人教版八年级上册数学 第十二章 全等三角形 单元检测题 (17)(有解析)
- 格式:doc
- 大小:835.00 KB
- 文档页数:22
八年级数学上册《第十二章 全等三角形》单元测试卷及答案(人教版)学校:___________班级:___________姓名:___________考号:___________一、选择题:(本题共8小题,每小题5分,共40分.)1.下列可以判定两个直角三角形全等的条件是( )A .斜边相等B .面积相等C .两对锐角对应相等D .两对直角边对应相等2.到三角形三边的距离相等的点是( )A .三角形三内角平分线的交点;B .三角形三边中线的交点;C .三角形三边高的交点;D .三角形三边中垂线的交点。
3.如图,ABC ≌△DEC ,B 、C 、D 在同一直线上,且CE=5,AC=7,则BD 长( )A .12B .7C .2D .144.如图,在ABC 中,AD 平分BAC ∠,DE AB ⊥于点E ,再添加一个条件仍然不能证明△ADC ≌△ADE 的是( )A .90ACB ∠=︒ B .∠ADC =∠ADE C .AC AE =D .DC DE =5.如图,在△ABC 中,∠A=90°,AB=AC=6,点D 是BC 中点,点E 、F 分别在AB 、AC 上,且BE=AF ,则四边形AEDF 的面积为( )A .6B .7C .D .96.如图,在ABC 中90A ∠=︒,AB =2,BC =5,BD 是ABC ∠的平分线,设ABD 和BDC 的面积分别是1S 和2S ,则S 1:S 2的值为( )A .5:2B .2:5C .12:D .1:5 7.如图,∠A=∠B ,AE=BE ,点D 在AC 边上,∠1=∠2,AE 和BD 相交于点O ,若∠1=38°,则∠BDE 的度数为( )A .71°B .76°C .78°D .80°8.如图所示,点 ,A B 分别是 ,NOF MOF ∠∠ 平分线上的点, AB OF ⊥ 于点 E , BC ⊥MN 于点 C , AD ⊥MN 于点 D ,下列结论错误的是( )A .90AOB ∠= B .AD +BC =ABC .点 O 是 CD 的中点 D .图中与 ∠CBO 互余的角有两个二、填空题:(本题共5小题,每小题3分,共15分.)9.如图,在△ABC 和△DEF 中,已知CB =DF ,∠C =∠D ,要使△ABC ≌△EFD ,还需添加一个条件,那么这个条件可以是 .10.在Rt △ABC 中,∠ACB=90°,BC=2cm ,CD ⊥AB ,在AC 上取一点E ,使EC=BC ,过点E 作EF ⊥AC 交CD 的延长线于点F ,若EF=5cm ,则AE= cm.11.如图,AC 平分∠DCB ,CB =CD ,DA 的延长线交BC 于点E ,若∠BAE =80°,则∠EAC 的度数为 .12.如图,有一个直角三角形ABC ∠C =90° , AC=10 , BC=5 ,一条线段PQ=AB ,P 、Q 两点分别在线段AC 和过点A 且垂直于AC 的射线AX 上运动,动点P 从C 点以2个单位秒的速度出发,问P 点运动 秒时(不包括点C ),才能使△ABC ≌△QPA .13.如图,已知ABC ∆的周长是 21 ,OB ,OC 分别平分ABC ∠和ACB ∠,OD BC ⊥于D ,且OD =4,ABC ∆ 面积是 .三、解答题:(本题共5题,共45分)14.如图,△ABO ≌△CDO ,点B 在CD 上,AO ∥CD ,∠BOD=30°,求∠A 的度数.15.如图,在ABC 中,∠ACB =90°,AC =BC ,BE ⊥CE 于E ,AD CE ⊥于D ,AD =2.5cm ,DE =1.7cm ,求BE 的长.16.如图,DE AC ⊥于点E ,BFAC ⊥于点F .AB =CD ,AE =CF ,BD 交AC 于点M ,求证:MB =MD .17.如图所示,已知 AD//BC , 点 E 为 CD 上一点,AE 、BE 分别平分∠DAB 、∠CBA ,BE 交 AD 的延长线于点 F.求证:(1)△ABE ≌△AEF ;(2) AD+BC=AB18.如图,在△ABC 中,∠B =60°,AD 平分∠BAC ,CE 平分∠BCA ,AD 、CE 交于点F ,CD =CG ,连结FG.(1)求证:FD =FG ;(2)线段FG 与FE 之间有怎样的数量关系,请说明理由;(3)若∠B ≠60°,其他条件不变,则(1)和(2)中的结论是否仍然成立?请直接写出判断结果,不必说明理由参考答案:1.D 2.A 3.A 4.D 5.D 6.B 7.A 8.D9.AC =ED 或∠A =∠FED 或∠ABC =∠F .10.311.50°12.2.513.4214.解:∵△ABO ≌△CDO∴OB=OD ,∠ABO=∠D∴∠OBD=∠D=12(180°﹣∠BOD )=12×(180°﹣30)=75° ∴∠ABC=180°﹣75°×2=30°∴∠A=∠ABC=30°.15.解:∵90ACB ∠=︒∴90BCE ACD ∠+∠=︒∵AD CE BE CE ⊥⊥,∴9090ADC CEB CAD ACD ∠=∠=︒∠+∠=︒, ∴CAD BCE ∠∠=在ACD 与CBE 中{∠ADC =∠CEB∠BCE =∠CAD AC =BC∴()AAS ACD CBE ≌∴BE CD CE AD ==,∴ 2.5 1.70.8cm BE CD CE DE AD DE ==-=-=-=. 答:BE 的长为0.8cm .16.证明:∵AE =CF∴AE +EF =CF +EF ,即AF =CE∵DE ⊥AC 于点E ,BF AC ⊥于点F∴ABF 和CDE 是直角三角形在Rt ABF 和Rt CDE 中{AB =CD AF =CE∴Rt △ABF ≌Rt △CDE(HL),∴BF =DE ;在DEM 和△BFM 中{∠DEM =∠BFM =90°∠DME =∠BMF DE =BF∴△DEM ≌△BFM(AAS),∴MB =MD .17.(1)证明:如图,∵AE 、BE 分别平分∠DAB 、∠CBA∴∠1=∠2,∠3=∠4∵AD∥BC∴∠2=∠F,∠1=∠F在△ABE和△AFE中∴△ABE≌△AFE(AAS)(2)证明:∵△ABE≌△AFE∴BE=EF在△BCE和△FDE中∴△BCE≌△FDE(ASA)∴BC=DF∴AD+BC=AD+DF=AF=AB即AD+BC=AB.18.(1)证明:∵EC平分∠ACB ∴∠FCD=∠FCG∵CG=CD,CF=CF∴△CFD≌△CFG(SAS)∴FD=FG.(2)解:结论:FG=FE.理由:∵∠B=60°∴∠BAC+∠BCA=120°∵AD平分∠BAC,CE平分∠BCA∴∠ACF+∠FAC=12(∠BCA+∠BAC)=60°∴∠AFC=120°,∠CFD=∠AFE=60°∵△CFD≌△CFG∴∠CFD=∠CFG=60°∴∠AFG=∠AFE=60°∵AF=AF,∠FAG=∠FAE∴△AFG≌△AFE(ASA)∴FG=FE.(3)解:结论:(1)中结论成立.(2)中结论不成立. 理由:①同法可证△CFD≌△CFG(SAS)∴FD=FG.②∵∠B≠60°∴无法证明∠AFG=∠AFE∴不能判断△AFG≌△AFE∴(2)中结论不成立。
人教版八年级上册数学第十二章全等三角形单元测试卷一、选择题(30分)1.下列说法正确的是()A.周长相等的两个三角形全等B.有两边和其中一边的对角对应相等的两个三角形全等C.面积相等的两个三角形全等D.有两角和其中一角的对边对应相等的两个三角形全等2.现已知线段a,b(a<b),∠MON=90°,求作Rt∠ABO,使得∠O=90°,AB=b,小惠和小雷的作法分别如下.小惠:①以点O为圆心、线段a为半径画弧,交射线ON于点A;②以点A为圆心、线段b长为半径画弧,交射线OM于点B,连接AB,∠ABO即为所求.小雷:①以点O为圆心、线段a为半径画弧,交射线ON于点A;②以点O为圆心、线段b长为半径画弧,交射线OM于点B,连接AB,∠ABO即为所求.则下列说法中正确的是()A.小惠的作法正确,小雷的作法错误B.小雷的作法正确,小惠的作法错误C.两人的作法都正确D.两人的作法都错误3.下列说法中,正确的是()A.两边及其中一边的对角分别相等的两个三角形全等B.两边及其中一边上的高分别相等的两个三角形全等C.有一直角边和一锐角分别相等的两个直角三角形全等D.面积相等的两个三角形全等4.在两个三角形中给出条件:①两角一边对应相等;②两边一角对应相等;③两角夹边对应相等;④两边夹角对应相等;⑤三边对应相等;⑥三角形对应相等.其中能判断出三角形全等的是( )A.①②③⑤B.①③④⑤C.①④⑤⑥D.②③④⑤5.有下列说法:①形状相同的图形是全等形;②全等形的大小相同,形状也相同;③全等三角形的面积相等;④面积相等的两个三角形全等;⑤若∠ABC∠∠A1B1C1,∠A1B1C1∠∠A2B2C2,则∠ABC∠∠A2B2C2.其中正确的说法有()A.2个B.3个C.4个D.5个6.下列结论错误的是()A.全等三角形对应边上的高相等B.全等三角形对应边上的中线相等C.两个直角三角形中,斜边和一个锐角对应相等,则这两个三角形全等D.两个直角三角形中,两个锐角相等,则这两个三角形全等7.下列说法中,正确的个数是( )①斜边和一直角边对应相等的两个直角三角形全等;②有两边和它们的夹角对应相等的两个直角全角形全等;③一锐角和斜边对应相等的两个直角三角形全等;④两个锐角对应相等的两个直角三角形全等.A.1B.2C.3D.48.在下列条件中,不能判定两直角三角形全等的是()A.斜边和一锐角对应相等B.斜边上的中线和一直角边对应相等C.两边分别相等D.直角的平分线和一直角边对应相等9.边长都为整数的△ABC△△DEF△AB与DE是对应边△AB△2△BC△4.若△DEF的周长为偶数△则DF的长为( )A.3B.4C.5D.3或4或510.已知△ABC∠∠DEF,∠A=35°,那么∠D的度数是()A.65°B.55°C.35D.45°二、填空题(15分)11.若△ABC≌△A′B′C′,AD和A′D′分别是对应边BC和B′C′的高,则△ABD≌△A′B′D′,理由是_______________.12.用两个全等的直角三角形拼下列图形:①平行四边形(不包含菱形、矩形、正方形);②矩形;③菱形;④正方形;⑤等腰三角形.一定可以拼成的图形是_____________(填序号)13.若A(2,0),B(0,4),C(2,4),D为坐标平面内一点,且△ABC与△ACD全等,则D点坐标为_________. 14.在△ABC中,∠C=90°△BC=4cm△∠BAC的平分线交BC于D,且BD∶DC=5∶3,则D到AB的距离为__________△15.已知一个多边形的内角和与它的一个外角的和是797,则这个多边形的这个外角的度数是________.三、解答题(75分)16.(1)如图(1),已知:在∠ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD∠直线m, CE∠直线m,垂足分别为点D、E.证明:DE=BD+CE.(2)如图(2),将(1)中的条件改为:在∠ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问结论DE=BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由.(3)拓展与应用:如图(3),D、E是D、A、E三点所在直线m上的两动点(D、A、E三点互不重合),点F为∠BAC平分线上的一点,且∠ABF和∠ACF均为等边三角形,连接BD、CE,若∠BDA=∠AEC=∠BAC,试判断∠DEF 的形状.。
2022-2023学年八年级数学上册第12章《全等三角形》测试卷一、选择题(每小题3分,共30分)1.如图,两个三角形为全等三角形,则∠α的度数是()A.72°B.60°C.58°D.50°第1题图第2题图第3题图2.如图,已知∠ABC=∠DCB,下列所给条件不能证明△ABC≌△DCB的是()A.∠A=∠D B.AB=DC C.∠ACB=∠DBC D.AC=BD3.如图,要测量河两岸相对两点A、B间的距高,先在过点B的AB的垂线上取两点C、D,使得CD=BC,再在过点D的垂线上取点E,使A、C、E三点在一条直线上,可以证明△EDC≌△ABC,所以测得ED的长就是A、B两点间的距离,这里判定△EDC≌△ABC的理由是()A.SAS B.SSS C.ASA D.AAS4.工人师傅常用角尺平分一个任意角.做法如下:如图所示,∠AOB是一个任意角在边OA,OB上分别取OM=ON,移动角尺,使角尺两边相同的刻度分别与M,N重合.过角尺顶点C的射线OC即是∠AOB的平分线.这种做法的道理是()A.HLB.SSSC.SASD.ASA第4题图第5题图第6题图5.如图,已知∠MAN=55°,点B为AN上一点.用尺规按如下过程作图:以点A为圆心,以任意长为半径作弧,交AN于点D,交AM于点E;以点B为圆心,以AD为半径作弧,交AB于点F;以点F为圆心,以DE为半径作弧,交前面的弧于点G;连接BG并延长交AM于点C.则∠BCM的度数为()A.70°B.110°C.125°D.130°6.小明不小心把一块三角形形状的玻璃打碎成了三块,如图①②③,他想要到玻璃店去配一块大小形状完全一样的玻璃,你认为应带()A.①B.②C.③D.①和②7.点P在∠AOB的平分线上,点P到OA边的距离等于5,点Q是OB边上的任意一点,下列选项正确的是()A.PQ≥5B.PQ>5C.PQ<5D.PQ≤58.如图,直线a、b、c表示三条公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有()A.一处B.两处C.三处D.四处第8题图第9题图第10题图9.如图,在Rt△ABC 中,∠C=90°,以顶点A 为圆心,适当长为半径画弧,分别交AC,AB 于点M,N,再分别以点M,N 为圆心,大于MN 的长为半径画弧,两弧交于点P,作射线AP 交边BC 于点D,若CD=4,AB=15,则△ABD 的面积是()A.15B.30C.45D.6010.两组邻边分别相等的四边形叫做“筝形”,如图,四边形ABCD 是一个筝形,其中AD=CD,AB=CB,詹姆斯在探究筝形的性质时,得到如下结论:①AC⊥BD;②AO=CO=AC;③△ABD≌△CBD,其中正确的结论有()A.0个B.1个C.2个D.3个二、填空题(每小题3分,共15分)11.如图,Rt△ABC 中,∠ACB=90°,∠A=50°,将其折叠,使点A 落在边CB 上A′处,折痕为CD,则∠A′DB 为.第11题图第12题图第13题图12.已知,如图,∠AOB=60°,CD⊥OA 于D,CE⊥OB 于E,若CD=CE,则∠COD+∠AOB=度.13.如图在等腰Rt△ABC 中,∠C=90°,AC=BC,AD 平分∠BAC 交BC 于D,DE⊥AB 于E,若AB=10,则△BDE 的周长等于.14.如图,在Rt△ABC,∠C=90°,AC=12,BC=6,一条线段PQ=AB,P、Q 两点分别在AC 和过点A 且垂直于AC 的射线AX 上运动,要使△ABC 和△QPA 全等,则AP=.第14题图第15题图15.如图,在△ABC 中,∠C=90°,AD 平分∠BAC,DE⊥AB 于E.则下列结论:①CD=ED,②AC+BE=AB,③∠BDE=∠BAC,④AD 平分∠CDE,⑤S △ABD :S △ACD =AB:AC,其中正确的是.三、解答题(本大题共8个小题,满分75分)16.(8分)如图,DE⊥AB,CF⊥AB,垂足分别是点E、F,DE=CF,AE=BF,求证:AC∥BD.17.(9分)已知,如图所示,AB=AC,BD=CD,DE⊥AB于点E,DF⊥AC于点F,求证:DE=DF.18.(9分)已知:如图,在△ABC、△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C、D、E三点在同一直线上,连接BD.求证:(1)△BAD≌△CAE;(2)试猜想BD、CE有何特殊位置关系,并证明.19.(9分)已知如图AD为△ABC上的高,E为AC上一点BE交AD于F且有BF=AC,FD=CD.求证:(1)△ADC≌△BDF;(2)BE⊥AC.20.(9分)图为人民公园的荷花池,现要测量此荷花池两旁A、B两棵树间的距离(不能直接测量),请你根据所学三角形全等的知识,设计一种测量方案求出AB的长(要求画出草图,写出测量方案和理由).21.(10分)如图,已知△ABC中,AB=AC=10cm,BC=8cm,点D为AB的中点.如果点P在线段BC上以3cm/s的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.(1)若点Q的运动速度与点P的运动速度相等,经过1s后,△BPD与△CQP是否全等,请说明理由;(2)若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP 全等?22.(10分)如图,在△ABC中,AB=AC,DE是过点A的直线,BD⊥DE于D,CE⊥DE于点E;(1)若B、C在DE的同侧(如图所示)且AD=CE.求证:AB⊥AC;(2)若B、C在DE的两侧(如图所示),其他条件不变,AB与AC仍垂直吗?若是请给出证明;若不是,请说明理由.23.(11分)(1)如图1,以△ABC的边AB、AC为边分别向外作正方形ABDE和正方形ACFG,连接EG,试判断△ABC与△AEG面积之间的关系,并说明理由.(2)园林小路,曲径通幽,如图2所示,小路由白色的正方形理石和黑色的三角形理石铺成.已知中间的所有正方形的面积之和是a平方米,内圈的所有三角形的面积之和是b平方米,这条小路一共占地多少平方米.第十二章全等三角形单元测试卷参考答案一、选择题1.A2.D3.C 4.B5.B6.C7.A8.D9.B10.D 二、填空题11.10°12.90°13.1014.6或12.15.①②③④⑤.三、解答题16.证明:∵DE⊥AB,CF⊥AB,∴∠DEB=∠AFC=90°,∵AE=BF,∴AF=BE,在△DEB和△CFA中,,△DEB≌△CFA,∴∠A=∠B,∴AC∥DB.17.证明:连接AD,在△ACD和△ABD中,,∴△ACD≌△ABD(SSS),∴∠EAD=∠FAD,即AD平分∠EAF,∵DE⊥AE,DF⊥AF,∴DE=DF.18.(1)证明:∵∠BAC=∠DAE=90°∴∠BAC+∠CAD=∠DAE+CAD即∠BAD=∠CAE,又∵AB=AC,AD=AE,∴△BAD≌△CAE(SAS).(2)BD、CE特殊位置关系为BD⊥CE.证明如下:由(1)知△BAD≌△CAE,∴∠ADB=∠E.∵∠DAE=90°,∴∠E+∠ADE=90°.∴∠ADB+∠ADE=90°.即∠BDE=90°.∴BD、CE特殊位置关系为BD⊥CE.19.证明:(1)∵AD⊥BC,∴∠ADB=∠ADC=90°.又∵BF=AC,FD=CD,∴△ADC≌△BDF(HL).(2)∵△ADC≌△BDF,∴∠EBC=∠DAC.又∵∠DAC+∠ACD=90°,∴∠EBC+∠ACD=90°.∴BE⊥AC.20.解:分别以点A、点B为端点,作AQ、BP,使其相交于点C,使得CP=CB,CQ=CA,连接PQ,测得PQ即可得出AB的长度.理由:由上面可知:PC=BC,QC=AC,又∠PCQ=∠BCA,∴△PCQ≌△BCA∴AB=PQ.21.解:(1)△BPD≌△CQP,理由如下:∵t=1s,∴BP=CQ=3×1=3(cm),∵AB=10cm,点D 为AB 的中点,∴BD=5cm.又∵PC=BC﹣BP,BC=8cm,∴PC=8﹣3=5(cm),∴PC=BD.又∵AB=AC,∴∠B=∠C,在△BPD 和△CQP 中,∴△BPD≌△CQP(SAS);(2)∵v P ≠v Q ,∴BP≠CQ,又∵△BPD≌△CPQ,∠B=∠C,则BP=PC=4,CQ=BD=5,∴点P,点Q 运动的时间t==(s),∴v Q ===(cm/s),答:当点Q 的运动速度为cm/s,能够使△BPD 与△CQP 全等.22.解(1)证明:∵BD⊥DE,CE⊥DE,∴∠ADB=∠AEC=90°,在Rt△ABD 和Rt△ACE 中,∵,∴Rt△ABD≌Rt△CAE.∴∠DAB=∠ECA,∠DBA=∠ACE.∵∠DAB+∠DBA=90°,∠EAC+∠ACE=90°,∴∠BAD+∠CAE=90°.∠BAC=180°﹣(∠BAD+∠CAE)=90°.∴AB⊥AC.(2)AB⊥AC.理由如下:同(1)一样可证得Rt△ABD≌Rt△ACE.∴∠DAB=∠ECA,∠DBA=∠EAC,∵∠CAE+∠ECA=90°,∴∠CAE+∠BAD=90°,即∠BAC=90°,∴AB⊥AC.23.解:(1)△ABC 与△AEG 面积相等.理由:过点C 作CM⊥AB 于M,过点G 作GN⊥EA 交EA 延长线于N,则∠AMC=∠ANG=90°,∵四边形ABDE 和四边形ACFG 都是正方形,∴∠BAE=∠CAG=90°,AB=AE,AC=AG,∵∠BAE+∠CAG+∠BAC+∠EAG=360°,∴∠BAC+∠EAG=180°,∵∠EAG+∠GAN=180°,∴∠BAC=∠GAN,在△ACM 和△AGN 中,,∴△ACM≌△AGN,∴CM=GN,∵S △ABC =AB•CM,S △AEG =AE•GN,∴S △ABC =S △AEG ,(2)由(1)知外圈的所有三角形的面积之和等于内圈的所有三角形的面积之和.∴这条小路的面积为(a+2b)平方米.。
