液力变矩器讲解
- 格式:ppt
- 大小:979.00 KB
- 文档页数:20
自动变速器液力变矩器的组成和作用自动变速器是汽车传动系统中的重要组成部分,它通过液力变矩器来实现变速功能。
液力变矩器是一种利用液体传递动力的装置,通过液体在转子间流动实现传递扭矩的作用。
本文将详细介绍自动变速器液力变矩器的组成和作用。
一、液力变矩器的组成液力变矩器主要由泵轮、涡轮和导向叶轮组成。
泵轮和涡轮之间充满液体,通常是液压油。
当发动机转动时,泵轮带动液体旋转,形成液体流动。
涡轮受到液体流动的作用,也开始旋转。
导向叶轮位于涡轮前方,用来引导液体流动的方向,从而增加扭矩传递效率。
二、液力变矩器的作用1. 启动和低速行驶:在启动汽车或低速行驶时,发动机转速较低,而车轮需要较大扭矩来提供足够的动力。
液力变矩器可以将发动机输出的扭矩传递到车轮,使汽车顺利启动并保持低速行驶。
2. 变速过程:当汽车需要加速或变换档位时,液力变矩器可以实现平稳的变速过程。
通过控制液体的流动速度和方向,可以有效地调节车速和输出扭矩,使驾驶更加舒适。
3. 提高传动效率:液力变矩器可以在一定程度上平衡发动机输出扭矩和车轮扭矩之间的不匹配,提高传动效率。
同时,液力变矩器具有一定的减震和保护作用,可以减少传动系统的磨损和冲击。
三、液力变矩器的工作原理液力变矩器的工作原理基于液体的流动和涡轮的旋转。
当发动机输出扭矩作用在泵轮上时,液体被带动旋转,形成液体流动。
流动的液体带动涡轮一起旋转,从而传递扭矩到传动系统。
导向叶轮的作用是引导液体流动的方向,增加传递效率。
液力变矩器在工作时会产生一定的液体阻尼和摩擦,导致一定的能量损失。
为了提高传动效率,现代汽车通常配备了锁止离合器或多段变速器,以减少液力变矩器的能量损失。
自动变速器液力变矩器作为汽车传动系统中的重要组成部分,发挥着关键的作用。
它通过液体传递动力,实现发动机输出扭矩到车轮的传递,使汽车实现平稳启动、变速和行驶。
了解液力变矩器的组成和作用有助于更好地理解汽车传动系统的工作原理,对驾驶和维护汽车具有重要意义。
液力变矩器原理
液力变矩器是一种利用液流的转动动能转换为机械动能的装置。
液力变矩器的主要原理是利用携带动能的工作液体在叶轮和导向叶片之间产生流动,并通过液体的阻力来达到变矩的目的。
液力变矩器主要由泵、液力涡轮和导向叶片组成。
泵是液力变矩器的动力源,它通过转子和叶轮之间的传递力,将动力传输给工作液体。
液力涡轮是液力变矩器的传递装置,将来自泵的动能转化为液体的动能。
液力涡轮旋转起来,推动液体形成旋涡流动,然后经过导向叶片的引导,使液体重新进入泵来实现循环。
当液力变矩器处于空转状态时,工作液体从泵中的转子中吸入,然后经过泵的叶轮的动力传输给液力涡轮,液力涡轮开始旋转。
由于液体的阻力作用,液力涡轮的旋转速度较泵的旋转速度慢,形成了一种转速比。
当液力变矩器连接到负载上时,液力涡轮带动负载一起旋转,使液体在液力涡轮和导向叶片之间产生流动,并通过流动的液体来传递转矩。
转矩的大小取决于液体的流动量和液流的速度。
液力变矩器通过调节工作液体的流量和转速比来实现变矩的效果。
当负载较大时,液力变矩器会自动调整液流量和转速比,进而实现输出更大的转矩。
这使得液力变矩器在汽车、船舶、工程机械等领域中得到广泛应用。
液力变矩器结构与原理液力变矩器(Torque Converter)是一种被广泛应用于汽车、船舶等动力传动系统中的液力传动装置。
它的主要作用是将发动机输出的高速低扭矩转化成低速大扭矩,从而实现汽车启动、加速、变速和传动的功能。
液力变矩器的结构复杂而精密,它包含了泵轮、涡轮、导叶轮等不同的部件,其中每个部件都扮演着特定的角色。
