微分方程第4章习题解
- 格式:pdf
- 大小:232.86 KB
- 文档页数:22
第四章 高阶微分方程§4.1 线性微分方程的一般理论习题4.11.设)(t x 和)(t y 是区间[]b a ,上的连续函数,证明:若在区间[]b a ,上有≠)()(t y t x 常数或≠)()(t x t y 常数,则)(t x 和)(t y 在区间[]b a ,上线性无关.(提示:用反证法) 证明 )(t x 和)(t y 是区间[]b a ,上线性相关,则存在不全为0的常数21,c c 使得0)()(21≡+t y c t x c ,[]b a t ,∈,若)0(,021≠≠c c 或得12)()(c c t y t x -≡(或21)()(c c t x t y -≡)[]b a t ,∈∀成立。
与假设矛盾,故)(t x 和)(t y 在区间[]b a ,上线性无关.2.证明非齐次线性方程的叠加原理:设)(1t x ,)(2t x 分别是非齐次线性方程)()()(1111t f x t a dt xd t a dt x d n n n n n =+++-- (1) )()()(2111t f x t a dtxd t a dt x d n n n nn =+++-- (2) 的解,则)()(21t x t x +是方程)()()()(21111t f t f x t a dtxd t a dt x d n n n n n +=+++-- (3) 的解.证明 因为)(1t x ,)(2t x 分别是方程(1)、(2)的解,所以)()()(1111111t f x t a dt x d t a dt x d n n n n n =+++-- , )()()(2212112t f x t a dtx d t a dt x d n n n nn =+++-- , 二式相加得,)()())(()()()(21211211121t f t f x x t a dt x x d t a dt x x d n n n n n +=++++++-- ,即)()(21t x t x +是方程(3)的解.3.(1).试验证022=-x dt x d 的基本解组为tt e e -,,并求方程t x dtx d cos 22=-的通解。
习 题 4—11.求解下列微分方程1) 22242x px p y ++=(dxdy p =解 利用微分法得 0)1)(2(=++dx dpp x 当时,得10dpdx+=p x c =-+从而可得原方程的以P 为参数的参数形式通解22242y p px x p x c ⎧=++⎨=-+⎩或消参数P ,得通解)2(2122x cx c y -+=当 时,则消去P ,得特解 20x p +=2x y -=2); 2()y pxlnx xp =+⎪⎭⎫ ⎝⎛=dx dy p 解 利用微分法得(2)0dplnx xp x p dx⎛⎫++= ⎪⎝⎭当时,得 0=+p dxdpxc px =从而可得原方程以p 为参数的参数形式通解:或消p 得通解 2()y pxln xp px c ⎧=+⎨=⎩2y Clnx C =+当时,消去p 得特解 20lnx xp +=21()4y lnx =-3) ()21p p x y ++=⎪⎭⎫ ⎝⎛=cx dy p 解 利用微分法,得两边积分得xdxp p p -=+++2211()cx P P P=+++2211由此得原方程以P 为参数形式的通解: ,21(p p x y ++=().11222c x p p p =+++或消去P 得通解222)(C C X y =-+1.用参数法求解下列微分方程1)45222=⎪⎭⎫⎝⎛+dx dy y 解 将方程化为令221542=⎪⎭⎫ ⎝⎛+dx dy yy t=dy t dx =由此可推出从而得)dx t===ct x +=25因此方程的通解为,x c =+y t =消去参数t ,得通解)y x C =-对于方程除了上述通解,还有,,显然2±=y 0=dxdy和是方程的两个解。
2=y 2-=y 2)223()1dy x dx-=解:令,u x csc =u dx dy cot 31-=又令 则tan 2ut =tt u x 21sin 12+==活。
4-2.5μF 电容的端电压如图示。
(1)绘出电流波形图。
(2)确定2μs t =和10μs t =时电容的储能。
解:(1)由电压波形图写出电容端电压的表达式:10 0μs 1μs10 1μs 3μs ()1040 3μs 4μs 0 4μs t t t u t t t t≤≤⎧⎪≤≤⎪=⎨-+≤≤⎪⎪≤⎩式中时间t 的单位为微秒;电压的单位为毫伏。
电容伏安关系的微分形式:50 0μs 1μs 0 1μs 3μs()()50 3μs 4μs 0 4μs t t du t i t C t dt t<<⎧⎪<<⎪==⎨-<<⎪⎪<⎩上式中时间的单位为微秒;电压的单位为毫伏;电容的单位为微法拉;电流的单位为毫安。
电容电流的波形如右图所示。
(2)电容的储能21()()2w t Cu t =,即电容储能与电容端电压的平方成正比。
当2μs t =时,电容端电压为10毫伏,故:()()22631010μs 11()5101010 2.510J 22t w t Cu ---===⨯⨯⨯⨯=⨯当10μs t =时,电容的端电压为0,故当10μs t =时电容的储能为0。
4-3.定值电流4A 从t=0开始对2F 电容充电,问:(1)10秒后电容的储能是多少100秒后电容的储能是多少设电容初始电压为0。
解:电容端电压:()()()00110422t tC C u t u i d d t C τττ+++=+==⎰⎰;()1021020V C u =⨯=; ()1002100200V C u =⨯=()()211010400J 2C w Cu ==; ()()2110010040000J 2C w Cu ==4-6.通过3mH 电感的电流波形如图示。
(1)试求电感端电压()L u t ,并绘出波形图;(2)试求电感功率()L p t ,并绘出波形图;(3)试求电感储能()L w t ,并绘出波形图。