八年级数学上册《第十二章全等三角形》单元检测卷及答案(人教版)学校:___________班级:___________姓名:___________考号:___________一、选择题1.下列说法正确的是( )A.全等三角形是指形状相同的两个三角形B.全等三角形的周长和面积分别相等C.全等三角形是指面积相等的两个三角形D.所有的等边三角形都是全等三角形2.到△ABC的三条边距离相等的点是△ABC的( )A.三条中线的交点B.三条边的垂直平分线的交点C.三条高的交点D.三条角平分线的交点3.如图,在△ABC中∠A=30∘,∠ABC=50∘若△EDC≌△ABC,且A,C,D在同一条直线上,则∠BCE=( )A.20∘B.30∘C.40∘D.50∘4.如图,在△ABC中∠ACB=45∘,AD⊥BC于点D,点E为AD上一点,连接CE,CE=AB,若∠ACE=20∘则∠B的度数为( )A.60∘B.65∘C.70∘D.75∘5.如图,在Rt△ABC中,∠A=90°,BD平分∠ABC,交AC于点D,且AD=3,则点D到BC的距离是()A.3 B.4 C.5 D.66.如图,直线AB,CD交于点O,射线OM平分∠AOC,若∠BOD=80°,则∠BOM等于()A.40°B.100°C.140°D.144°7.如图,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于点E,AD⊥CE于点D.DE=5,AD=9,则BE的长是()A.6 B.5 C.4.5 D.48.如图,在△ABC中AB=AC,D、E分别为边AB、AC上的点,BE与CD相交于点F ∠ADC=∠AEB则下列结论:①△ABE≌△ACD;②BF=CF;③连接AF,则AF所在的直线为△ABC的对称轴:④若AD=BD,则四边形ADFE的面积与△BCF的面积相等.其中正确的是()A.①②③B.①②④C.②③④D.①②③④二、填空题9.用尺规作图作已知角∠AOB的平分线OC,其根据是构造两个三角形全等,用到的三角形全等的判定方法是.10.如图,在△ABC中,∠C=90°,AD平分∠CAB,交BC于点D,CD=5cm,AB=12cm,则△ABD的面积是cm2.11.如图,△ABC中,AD⊥BC于D,要使△ABD≌△ACD,若根据“HL”判定,还需加条件12.如图,△ABC≌△ADE,BC的延长线交DA于F,交DE于G,∠D=25°,∠E=105°∠DAC=16°,则∠DGB= .13.如图,∠1=∠2.(1)当BC=BD时,△ABC≌△ABD的依据是;(2)当∠3=∠4时,△ABC≌△ABD的依据是.三、解答题14.如图所示,要测量河两岸相对的两点A、B的距离,因无法直接量出A、B两点的距离,请你设计一种方案,求出A、B的距离,并说明理由.15.如图:点C是AE的中点,∠A=∠ECD,AB=CD,求证:∠B=∠D.16.如图,已知,△ABC中,∠A=60º,BD,CE是△ABC的两条角平分线,BD,CE相交于点O,求证:BC=CD+BE.17.如图,已知AB=AD,AC=AE,∠1=∠2,求证:BC=DE.18.如图,AD=CB,AE⊥BD,CF⊥BD,E、F是垂足,AE=CF.求证:(1)AB=CD(2)AB//CD.19.已知:在△AOB和△COD中,OA=OB,OC=OD.(1)如图①,若∠AOB=∠COD=60°,求证:AC=BD.(2)如图②,若∠AOB=∠COD=α,则AC与BD间的等量关系式为,∠APB的大小为(直接写出结果,不证明)参考答案1. B2. D3. A4. B5.A6.C7.D8.B9.SSS10.3011.AB=AC12.66°13.(1)SAS(2)ASA14.解:在AB的垂线BF上取两点C,D,使CD=BC,再作出BF的垂线DE,使A,C,E在一条直线上,这时测得的DE的长就是AB的长.作出的图形如图所示:∵AB⊥BF ED⊥BF∴∠ABC=∠EDC=90°又∵CD=BC ∠ACB=∠ECD∴△ACB≌△ECD,∴AB=DE.15.证明:∵点C是AE的中点∴AC=CE在△ABC和△CDE中{AC=CE∠A=∠ECDAB=CD∴△ABC≌△CDE∴∠B=∠D.16.解:在BC上找到F使得BF=BE∵∠A=60°,BD、CE是△ABC的角平分线∴∠BOC=180°- 12(∠ABC+∠ACB)=180°- 12(180°-∠A)=120°∴∠BOE=∠COD=60°在△BOE和△BOF中∴△BOE≌△BOF,(SAS)∴∠BOF=∠BOE=60°∴∠COF=∠BOC-∠BOF=60°在△OCF和△OCD中∴△OCF≌△OCD(ASA)∴CF=CD∵BC=BF+CF∴BC=BE+CD.17.证明:∵∠1=∠2∴∠1+∠EAC=∠2+∠EAC,即∠BAC=∠DAE 在△ABC和△ADE中{AB=AD∠BAC=∠DAEAC=AE∴△ABC≌△ADE∴BC=DE.18.(1)∵AE⊥BD∴∠AEB=∠CFD=∠AED=∠CFB=90°∵AE=CF∴RtΔADE≅ΔCBF(HL)∴DE=BF∴BD−DE=BD−BF∴BE=DF∵∠AEB=∠CFD∴ΔABE≅ΔCDF(SAS)∴AB=CD(2)∵ΔABE≅ΔCDF∴∠ABE=∠CDF∴AB//CD19.(1)证明:∵∠AOB=∠COD=60°∴∠AOB+∠BOC=∠COD+∠BOC∴∠AOC=∠BOD.在△AOC和△BOD中∴△AOC≌△BOD(SAS)∴AC=BD;(2)AC=BD;α。
人教版八年级数学上册《第十二章全等三角形》单元测试卷及答案学校:___________姓名:___________班级:___________题 号 一 二 三 总分 得 分评卷人 得分一 单选题(共36分) 1.(本题3分)如图,在Rt ABC 中90C ∠=︒.按以下步骤作图:①以点A 为圆心 适当长为半径画弧 分别交边,AB AC 于点,M N ①分别以点M 和点N 为圆心 以大于12MN 的长为半径画弧,两弧在ABC 内交于点P ①作射线AP 交边BC 于点Q .若5,20CQ AB ==,则ABQ 的面积是( )A .100B .50C .25D .202.(本题3分)如图,ABC DEF ≌△△ 2BE = 3CE = 则EF 的长是( )A .5B .4C .3D .23.(本题3分)如图,用尺规按如下步骤作图:①以点O 为圆心 线段m 的长为半径画弧 交OA 于点M 交OB 于点N①分别以点M N 为圆心 线段n 的长为半径画弧 两弧在AOB ∠的内部相交于点C ①画射线OC 连接MC NC 。
下列结论不一定成立的是( )A .OM ON =B .CM CN =C .OM CN =D .MCO NCO ∠=∠4.(本题3分)如图,AB AC = AD AE = BAC DAE ∠=∠ 30BAD ∠=︒ 25ACE ∠=︒ 则ADE ∠的度数为( )A .50︒B .55︒C .60︒D .65︒5.(本题3分)小华在复习用尺规作一个角等于已知角的过程中,回顾了作图的过程 并作了如下的思考:请你说明小华得到两个三角形全等的根据是( ) A .SSSB .SASC .ASAD .AAS6.(本题3分)如图,在ABC 中,AD 为角平分线 12AB = 8AC = DE AC ⊥于E 4CD = 则BD 等于( )A .5B .6C .7D .87.(本题3分)如图,90A D ∠=∠=︒ 添加下列条件中的一个后 能判定ABC 与DCB △全等的有( ) ①ABC DCB ∠=∠ ①ACB DBC ∠=∠ ①AB DC = ①AC DB =。
八年级数学上册《第十二章全等三角形》单元测试卷及答案(人教版)班级姓名学号一、单选题1.全等图形是指两个图形()A.大小相同B.形状相同C.能够完全重合D.相等2.如图,△ABC≌△ADE,若∠B=80°,∠C=30°,则∠EAD的度数为()A.70°B.75°C.60°D.80°3.如图,三条直线表示相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有( ) .A.一处B.两处C.三处D.四处4.长为l的一根绳,恰好可围成两个全等三角形,则其中一个三角形的最长边x的取值范围为()A.16≤x<14B.18≤x<14C.16<x<14D.18<x<145.如图,在△ABC中,点D在边BC上,点E在线段AD上,AB=AC,EB=EC.则依据SSS可以判定()A.△ABD≌△ACD B.△ABE≌△ACEC.△BED≌△CED D.以上都对6.如图,在△ABC中,∠B=∠C,BF=CD,BD=CE,∠FDE=α,则下列结论正确的是()A.2α+∠A=180°B.α+∠A=90°C.2α+∠A=90°D.α+∠A=180°7.如图,点O在△ABC内,且到三边的距离相等,∠A=64°,则∠BOC的度数为()A.58°B.64°C.122°D.124°8.如图,在△ABC中,P是BC上的点,作PQ∥AC交AB于点Q,分别作PR⊥AB,PS⊥AC,垂足分别是R,S,若PR=PS,则下面三个结论:①AS=AR;②AQ=PQ;③△PQR≌△CPS;④AC﹣AQ=2SC,其中正确的是()A.②③④B.①②C.①④D.①②③④二、填空题9.已知△ABC≌△DEF,若∠B=40°,∠D=30°,则∠F=10.如图,已知B、E、F、C在同一直线上,BE=CF,AF=DE,则添加条件,可以判断△ABF≌△DCE.11.如图,△ABD≌△ACE,点B和点C是对应顶点,AB=9cm,BD=7cm,AD=4cm,则DC= cm.12.如图,在四边形ABCD中,AB=AD,CB=CD,对角线AC,BD相交于点O,下列结论中:①∠ABC=∠ADC;②AC与BD相互平分;③AC,BD分别平分四边形ABCD的两组对角;④四边形ABCD的面AC•BD.正确的是(填写所有正确结论的序号)积S= 1213.如图,在△ABC中AC=BC,∠ACB=50°,AD⊥BC于点D,MC⊥BC于点C,MC=BC点E,点F分别在线段AD,AC上CF=AE,连接MF,BF,CE.(1)图中与MF相等的线段是;(2)当BF+CE取最小值时∠AFB=°三、解答题14.将Rt△ABC的直角顶点C置于直线l上AC=BC,分别过点A、B作直线l的垂线,垂足分别为点D、E连接AE若BE=3,DE=5求△ACE的面积.15.如图,点A,B,C,D在同一条直线上,CE∥DF,EC=BD,AC=FD.求证:AE=FB.16.如图,已知AC∥BD、EA、EB分别平分∠CAB和△DBA,CD过点E,则线段AB与AC、BD有什么数量关系?请说明理由.17.如图,已知B,C,E三点在同一条直线上AC//DE,AC=CE,∠ACD=∠B .求证:△ABC≌△EDC .18.如图,点D为锐角∠ABC的平分线上一点,点M在边BA上,点N在边BC上,∠BMD+∠BND=180°.试说明:DM=DN.19.已知:AD=BC,AC=BD.(1)如图1,求证:AE=BE;(2)如图2,若AB=AC,∠D=2∠BAC,在不添加任何辅助线的情况下,请直接写出图2中四个度数为36°的角.参考答案 1.C 2.A 3.D 4.A 5.D 6.A 7.C 8.B 9.110° 10.AB=DC 11.5 12.①④ 13.(1)EC (2)9514.解:∵AD ⊥CE ,BE ⊥CE ∴∠ADC =∠CEB =90° ∵∠ACB =90°∴∠ACD =∠CBE =90°−∠ECB 在 △ACD 与 △CBE 中{∠ADC =∠CEB∠ACD =∠CBE AC =BC∴△ACD ≌△CBE (AAS) ∴CD =BE =3 AD =CE ∵CE =CD +DE =3+5=8 ∴AD =8 .S △ACE =12CE ·AD =12×8×8=32 . 15.证明:∵CE ∥DF ∴∠ACE=∠D 在△ACE 和△FDB 中{AC=FD ∠ACE=∠D EC=BD∴△ACE≌△FDB(SAS)∴AE=FB.16.解:AB=AC+BD理由是:在AB上截取AC=AF,连接EF∵AE平分∠CAB∴∠CAE=∠BAE在△CAE和△FAE中{AC=AF∠CAE=∠BAE AE=AE∴△CAE≌△FAE(SAS)∴∠C=∠AFE∵AC∥BD∴∠C+∠D=180°∴∠AFE+∠D=180°∵∠EFB+∠AFE=180°∴∠D=∠EFB∵BE平分∠ABD∴∠DBE=∠FBE在△BEF和△BED中{∠D=∠EFB∠FBE=∠DBEBE=BE∴△BEF≌△BED(AAS)∴BF=BD∵AB=AF+BF,AC=AF,BF=BD ∴AB=AC+BD.17.证明:∵AC//DE∴∠BCA =∠E ∠ACD =∠D . 又∵∠ACD =∠B ∴∠B =∠D .在 △ABC 和 △EDC 中{∠B =∠D∠BCA =∠E AC =EC∴△ABC ≌△EDC .18.解:过点D 作DE ⊥AB 于点E ,DF ⊥BC 于点F . ∴∠DEB =∠DFB =90°. 又∵BD 平分∠ABC ∴DE =DF .∵∠BMD+∠DME =180°,∠BMD+∠BND =180° ∴∠DME =∠BND . 在△EMD 和△FND 中{∠DEM =∠DFN∠EMD =∠FND DE =DF∴△EMD ≌△FND (AAS ). ∴DM =DN .19.(1)证明:在△ABD 和△BAC 中:{AB =BAAD =BC BD =AC∴△ABD ≌△BAC (SSS ) ∴∠ABD=∠BAC ∴AE=BE ;(2)∠BAC ,∠ABD ,∠DAC ,∠DBC。
八年级数学上册《第十二章 全等三角形》单元测试卷含答案-人教版学校:___________班级:___________姓名:___________考号:___________一、选择题:(本题共8小题,每小题5分,共40分.)1.下列说法中:①三边对应相等的两个三角形全等;②三角对应相等的两个三角形全等;③两边和它们的夹角对应相等的两个三角形全等;④两角及其中一角的对边对应相等的两个三角形全等;⑤两边及其中一边的对角对应相等的两个三角形全等;不正确的是( )A .①②B .②④C .④⑤D .②⑤2.如图,点B 、E 在线段CD 上,若A DEF ∠=∠,则添加下列条件,不一定能使△ABC ≌△EFD 的是( )A .C D ∠=∠和AC DE =B .BC =DF 和AC DE =C .ABC DFE ∠=∠和AC DE =D .AC DE =和AB EF =3.如图ABC A BC ''≌,过点C 作CD BC ⊥',垂足为D ,若55ABA ∠='︒,则BCD ∠的度数为( )A .25︒B .35︒C .45︒D .55︒4.如图所示,DE ⊥AB ,DF ⊥AC ,AE =AF ,则下列结论成立的是( )A .BD =CDB .DE =DFC .∠B =∠CD .AB =AC5.如图,在 ABC 中 90C ∠=︒ , DE AB ⊥ 于D , BC BD = 如果 3AC m = ,那么 AE DE + 等于( )A .2.5mB .3mC .3.5mD .4m6.如图,已知△ABC 的周长是16,MB 和MC 分别平分∠ABC 和∠ACB ,过点M 作BC 的垂线交BC 于点D ,且MD =4,则△ABC 的面积是( )A .42B .32C .48D .647.如图,在△ABC 和△ADE 中,∠BAC=∠DAE=90°,AB=AC ,AD=AE ,AD <AB ,且点E 在线段CD 上,则下列结论中不一定成立的是( )A .△ABD ≌△ACEB .BD ⊥CDC .∠BAE-∠ABD=45°D .DE=CE8.如图,△ABC 的周长为19,点D ,E 在边BC 上,∠ABC 的平分线垂直于AE ,垂足为点N ,∠ACB 的平分线垂直于 AD ,垂足为M ,若BC =7,则DE 的长是( )A .6B .4C .2D .5二、填空题:(本题共5小题,每小题3分,共15分.)9.如图ABC DEF ≌,则x y += .10.如图ABE ADC ABC ≌≌,若1150∠=︒,则α∠的度数为 .11.Rt △ABC 中,∠B=90°,AD 平分∠BAC ,DE ⊥AC 于E ,若BC=8,DE=3,则CD 的长度是 .12.如图,在Rt ABC 中90BAC ∠=,AB AC =点D 为BC 上一点,连接AD .过点B 作BE AD ⊥于点E ,过点C 作CF AD ⊥交AD 的延长线于点F .若4BE =,1CF =则EF 的长度为 .13.如图,已知△ABC 三个内角的平分线交于点O ,延长BA 到点D ,使AD=AO ,连接DO ,若BD=BC ,∠ABC=54°,则△BCA 的度数为 .三、解答题:(本题共5题,共45分)14.如图,已知在ABC 和DBE 中12AB DB A D =∠=∠∠=∠,,求证:BC BE =.15.如图,已知F 、G 是OA 上两点,M 、N 是OB 上两点,且FG =MN ,S △PFG =S △PMN ,试问:点P 是否在AOB ∠的平分线上?16.如图,AD 是∠BAC 的平分线,点E 在AB 上,且AE=AC ,EF ∥BC 交AC 于点F ,试说明:EC 平分∠DEF.17.已知:ABC 的高AD 与高BE 相交于点F ,过点F 作FG BC ,交直线AB 于点G .如图,若∠ABC =45°.求证:(1)BDF ADC ≌;(2)FG DC AD +=.18.已知:在ABC 中,90AC BC ACB =∠=︒,点D 是AB 的中点,点E 是AB 边上一点.(1)直线BF 垂直于CE 于点,F 交CD 于点G (如图1),求证AE CG =;(2)直线AH 垂直于CE ,垂足为,H 交CD 的延长线于点M (如图2).求证:BCE CAM ≌参考答案:1.D 2.B 3.B 4.B 5.B 6.B 7.D 8.D9.910.60°11.512.313.42°14.证明:∵12∠=∠∴12ABE ABE ∠+∠=∠+∠即ABC DBE ∠=∠.在ABC 和DBE 中ABC DBE AB DBA D ∠=∠⎧⎪=⎨⎪∠=∠⎩∴()ABC DBE ASA ≌∴BC BE =.15.解:点P 在AOB ∠的平分线上.理由:过点P 分别向OA ,OB 作垂线∵S △PFG =12FG ⋅PE ,S △PMN =12MN ⋅PH ,FG =MN ,S △PFG =S △PMN∴PH =PE∴点P 是在AOB ∠的平分线上.16.证明:∵AD 平分∠BAC∴∠BAD=∠CAD.在△ACD 和△AED 中∴△AED ≌△ACD∴ED=CD∴∠DEC=∠DCE.∵EF ∥BC∴∠FEC=∠DCE∴∠DEC=∠FEC∴EC 平分∠DEF.17.(1)∵AD ,BE 为△ABC 的高∴AD ⊥BC ,BE ⊥AC∴ADB ADC BEC ∠=∠=∠=90 °∴90ABD BAD ∠+∠=︒ 90DAC C ∠+∠=︒ CBE ∠+∠C 90=︒∴DAC CBE ∠=∠∵∠ABC =45°∴90904545BAD ABC ABC ∠=︒-∠=︒-︒=︒=∠∴BD AD =∵在△FDB 和△CDA 中{∠FDB =∠CDA⑤∠DBF =∠DAC ,∴(ASA)FDB CDA ≌;(2)解:∵ΔFDB CDA ≌∴DF DC =∴GF BC∴45AGF ABC ∠=∠=︒∴FA =FG∴FG DC FA DF AD +=+=.18.(1)∵点D 是AB 的中点,AC =BC ,∠ACB =90°∴CD ⊥AB ,∠ACD =∠BCD =45°,∠CAD =∠CBD =45°.∴∠CAE =∠BCG .又∵BF ⊥CE∴∠CBG +∠BCF =90°.又∠ACE +∠BCF =90°∴∠ACE =∠CBG .在△AEC 和△CGB 中∴△AEC ≌△CGB .∴AE =CG .(2)直线 AH 垂直于 CE ,垂足为 ,H 交 CD 的延长线于点 M (如图2).求证: BCE CAM ≌ .∵CH ⊥HM ,CD ⊥ED∴∠CMA +∠MCH =90°,∠BEC +∠MCH =90°.∴∠CMA=∠BEC.又∵AC=BC,∠ACM=∠CBE=45°在△BCE和△CAM中{∠BEC=∠CMA∠CBE=∠ACMBC=AC∴△BCE≌△CAM(AAS)。