本文将详细介绍液力变矩器的结构与原理。
一、液力变矩器的结构液力变矩器是由泵轮、涡轮、导叶轮和油封等部件组成的。
泵轮和涡轮是液力变矩器的两个主要组成部分,其结构和相互配合决定液力变矩器的工作性能。
1. 泵轮(Pump Impeller)泵轮是液力变矩器的输入元件,它由一定数量的楔形叶片组成,其主要作用是将发动机输出的动力转化成液力。
当发动机运转时,泵轮产生旋转的动力,它通过离心力作用将工作介质(液体)强制送入涡轮。
2. 涡轮(Turbine Runner)涡轮是液力变矩器的输出元件,它与泵轮相对应,也由楔形叶片组成。
当泵轮发送液力流入涡轮时,涡轮受到液压的作用转动,从而输出扭矩。
涡轮的运转速度受到扭矩的大小以及返转器的变矩比的影响。
3. 导叶轮(Stator)导叶轮是液力变矩器的第三个组成部分,它位于泵轮和涡轮之间,主要用于改变流体的流向。
导叶轮的叶片可以自由调节,可以根据工作状态的需求来改变流体的流向,协助转化扭矩和提高效率。
4. 油封(Oil Seal)油封是用于保持液力变矩器内压力稳定的部件,它位于泵轮和涡轮之间,防止液体泄漏。
油封的质量和性能直接影响液力变矩器的工作效果和寿命。
二、液力变矩器的工作原理液力变矩器主要依靠流体的转化和涡旋流的原理来工作,通过泵轮、涡轮和导叶轮之间复杂的相互作用来实现转矩的变化。
液力变矩器的工作原理分为四个工作区域:冲击区、变矩区、松开区和高效率区。
1. 冲击区当发动机启动并带动泵轮开始旋转时,泵轮产生的涡旋流体流向涡轮,但此时导叶轮的叶片处于开启状态。
简述液力变矩器的组成及工作原理液力变矩器(torque converter)是一种广泛应用于自动变速器中的液压传动装置。
它利用液体传递动力,起到变速和传递转矩的作用。
液力变矩器通过流体(通常是液压油)的流动来实现动力传递,其主要组成部分包括泵轮、涡轮和液力变矩器壳体。
液力变矩器具有结构简单、传动平稳、无级变速和自动调节功率输出等特点,因此在汽车、工程机械、船舶等领域得到广泛应用。
液力变矩器的主要组成包括泵轮、涡轮、锁止装置和液力变矩器壳体。
泵轮是液力变矩器的动力输入装置,它通常安装在发动机的曲轴上。
当发动机工作时,驱动泵轮旋转,泵轮的转动产生液体流入液力变矩器。
涡轮是液力变矩器的动力输出装置。
它紧密连接在变速器输入轴上,通过泵轮传递来的流体驱动涡轮旋转,从而实现动力输出。
液力变矩器还包括了一个液力变矩器壳体,它起到承载和固定泵轮和涡轮的作用,并且通过内部构造使液体能够流动,从而实现动力传递。
液力变矩器通常还配备了一个锁止装置,用来提高传输效率和防止内部滑动损失。
在高速行驶或特定工况下,锁止装置可以将泵轮和涡轮固定在一起,形成一个刚性连接,而不再依靠液体的流动传递动力。
液力变矩器的工作原理是基于液体的动力传递。
当发动机工作时,驱动泵轮旋转,泵轮内的液体随之旋转,并通过转动的液体来传递动力。
涡轮与泵轮相连,涡轮受到液体流动带来的动力,从而实现输出动力,驱动车辆或机械的运动。
在这个过程中,液体的流动和压力变化起到了关键作用,使得动力能够顺利地传递。
液力变矩器的工作过程可以简单描述为:发动机驱动泵轮旋转,形成液体的流动,液体的动能被传递到涡轮上,从而实现动力输出。
根据流体动力学原理,液体的流动和转动会产生动能和动量的转换,从而实现了液力变矩器的功率传递。
液力变矩器是一种利用液体传递动力的装置,通过泵轮和涡轮的结构设计和液体流动的原理,实现了对动力的变速和传递。
它的结构简单、传动平稳、无级变速和自动调节功率输出的特点,使其在汽车、工程机械、船舶等领域得到广泛应用。