微分方程习题和答案(总42页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--微分方程习题§1 基本概念1. 验证下列各题所给出的隐函数是微分方程的解.(1)y x y y x C y xy x -='-=+-2)2(,22(2)⎰'=''=+y 0 222t -)(,1e y y y x dt2..已知曲线族,求它相应的微分方程(其中21C , ,C C 均为常数)(一般方法:对曲线簇方程求导,然后消去常数,方程中常数个数决定求导次数.)(1)1)(22=++y C x ;(2)x C x C y 2cos 2sin 21+=.3.写出下列条件确定的曲线所满足的微分方程。
(1)曲线在()y x , 处切线的斜率等于该点横坐标的平方。
(2)曲线在点P ()y x ,处的法线x 轴的交点为Q,,PQ 为y 轴平分。
(3)曲线上的点P ()y x ,处的切线与y 轴交点为Q , PQ 长度为2,且曲线过点(2,0)。
§2可分离变量与齐次方程1.求下列微分方程的通解(1)2211y y x -='-;(2)0tan sec tan sec 22=⋅+⋅xdy y ydx x ;(3)23xy xy dxdy =-; (4)0)22()22(=++-++dy dx y y x x y x .2.求下列微分方程的特解(1)0 ,02=='=-x y x y e y ;(2)21 ,12==+'=x y y y y x 3. 求下列微分方程的通解(1))1(ln +='xy y y x ; (2)03)(233=-+dy xy dx y x .4. 求下列微分方程的特解(1)1 ,022=-==x y y x xy dx dy ;(2)1 ,02)3(022==+-=x y xydx dy x y .5. 用适当的变换替换化简方程,并求解下列方程(1)2)(y x y +=';(2))ln (ln y x y y y x +=+'(3)11+-='yx y (4)0)1()1(22=++++dy y x xy x dx xy y6. 求一曲线,使其任意一点的切线与过切点平行于y 轴的直线和x 轴所围城三角形面积等于常数2a .7. 设质量为m 的物体自由下落,所受空气阻力与速度成正比,并设开始下落时)0(=t 速度为0,求物体速度v 与时间t 的函数关系.8. 有一种医疗手段,是把示踪染色注射到胰脏里去,以检查其功能.正常胰脏每分钟吸收掉%40染色,现内科医生给某人注射了染色,30分钟后剩下,试求注射染色后t 分钟时正常胰脏中染色量)(t P 随时间t 变化的规律,此人胰脏是否正常9.有一容器内有100L 的盐水,其中含盐10kg ,现以每分钟3L 的速度注入清水,同时又以每分钟2L 的速度将冲淡的盐水排出,问一小时后,容器内尚有多少盐§3 一阶线性方程与贝努利方程1.求下列微分方程的通解(1)2x xy y =-'; (2)0cos 2)1(2=-+'-x xy y x ;(3)0)ln (ln =-+dy y x ydx y ;(4))(ln 2x y y y -='; (5)1sin 4-=-x e dxdy y 2.求下列微分方程的特解 (1)0 ,sec tan 0==-'=x yx x y y ; (2)1|,sin 0==+'=x y xx x y y 3.一 曲线过原点,在) ,(y x 处切线斜率为y x +2,求该曲线方程.4.设可导函数)(x ϕ满足方程⎰+=+ x0 1sin )(2cos )(x tdt t x x ϕϕ,求)(x ϕ. 5.设有一个由电阻Ω=10R ,电感H L 2=,电流电压tV E 5sin 20=串联组成之电路,合上开关,求电路中电流i 和时间t 之关系.6.求下列贝努利方程的通解(1) 62y x xy y =+' (2)x y x y y tan cos 4+='(3)0ln 2=-+y x x dydx y (4)2121xy x xy y +-='§4 可降阶的高阶方程1.求下列方程通解。
4.1一质点受一与距离成反比的引力作用在一直线上运动,质点的质量为m ,比例系数为k ,如此质点从距原点O 为a 的地方由静止开始运动,求其到达O 点所需的时间。
解:质点受引力为:xk F -=,其运动微分方程为:xk tm-=d d v (1)即: x k xm -=d d v v分离变量积分:⎰⎰-=x axx k m d d 0v v vxa k m ln212=v)ln(2d d xa mk tx -==v (2)(v 与x 反向,取负值) )ln00ln ),0((∞→→>∴∈xa x xa a x令:y ayex aex xa y yyd 2d )ln(22---===,代入(2)式得;mk ty aey2d d 22-=-分离变量积分:)0:0:(∞→→y a x⎰⎰=-∞t yt mk y ea 0d 2d 22t mk a22π2=故到达O 点所需的时间为: km a t 2π=4.2一质点受力3K xa x F +-=作用,求势能)(x V 与运动微分方程的解。
解:C x a x x xa x x F x V ++=+--=-=⎰⎰2232K 21d )K (d )(适当选取势能零点,使0=C ,则222K 21)(xa x x V +=机械能 =++=2222K 2121xa x xm E 常量 (1)将(1)改写成2222K 242xa x E xm --= (2)质点运动微分方程:32K xa x xm +-= 22K 22xa x xmx +-=⇒ (3)(3)+(2)得22K 44)(2x E xx x m -=+ 即0)K(K 4d d 2222=-+E x mtx (4)(4)式通解:⎪⎪⎭⎫⎝⎛++=02 K2cos K θt m A Ex当0=x时,222K 21xa x E += 解得KK K)(2max 2a EE x -+=,KK 2aEA -=所以 ⎪⎪⎭⎫⎝⎛+-+=022K2cos KK Kθt m aE E x4.3若质点受有心力作用而在圆θcos 2a r =上运动时,则5228rh ma F -=,式中m 为质量,h 为速度矩。