人教版八年级数学上册《第十二章全等三角形》单元测试卷及答案一.选择题(共8小题,满分24分)1.根据下列条件,能画出唯一确定的三角形的是()A.AB=2,BC=5,AC=2B.AB=6,∠B=30°,AC=4C.AB=4,∠B=60°,∠C=75°D.BC=8,∠C=90°2.下列各组图形、是全等图形的是()A.B.C.D.3.在△ABC中,∠A=50°,∠B=60°,若△ABC≌△DEF,则∠E与∠F的关系为()A.∠E<∠F B.∠E=∠F C.∠E>∠F D.无法确定4.如图,CD⊥AB,BE⊥AC,垂足分别为D、E,BE、CD相交于点O.如果AB=AC,那么图中全等的直角三角形的对数是()A.1B.2C.3D.45.如图,已知点A、D、C、F在同一条直线上,∠B=90°,AB=DE,AD=CF,BC=EF,则∠E=()A.90°B.45°C.50°D.40°6.如图是雨伞在开合过程中某时刻的截面图,伞骨AB=AC,点D,E分别是AB,AC的中点,DM,EM 是连接弹簧和伞骨的支架,且DM=EM,已知弹簧M在向上滑动的过程中,总有△ADM≌△AEM,其判定依据是()A.ASA B.AAS C.SSS D.HL7.下列作图属于尺规作图的是()A.用量角器画出∠AOB,使∠AOB=60°B.借助没有刻度的直尺和圆规作∠AOB,使∠AOB=2∠αC.用三角尺画MN=1.5cmD.用三角尺过点P作AB的垂线8.两把相同的长方形直尺按如图所示方式摆放,记两把直尺的接触点为P,其中一把直尺边缘和射线OA 重合,另把直尺的下边缘与射线OB重合,连,接OP并延长.若∠BOP=25°,则∠AOP的度数为()A.12.5°B.25°C.37.5°D.50°二.填空题(共8小题,满分24分)9.长方体的直观图有很多种画法,通常我们采用画法.10.如图,AB=AC,点D,E分别在AB与AC上,CD与BE相交于点F.只填一个条件使得△ABE≌△ACD,添加的条件是:.11.如图,在△ABC中,AD平分∠BAC,DE⊥AB,若AC=9,DE=4,则S=.△ACD12.某中学计划在一块长16m,宽6m的矩形空地上修建三块全等的矩形草坪,如图所示,余下空地修建成同样宽为a的小路.(1)若a=1.5m,则草坪总面积为平方米.(2)若草坪总面积恰好等于小路总面积,那么,此时的路宽a是米.13.如图所示,点A、B、C、D均在正方形网格格点上,则∠ABC+∠ADC=.14.如图,小红要测量池塘A、B两端的距离,他设计了一个测量方案,先在平地上取可以直接到达A点和B点的C,D两点,AC与BD相交于点O,且测得AC=BD=55m,OA=OD=17m,△COD的周长为103m,则A,B两端的距离为m.15.如图,点E,C在BF上,BE=CF,∠A=∠D=90°,请添加一个条件,使Rt△ABC≌Rt△DFE.16.我们把一条对角线是另一条对角线2倍的四边形叫“奇异四边形”.现有两个全等的直角三角形,一条直角边长是1,如果它们可以拼成对角线互相垂直的“奇异四边形”,那么直角三角形另一条直角边长是.三.解答题(共6小题,满分52分)17.如图,AD与BC相交于点O,连接AC、BD,AC=BD,∠C=∠D,求证:△OAC≌△OBD.18.如图,在△ABC中,点E是BC边上的一点.连接AE,BD垂直平分AE,垂足为F,交AC于点D.连接DE.(1)若△ABC的周长为19,AB为6,求△DEC的周长;(2)若∠ABC=35°,∠C=50°,求∠CDE的度数.19.在下列3个6×6的网格中,画有正方形ABCD,沿网格线把正方形分ABCD分割成两个全等图形,请用三种不同的方法分割,画出分割线.20.如图,△ABC≌△DEF,点B,F,C,E在同一条直线上,BC=5,FC=4.(1)猜想AB与DE之间的位置关系,并说明理由.(2)求BE的长.21.如图,在△ABC中,∠B=90°,点O是∠CAB、∠ACB平分线的交点.(1)连接BO,求证:BO平分∠ABC;(不能利用“三角形三条角平分线相交于一点”直接来证明)(2)若BC=4cm,AC=5cm,求点O到边AB的距离.22.如图,若两个长度相同的滑梯,左边滑梯的高度AC与右边滑梯水平方向的长度DF相等.试说明两个滑梯的倾斜角∠ABC和∠DFE互余.参考答案与解析一.选择题(共8小题,满分24分)1.【答案】C【解答】解:A、∵2+2<5,即AB+AC<BC∴此时三条线段不能构成三角形,不符合题意;B、AB=6,∠B=30°,AC=4,根据边边角不能确定唯一三角形,不符合题意;C、AB=4,∠B=60°,∠C=75°,根据角角边可以确定唯一三角形,符合题意;D、BC=8,∠C=90°,只有一角和一边,不能确定唯一三角形,不符合题意;故选:C.2.【答案】D【解答】解:A、两个图形不能完全重合,不是全等图形,不符合题意;B、两个图形不能完全重合,不是全等图形,不符合题意;C、两个图形不能完全重合,不是全等图形,不符合题意;D、两个图形能够完全重合,是全等图形,符合题意;故选:D.3.【答案】A【解答】解:∵在△ABC中,∠A=50°,∠B=60°∴∠C=180°﹣∠A﹣∠B=70°∵△ABC≌△DEF∴∠A=∠D=50°,∠B=∠E=60°,∠C=∠F=70°∴∠E<∠F故选:A.4.【答案】C【解答】解:∵CD⊥AB,BE⊥AC∴∠ADC=∠AEB=90°在△ADC和△AEB中∴△ADC≌△AEB(AAS);∴AD=AE,∠C=∠B∵AB=AC∴BD=CE在△BOD和△COE中∴△BOD≌△COE(AAS);∴OB=OC,OD=OE在Rt△ADO和Rt△AEO中∴Rt△ADO≌Rt△AEO(HL);∴共有3对全等直角三角形故选:C.5.【答案】A【解答】证明:∵AD=CF∴AD+DC=CF+DC即AC=DF在△ABC和△DEF中∴△ABC≌△DEF(SSS)∴∠E=∠B=90°故选:A.6.【答案】C【解答】解:∵AB=AC,点D,E分别是AB,AC的中点∴AD=AE在△ADM和△AEM中.∴△ADM≌△AEM(SSS)故选:C.7.【答案】B【解答】解:尺规作图是指:只利用没有刻度的直尺和圆规进行作图故选:B.8.【答案】B【解答】解:∵两把相同的长方形直尺的宽度一致∴点P到射线OA,OB的距离相等∴OP是∠AOB的角平分线∵∠BOP=25°∴∠AOP=∠BOP=25°故选:B.二.填空题(共8小题,满分24分)9.【答案】斜二侧.【解答】解:长方体的直观图有很多种画法,通常我们采用斜二侧画法.故答案为:斜二侧.10.【答案】∠B=∠C(答案不唯一).【解答】解:∵∠B=∠C,AB=AC,∠A=∠A∴△ABE≌△ACD(ASA)故答案为:∠B=∠C(答案不唯一).11.【答案】18.【解答】解:过点D作DF⊥AC,交AC于点F∵AD平分∠ABC,DE⊥AB,DF⊥AC∴DF=DE=4∵AC=9=AC•DF=×94=18∴S△ACD故答案为:18.12.【答案】(1)30;(2)1.【解答】解:(1)由图可得草坪的总面积是(16﹣4a)(6﹣2a)=8a2﹣56a+96当a=1.5时8a2﹣56a+96=8×1.52﹣56×1.5+96=8×2.25﹣56×1.5+96=18﹣84+96=30即a=1.5m时,草坪总面积为30平方米故答案为:30;(2)由图可得草坪的总面积是(16﹣4a)(6﹣2a)=8a2﹣56a+96 路的总面积是16×6﹣(8a2﹣56a+96)=56a﹣8a2 ∵草坪总面积恰好等于小路总面积∴8a2﹣56a+96=56a﹣8a2解得a1=1,a2=6(舍去)即此时的路宽a为1米故答案为:1.13.【答案】45°.【解答】解:如图所示在△ACB和△AED中∴△ACB≌△AED(SAS)∴∠ABC=∠ADE∴∠ABC+∠ADC=∠ADE+∠ADC=∠CDE=45°.故答案为:45°.14.【答案】48.【解答】解:∵AC=BD,OA=OD∴AC﹣OA=BD﹣OD即OC=OB在△COD和△BOA中∴△COD≌△BOA(SAS)∴CD=AB∵△COD的周长为103m∴OC+OD+CD=OC+OA+CD=103m即AC+CD=103m.∵AC=55m.∴CD=48m.∴AB=48m.故答案为:48.15.【答案】DE=AC(答案不唯一).【解答】解:添加DE=AC∵BE=CF∴BE+EC=CF+EC即EF=CB在Rt△ABC与Rt△DFE中∴Rt△ABC≌Rt△DFE(HL).故答案为:DE=AC(答案不唯一).16.【答案】见试题解答内容【解答】解:(1)当CD=1时,设DO=m,且0<m<1 BD>1,如图1所示:∵Rt△ABC≌Rt△DBC∴∠BAC=∠BDC=90°,BA=BD,CA=CD ∴△ABD是等腰三角形∴AO=DO=m又∵BC=2AD∴BC=4m又∵AD⊥BC∴=2m2又∵CD⊥BD∴=BD∴2m2=BD解得:BD=4m2在Rt△DBC中,由勾股定理得:BD==∴4m2=解得:m2=或m2=∴4m2=2+或4m2=2﹣(舍去)∵BD>1∴BD=2+;(2)当BD=1时,设DO=x,且0<x<1CD<1,如图1所示:同理可求得:或∴4x2=2+(舍去),或4x2=2﹣∵CD<1∴CD=2﹣;综合所述,另一条直角边的长为2+或2﹣故答案为2+或2﹣.三.解答题(共6小题,满分52分)17.【答案】证明见解析.【解答】证明:在△OAC与△OBD中∴△OAC≌△OBD(AAS).18.【答案】(1)7.(2)45°.【解答】解:(1)∵BD垂直平分AE,AB=6∴BA=BE=6,DA=DE∵△ABC的周长为19∴AB+BC+AC=19∴AB+BE+EC+AD+DC=2AB+EC+DE+CD=19∴CE+ED+DC=19﹣2AB=19﹣2×6=7∴△DEC的周长为7;(2)∵∠ABC=35°,∠C=50°∴∠BAD=180°﹣∠ABC﹣∠C=180°﹣35°﹣50°=95°∵BD垂直平分AE∴BA=BE,DA=DE在△BAD和△BED中∴△BAD≌△BED(SSS)∴∠BAD=∠BED=95°∴∠DEC=180°﹣∠BED=180°﹣95°=85°∴∠CDE=180°﹣∠DEC﹣∠C=180°﹣85°﹣50°=45°.19.【答案】见解析.【解答】解:如图所示:20.【答案】(1)AB∥DE,理由见解析;(2)6.【解答】解:(1)AB∥DE,理由如下:∵△ABC≌△DEF∴∠B=∠F∴AB∥DE;(2)∵△ABC≌△DEF∴EF=BC=5∵FC=4∴CE=EF﹣FC=1∴BE=BC+CE=6.21.【答案】(1)证明见解析;(2)1.【解答】(1)证明:过O作OD⊥BC于D,OE⊥AB于E,OF⊥AC于F ∵点O是∠CAB、∠ACB平分线的交点∴OD=OF,OE=OF∴OE=OD∵OD⊥BC,OE⊥AB∴BO平分∠ABC;(2)解:∵BC=4cm,AC=5cm,∠ABC=90°∴AB==3∵△ABC的面积=△OBC的面积+△AOB的面积+△AOC的面积∴BC•AB=BC•OD+AB•OE+AC•OF∴3×4=(3+4+5)×OE∴OE=1∴点O到边AB的距离是1.22.【答案】见解析.【解答】解:∵两个滑梯长度相同∴BC=EF∵AC=DF,∠CAB=∠FDE=90°在Rt△CAB和Rt△FDE中∴Rt△CAB≌Rt△FDE(HL)∴∠ABC=∠DEF∵∠DFE+∠DEF=90°∴∠DFE+∠ABC=90°即:两个滑梯的倾斜角∠ABC和∠DFE互余.。
第十二章全等三角形一、单选题1.下列各组图形中不是全等形的是()A.B.C.D.2.如图,AB=AC,BD=CE,要使△ABD≌△ACE,添加条件正确的是()A.∠DAE=∠BAC B.∠B=∠CC.∠D=∠E D.∠B=∠E3.如图,点B、D、E、C在一条直线上,若△ABD≌△ACE,BC=12,BD=3,则DE的长为()A.9B.6C.5D.74.下列说法中,正确的是()A.两个面积相等的图形一定是全等形B.两个等边三角形是全等形C.若两个三角形的周长相等,则它们一定是全等形D.两个全等三角形的面积一定相等5.若△ABC≌△DEF,AB=2,AC=4,且△DEF的周长为奇数,则EF的值为( )A.3B.4C.1或3D.3或56.为了解学生对所学知识的应用能力,某校老师在七年级数学兴趣小组活动中,设置了这样的问题:因为池塘两端A,B的距离无法直接测量,请同学们设计方案测量A,B的距离,甲、乙两位同学分别设计了如下两种方案:甲:如图1,在平地上取一个可以直接到达点A,B的点O,连接AO并延长到点C,连接BO并延长到点D,使CO=AO,DO=BO,连接DC,测出DC的长即可.乙:如图2,先确定直线AB,过点B作直线BE,在直线BE上找可以直接到达点A的一点D,连接DA,作∠ADB=∠BDC,交直线AB于点C,最后测量BC的长即可.其中可行的测量方案是()A.只有方案甲可行B.只有方案乙可行C.方案甲和乙都可行D.方案甲和乙都不可行7.如图,AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,S△ABC=9,DE=2,AB=5,则AC长是()A.3B.4C.5D.68.如图,CA⊥AB,垂足为点A,AB=12米,AC=6米,射线BM⊥AB,垂足为点B,动点E 从A点出发以2米/秒沿射线AN运动,点D为射线BM上一动点,随着E点运动而运动,且始终保持ED=CB,当点E经过t秒时,由点D、E、B组成的三角形与△BCA全等.请问t有几种情况?( )A.1种B.2种C.3种D.4种9.如图,D为△BAC的外角平分线上一点,过D作DE⊥AC于E,DF⊥AB交BA的延长线于F,且满足∠FDE=∠BDC,则下列结论:①△CDE≌△BDF,②CE=AB+AE;③∠BDC=∠BAC.其中正确的结论有()A.0个B.1个C.2个D.3个10.如图,在△ABC中,∠BAC=60°,BE、CD为△ABC的角平分线.BE与CD相交于点F,FG平分∠BFC,有下列四个结论:①∠BFC=120°;②BD=CE;③BC=BD+CE;④若BE⊥AC,△BDF≌△CEF.其中正确的是( )A.①③B.②③④C.①③④D.①②③④二、填空题11.如图,若△ABE≌△ACF,AB=4,AE=2,则EC的长为.12.如图,∠ACB=∠DFE,BF=CE,要使ΔABC≌ΔDEF,则需要补充一个条件,这个条件可以是(只需填写一个).13.如图,△ABC≌△DBC,∠A=32°,∠DCB=38°,则∠ABC=.14.△OAB和△OA′B′在平面直角坐标系中的位置如图所示,其中点A,B的坐标分别为(−3,0),(0,2),点A′在x轴上,且△OA′B′≌△AOB.则点B′的坐标为.15.如图,小明用10块高度都是a的相同长方体小木块,垒了两堵与地面垂直的木墙,木墙之间刚好可以放一个等腰直角三角尺ABC,点C在DE上,点A,B分别与木墙的顶端重合,则两堵木墙之间的距离为.(用含a的代数式表示)16.如图,△ABC中,∠C=90°,AD平分∠BAC,AB=10,CD=3,则△ABD的面积.17.如下图,一把直尺压住射线OB,另一把完全一样的直尺压住射线OA并且与第一把直尺交于点P,小明说:“射线OP就是∠AOB的平分线.”这样说的依据是.18.如图所示,△ABC中,AB=AC,∠BAC=90°.直线l经过点A,过点B作BE⊥l于点E,过点C作CF⊥l于点F.若BE=3,CF=7,则EF=.三、解答题19.如图,在△ABC中,点D是边BC的中点,连接AD并延长到点E,使DE=AD,连接CE.(1)求证:△ABD≌△ECD.(2)若△ABD的面积为6,求△ACE的面积.20.已知,如图,AC=BD,∠1=∠2.(1)求证: ΔABC≌ΔBAD;(2)若∠2=∠3=25°,则∠D= °.21.如图,已知△ABC中,延长AC边上的中线BE到G,使EG=BE,延长AB边上的中线CD 到F,使DF=CD,连接AF,AG.(1)补全图形;(2)AF与AG的大小关系如何?证明你的结论;(3)F,A,G三点的位置关系如何?证明你的结论.22.如图,BC平分∠ABD,AC=CD,CE⊥BD.(1)求证:∠A+∠D=180°;(2)求证:AB+BD=2BE.23.如图,在△ABC中,∠C=90∘,BC=AC,D为直线BC上一动点,连接AD.在直线AC 的右侧作AE⊥AD,且AE=AD.观察发现:(1)如图①,当点D在线段BC上时,过点E作AC的垂线,垂足为N,判断线段EN与BC之间的关系,并说明理由;探究迁移:(2)将如图①中的B,E连接,交直线AC于点M,我们很容易发现MN=MC.如图②,当点D在线段BC的延长线上时,连接BE交直线CA于点M,线段EN和线段BC之间的关系有没有变化?