700nm 的红光正入射到一单缝上,缝后置一透镜,焦距为0.70m ,在透镜焦距处放一屏,若屏上呈现的中央明条纹的宽度为2mm ,问该缝的宽度是多少?假定用另一种光照射后,测得中央明条纹的宽度为1.5mm ,求该光的波长。
解:单缝衍射中央明条纹的宽度为afx λ2=∆m xf a 739109.4102107007.022---⨯=⨯⨯⨯⨯=∆=λfx a2∆=λ代入数据得 nm 5257.02105.1109.437=⨯⨯⨯=--λ17-2一单缝用波长为λ1和λ2的光照明,若λ1的第一级衍射极小与λ2的第二级衍射极小重合。
问(1)这两种波长的关系如何?(2)所形成的衍射图样中是否还有其它极小重合? 解:(1)单缝衍射极小条件为λθk a =sin依题意有 212λλ= (2)依题意有11sin λθk a = 22sin λθk a =因为212λλ=,所以得所形成的衍射图样中还有其它极小重合的条件为212k k =17-3 有一单缝,缝宽为0.1mm ,在缝后放一焦距为50cm 的汇聚透镜,用波长为546.1nm 的平行光垂直照射单缝,试求位于透镜焦平面处屏上中央明纹的宽度。
解:单缝衍射中央明条纹的宽度为af x λ2=∆代入数据得mm x 461.5101.0101.54610502392=⨯⨯⨯⨯=∆---17-4 用波长为632.8nm 的激光垂直照射单缝时,其夫琅禾费衍射图样第一极小与单缝法线的夹角为50,试求该缝宽。
解:单缝衍射极小的条件λθk a =sin依题意有m a μλ26.70872.0108.6325sin 9=⨯==-17-5 波长为20m 的海面波垂直进入宽50m 的港口。
在港内海面上衍射波的中央波束的角宽是多少?解:单缝衍射极小条件为λθk a =sin依题意有 0115.234.0sin52sin20sin 50===→=--θθ中央波束的角宽为0475.2322=⨯=θ17-6 一单色平行光垂直入射一单缝,其衍射第3级明纹位置恰与波长为600nm 的单色光垂直入射该缝时衍射的第2级明纹位置重合,试求该单色光的波长。
九年级物理第十七章知识点第十七章知识点前言:物理是一门让我们更好地了解世界的学科,而在九年级的课程中,第十七章是一个重要的篇章,它将带领我们深入探究一些关于光的性质和光现象的知识。
在这篇文章里,我们将系统地学习并总结这一章的重要知识点。
一、光的直线传播光是沿着直线传播的,这是我们常见的现象。
在日常生活中,我们可以通过观察影子的形状来验证光的直线传播。
当光遇到障碍物时,会发生折射、反射和吸收等现象,这也是我们研究光的基础。
二、平面镜的成像规律平面镜是我们经常接触到的光学器件,了解它的成像规律对我们理解光学系统很有帮助。
平面镜成像有三个特点:成像向虚、成像大小与物体大小相等、成像与物体距离相等。
这些规律可以通过几何分析和光线追踪来解释。
三、球面镜的成像与平面镜不同,球面镜的成像更加复杂。
根据球面镜的形状可以分为凸透镜和凹透镜。
凸透镜会使平行光线汇聚到一点,称为焦点;凹透镜会使平行光线发散,称为虚焦点。
了解球面镜的成像规律可以帮助我们解释近视、远视等视力问题,并应用到光学仪器的设计中。
四、光的折射规律当光通过不同介质间的边界时,会发生折射现象。
根据斯涅尔定律,光线在折射时遵循一定的规律,即入射角和折射角的正弦之比与两个介质的折射率之比相等。
这个规律在光学设计、眼镜制作等领域有着广泛应用。
五、光的色散光的色散是光通过不同介质时,由于折射率的变化而引起的。
我们可以用一个三棱镜来观察光的色散现象,可以看到光在通过三棱镜时会分解成七种颜色。
色散现象也可以解释为不同波长的光在介质中的传播速度不同所导致的。
六、光的干涉干涉是光的波动性质的重要表现之一。
当两束波长相同、频率相同、振幅相同的光波相遇时,它们会发生干涉现象。
干涉可以分为构成干涉的两束光的波前相遇,以及消除干涉时两束光的波前差为整数波长。
干涉现象也在光学实验、干涉仪器等领域被广泛应用。
七、光的衍射衍射是光的波动性质在通过障碍物或绕过物体时的表现。
当光波通过一个狭缝或绕过一个边缘时,它会弯曲或传播到不同的地方,形成新的光线。