此时MN=MC吗?说说理由.拓展应用:(3)如图③,当点D在线段CB的延长线上时,当AC=7,CM=2时,求△ABD和△ABE的面积.参考答案:1.C2.B3.B4.D5.D6.A7.B8.D9.D10.C11.212.AC=DF(答案不唯一)13.110°14.(3,−2)15.10a16.1517.在一个角的内部,到角的两边距离相等的点在这个角的平分线上18.1019.(1)证明:∵点D是BC的中点.∴BD=DC∵AE与BC相交于点D∴∠ADB=∠EDC∵在△ABD和△ECD中{BD=DC∠ADB=∠EDCAD=DE∴△ABD≌△ECD(SAS)(2)∵D是边BC的中点∵S△ABD=S△ACD又∵△ABD≌△ECD ,△ABD 的面积为6∵S △ACE =S △ACD +S △ECD=2S △ABD=2×6=12.20.105°21.(1)补全图形,如图所示;(2)AF =AG ,理由为:在△AFD 和△BCD 中,{AD =BD ∠ADF =∠BDC FD =CD∴△AFD≌△BCD (SAS),∴AF =BC ,在△AGE 和△CBE 中,{AE =CE ∠AEG =∠CEB GE =BE∴△AGE≌△CBE (SAS),∴AG =BC ,则AF =AG ;(3)F ,A ,G 三点共线,理由为:∵△AFD≌△BCD ,△AGE≌△CBE ,∴∠FAB =∠ABC ,∠GAC =∠ACB ,∵∠BAC +∠ABC +∠ACB =180°,∴∠FAB +∠BAC +∠GAC =180°,则F ,A ,G 三点共线.22.(1)证明:过点C 作CF ⊥BA 的延长线于点F,∵∠CF ⊥BF ,CE ⊥BD ,BC 平分∠ABD ,∴CF =CE ,∠F =∠CED =90°,在Rt △CFA 和Rt △CED 中,{AC =DC CF =CE ,∴Rt △CFA≌Rt △CED (HL),∴∠CAF =∠D ,∵∠BAC +∠CAF =180°,∴∠BAC +∠D =180°,即∠A +∠D =180°;(2)证明:由(1)CF =CE ,AF =DE ,∠F =∠CEB =90°,在Rt △CFB 和Rt △CEB 中,{BC =BC CF =CE,∴Rt △CFB≌Rt △CEB (HL),∴BF =BE ,∴AB +BD =AB +BE +DE =BF +BE =2BE .23.(1) EN =BC 且EN ∥BC∵∠DAC +∠CAE =90∘∠E +∠CAE =90∘∴∠E =∠DAC在△EAN 与△ADC 中{∠C =∠ANE =90∘∠E =∠DAC AD =AE∴△EAN≌△ADC (AAS)∴EN =AC,∠ENA =∠C =90°,∴∠ENC=∠C=90°,∴EN∥BC∵BC=AC∴EN=BC(2)它们的关系没有变化,此时MN=MC,∵∠DAC+∠NAE=90∘,∠AEN+∠NAE=90∘,∴∠DAC=∠AEN,在△EAN与△ADC中{∠ACD=∠ANE=90∘∠AEN=∠DACAD=AE∴△EAN≌△ADC(AAS)∴EN=AC,∠ACD=∠ENA=90°,∴EN∥BC∵BC=AC∴EN=BC在△MEN与△MBC中{∠BMC=∠EMN∠N=∠ACB=90∘EN=BC∴△MEN≌△MBC(AAS)MN=MC(3)由(2)可得,△EAN≌△ADC和△MEN≌△MBC仍然成立∴MC=MN=2AC=BC=EN=7BD=AN−BC=11−7=4∴S△ABD=12×BD×AC=12×4×7=14S△ABE=12×AM×BC+12×AM×EN=12×9×7+12×9×7=63。
人教版数学八年级上册第十二章全等三角形一、单选题(每题3分,共30分)1.已知△ABC≌△DEF,则下列说法错误的是()A.∠A=∠D B.AC=DF C.AB=EF D.∠B=∠E2.如图,工人师傅设计了一种测零件内径AB的卡钳,卡钳交叉点O为AA′、BB′的中点,只要量出A′B′的长度,就可以知道该零件内径AB的长度.依据的数学基本事实是()A.两角和它们的夹边分别相等的两个三角形全等B.两边和它们的夹角分别相等的两个三角形全等C.三边分别相等的两个三角形全等D.两点之间线段最短3.如图,∠B=∠D=90°,BC=CD,∠1=40°,则∠2=()A.40°B.60°C.46°D.50°4.根据下列已知条件,能画出唯一△ABC的是( )A.AB=3,BC=4,AC=8B.∠A=100°,∠B=45°,AB=5C.AB=3,BC=5,∠A=75°D.∠C=90°,∠A=30°,∠B=60°5.如图,△ABC≌△A′B′C′,边B′C′过点A且平分∠BAC交BC于点D,∠B=24°,∠CDB′=96°,则∠C′的度数为()A.24 °B.36 °C.45 °D.60 °6.如图,为了促进当地旅游发展,某地要在三条公路旁边的平地上修建一个游客中心,要使这个游客中心到三条公路的距离相等,游客中心可以选择的位置有()种A.一B.二C.三D.四7.用直尺和圆规作一个角等于已知角的示意图,如图所示,则说明∠A′O′B′=∠AOB是因为图中的两个三角形△COD≌△C′O′D′,那么判定这两个三角形全等的依据是( )A.SAS B.SSS C.ASA D.AAS8.如图,在Rt△ABC中,∠C=90°,AD平分∠BAC交BC于点D,AB=10,S△ABD=20,则CD的长为( )A.3B.4C.5D.69.如图,有两个长度相同的滑梯靠在一面竖直墙上.已知左边滑梯的高度AC与右边滑梯水平方向的长度DF相等,若DF=6m,DE=8m,AD=4m,则BF等于()A.10m B.12m C.16m D.18m10.如图,任意画一个∠BAC=60°的△ABC,再分别作△ABC的两角的角平分线BE和CD,BE、CD相交于点P,连接AP,有以下结论:①∠BPC=120°;②AP平分∠BAC;③AD=AE;④PD=PE;⑤BD+CE=BC,其中正确的结论有( )A.2个B.3个C.4个D.5个二、填空题(每题3分,共24分)11.如图,若AB=DE,BE=CF,要证△ABF≌△DEC需补充一个条件.(任填一个).12.如图,亮亮书上的三角形被墨迹污染了一部分,借助剩余的图形,他很快就画出一个三角形与书上的三角形全等,这两个三角形全等的依据是.13.一个三角形的三边为3、5、x,另一个三角形的三边为y、3、6,若这两个三角形全等,则x +y = .14.如图,已知AB=AC,D为∠BAC的角平分线上的一点,连接BD,CD;如图2,已知AB=AC,D、E为∠BAC的角平分线上的两点,连接BD,CD,BE,CE;如图3,已知AB=AC,D、E、F为∠BAC的角平分线上的三点,连接BD,CD,BE,CE,BF,CF;…,依次规律,第5个图形中有全等三角形的对数是.15.已知:点A的坐标为(1,−1),点B的坐标为(1,5),点C的坐标为(4,3),如果要使△ABD与△ABC全等,且C、D不重合,那么点D的坐标是.16.如图,已知O是△ABC的两条角平分线BO,CO的交点,过点O作OD⊥BC于点D,且OD=3,若△ABC的周长是24,则△ABC的面积是.17.在△ABC中,已知AB=6,AC=5,AD是BC边上的中线,则AD取值范围是.18.如图所示,锐角△ABC中,D,E分别是AB,AC边上的点,连结BE、CD交于点F.将△ADC和△AEB分别绕着边AB、AC翻折得到△ADC'和△AEB',且EB'∥DC'∥BC,若∠BAC=42°,则∠BFC的大小是.三、解答题(共46分)19.如图,点D是AB上一点,DF交AC于点E,DE=FE,FC∥AB,AB=6,FC=4,求线段DB的长.20.如图,△ABC的一个顶点A在△DEC的边DE上,AB交CD于点F,且AC=EC,∠1=∠2=∠3.试说明AB与DE的大小关系.21.如图,∠ACB=90°,AC=BC,AD⊥CE,BE⊥CE,垂足分别为点D,E.(1)求证:△ACD≌△CBE;(2)若BE=5,AD=12,求DE的长.22.如图,CA=CB,CD=CE,∠ACB=∠DCE,AD,BE交于点H,连接CH.求证:(1)△ACD≌△BCE;(2)HC平分∠AHE.23.已知,如图,AD∥BC,AE平分∠BAD,点E是CD的中点.(1)求证:AB=AD+BC(2)求证:AE⊥BE参考答案:1.C2.B3.D4.B5.B6.D7.B8.B9.D10.C11.AF=DC(答案不唯一)12.ASA13.1114.1515.(4,1)或(−2,3)或(−2,1)16.3617.0.5<AD<5.518.96°19.∵CF∥AB,∴∠A=∠FCE,∠ADE=∠F,在△ADE和△FCE中{∠A=∠FCE∠ADE=∠FDE=FE∴△ADE≌△CFE(AAS),∴AD=CF=4,∵AB=6,∴DB=AB−AD=6−4=2.20.∵∠1=∠2,∠AFD=∠BFC,∴∠B=∠D,又∵∠2=∠3,∴∠2+∠ACD=∠3+∠ACD,即∠BCA=∠DCE,在△ABC和△EDC中,{∠B=∠D∠BCA=∠DCEAB=ED∴△ABC≌△EDC (AAS),∴AB=ED.21.(1)证明:∵AD⊥CE,BE⊥CE,∴∠ADC=∠E=90°∴∠A+∠DCA=90°,∵∠ACB=∠DCA+∠BCE=90°,∴∠A=∠BCE,在△ACD和△CBE中,{∠ADC=∠E∠A=∠BCE,AC=BC∴△ACD≌△CBE(AAS);(2)由(1)得:△ACD≌△CBE,∴CE=AD=12,BE=CD=5,∴DE=CE﹣CD=12﹣5=7.22.(1)证明:∵∠ACB=∠DCE,∴∠ACD=∠BCE在△ACD和△BCE中,{CA=CB,∠ACD=∠BCE,CD=CE,∴△ACD≌△BCE(SAS)(2)证明:如图:过点C作CM⊥AD于点M,CN⊥BE于点N∵△ACD≌△BCE∴∠CAM =∠CBN ,在△ACM 和△BCN 中,{∠CAM =∠CBN,∠AMC =∠BNC =90°,AC =BC,∴△ACM≌△BCN ,∴CM =CN又CM ⊥AH ,CN ⊥HE ,∴HC 平分∠AHE23.解:如图:延长AE 交BC 的延长线于点F ,∵AE 平分∠BAD∴∠BAF =∠DAE∵E 是DC 中点∴DE=CE∵AD ∥BC∴∠DAE =∠F∴∠BAF =∠F∴AB=BF又∵在△FCE 和△ADE 中,{∠DAE =∠F∠DEA =∠CEF DE =CE∴△FCE≌△ADE,∴AD=CF∴AB=BF=BC+CF=BC+AD 即AB=AD+BC。
人教版八年级数学上册第十二章全等三角形单元测试卷(含答案)一、单选题(共10题;共30分)1. ( 3分) 如图,点B、E、C、F在一条直线上,△ABC≌△DEF则下列结论正确的是()A. AB∥DE,且AC不平行于DF.B. BE=EC=CFC. AC∥DF.且AB不平行于DED. AB∥DE,AC∥DF.2. ( 3分) 如图(1),若△ABC与△DEF全等,请根据图中提供的信息,得出x的值为()A. 20B. 18C. 60D. 503. ( 3分) 如图,将长方形纸片沿对角线折叠,重叠部分为△BDE,则图中全等三角形共有()A. 0对B. 1对C. 2对D. 3对4. ( 3分) 如图所示,D,E分别是△ABC的边AC、BC上的点,若△ADB≌△EDB≌△EDC,则∠C的度数为()A. 15°B. 20°C. 25°D. 30°5. ( 3分) 如图,AB=AC,若要使△ABE≌△ACD,则添加的一个条件不能是()A. ∠B=∠CB. BE=CDC. BD=CED. ∠ADC=∠AEB6. ( 3分) 如图,点P为定角∠AOB的平分线上的一个定点,且∠MPN与∠AOB互补,若∠MPN在绕点P 旋转的过程中,其两边分别与OA、OB相交于M、N两点,则以下结论:(1)PM=PN恒成立;(2)OM+ON 的值不变;(3)四边形PMON的面积不变;(4)MN的长不变,其中正确的个数为()A. 4B. 3C. 2D. 17. ( 3分) 下列各组中的两个图形属于全等图形的是()A. B. C. D.8. ( 3分) 下列说法正确的是()A. 周长相等的两个三角形全等B. 面积相等的两个三角形全等C. 三个角对应相等的两个三角形全等D. 三条边对应相等的两个三角形全等9. ( 3分) 下列数据能唯一确定三角形的形状和大小的是()A. AB=4,BC=5,∠C=60°B. AB=6,∠C=60°,∠B=70°C. AB=4,BC=5,CA=10D. ∠C=60°,∠B=70°,∠A=50°10. ( 3分) 如图,乐乐书上的三角形墨迹污染了一部分,很快他就画出一个三角形与书上的三角形全等,这两个三角形全等的依据是()A. SSSB. ASAC. AASD. SAS二、填空题(共8题;共24分)11. ( 3分) 如图所示,AC=DF,BD=EC,AC∥DF,∠ACB=80°,∠B=30°,则∠F= 1 .12. ( 3分) 如图,已知AD=AE,请你添加一个条件,使得△ADC≌△AEB,你添加的条件是________.(不添加任何字母和辅助线)13. ( 3分) 如图,△ACE ≅△DBF,如果DA=12,CB=6,那么线段AB的长是________.14. ( 3分) 三个全等三角形按如图的形式摆放,则∠1+∠2+∠3=________度.15. ( 3分) 如图,在Rt△ABC中,∠C=90°,∠BAC的平分线AD交BC于点D.若CD=3,AB=8则△ABD的面积是________。
人教版八年级数学上册《第十二章全等三角形》章节检测卷-附带答案学校:___________班级:___________姓名:___________考号:___________一、单选题1.如图,在ABC 中90C ∠=︒.用直尺和圆规在边BC 上确定一点P ,使点P 到AC ,AB 的距离相等,则符合要求的作图痕迹是( )A .B .C .D .2.如图所示,已知ABC 的周长是20,点O 为ABC ∠与ACB ∠的平分线的交点,且OD BC ⊥于D ,若2OD =,则ABC 的面积是( )A .20B .12C .10D .83.如图//EF AD ,AD//BC ,CE 平分BCF ∠ 120DAC ∠= 20ACF ∠=则FEC ∠的度数为( )A .10B .20C .30D .604.如图,把两根钢条的中点连在一起,可以测量工件内槽的宽度,在图中,要测量工件内槽宽AB ,则需要测量的量是( )A .OA 的长度B .OB 的长度C .AB 的长度D .A B ''的长度5.课间,小明和小聪在操场上忽然争论起来,他们都说自己比对方长得高.这时,数学老师走过来,笑着对他们说:“你们不要争啦,其实你们一样高,瞧瞧地上你俩的影子一样长.”原来数学老师运用全等知识从他们的影长相等得到了他们的身高相同.你知道数学老师运用全等三角形的判定方法是哪一个吗?( )A .SSSB .SASC .HLD .ASA6.如图,在Rt ABC △中90C ∠=︒,以顶点A 为圆心,适当长为半径画弧,分别交边AC 、AB 于点M 、N ,再分别以点M 、N 为圆心,大于MN 的长为半径画弧,两弧交于点P ,作射线AP 交边BC 于点D ,若8CD =,AB=15,则ABD △的面积是( )A .120B .60C .45D .307.如图,AD 是ABC 的中线,E ,F 分别是AD 和AD 延长线上的点,且DE DF =,连结BF ,CE .下列说法:①ABD △和ACD 面积相等;①BAD CAD ∠=∠;①BDF CDE ≌;①BF CE ∥;①CE AE =.其中正确的有( )A .①①①B .①①①C .①①①D .①①①①8.如图,在四边形ABCD 中,对角线 AC 平分,BAD AB AD ∠>,下列结论中正确的是()A .AB AD CB CD ->-B .AB AD CB CD -=-C .AB AD CB CD -<-D .AB AD - 与 CB CD -的大小关系不确定9.如图,AE=AC ,若要判断△ABC ①△ADE ,则不能添加..的条件为( )A .DC=BEB .AD=ABC .DE=BCD .①C=①E10.在ABC 和DEF 中,90A D ∠=∠=︒,则下列条件中不能判定ABC DEF ≌△△的是()A .AB DE = AC DF = B .AC EF = BC DF =C .AB DE = BC EF =D .C F ∠=∠ BC EF =二、填空题11.如图,在四边形ABCD 中,AB =BC ,①ABC =①CDA =90°,BE①AD 于点E ,且四边形ABCD 的面积为12,则BE 的长为 .12.如图所示,在坐标平面中()0,4A ,C 为x 轴负半轴上一点,CO=3,AC=5,若点P 为y 轴上一动点,以PC 为腰作等腰三角形PCQ △,已知22CPQ ACO α∠=∠=(α为定值),连接OQ ,则OQ 的最小值为 .13.如图,ABC 中2BAC C ∠=∠,BD 为ABC ∠的平分线7.6BC =, 4.4AB =则AD = .14.如图,已知AB=BD ,①A=①D 若直接应用“SAS”判定△ABC①①DBE ,则需要添加的一个条件 是 .15.如图,①ABC 是一个等腰直角三角形,①BAC =90°,BC 分别与AF 、AG 相交于点D 、E .不添加辅助线,使①ACE 与①ABD 全等,你所添加的条件是 .(填一个即可)16.如图,12AB =米,CA AB ⊥于A ,DB AB ⊥于B ,且4AC =米,P 点从点B 向点A 运动,每分钟走1米,Q 点从B 向D 运动,每分钟走2米,若P 、Q 两点同时开始出发,运动 分钟后CAP PBQ ≌△△.17.如图1,在ABC 中,D 是AB 边上的一点,小新用尺规作图,做法如下:如图2,①以B 为圆心,任意长为半径作弧,交BA 于F 、交BC 于G ;①以D 为圆心,BF 为半径作弧,交DA 于M ;①以M 为圆心,FG 为半径作弧,两弧相交于N ;①过点D 作射线DN 交AC 于点E .若①ADE =62︒,①C =68︒,则①A 的度数是 度.18.如图,CA=CB ,CD=CE 40ACB DCE ∠=∠=︒,AD 、BE 交于点H ,连接CH .①AD BE =;①40DHE ∠=︒①CH 平分ACE ∠.①CH 平分AHE ∠.其中正确的有 (把正确的序号填入横线处).19.如图,已知AC与BF相交于点E,AB//CF,点E为BF中点,若CF=6,AD=4,则BD .20.如图,在①ABC中,①ABC=2①C,AP和BQ分别为①BAC和①ABC的角平分线,若①ABQ的周长为18,BP=4,则AB的长为三、解答题21.已知,如图,Rt△ABC中,①ACB=90°,AC=BC.点D为AB边上一点,且不与A、B两点重合,AE①AB,AE=BD.连接DE、DC,求证:CE=CD.22.如图1,在平面直角坐标系中,ABC 的顶点()3,0A -、()0,3B 和()1,0C ,E 是线段OB 上一点,且AE BC =.(1)求点E 的坐标;(2)延长AE 交BC 于 D .①如图2,判断AE 和BC 的位置关系并说明理由;①连接OD ,如图3 , 求证:DO 平分ADC ∠.23.如图,AB=AC ,DE=DF ,DE①AB ,垂足为点E ,DF ①AC ,垂足为点F .求证:DB=DC .24.如图,在①ABC中,①C=90°,AD平分①CAB,交CB于点D,过点D作DE①AB于点E,若①B=30°,CD=1,求AB的长.≌,A,F,C,D四点在同一条直线上.25.如图,已知ABF DEC;(1)求证:AC DF(2)判断BF与EC的位置关系,并证明.参考答案1.B2.A3.B4.D5.D6.B7.B8.A9.C10.B11.2312.12513.3.214.AC=DE15.CD =BE (答案不唯一) 16.417.5018.①①①19.220.721.略.22.(1)(0,1)E (2)①AE BC ;①略 23.略24.325.(1)略;(2)BF EC ∥。
第十二章全等三角形一.选择题(共10小题)1.下列说法正确的是()A.形状相同的两个三角形全等B.面积相等的两个三角形全等C.完全重合的两个三角形全等D.所有的等边三角形全等2.下列说法正确的是()A.所有的等边三角形都是全等三角形B.全等三角形是指面积相等的三角形C.周长相等的三角形是全等三角形D.全等三角形是指形状相同大小相等的三角形3.如图是两个全等三角形,图中的字母表示三角形的边长,则∠1的度数是()A.76°B.62°C.42°D.76°、62°或42°都可以4.如图,△ABC≌△DEF,点A与D,B与E分别是对应顶点,且测得BC=5cm,BF=7cm,则EC长为()A.1cm B.2cm C.3cm D.4cm5.如图,AE∥DF,AE=DF,要使△EAC≌△FDB,需要添加下列选项中的()A.∠A=∠D B.EC=BF C.AB=CD D.AB=BC6.如图,AB∥FC,E是DF的中点,若AB=20,CF=12,则BD等于()A.12 B.8 C.6 D.107.如图,红红书上的三角形被墨迹污染了一部分,她根据所学的知识很快就画了一个与书上完全一样的三角形,那么红红画图的依据是()A.SSS B.SAS C.ASA D.AAS8.在正方形网格中,∠AOB的位置如图所示,到∠AOB两边距离相等的点应是()A.M点B.N点C.P点D.Q点9.如图,△ABC中,AD⊥BC,D为BC的中点,以下结论:(1)△ABD≌△ACD;(2)AB=AC;(3)∠B=∠C;(4)AD是△ABC的一条角平分线.其中正确的有()A.1个B.2个C.3个D.4个10.如图,在△ABC中,P、Q分别是BC、AC上的点,作PR⊥AB,PS⊥AC,垂足分别为R、S,若AQ=PQ,PR=PS,则这四个结论中正确的有()①PA平分∠BAC;②AS=AR;③QP∥AR;④△BRP≌△CSP.A.4个B.3个C.2个D.1个二.填空题(共6小题)11.如图,已知△ABC≌△A′BC′,AA′∥BC,∠ABC=70°,则∠CBC′=.12.如图,AB=AC,点D,E分别在AB,AC上,CD,BE交于点F,只添加一个条件使△ABE ≌△ACD,添加的条件是:.13.如图,在△ABC中,∠A=90°,AB=AC,∠ABC的平分线BD交AC于点D,CE⊥BD,交BD的延长线于点E,若BD=8,则CE=.14.如图,若AB=AC,BD=CD,∠B=20°,∠BDC=120°,则∠A等于度.15.如图,BE,CD是△ABC的高,且BD=EC,判定△BCD≌△CBE的依据是“”.16.如图,CA⊥AB,垂足为点A,AB=24,AC=12,射线BM⊥AB,垂足为点B,一动点E从A点出发以3厘米/秒沿射线AN运动,点D为射线BM上一动点,随着E点运动而运动,且始终保持ED=CB,当点E经过秒时,△DEB与△BCA全等.三.解答题(共6小题)17.如图,已知△ACF≌△DBE,且点A,B,C,D在同一条直线上,∠A=50°,∠F=40°.(1)求△DBE各内角的度数;(2)若AD=16,BC=10,求AB的长.18.如图,已知△ABC≌△DEB,点E在AB上,DE与AC相交于点F,(1)当DE=8,BC=5时,线段AE的长为;(2)已知∠D=35°,∠C=60°,①求∠DBC的度数;②求∠AFD的度数.19.已知:如图,点B,E,C,F在同一直线上,AB∥DE,且AB=DE,BE=CF.求证:△ABC≌△DEF.20.把两个含有45°角的大小不同的直角三角板如图放置,点D在BC上,连接BE,AD,AD 的延长线交BE于点F.说明:AF⊥BE.21.如图,在△ABC中,AB=AC,DE是过点A的直线,BD⊥DE于D,CE⊥DE于点E;(1)若B、C在DE的同侧(如图所示)且AD=CE.求证:AB⊥AC;(2)若B、C在DE的两侧(如图所示),且AD=CE,其他条件不变,AB与AC仍垂直吗?若是请给出证明;若不是,请说明理由.22.如图,已知△ABC中,AB=AC=10cm,BC=8cm,点D为AB的中点.如果点P在线段BC 上以3cm/s的速度由点B向C点运动,同时,点Q在线段CA上由点C向A点运动.(1)若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD与△CQP是否全等,请说明理由.(2)若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?参考答案一.选择题(共10小题)1.解:A、形状相同的两个三角形全等,说法错误,应该是形状相同且大小也相同的两个三角形全等;B、面积相等的两个三角形全等,说法错误;C、完全重合的两个三角形全等,说法正确;D、所有的等边三角形全等,说法错误;故选:C.2.解:A、所有的等边三角形都是全等三角形,错误;B、全等三角形是指面积相等的三角形,错误;C、周长相等的三角形是全等三角形,错误;D、全等三角形是指形状相同大小相等的三角形,正确.故选:D.3.解:∵两个三角形全等,∴∠1=62°,故选:B.4.解:∵△ABC≌△DEF,∴EF=BC=5cm,∵BF=7cm,BC=5cm,∴CF=7cm﹣5cm=2cm,∴EC=EF﹣CF=3cm,故选:C.5.解:∵AE∥DF,∴∠A=∠D,∵AE=DF,∴要使△EAC≌△FDB,还需要AC=BD,∴当AB=CD时,可得AB+BC=BC+CD,即AC=BD,故选:C.6.解:∵AB∥FC∴∠ADE=∠EFC∵E是DF的中点∴DE=EF∵∠AED=∠CEF∴△ADE≌△CFE∴AD=CF∵AB=20,CF=12∴BD=AB﹣AD=20﹣12=8.故选:B.7.解:根据题意,三角形的两角和它们的夹边是完整的,所以可以利用“角边角”定理作出完全一样的三角形.故选:C.8.解:从图上可以看出点M在∠AOB的平分线上,其它三点不在∠AOB的平分线上.所以点M到∠AOB两边的距离相等.故选A.9.解:∵AD=AD、∠ADB=∠ADC、BD=CD∴(1)△ABD≌△ACD正确;∴(2)AB=AC正确;(3)∠B=∠C正确;∠BAD=∠CAD∴(4)AD是△ABC的角平分线.故选:D.10.解:(1)PA平分∠BAC.∵PR⊥AB,PS⊥AC,PR=PS,AP=AP,∴△APR≌△APS,∴∠PAR=∠PAS,∴PA平分∠BAC;(2)由(1)中的全等也可得AS=AR;(3)∵AQ=PR,∴∠1=∠APQ,∴∠PQS=∠1+∠APQ=2∠1,又∵PA平分∠BAC,∴∠BAC=2∠1,∴∠PQS=∠BAC,∴PQ∥AR;(4)∵PR⊥AB,PS⊥AC,∴∠BRP=∠CSP,∵PR=PS,∴△BRP不一定全等与△CSP(只具备一角一边的两三角形不一定全等).故选:B.二.填空题(共6小题)11.解:∵AA′∥BC,∴∠A′AB=∠ABC=70°,∵△ABC≌△A′BC′,∴BA=BA′,∠A′BC=∠ABC=70°,∴∠A′AB=∠AA′B=70°,∴∠A′BA=40°,∴∠ABC′=30°,∴∠CBC′=40°,故答案为:40°.12.解:∠B=∠C,理由是:∵在△ABE和△ACD中∴△ABE≌△ACD(ASA),故答案为:∠B=∠C.13.解:如图,延长BA、CE相交于点F,∵BD平分∠ABC,∴∠ABD=∠CBD,在△BCE和△BFE中,,∴△BCE≌△BFE(ASA),∴CE=EF,∵∠BAC=90°,CE⊥BD,∴∠ACF+∠F=90°,∠ABD+∠F=90°,∴∠ABD=∠ACF,在△ABD和△ACF中,,∴△ABD≌△ACF(ASA),∴BD=CF,∵CF=CE+EF=2CE,∴BD=2CE=8,∴CE=4.故答案为:4.14.解:过D作射线AF,在△BAD和△CAD中,,∴△BAD≌△CAD(SSS),∴∠BAD=∠CAD,∠B=∠C=20°,∵∠BDF=∠B+∠BAD,∠CDF=∠C+∠CAD,∴∠BDF+∠CDF=∠B+∠BAD+∠C+∠CAD,∴∠BDC=∠B+∠C+∠BAC,∵∠C=∠B=20°,∠BDC=120°,∴∠BAC=80°.故答案为:80.15.解:∵BE、CD是△ABC的高,∴∠CDB=∠BEC=90°,在Rt△BCD和Rt△CBE中,BD=EC,BC=CB,∴Rt△BCD≌Rt△CBE(HL),故答案为:HL.16.解:设点E经过t秒时,△DEB≌△BCA;此时AE=3t 分情况讨论:(1)当点E在点B的左侧时,BE=24﹣3t=12,∴t=4;(2)当点E在点B的右侧时,①BE=AC时,3t=24+12,∴t=12;②BE=AB时,3t=24+24,∴t=16.(3)当点E与A重合时,AE=0,t=0;综上所述,故答案为:0,4,12,16.三.解答题(共6小题)17.解:(1)∵△ACF≌△DBE,∠A=50°,∠F=40°,∴∠D=∠A=50°,∠E=∠F=40°,∴∠EBD=180°﹣∠D﹣∠E=90°;(2)∵△ACF≌△DBE,∴AC=BD,∴AC﹣BC=DB﹣BC,∴AB=CD,∵AD=16,BC=10,∴AB=CD=(AD﹣BC)=3.18.解:(1)∵△ABC≌△DEB,DE=8,BC=5,∴AB=DE=8,BE=BC=5,∴AE=AB﹣BE=8﹣5=3,故答案为:3;(2)①∵△ABC≌△DEB∴∠A=∠D=35°,∠DBE=∠C=60°,∵∠A+∠ABC+∠C=180°,∴∠ABC=180°﹣∠A﹣∠C=85°,∴∠DBC=∠ABC﹣∠DBE=85°﹣60°=25°;②∵∠AEF是△DBE的外角,∴∠AEF=∠D+∠DBE=35°+60°=95°,∵∠AFD是△AEF的外角,∴∠AFD=∠A+∠AEF=35°+95°=130°.19.证明:∵AB∥DE,∴∠B=∠DEF∵BE=FC,∴BC=EF,在△ABC和△DEF中,∴△ABC≌△DEF(SAS).20.证明:AF⊥BE,理由如下:由题意可知∠DEC=∠EDC=45°,∠CBA=∠CAB=45°,∴EC=DC,BC=AC,又∠DCE=∠DCA=90°,∴△ECD和△BCA都是等腰直角三角形,∴EC=DC,BC=AC,∠ECD=∠ACB=90°.在△BEC和△ADC中EC=DC,∠ECB=∠DCA,BC=AC,∴△BEC≌△ADC(SAS).∴∠EBC=∠DAC.∵∠DAC+∠CDA=90°,∠FDB=∠CDA,∴∠EBC+∠FDB=90°.∴∠BFD=90°,即AF⊥BE.21.(1)证明:∵BD⊥DE,CE⊥DE,∴∠ADB=∠AEC=90°,在Rt△ABD和Rt△ACE中,∵,∴Rt△ABD≌Rt△CAE.∴∠DAB=∠ECA,∠DBA=∠ACE.∵∠DAB+∠DBA=90°,∠EAC+∠ACE=90°,∴∠BAD+∠CAE=90°.∠BAC=180°﹣(∠BAD+∠CAE)=90°.∴AB⊥AC.(2)AB⊥AC.理由如下:同(1)一样可证得Rt△ABD≌Rt△ACE.∴∠DAB=∠ECA,∠DBA=∠EAC,∵∠CAE+∠ECA=90°,∴∠CAE+∠BAD=90°,即∠BAC=90°,∴AB⊥AC.22.解:(1)经过1秒后,PB=3cm,PC=5cm,CQ=3cm,∵△ABC中,AB=AC,∴在△BPD和△CQP中,,∴△BPD≌△CQP(SAS).(2)设点Q的运动速度为x(x≠3)cm/s,经过ts△BPD与△CQP全等;则可知PB=3tcm,PC=8﹣3tcm,CQ=xtcm,∵AB=AC,∴∠B=∠C,根据全等三角形的判定定理SAS可知,有两种情况:①当BD=PC,BP=CQ时,②当BD =CQ,BP=PC时,两三角形全等;①当BD=PC且BP=CQ时,8﹣3t=5且3t=xt,解得x=3,∵x≠3,∴舍去此情况;②BD=CQ,BP=PC时,5=xt且3t=8﹣3t,解得:x=;故若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为cm/s时,能够使△BPD与△CQP全等.。
第12章全等三角形一、选择题1.如图,在△ABC中,∠ABC=45°,AC=8cm,F是高AD和BE的交点,则BF的长是()A.4cm B.6cm C.8cm D.9cm2.如图,将正方形OABC放在平面直角坐标系中,O是原点,A的坐标为(1,),则点C的坐标为()A.(﹣,1) B.(﹣1,) C.(,1)D.(﹣,﹣1)3.在连接A地与B地的线段上有四个不同的点D、G、K、Q,下列四幅图中的实线分别表示某人从A 地到B地的不同行进路线(箭头表示行进的方向),则路程最长的行进路线图是()A.B.C.D.4.如图,坐标平面上,△ABC与△DEF全等,其中A、B、C的对应顶点分别为D、E、F,且AB=BC=5.若A点的坐标为(﹣3,1),B、C两点在方程式y=﹣3的图形上,D、E两点在y轴上,则F点到y轴的距离为何?()A.2 B.3 C.4 D.55.平面上有△ACD与△BCE,其中AD与BE相交于P点,如图.若AC=BC,AD=BE,CD=CE,∠ACE=55°,∠BCD=155°,则∠BPD的度数为()A.110°B.125°C.130°D.155°6.如图,在△ABC和△BDE中,点C在边BD上,边AC交边BE于点F.若AC=BD,AB=ED,BC=BE,则∠ACB等于()A.∠EDB B.∠BED C.∠AFB D.2∠ABF7.如图,AB=4,射线BM和AB互相垂直,点D是AB上的一个动点,点E在射线BM上,BE=DB,作EF⊥DE并截取EF=DE,连结AF并延长交射线BM于点C.设BE=x,BC=y,则y关于x的函数解析式是()A.y=﹣B.y=﹣C.y=﹣D.y=﹣8.如图,在四边形ABCD中,AB=AD=6,AB⊥BC,AD⊥CD,∠BAD=60°,点M、N分别在AB、AD边上,若AM:MB=AN:ND=1:2,则tan∠MCN=()A.B.C.D.﹣29.如图,点E在正方形ABCD的对角线AC上,且EC=2AE,直角三角形FEG的两直角边EF、EG分别交BC、DC于点M、N.若正方形ABCD的边长为a,则重叠部分四边形EMCN的面积为()A. a2B. a2C. a2D. a2二、解答题(共21小题)10.如图,已知AB∥DE,AB=DE,AF=CD,∠CEF=90°.(1)若∠ECF=30°,CF=8,求CE的长;(2)求证:△ABF≌△DEC;(3)求证:四边形BCEF是矩形.11.已知△ABC为等边三角形,D为AB边所在的直线上的动点,连接DC,以DC为边在DC两侧作等边△DCE和等边△DCF(点E在DC的右侧或上侧,点F在DC左侧或下侧),连接AE、BF(1)如图1,若点D在AB边上,请你通过观察,测量,猜想线段AE、BF和AB有怎样的数量关系?并证明你的结论;(2)如图2,若点D在AB的延长线上,其他条件不变,线段AE、BF和AB有怎样的数量关系?请直接写出结论(不需要证明);(3)若点D在AB的反向延长线上,其他条件不变,请在图3中画出图形,探究线段AE、BF和AB 有怎样的数量关系,并直接写出结论(不需要证明)12.如图,△ABC与△DCB中,AC与BD交于点E,且∠A=∠D,AB=DC.(1)求证:△ABE≌DCE;(2)当∠AEB=50°,求∠EBC的度数?13.如图,在△ABC中,∠C=90°,AD平分∠CAB,交CB于点D,过点D作DE⊥AB于点E.(1)求证:△ACD≌△AED;(2)若∠B=30°,CD=1,求BD的长.14.如图,点D,E在△ABC的边BC上,AB=AC,BD=CE.求证:AD=AE.15.已知:如图,AD,BC相交于点O,OA=OD,AB∥CD.求证:AB=CD.16.如图,把一个直角三角形ACB(∠ACB=90°)绕着顶点B顺时针旋转60°,使得点C旋转到AB 边上的一点D,点A旋转到点E的位置.F,G分别是BD,BE上的点,BF=BG,延长CF与DG交于点H.(1)求证:CF=DG;(2)求出∠FHG的度数.17.如图,点B、F、C、E在一条直线上,FB=CE,AB∥ED,AC∥FD,求证:AC=DF.18.如图,△ABC和△ADE都是等腰三角形,且∠BAC=90°,∠DAE=90°,B,C,D在同一条直线上.求证:BD=CE.19.如图,已知点B、E、C、F在同一条直线上,BE=CF,AB∥DE,∠A=∠D.求证:AB=DE.20.已知△ABC为等腰直角三角形,∠ACB=90°,点P在BC边上(P不与B、C重合)或点P在△ABC 内部,连接CP、BP,将CP绕点C逆时针旋转90°,得到线段CE;将BP绕点B顺时针旋转90°,得到线段BD,连接ED交AB于点O.(1)如图a,当点P在BC边上时,求证:OA=OB;(2)如图b,当点P在△ABC内部时,①OA=OB是否成立?请说明理由;②直接写出∠BPC为多少度时,AB=DE.21.(1)如图1,在△ABC和△DCE中,AB∥DC,AB=DC,BC=CE,且点B,C,E在一条直线上.求证:∠A=∠D.(2)如图2,在矩形ABCD中,对角线AC,BD相交于点O,AB=4,∠AOD=120°,求AC的长.22.(1)如图,AB平分∠CAD,AC=AD,求证:BC=BD;(2)列方程解应用题把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本,这个班有多少学生?23.已知:如图,D是AC上一点,AB=DA,DE∥AB,∠B=∠DAE.求证:BC=AE.24.【问题提出】学习了三角形全等的判定方法(即“SAS”、“ASA”、“AAS”、“SSS”)和直角三角形全等的判定方法(即“HL”)后,我们继续对“两个三角形满足两边和其中一边的对角对应相等”的情形进行研究.【初步思考】我们不妨将问题用符号语言表示为:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,然后,对∠B进行分类,可分为“∠B是直角、钝角、锐角”三种情况进行探究.【深入探究】第一种情况:当∠B是直角时,△ABC≌△DEF.(1)如图①,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E=90°,根据______,可以知道Rt△ABC≌Rt△DEF.第二种情况:当∠B是钝角时,△ABC≌△DEF.(2)如图②,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是钝角,求证:△ABC≌△DEF.第三种情况:当∠B是锐角时,△ABC和△DEF不一定全等.(3)在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角,请你用尺规在图③中作出△DEF,使△DEF和△ABC不全等.(不写作法,保留作图痕迹)(4)∠B还要满足什么条件,就可以使△ABC≌△DEF?请直接写出结论:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角,若______,则△ABC≌△DEF.25.问题背景:如图1:在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°.E,F分别是BC,CD上的点.且∠EAF=60°.探究图中线段BE,EF,FD之间的数量关系.小王同学探究此问题的方法是,延长FD到点G.使DG=BE.连结AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是______;探索延伸:如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°.E,F分别是BC,CD上的点,且∠EAF=∠BAD,上述结论是否仍然成立,并说明理由;实际应用:如图3,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西30°的A处,舰艇乙在指挥中心南偏东70°的B处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以60海里/小时的速度前进,舰艇乙沿北偏东50°的方向以80海里/小时的速度前进.1.5小时后,指挥中心观测到甲、乙两舰艇分别到达E,F处,且两舰艇之间的夹角为70°,试求此时两舰艇之间的距离.26.如图,在四边形ABCD中,AB=AD,CB=CD,AC与BD相交于O点,OC=OA,若E是CD上任意一点,连接BE交AC于点F,连接DF.(1)证明:△CBF≌△CDF;(2)若AC=2,BD=2,求四边形ABCD的周长;(3)请你添加一个条件,使得∠EFD=∠BAD,并予以证明.27.如图,已知四边形ABCD是平行四边形,点E、B、D、F在同一直线上,且BE=DF.求证:AE=CF.28.(1)如图1,正方形ABCD中,点E,F分别在边BC,CD上,∠EAF=45°,延长CD到点G,使DG=BE,连结EF,AG.求证:EF=FG.(2)如图,等腰直角三角形ABC中,∠BAC=90°,AB=AC,点M,N在边BC上,且∠MAN=45°,若BM=1,CN=3,求MN的长.29.如图,在△ABC中,∠ACB=90°,AC=BC,E为AC边的中点,过点A作AD⊥AB交BE的延长线于点D,CG平分∠ACB交BD于点G,F为AB边上一点,连接CF,且∠ACF=∠CBG.求证:(1)AF=CG;(2)CF=2DE.30.如图,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC+∠EAD=180°,△ABC不动,△ADE绕点A旋转,连接BE、CD,F为BE的中点,连接AF.(1)如图①,当∠BAE=90°时,求证:CD=2AF;(2)当∠BAE≠90°时,(1)的结论是否成立?请结合图②说明理由.第12章全等三角形参考答案一、选择题(共9小题)1.如图,在△ABC中,∠ABC=45°,AC=8cm,F是高AD和BE的交点,则BF的长是()A.4cm B.6cm C.8cm D.9cm【解答】解:∵F是高AD和BE的交点,∴∠ADC=∠ADB=∠AEF=90°,∴∠CAD+∠AFE=90°,∠DBF+∠BFD=90°,∵∠AFE=∠BFD,∴∠CAD=∠FBD,∵∠ADB=90°,∠ABC=45°,∴∠BAD=45°=∠ABD,∴AD=BD,在△DBF和△DAC中∴△DBF≌△DAC(ASA),∴BF=AC=8cm,故选C.2.如图,将正方形OABC放在平面直角坐标系中,O是原点,A的坐标为(1,),则点C的坐标为()A.(﹣,1) B.(﹣1,) C.(,1)D.(﹣,﹣1)【解答】解:如图,过点A作AD⊥x轴于D,过点C作CE⊥x轴于E,∵四边形OABC是正方形,∴OA=OC,∠AOC=90°,∴∠COE+∠AOD=90°,又∵∠OAD+∠AOD=90°,∴∠OAD=∠COE,在△AOD和△OCE中,,∴△AOD≌△OCE(AAS),∴OE=AD=,CE=OD=1,∵点C在第二象限,∴点C的坐标为(﹣,1).故选:A.3.(2014•湖州)在连接A地与B地的线段上有四个不同的点D、G、K、Q,下列四幅图中的实线分别表示某人从A地到B地的不同行进路线(箭头表示行进的方向),则路程最长的行进路线图是()A.B.C.D.【解答】解:A、延长AC、BE交于S,∵∠CAB=∠EDB=45°,∴AS∥ED,则SC∥DE.同理SE∥CD,∴四边形SCDE是平行四边形,∴SE=CD,DE=CS,即走的路线长是:AC+CD+DE+EB=AC+CS+SE+EB=AS+BS;B、延长AF、BH交于S1,作FK∥GH与BH的延长线交于点K,∵∠SAB=∠S1AB=45°,∠SBA=∠S1BA=70°,AB=AB,∴△SAB≌△S1AB,∴AS=AS1,BS=BS1,∵∠FGH=180°﹣70°﹣43°=67°=∠GHB,∴FG∥KH,∵FK∥GH,∴四边形FGHK是平行四边形,∴FK=GH,FG=KH,∴AF+FG+GH+HB=AF+FK+KH+HB,∵FS1+S1K>FK,∴AS+BS>AF+FK+KH+HB,即AC+CD+DE+EB>AF+FG+GH+HB,C、D、同理可证得AI+IK+KM+MB<AS2+BS2<AN+NQ+QP+PB.综上所述,D选项的所走的线路最长.故选:D.4.如图,坐标平面上,△ABC与△DEF全等,其中A、B、C的对应顶点分别为D、E、F,且AB=BC=5.若A点的坐标为(﹣3,1),B、C两点在方程式y=﹣3的图形上,D、E两点在y轴上,则F点到y轴的距离为何?()A.2 B.3 C.4 D.5【解答】解:如图,作AH、CK、FP分别垂直BC、AB、DE于H、K、P.∴∠DPF=∠AKC=∠CHA=90°.∵AB=BC,∴∠BAC=∠BCA.在△AKC和△CHA中,∴△AKC≌△CHA(ASA),∴KC=HA.∵B、C两点在方程式y=﹣3的图形上,且A点的坐标为(﹣3,1),∴AH=4.∴KC=4.∵△ABC≌△DEF,∴∠BAC=∠EDF,AC=DF.在△AKC和△DPF中,,∴△AKC≌△DPF(AAS),∴KC=PF=4.故选:C.5.平面上有△ACD与△BCE,其中AD与BE相交于P点,如图.若AC=BC,AD=BE,CD=CE,∠ACE=55°,∠BCD=155°,则∠BPD的度数为()A.110°B.125°C.130°D.155°【解答】解:在△ACD和△BCE中,,∴△ACD≌△BCE(SSS),∴∠A=∠B,∠BCE=∠ACD,∴∠BCA=∠ECD,∵∠ACE=55°,∠BCD=155°,∴∠BCA+∠ECD=100°,∴∠BCA=∠ECD=50°,∵∠ACE=55°,∴∠ACD=105°∴∠A+∠D=75°,∴∠B+∠D=75°,∵∠BCD=155°,∴∠BPD=360°﹣75°﹣155°=130°,故选:C.6.如图,在△ABC和△BDE中,点C在边BD上,边AC交边BE于点F.若AC=BD,AB=ED,BC=BE,则∠ACB等于()A.∠EDB B.∠BED C.∠AFB D.2∠ABF【解答】解:在△ABC和△DEB中,,∴△ABC≌△DEB (SSS),∴∠ACB=∠DBE.∵∠AFB是△BFC的外角,∴∠ACB+∠DBE=∠AFB,∠ACB=∠AFB,故选:C.7.如图,AB=4,射线BM和AB互相垂直,点D是AB上的一个动点,点E在射线BM上,BE=DB,作EF⊥DE并截取EF=DE,连结AF并延长交射线BM于点C.设BE=x,BC=y,则y关于x的函数解析式是()A.y=﹣B.y=﹣C.y=﹣D.y=﹣【解答】解:作FG⊥BC于G,∵∠DEB+∠FEC=90°,∠DEB+∠BDE=90°;∴∠BDE=∠FEG,在△DBE与△EGF中∴△DBE≌△EGF,∴EG=DB,FG=BE=x,∴EG=DB=2BE=2x,∴GC=y﹣3x,∵FG⊥BC,AB⊥BC,∴FG∥AB,CG:BC=FG:AB,即=,∴y=﹣.故选:A.8.如图,在四边形ABCD中,AB=AD=6,AB⊥BC,AD⊥CD,∠BAD=60°,点M、N分别在AB、AD边上,若AM:MB=AN:ND=1:2,则tan∠MCN=()A.B.C.D.﹣2【解答】解:∵AB=AD=6,AM:MB=AN:ND=1:2,∴AM=AN=2,BM=DN=4,连接MN,连接AC,∵AB⊥BC,AD⊥CD,∠BAD=60°在Rt△ABC与Rt△ADC中,,∴Rt△ABC≌Rt△ADC(HL)∴∠BAC=∠DAC=∠BAD=30°,MC=NC,∴BC=AC,∴AC2=BC2+AB2,即(2BC)2=BC2+AB2,3BC2=AB2,∴BC=2,在Rt△BMC中,CM===2.∵AN=AM,∠MAN=60°,∴△MAN是等边三角形,∴MN=AM=AN=2,过M点作ME⊥CN于E,设NE=x,则CE=2﹣x,∴MN2﹣NE2=MC2﹣EC2,即4﹣x2=(2)2﹣(2﹣x)2,解得:x=,∴EC=2﹣=,∴ME==,∴tan∠MCN==故选:A.9.如图,点E在正方形ABCD的对角线AC上,且EC=2AE,直角三角形FEG的两直角边EF、EG分别交BC、DC于点M、N.若正方形ABCD的边长为a,则重叠部分四边形EMCN的面积为()A. a2B. a2C. a2D. a2【解答】解:过E作EP⊥BC于点P,EQ⊥CD于点Q,∵四边形ABCD 是正方形,∴∠BCD=90°,又∵∠EPM=∠EQN=90°,∴∠PEQ=90°,∴∠PEM+∠MEQ=90°,∵三角形FEG 是直角三角形,∴∠NEF=∠NEQ+∠MEQ=90°,∴∠PEM=∠NEQ ,∵AC 是∠BCD 的角平分线,∠EPC=∠EQC=90°, ∴EP=EQ ,四边形PCQE 是正方形,在△EPM 和△EQN 中,,∴△EPM ≌△EQN (ASA )∴S △EQN =S △EPM ,∴四边形EMCN 的面积等于正方形PCQE 的面积, ∵正方形ABCD 的边长为a ,∴AC=a ,∵EC=2AE ,∴EC=a ,∴EP=PC=a ,∴正方形PCQE 的面积=a ×a=a 2, ∴四边形EMCN 的面积=a 2,故选:D.二、解答题(共21小题)10.如图,已知AB∥DE,AB=DE,AF=CD,∠CEF=90°.(1)若∠ECF=30°,CF=8,求CE的长;(2)求证:△ABF≌△DEC;(3)求证:四边形BCEF是矩形.【解答】(1)解:∵∠CEF=90°.∴cos∠ECF=.∵∠ECF=30°,CF=8.∴CF=CF•cos30°=8×=4;(2)证明:∵AB∥DE,∴∠A=∠D,∵在△ABF和△DEC中∴△ABF≌△DEC (SAS);(3)证明:由(2)可知:△ABF≌△DEC,∴BF=CE,∠AFB=∠DCE,∵∠AFB+∠BFC=180°,∠DCE+∠ECF=180°,∴∠BFC=∠ECF,∴BF∥EC,∴四边形BCEF是平行四边形,∵∠CEF=90°,∴四边形BCEF是矩形.11.已知△ABC为等边三角形,D为AB边所在的直线上的动点,连接DC,以DC为边在DC两侧作等边△DCE和等边△DCF(点E在DC的右侧或上侧,点F在DC左侧或下侧),连接AE、BF(1)如图1,若点D在AB边上,请你通过观察,测量,猜想线段AE、BF和AB有怎样的数量关系?并证明你的结论;(2)如图2,若点D在AB的延长线上,其他条件不变,线段AE、BF和AB有怎样的数量关系?请直接写出结论(不需要证明);(3)若点D在AB的反向延长线上,其他条件不变,请在图3中画出图形,探究线段AE、BF和AB 有怎样的数量关系,并直接写出结论(不需要证明)【解答】解:(1)AE+BF=AB,如图1,∵△ABC和△DCF是等边三角形,∴CA=CB,CD=CF,∠ACB=∠DCF=60°.∴∠ACD=∠BCF,在△ACD和△BCF中∴△ACD≌△BCF(SAS)∴AD=BF同理:△CBD≌△CAE(SAS)∴BD=AE∴AE+BF=BD+AD=AB;(2)BF﹣AE=AB,如图2,易证△CBF≌△CAD和△CBD≌△CAE,∴AD=BF,BD=AE,∴BF﹣AE=AD﹣BD=AB;(3)AE﹣BF=AB,如图3,易证△CBF≌△CAD和△CBD≌△CAE,∴AD=BF,BD=AE,∴BF﹣AE=AD﹣BD=AB.12.(2013•舟山)如图,△ABC与△DCB中,AC与BD交于点E,且∠A=∠D,AB=DC.(1)求证:△ABE≌DCE;(2)当∠AEB=50°,求∠EBC的度数?【解答】(1)证明:∵在△ABE和△DCE中∴△ABE≌△DCE(AAS);(2)解:∵△ABE≌△DCE,∴BE=EC,∴∠EBC=∠ECB,∵∠EBC+∠ECB=∠AEB=50°,∴∠EBC=25°.13.如图,在△ABC中,∠C=90°,AD平分∠CAB,交CB于点D,过点D作DE⊥AB于点E.(1)求证:△ACD≌△AED;(2)若∠B=30°,CD=1,求BD的长.【解答】(1)证明:∵AD平分∠CAB,DE⊥AB,∠C=90°,∴CD=ED,∠DEA=∠C=90°,∵在Rt△ACD和Rt△AED中∴Rt△ACD≌Rt△AED(HL);(2)解:∵DC=DE=1,DE⊥AB,∴∠DEB=90°,∵∠B=30°,∴BD=2DE=2.14.如图,点D,E在△ABC的边BC上,AB=AC,BD=CE.求证:AD=AE.【解答】证明:∵AB=AC,∴∠B=∠C,在△ABD与△ACE中,∵,∴△ABD≌△ACE(SAS),∴AD=AE.15.已知:如图,AD,BC相交于点O,OA=OD,AB∥CD.求证:AB=CD.【解答】证明:∵AB∥CD,∴∠B=∠C,∠A=∠D,∵在△AOB和△DOC中,,∴△AOB≌△DOC(AAS),∴AB=CD.16.如图,把一个直角三角形ACB(∠ACB=90°)绕着顶点B顺时针旋转60°,使得点C旋转到AB 边上的一点D,点A旋转到点E的位置.F,G分别是BD,BE上的点,BF=BG,延长CF与DG交于点H.(1)求证:CF=DG;(2)求出∠FHG的度数.【解答】(1)证明:∵在△CBF和△DBG中,,∴△CBF≌△DBG(SAS),∴CF=DG;(2)解:∵△CBF≌△DBG,∴∠BCF=∠BDG,又∵∠CFB=∠DFH,又∵△BCF中,∠CBF=180°﹣∠BCF﹣∠CFB,△DHF中,∠DHF=180°﹣∠BDG﹣∠DFH,∴∠DHF=∠CBF=60°,∴∠FHG=180°﹣∠DHF=180°﹣60°=120°.17.如图,点B、F、C、E在一条直线上,FB=CE,AB∥ED,AC∥FD,求证:AC=DF.【解答】证明:∵FB=CE,∴FB+FC=CE+FC,∴BC=EF,∵AB∥ED,AC∥FD,∴∠B=∠E,∠ACB=∠DFE,∵在△ABC和△DEF中,,∴△ABC≌△DEF(ASA),∴AC=DF.18.如图,△ABC和△ADE都是等腰三角形,且∠BAC=90°,∠DAE=90°,B,C,D在同一条直线上.求证:BD=CE.【解答】证明:∵△ABC和△ADE都是等腰直角三角形∴AD=AE,AB=AC,又∵∠EAC=90°+∠CAD,∠DAB=90°+∠CAD,∴∠DAB=∠EAC,∵在△ADB和△AEC中∴△ADB≌△AEC(SAS),∴BD=CE.19.如图,已知点B、E、C、F在同一条直线上,BE=CF,AB∥DE,∠A=∠D.求证:AB=DE.【解答】证明:∵BE=CF,∴BC=EF.∵AB∥DE,∴∠B=∠DEF.在△ABC与△DEF中,,∴△ABC≌△DEF(AAS),∴AB=DE.20.已知△ABC为等腰直角三角形,∠ACB=90°,点P在BC边上(P不与B、C重合)或点P在△ABC 内部,连接CP、BP,将CP绕点C逆时针旋转90°,得到线段CE;将BP绕点B顺时针旋转90°,得到线段BD,连接ED交AB于点O.(1)如图a,当点P在BC边上时,求证:OA=OB;(2)如图b,当点P在△ABC内部时,①OA=OB是否成立?请说明理由;②直接写出∠BPC为多少度时,AB=DE.【解答】(1)证明:∵△ABC为等腰直角三角形,∴CA=CB,∠A=∠ABC=45°,由旋转可知:CP=CE,BP=BD,∴CA﹣CE=CB﹣CP,即AE=BP,∴AE=BD.又∵∠CBD=90°,∴∠OBD=45°,在△AEO和△BDO中,,∴△AEO≌△BDO(AAS),∴OA=OB;(2)成立,理由如下:连接AE,则△AEC≌△BCP,∴AE=BP,∠CAE=∠BPC,∵BP=BD,∴BD=AE,∵∠OAE=45°+∠CAE,∠OBD=90°﹣∠OBP=90°﹣(45°﹣∠BPC)=45°+∠PBC,∴∠OAE=∠OBD,在△AEO和△BDO中,,∴△AEO≌△BDO(AAS),∴OA=OB,②当∠BPC=135°时,AB=DE.理由如下:解法一:当AB=DE时,由①知OA=OB,∴OA=OB=OE=OD.设∠PCB=α,由旋转可知,∠ACE=α.连接OC,则OC=OA=OB,∴OC=OE,∴∠DEC=∠OCE=45°+α.设∠PBC=β,则∠ABP=45°﹣β,∠OBD=90°﹣∠ABP=45°+β.∵OB=OD,∴∠D=∠OBD=45°+β.在四边形BCED中,∠DEC+∠D+∠DBC+∠BCE=360°,即:(45°+α)+(45°+β)+(90°+β)+(90°+α)=360°,解得:α+β=45°,∴∠BPC=180°﹣(α+β)=135°.解法二(本溪赵老师提供,更为简洁):当AB=DE时,四边形AEBD为矩形则∠DBE=90°=∠DBP,∴点P落在线段BE上.∵△ECP为等腰直角三角形,∴∠EPC=45°,∴∠BPC=180°﹣∠EPC=135°.21.(1)如图1,在△ABC和△DCE中,AB∥DC,AB=DC,BC=CE,且点B,C,E在一条直线上.求证:∠A=∠D.(2)如图2,在矩形ABCD中,对角线AC,BD相交于点O,AB=4,∠AOD=120°,求AC的长.【解答】(1)证明:∵AB∥DC,∴∠B=∠DCE,在△ABC和△DCE中,∴△ABC≌△DCE(SAS),∴∠A=∠D;(2)解:∵四边形ABCD是矩形,∴AO=BO=CO=DO,∵∠AOD=120°,∴∠AOB=60°,∴△AOB是等边三角形,∴AO=AB=4,∴AC=2AO=8.22.(1)如图,AB平分∠CAD,AC=AD,求证:BC=BD;(2)列方程解应用题把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本,这个班有多少学生?【解答】(1)证明:∵AB平分∠CAD,∴∠CAB=∠DAB,在△ABC和△ABD中∴△ABC≌△ABD(SAS),∴BC=BD.(2)解:设这个班有x名学生,根据题意得:3x+20=4x﹣25,解得:x=45,答:这个班有45名学生.23.已知:如图,D是AC上一点,AB=DA,DE∥AB,∠B=∠DAE.求证:BC=AE.【解答】证明:∵DE∥AB,∴∠CAB=∠ADE,∵在△ABC和△DAE中,,∴△ABC≌△DAE(ASA),∴BC=AE.24.【问题提出】学习了三角形全等的判定方法(即“SAS”、“ASA”、“AAS”、“SSS”)和直角三角形全等的判定方法(即“HL”)后,我们继续对“两个三角形满足两边和其中一边的对角对应相等”的情形进行研究.【初步思考】我们不妨将问题用符号语言表示为:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,然后,对∠B 进行分类,可分为“∠B是直角、钝角、锐角”三种情况进行探究.【深入探究】第一种情况:当∠B是直角时,△ABC≌△DEF.(1)如图①,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E=90°,根据HL ,可以知道Rt△ABC≌Rt△DEF.第二种情况:当∠B是钝角时,△ABC≌△DEF.(2)如图②,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是钝角,求证:△ABC≌△DEF.第三种情况:当∠B是锐角时,△ABC和△DEF不一定全等.(3)在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角,请你用尺规在图③中作出△DEF,使△DEF和△ABC不全等.(不写作法,保留作图痕迹)(4)∠B还要满足什么条件,就可以使△ABC≌△DEF?请直接写出结论:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角,若∠B≥∠A ,则△ABC≌△DEF.【解答】(1)解:HL;(2)证明:如图,过点C作CG⊥AB交AB的延长线于G,过点F作FH⊥DE交DE的延长线于H,∵∠ABC=∠DEF,且∠ABC、∠DEF都是钝角,∴180°﹣∠ABC=180°﹣∠DEF,即∠CBG=∠FEH,在△CBG和△FEH中,,∴△CBG≌△FEH(AAS),∴CG=FH,在Rt△ACG和Rt△DFH中,,∴Rt△ACG≌Rt△DFH(HL),∴∠A=∠D,在△ABC和△DEF中,,∴△ABC≌△DEF(AAS);(3)解:如图,△DEF和△ABC不全等;(4)解:若∠B≥∠A,则△ABC≌△DEF.故答案为:(1)HL;(4)∠B≥∠A.25.(2014•德州)问题背景:如图1:在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°.E,F分别是BC,CD上的点.且∠EAF=60°.探究图中线段BE,EF,FD之间的数量关系.小王同学探究此问题的方法是,延长FD到点G.使DG=BE.连结AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是EF=BE+DF ;探索延伸:如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°.E,F分别是BC,CD上的点,且∠EAF=∠BAD,上述结论是否仍然成立,并说明理由;实际应用:如图3,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西30°的A处,舰艇乙在指挥中心南偏东70°的B处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以60海里/小时的速度前进,舰艇乙沿北偏东50°的方向以80海里/小时的速度前进.1.5小时后,指挥中心观测到甲、乙两舰艇分别到达E,F处,且两舰艇之间的夹角为70°,试求此时两舰艇之间的距离.【解答】解:问题背景:EF=BE+DF;探索延伸:EF=BE+DF仍然成立.证明如下:如图,延长FD到G,使DG=BE,连接AG,∵∠B+∠ADC=180°,∠ADC+∠ADG=180°,∴∠B=∠ADG,在△ABE和△ADG中,,∴△ABE≌△ADG(SAS),∴AE=AG,∠BAE=∠DAG,∵∠EAF=∠BAD,∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD﹣∠EAF=∠EAF,∴∠EAF=∠GAF,在△AEF和△GAF中,,∴△AEF≌△GAF(SAS),∴EF=FG,∵FG=DG+DF=BE+DF,∴EF=BE+DF;实际应用:如图,连接EF,延长AE、BF相交于点C,∵∠AOB=30°+90°+(90°﹣70°)=140°,∠EOF=70°,∴∠EOF=∠AOB,又∵OA=OB,∠OAC+∠OBC=(90°﹣30°)+(70°+50°)=180°,∴符合探索延伸中的条件,∴结论EF=AE+BF成立,即EF=1.5×(60+80)=210海里.答:此时两舰艇之间的距离是210海里.26.如图,在四边形ABCD中,AB=AD,CB=CD,AC与BD相交于O点,OC=OA,若E是CD上任意一点,连接BE交AC于点F,连接DF.(1)证明:△CBF≌△CDF;(2)若AC=2,BD=2,求四边形ABCD的周长;(3)请你添加一个条件,使得∠EFD=∠BAD,并予以证明.【解答】(1)证明:在△ABC和△ADC中,,∴△ABC≌△ADC(SSS),∴∠BCA=∠DCA,在△CBF和△CDF中,,∴△CBF≌△CDF(SAS),(2)解:∵△ABC≌△ADC,∴△ABC和△ADC是轴对称图形,∴OB=OD,BD⊥AC,∵OA=OC,∴四边形ABCD是菱形,∴AB=BC=CD=DA,∵AC=2,BD=2,∴OA=,OB=1,∴AB===2,∴四边形ABCD的周长=4AB=4×2=8.(3)当EB⊥CD时,即E为过B且和CD垂直时垂线的垂足,∠EFD=∠BCD,理由:∵四边形ABCD为菱形,∴BC=CD,∠BCF=∠DCF,∠BCD=∠BAD,∵△BCF≌△DCF,∴∠CBF=∠CDF,∵BE⊥CD,∴∠BEC=∠DEF=90°,∴∠BCD+∠CBF=90°,∠EFD+∠CDF=90°,∴∠EFD=∠BAD.27.如图,已知四边形ABCD是平行四边形,点E、B、D、F在同一直线上,且BE=DF.求证:AE=CF.【解答】证明:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴∠ABD=∠CDB,∴180°﹣∠ABD=180°﹣∠CDB,即∠ABE=∠CDF,在△ABE和△CDF中,,∴△ABE≌△CDF(SAS),∴AE=CF.28.(1)如图1,正方形ABCD中,点E,F分别在边BC,CD上,∠EAF=45°,延长CD到点G,使DG=BE,连结EF,AG.求证:EF=FG.(2)如图,等腰直角三角形ABC中,∠BAC=90°,AB=AC,点M,N在边BC上,且∠MAN=45°,若BM=1,CN=3,求MN的长.【解答】(1)证明:在正方形ABCD中,∠ABE=∠ADG,AD=AB,在△ABE和△ADG中,∴△ABE≌△ADG(SAS),∴∠BAE=∠DAG,AE=AG,∴∠EAG=90°,在△FAE和△GAF中,,∴△FAE≌△GAF(SAS),∴EF=FG;(2)解:如图,过点C作CE⊥BC,垂足为点C,截取CE,使CE=BM.连接AE、EN.∵AB=AC,∠BAC=90°,∴∠B=∠ACB=45°.∵CE⊥BC,∴∠ACE=∠B=45°.在△ABM和△ACE中,∴△ABM≌△ACE(SAS).∴AM=AE,∠BAM=∠CAE.∵∠BAC=90°,∠MAN=45°,∴∠BAM+∠CAN=45°.于是,由∠BAM=∠CAE,得∠MAN=∠EAN=45°.在△MAN和△EAN中,∴△MAN≌△EAN(SAS).∴MN=EN.在Rt△ENC中,由勾股定理,得EN2=EC2+NC2.∴MN2=BM2+NC2.∵BM=1,CN=3,∴MN2=12+32,∴MN=29.如图,在△ABC中,∠ACB=90°,AC=BC,E为AC边的中点,过点A作AD⊥AB交BE的延长线于点D,CG平分∠ACB交BD于点G,F为AB边上一点,连接CF,且∠ACF=∠CBG.求证:(1)AF=CG;(2)CF=2DE.【解答】证明:(1)∵∠ACB=90°,CG平分∠ACB,∴∠ACG=∠BCG=45°,又∵∠ACB=90°,AC=BC,∴∠CAF=∠CBF=45°,∴∠CAF=∠BCG,在△AFC与△CGB中,,∴△AFC≌△CBG(ASA),∴AF=CG;(2)延长CG交AB于H,∵CG平分∠ACB,AC=BC,∴CH⊥AB,CH平分AB,∵AD⊥AB,∴AD∥CG,∴∠D=∠EGC,在△ADE与△CGE中,,∴△ADE≌△CGE(AAS),∴DE=GE,即DG=2DE,∵AD∥CG,CH平分AB,∴DG=BG,∵△AFC≌△CBG,∴CF=BG,∴CF=2DE.30.如图,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC+∠EAD=180°,△ABC不动,△ADE绕点A旋转,连接BE、CD,F为BE的中点,连接AF.(1)如图①,当∠BAE=90°时,求证:CD=2AF;(2)当∠BAE≠90°时,(1)的结论是否成立?请结合图②说明理由.【解答】(1)证明:如图①,∵∠BAC+∠EAD=180°,∠BAE=90°,∴∠DAC=90°,在△ABE与△ACD中∴△ABE≌△ACD(SAS),∴CD=BE,∵在Rt△ABE中,F为BE的中点,∴BE=2AF,∴CD=2AF.(2)成立,证明:如图②,延长EA交BC于G,在AG上截取AH=AD,∵∠BAC+∠EAD=180°,∴∠EAB+∠DAC=180°,∵∠EAB+∠BAH=180°,∴∠DAC=∠BAH,在△ABH与△ACD中,∴△ABH≌△ACD(SAS)∴BH=DC,∵AD=AE,AH=AD,∴AE=AH,∵EF=FB,∴BH=2AF,∴CD=2AF.作者留言:您好!非常感谢!您浏览到此文档。
人教版八年级上册数学第十二章单元练习卷含答案全等三角形一、填空题1.已知,如图,AD=AC,BD=BC,O为AB上一点,那么,图中共有对全等三角形.2.如图,△ABC≌△ADE,则,AB= ,∠E=∠.若∠BAE=120°,∠BAD=40°,则∠BAC= °.3.把两根钢条AA、BB的中点连在一起,可以做成一个测量工件内槽宽的工具(卡钳),如图,若测得AB=5厘米,则槽宽为米.4.如图,∠A=∠D,AB=CD,则△≌△,根据是.5.如图,在△ABC和△ABD中,∠C=∠D=90,若利用“AAS”证明△ABC≌△ABD,则需要加条件或;若利用“HL”证明△ABC≌△ABD,则需要加条件,或.6.△ABC≌△DEF,且△ABC的周长为12,若AB=3,EF=4,则AC= .7.工人师傅砌门时,如图所示,常用木条EF固定矩形木框ABCD,使其不变形,这是利用,用菱形做活动铁门是利用四边形的。
8.如图5,在ΔAOC与ΔBOC中,若AO=OB,∠1=∠2,加上条件,则有ΔAOC≌ΔBOC。
9.如图6,AE=BF,AD∥BC,AD=BC,则有ΔADF≌,且DF=10.如图7,在ΔABC与ΔDEF中,如果AB=DE,BE=CF,只要加上∠ =∠或∥,就可证明ΔABC≌ΔDEF。
二、选择题11.如图,BE=CF,AB=DE,添加下列哪些条件可以推证△ABC≌△DFE ()(A)BC=EF (B)∠A=∠D (C)AC∥DF (D)AC=DF12.已知,如图,AC=BC,AD=BD,下列结论,不正确的是()(A)CO=DO(B)AO=BO (C)AB⊥BD (D)△ACO≌△BCO13.在△ABC内部取一点P使得点P到△ABC的三边距离相等,则点P应是△ABC的哪三条线交点.()(A)高(B)角平分线(C)中线(D)垂直平分线已知14.下列结论正确的是()(A)有两个锐角相等的两个直角三角形全等;(B)一条斜边对应相等的两个直角三角形全等;(C)顶角和底边对应相等的两个等腰三角形全等;(D)两个等边三角形全等.15.下列条件能判定△ABC≌△DEF的一组是()(A)∠A=∠D,∠C=∠F,AC=DF(B)AB=DE,BC=EF,∠A=∠D(C)∠A=∠D,∠B=∠E,∠C=∠F(D)AB=DE,△ABC的周长等于△DEF的周长16.已知,如图,△ABC中,AB=AC,AD是角平分线,BE=CF,则下列说法正确的有几个()(1)AD平分∠EDF;(2)△EBD≌△FCD;(3)BD=CD;(4)AD⊥BC.(A)1个(B)2个(C)3个(D)4个三、解答题:17.如图,AB=DF,AC=DE,BE=FC,问:ΔABC与ΔDEF全等吗?AB与DF平行吗?请说明你的理由。
章节测试题1.【题文】如图所示,PA=PB,∠1+∠2=180°.求证:OP平分∠AOB.【答案】见解答.【分析】过P作PE⊥OA于E,PF⊥OB于F,证△PEA≌△PFB,得出PE=PF,再根据角平分线判定即可得出.【解答】解:过点P作PE⊥AO,PF⊥BO,垂足分别为E,F,则∠AEP=∠BFP=90°.∵∠1+∠2=180°,∠2+∠PBF=180°,∴∠1=∠PBF.在△APE与△BPF中,∠1=∠PBF,∠AEP=∠BFP,PA=PB,∴△APE≌△BPF,∴PE=PF.∴点P在∠AOB的平分线上,即OP平分∠AOB.2.【题文】如图所示,∠1=∠2,AE⊥OB于点E,BD⊥OA于点D,AE与BD相交于点C.求证:AC=BC.【答案】见解答.【分析】先根据角平分线的性质可以得到CD=CE,然后再证明Rt△ACD≌Rt△BCE 便可得答案.【解答】解:∵∠1=∠2,BD⊥OA,AE⊥OB,∴CD=CE.∵CD⊥OA,CE⊥OB,∴∠ADC=∠BEC=90°.在△ADC与△BEC中,∠ADC=∠BEC,CD=CE,∠3=∠4.∴△ADC≌△BEC.∴AC=BC.3.【题文】三角形中的角平分线的性质与一个角的平分线性质相同.如题:如图,△ABC中,AD是∠BAC的角平分线,且BD=CD,DE,DF分别垂直于AB,AC,垂足为E,F.请你结合条件认真研究,然后写出三个正确的结论.【答案】如:(1)△BDE≌△CDF,(2)BE=CF,(3)∠B=∠C.【分析】此题答案不唯一,如先利用角平分线的性质,可得DE=DF;在Rt△BDE 和Rt△CDF中,再结合已知条件,可证出Rt△BDE≌Rt△CDF,那么就有BE=CF,∠B=∠C.【解答】解:答案不唯一,如:(1)△BDE≌△CDF;(2)BE=CF;(3)∠B=∠C.证明:∵AD是∠BAC的平分线,DE⊥AB,DF⊥AC,∴DE=DF,又∵BD=CD,∴Rt△BDE≌Rt△CDF,∴BE=CF,∠B=∠C.4.【题文】如图,BD是∠ABC的平分线,DE⊥AB于E,S△ABC=90,AB=18,BC=12,求DE的长.【答案】6【分析】作BC边上的垂线,DE长等于ABC,BC边的高.【解答】解:如图,过点D作DF⊥BC于F,∵BD是∠ABC的平分线,DE⊥AB,∴DE=DF,∴S△ABC=AB•DE+BC•DF=90,即×18•DE+×12•DE=90,解得DE=6.5.【题文】如图,△ABC中,∠C=90゜,AD是∠BAC的平分线,DE⊥AB于E,F 在AC上,且BE=CF,求证:(1)DE=DC;(2)BD=DF.【答案】见解答.【分析】(1)利用角平分线的性质.(2)证明△BDE≌△FDC.【解答】证明:(1)∵∠C=90°,AD是∠BAC的平分线,DE⊥AB,∴DE=DC,(2)在△BDE和△FDC中,BE=CF,∠C=∠DEB=90°,DE=DC,∴△BDE≌△FDC(SAS),∴BD=DF.6.【题文】如图,∠AOB=30度,OC平分∠AOB,P为OC上一点,PD∥OA交OB 于D,PE垂直OA于E,若OD=4cm,求PE的长.【答案】2【分析】本题考查了角平分线的性质、平行线的性质.【解答】如图,过P作PF⊥OB于F,∵∠AOB=30°,OC平分∠AOB,∴∠AOC=∠BOC=15°,∵PD∥OA,∴∠DPO=∠AOP=15°,∴PD=OD=4cm,∵∠AOB=30°,PD∥OA,∴∠BDP=30°,∴在Rt△PDF中,PF=PD=2cm,∵OC为角平分线,PE⊥OA,PF⊥OB,∴PE=PF,∴PE=PF=2cm.7.【题文】如图,在∠AOB内找一点P,使得点P到∠AOB的两边距离相等,且使点P到点C的距离最短(尺规作图,请保留作图痕迹).【答案】见解答.【分析】先利用角平分线的性质求作满足到∠AOB的两边距离相等的点所在直线,再根据直线外一点到直线的垂线段距离最短,求出满足条件的点P.【解答】如图,以O为圆心,单位长度为半径画圆弧,交OA,OB分别于两点,再以圆弧与OA,OB两个交点为圆心,相同单位长度为半径画圆弧,两圆弧相交于一点,连接O与圆弧的交点,即为∠AOB的角平分线过点C作角平分线的垂线,垂足为点P,即P为所求作点.8.【题文】如图所示,在△ABC中,∠A=90°,DE⊥BC,BD平分∠ABC,AD=6cm,BC=15cm,求△BDC的面积.【答案】△BDC的面积=45cm2.【分析】根据角平分线的性质得到DE=AD=6cm,根据三角形的面积公式计算即可.【解答】∵BD平分∠ABC,∠A=90°,DE⊥BC,∴DE=AD=6cm,∴△BDC的面积=×BC×DE=×15×6=45cm2.9.【题文】如图,O为码头,A,B两个灯塔与码头的距离相等,OA,OB为海岸线,一轮船从码头开出,计划沿∠AOB的平分线航行,航行途中,测得轮船与灯塔A,B的距离相等,此时轮船有没有偏离航线?画出图形并说明理由.【答案】没有偏离航线【分析】只要证明轮船与O点的连线平分∠AOB就说明轮船没有偏离航线,也就是证明∠AOP=∠BOP,证角相等,常常通过把角放到两个三角形中,利用题目条件证明这两个三角形全等,从而得出对应角相等.【解答】此时轮船没有偏离航线.理由:由题意知:OA=OB,OP=OP,PA=PB∴△OAP≌△OBP(SSS)∴∠AOP=∠BOP.∴此时轮船没有偏离航线.10.【题文】已知,如图,AB=AC,DE=DF,DE⊥AB于点E,DF⊥AC于点F,求证:DB=DC.【答案】见解答【分析】由角平分线的判定得出∠EAD=∠FAD,再由边角边证得△ACD≌△ABD,进而得到DC=DB.【解答】证明:连接AD,∵DE=DF,DE⊥AE,DF⊥AF,∴∠EAD=∠FAD,,在△ACD和△ABD中,,∴△ACD≌△ABD(SAS),∴DC=DB.11.【题文】已知:如图,在△ABC中,∠A=30°,∠B=60°.(1)作∠B的平分线BD,交AC于点D;作AB的中点E(要求:尺规作图,保留作图痕迹)(2)连接DE,求证:△ADE≌△BDE.【答案】(1)作图见解答;(2)证明见解答.【分析】(1)①以B为圆心,任意长为半径画弧,交AB、BC于F、N,再以F、N为圆心,大于FN长为半径画弧,两弧交于点M,过B、M作射线,交AC 于D,线段BD就是∠B的平分线.②分别以A、B为圆心,大于AB长为半径画弧,两弧交于X、Y,过X、Y作直线与AB交于点E,点E就是AB的中点.(2)首先根据角平分线的性质可得∠ABD的度数,从而得到∠ABD=∠A,根据等角对等边可得AD=BD,再加上条件AE=BE,即可利用SAS证明△ADE≌△BDE.【解答】解:(1)作图如下:(2)证明:∵∠ABD=×60°=30°,∠A=30°,∴∠ABD=∠A.∴AD=BD.又∵AE=BE,∴△ADE≌△BDE(SAS).12.【题文】如图,在△ABC中,BD=DC,∠1=∠2,求证:AD是∠BAC的平分线.【答案】证明见解答.【分析】根据BD=DC得出∠DBC=∠DCB,进而利用全等三角形的判定和性质证明即可.【解答】∵BD=DC,∴∠DBC=∠DCB,∵∠1=∠2,∴∠ABC=∠ACB,∴AB=AC,在△ABD与△ACD中,∴△ABD≌△ACD(SAS),∴∠BAD=∠CAD,∴AD是∠BAC的平分线.13.【题文】如图,在△ABC中,∠A=90°,BD是角平分线,DE⊥BC于点E,若AD=3,BC=4,求△BDC的面积.【答案】6.【分析】根据角平分线的性质定理可得DE=AD=3,根据三角形的面积公式即可求解.【解答】∵∠A=90°∴DA⊥AB又BD是角平分线,且DE⊥BC于点E∴DE=AD=3,∴易得△BDC的面积为6.14.【答题】如图,在△ABC中,AD平分∠BAC,DE⊥AB于E,DF⊥AC于F,则下列结论中错误的是()A. DE=DFB. AD上任意一点到E,F两点的距离相等C. AE=AFD. BD=DC【答案】D【分析】根据角的平分线的性质解答即可.【解答】A.正确,角平分线上的点到角的两边的距离相等;B.正确,角平分线上的点到角的两边的距离相等;C.正确,∵DE⊥AB,DF⊥AC,AD=AD,DE=DF,∴△AED≌△AFD(HL),∴AE=AF;D错误.选D.15.【答题】如图,BE⊥AC于E,CF⊥AB于F,AE=AF,BE与CF交于点D,则:①△ABE≌△ACF;②△BDF≌△CDE;③点D在∠BAC的平分线上.以上结论正确的是()A. ①B. ②C. ①②D. ①②③【答案】D【分析】本题考查全等三角形的判定和性质以及角平分线的性质,在判定三角形全等时,关键是选择恰当的判定条件.【解答】∵BE⊥AC,CF⊥AB,∴∠BEA=∠CFA=90°,在△ABE与△ACF中,∵,∴△ABE≌△ACF(AAS)①正确,∴∠B=∠C,AB=AC(全等三角形对应角和对应边相等),∴BF=CE,在△BDF与△CDE中,∵,∴△BDF≌△CDE(AAS)②正确,∴DF=DE(全等三角形对应边相等),∴点D在∠BAC的平分线上(到角的两边距离相等的点,在这个角的平分线上)③正确;故①②③都正确.选D.16.【答题】如图,在△ABC中,P为BC上一点,PR⊥AB,垂足为R,PS⊥AC,垂足为S,∠CAP=∠APQ,PR=PS,下面的结论:①AS=AR;②QP∥AR;③△BRP≌△CSP.其中正确的是()A. ①②B. ②③C. ①③D. ①②③【答案】A【分析】连接AP,由已知条件利用角平行线的判定可得∠1=∠2,由三角形全等的判定得△APR≌△APS,得AS=AR,由已知可得∠2=∠3,得到∠1=∠3,得QP∥AR,答案可得.【解答】连接AP,∵PR=PS,PR⊥AB,垂足为R,PS⊥AC,垂足为S,∴AP是∠BAC的平分线,∠1=∠2,∴△APR≌△APS,∴AS=AR,又AQ=PQ,∴∠2=∠3,又∠1=∠2,∴∠1=∠3,∴QP∥AR,BC只是过点P,没有办法证明△BRP≌△CSP,③不成立.选A.17.【答题】如图,在△ABC中,∠C=90°,AD平分∠BAC,BC=10cm,BD=7cm,则点D到AB的距离是______.【答案】3【分析】利用角平分线的性质作答即可.【解答】解:∵BC=10,BD=7,∴CD=3.由角平分线的性质,得点D到AB的距离等于CD=3.故答案为3.18.【答题】如图所示,在直线l上找一点,使这点到∠AOB的两边OA,OB的距离相等,则这个点是______.【答案】∠AOB的平分线与直线l的交点【分析】本题考查角平分线的性质:角平分线上的点到角的两边距离相等.【解答】根据角平分线上的点到角的两边距离相等,∴取角平分线与直线l的交点.故答案为∠AOB的平分线与直线l的交点.19.【答题】如图所示,在△ABC中,∠C=90°,AD平分∠BAC,BC=20cm,DB=17cm,则D点到AB的距离是______ cm.【答案】3【分析】利用角平分线的性质作答即可.【解答】∵BC=20cm,DB=17cm,∴DC=BC-DB=20-17=3(cm),∵AD平分∠BAC,DE⊥AB,∠C=90°,∴DE=DC=3(cm).故答案为3.20.【答题】如图所示,已知O为∠BAC的平分线与∠ACD的平分线的交点,OE⊥AC于E,若OE=2,则点O到AB的距离与点O到CD的距离的和是______.【答案】4【分析】利用角平分线的性质作答即可.【解答】如图作OF⊥AB于F,OG⊥CD于G,∵O为∠BAC的平分线与∠ACD的平分线的交点,OE⊥AC,∴OF=OE=2,OG=OE=2,则点O到AB的距离与点O到CD的距离的和为OF+OG=2+2=4.故答案为4.。
第十二章 全等三角形 单元检测题 (17)一、单选题1.如图,△ABC ≌△DEF ,点A 与点D 对应,点C 与点F 对应,则图中相等的线段有( )A .1组B .2组C .3组D .4组2.如图,CD ⊥AB ,BE ⊥AC ,垂足分别为D ,E ,CD ,BE 相交于点O ,BE =CD ,则图中全等的三角形共有( )A .0对B .1对C .2对D .3对3.如图,用“AAS ”直接判定△ACD ≌△ABE ,需要添加的条件是( )A .∠ADC =∠AEB ,∠C =∠BB .∠ADC =∠AEB , CD =BEC .AC =AB ,AD =AED .AC =AB ,∠C =∠B4.如图,B 、E 、C 、F 在同一直线上,BE CF =,AB DE =,添加下列哪个条件,可以证明ABC △≌DEF ( )A .BC =EFB .∠A =∠DC .AC ∥DFD .AC =DF5.下列语句:①全等三角形的周长相等.②面积相等的三角形是全等三角形.③若成轴对称的两个图形中的对称线段所在直线相交,则这个交点一定在对称轴上.④全等三角形的所有边相等.其中正确的有( )A .0个B .1个C .2个D .3个 6.在ABC △内部取一点P ,使得点P 到ABC △的的三边距离相等,则点P 是ABC △的( ).A .三条高的交点B .三条角平分线的交点C .三条中线的交点D .三边的垂直平凡线的交点7.已知如图,直线AC ,BD 相交于点O ,且OA OD =,添加一个条件后,仍不能判定ABO DCO △≌△的是( ).A .BO CO =B .A D ∠=∠C .AB DC =D .B C ∠=∠8.如图,AD 是ABC 的角平分线,DE AB ⊥于E ,已知ABC 的面积为28.6AC =,4DE =,则AB 的长为( )A .4B .6C .8D .10 9.如图,△ABC 中,E 、F 分别在AB 、AC 上,DE ⊥DF ,D 是BC 的中点,则BE+CF 与EF 的大小关系是( )A .BE+CF >EFB .BE+CF =EFC .BE+CF <EFD .无法确定10.如图,在△ABC 中,AB =AC ,D 、E 分别为BC 、AC 的中点,F 为AD 上一点,当EF ⊥AC 时,图中的全等三角形的对数是( )A .1对B .2对C .3对D .4对11.如图,AB CD ∥,BP 和CP 分别平分ABC ∠和DCB ∠,AD 过点P ,且与AB 垂直。
若点P 到BC 的距离是4,则AD 的长为( )A .8B .6C .4D .212.如图,90E F ∠=∠=︒,B C ∠=∠,AE AF =,结论:①EM FN =;②CD DN =;③FAN EAM ∠=∠;④CAN ABM ∆≅∆.其中正确的有( )A .①②④B .①③④C .②③④D .①②③④二、填空题13.如图,在△ABC 中,AB=AC ,∠ABC、∠ACB 的平分线BD ,CE 相交于O 点,且BD 交AC 于点D ,CE 交AB 于点E ,某同学分析图形后得出以下结论,上述结论一定正确的是______(填代号).①△BCD≌△CBE;②△BAD≌△BCD;③△BDA≌△CEA;④△BOE≌△COD;⑤△ACE≌△BCE.14.如图,在33⨯的正方形网格中,则1234∠+∠+∠+∠=__________.15.如图示,∠ACB =90°,AC =BC ,BE ⊥CE 于E ,AD ⊥CE 于D ,AD =8,DE =5,则△CDB 的面积等于__.16.已知等腰梯形的高为5cm,两底之差为10cm ,则它的锐角为____度.17.如图,AC 平分BAD ∠,CE AB ⊥,CF AD ⊥,CB CD =,7AB =,10AD =,则DF =______.18.如图,Rt △ABC 中,∠BCA=90°,AC=BC ,点D 是BC 的中点,点F 在线段AD 上,DF=CD ,BF 交CA 于E 点,过点A 作DA 的垂线交CF 的延长线于点G ,下列结论:①CF 2=EF•BF ;②AG=2DC ;③AE=EF ;④AF •EC=EF •EB .其中正确的结论有________三、解答题19.已知:如图,在四边形ABCD 中,180, ,A C DE BC AD CD ∠+∠=︒⊥=.请你按下列要求作图(要求用尺规作图,不写作法,保留作图痕迹).(1)过点D 作AB 边上的高DF ;(2)求证:点D 在ABC ∠的平分线上.20.(2017观成周考)在△ABC 中,AB =AC ,点D 是直线BC 上的一点(不与B ,C 重合),以AD 为一边在AD 的右侧作△ADE ,使AD =AE ,∠DAE =∠BAC ,连接CE ,设∠BAC =α,∠BCE =β.(1)如图,当点D 在线段BC 上移动,则α和β之间有怎样的数量关系?请说明理由.(2)当点D 在直线BC 上移动,则α和β之间有怎样的数量关系?请说明理由.21.已知:如图,在中,,,是过点的一条直线,于,于,求证:.22.问题探究 (1)如图①,点E 、F 分别在正方形ABCD 的边BC 、CD 上,∠EAF=45°,则线段BE 、EF 、FD 之间的数量关系为 ;(2)如图②,在△ADC 中,AD=2,CD=4,∠ADC 是一个不固定的角,以AC 为边向△ADC 的另一侧作等边△ABC ,连接BD ,则BD 的长是否存在最大值?若存在,请求出其最大值;若不存在,请说明理由;问题解决 (3)如图③,在四边形ABCD 中,AB=AD ,∠BAD=60°,BC=42,若BD ⊥CD ,垂足为点D ,则对角线AC 的长是否存在最大值?若存在,请求出其最大值;若不存在,请说明理由.23.已知α∠和线段a ,用尺规作一个△ABC ,使A α∠=∠,2B α∠=∠,且这两内角的夹边等于a (不要求写作法,保留作图痕迹).24.已知:线段a ,b ,∠α.求作:△ABC ,使BC =a ,AC =b ,∠ABC =∠α25.如图,∠C=∠CAM=90°,AC=8,BC=4,P,Q两点分别在线段AC和射线AM上运动,且PQ=A B.若△ABC和△PQA全等,求AP的长度.26.两个大小不同的等腰直角三角板如图①放置,图②是由它抽象出的几何图形,点B,C,E在同一条直线上,连接CD.求证:CD⊥BE.【答案与解析】一、单选题1.D解析:D根据全等三角形的对应边相等解答;)∵△ABC≌△DEF,∴AB=DE,AC=DF ,BC=EF ,AF=DC ;故选D.【点睛】本题考查的是全等三角形的性质,掌握全等三角形的对应边相等、全等三角形的对应角相等是解题的关键.2.C解析:C根据已知条件结合三角形全等的判定可得答案. 解:CD ⊥AB,BE ⊥AC,所以∠ADO=∠BDO=∠AEO=∠CEO=90o .又知∠A=∠A, BE =CD.在△ACD 与△ABE 中,{A AADC AEB BE CD∠=∠∠=∠=,∴△ACD ≌△ABE ;∴AD=AE,AB=AC ,∴BD=CE ,在△BDO 与△CEO 中,{DOB COEBDP CEO BD CE∠=∠∠=∠=∴△BDO ≌△CEO ,综上所述, 共2对全等三角形.故本题正确答案为C.【点睛】本题主要考查角角边定理判断三角形全等.3.B解析:B .试题分析:如图,△ACD 和△ABE 有公共角∠A ,用AAS 来判断△ACD ≌△ABE ,需要添加的条件应该是另一组对应角和一组对应边(注意不能是夹边就可以),故答案选B . 考点:全等三角形的判定.4.D解析:DBE CF =,可得BC=EF,AB DE =,易得添加AC=DF ,构成SSS 判定.故选D.5.C解析:C根据全等的性质对①进行判断;根据全等的判定方法对②进行判断;根据轴对称性质对③进行判断;根据全等的性质对④进行判断.全等三角形的周长相等,所以①正确;面积相等的三角形不一定是全等三角形,所以②错误;若成轴对称的两个图形中的对称线段所在直线相交,则这个交点一定在对称轴上,所以③正确;全等三角形的对应边相等,所以④错误.故选C .【点睛】本题考查了全等图形和轴对称的性质,熟悉掌握是关键.6.B解析:B如图:PD PF PE ==.故选B .7.C解析:C根据全等三角形判定,添加BO CO =或A D ∠=∠或B C ∠=∠可根据SAS 或ASA 或AAS 得到ABO DCO △≌△.添加BO CO =或A D ∠=∠或B C ∠=∠可根据SAS 或ASA 或AAS 得到ABO DCO △≌△,添加AB DC =属SSA ,不能证ABO DCO △≌△.故选:C【点睛】考核知识点:全等三角形判定选择.熟记全等三角形的全部判定是关键.8.C解析:C作DF ⊥AC 于F ,根据角平分线的性质求出DF ,根据三角形的面积公式计算即可. 解:作DF ⊥AC 于F ,∵AD 是△ABC 的角平分线,DE ⊥AB ,DF ⊥AC ,∴DF=DE=4, ∴112228AB DE AC DF 即112246428AB 解得,AB=8,故选:C .【点睛】本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.9.A解析:A可延长ED 至P ,使DP =DE ,连接FP ,连接CP ,将BE 转化为PC ,EF 转化为FP ,进而在△PCF 中即可得出结论.延长ED 至P ,使DP =DE ,连接FP ,CP ,∵D 是BC 的中点,∴BD =CD ,在△BDE 和△CDP 中,DP DE EDB CDPBD CD =⎧⎪∠=∠⎨⎪=⎩∴△BDE≌△CDP(SAS),∴BE=CP,∵DE⊥DF,DE=DP,∴EF=FP,在△CFP中,CP+CF=BE+CF>FP=EF.故选:A.【点睛】此题主要考查了全等三角形的判定与性质以及三角形三边关系等知识,根据题意构造出△DCP是解题关键.10.C解析:C根据全等三角形的判定定理进行判断.解:①∵AB=AC,D为BC中点,∴CD=BD,∠BDA=∠CDA=90°,在△ABD和△ACD中,AB AC AD AD BD CD=⎧⎪=⎨⎪=⎩,∴△ABD≌△ACD(SSS);②∵EF垂直平分AC,∴FA=FC,AE=CE,在△AFE和△CFE中,FA FC FE FE AE CE=⎧⎪=⎨⎪=⎩,∴△AFE≌△CFE(SSS);③在△BFD和△CFD中,BD CDBDF CDF FD FD=⎧⎪∠=∠⎨⎪=⎩,∴△BFD≌△CFD(SAS);③在△AFC和△AFB中,AC AB FA FA FC FB=⎧⎪=⎨⎪=⎩,∴△AFC≌△AFB(SSS).故选:C.【点睛】本题主要考查全等三角形的判定,掌握全等三角形的判定方法是解题的关键. 11.A解析:A过点P作PE⊥BC于E,根据角平分线上的点到角的两边的距离相等可得PA=PE,PD=PE,那么PE=PA=PD,又PE=4,进而求出AD的长.过点P作PE⊥BC于E.∵AB∥CD,PA⊥AB,∴PD⊥CD.∵BP和CP分别平分∠ABC和∠DCB,∴PA=PE,PD=PE,∴PE=PA=PD.∵PE=4,∴PA=PD=4,∴AD=PA+PD=8.故选A.【点睛】本题考查了角平分线上的点到角的两边的距离相等的性质,熟记性质并作辅助线是解题的关键.12.B解析:B只要证明△ABE≌△ACF,△ANC≌△AMB,利用全等三角形的性质即可一一判断.在△ABE和△ACF中,∵90E FB CAE AF︒⎧∠=∠=⎪∠=∠⎨⎪=⎩,∴△ABE≌△ACF(AAS),∴∠BAE=∠CAF,BE=CF,AB=AC,∴∠BAE﹣∠BAC=∠CAF﹣∠BAC,即∠EAM=∠FAN,故③正确;在△ACN和△ABM中,B CAB ACCAN BAM∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ACN≌△ABM(ASA),故④正确;∵△ACN≌△ABM,∴CN=BM.∵CF=BE,∴EM=FN,故①正确;CD与DN的大小无法确定,故②错误.故选B.【点睛】本题考查了全等三角形的判定与性质,熟记三角形全等的判定方法并准确识图,理清图中各角度之间的关系是解题的关键.二、填空题13.①③④解析:①③④∴∠EBC=∠DCB,又∵BD平分∠ABC,∠CE平分∠ACB,∴∠DBC=∠ECB,∵∠BEC=180∘−∠EBC−∠ECB,∠CDB=180∘−∠DCB−∠DBC,∴∠BEC=∠CDB.在△EBC和△DCB中,EBC DCBBEC CDB BC CB∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△EBC≌△DCB(AAS).即①成立;在△BAD和△BCD中,仅有CBD ABD BD BD∠=∠⎧⎨=⎩,不满足全等的条件,即②不一定成立;∵△EBC≌△DCB,∴BD=CE.在△BDA和△CEA中,BD CEA A AB AC=⎧⎪∠=∠⎨⎪=⎩,∴△BDA≌△CEA(SAS).即③成立;∵△BDA≌△CEA,∴AD=AE,∵AB=AC,∴BE=CD.在△BOE和△COD中,BEO CDOEOB DOC BE CD∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△BOE≌△COD(AAS).即④成立;在△ACE和△BCE中,仅有ACE BCE CE CE∠=∠⎧⎨=⎩,不满足全等的条件,即⑤不一定成立.综上可知:一定成立的有①③④.故答案为①③④.点睛:本题考查了全等三角形的判定和性质、角平分线的定义及等腰三角形的性质,解题的关键是找出各角边关系,利用全等三角形的判定定理去寻找全等三角形.14.180解析:180根据图形和正方形的性质可知∠1+∠4=90°,∠2+∠3=90°再把它们相加可得∠1+∠2+∠3+∠4的度数.观察图形可知∠1与∠4所在的两个直角三角形全等,∠1与∠4互余,即∠1+∠4=90°,∠2与∠3所在的两个直角三角形全等,∠2与∠3互余,即∠2+∠3=90°,∴∠1+∠2+∠3+∠4=(∠1+∠4)+(∠2+∠3)=180°.故答案是:180°【点睛】此题结合全等三角形的性质考查了余角,注意本题中∠1+∠4=90°,∠2+∠3=90°是解题的关键.15.9 2 .根据AAS可以证明△ACD≌△CBE,则BE=CD,CE=AD,从而求解.∵∠ACB=90°,∴∠BCE+∠ECA=90°,∵AD⊥CE于D,∴∠CAD+∠ECA=90°,∴∠CAD=∠BCE,又∵∠ADC=∠CEB=90°,AC=BC,∴△ACD≌△CBE,∴BE=CD,CE=AD=8,∴BE=CD=CE﹣DE=8﹣5=3,∴S△CDB=12CD•BE=12×3×3=92.故答案为:92.【点睛】本题主要考查了全等三角形的判定和性质、三角形的面积计算等知识,解题的关键是正确寻找全等三角形解决问题.16.45°解析:45°如图,作AE⊥BC、DF⊥BC,根据等腰题型的性质可推得△ABE≌△DCF,从而得到BE=CF,又因为AEFD为矩形,则AD=EF,因此BE=FC=(BC-AD)÷2=5,而AE=DF=5,所以△ABE、△DCF为等腰直角三角形,进而求得锐角度数.如图,作AE ⊥BC 、DF ⊥BC ,∵四边形ABCD 是等腰梯形∴AB=CD ,∠ABE=∠DCF ,AE=DF∴△ABE ≌△DCF∴BE=CF∵BC-AD=10,AD=EF∴BE+FC=10∴BE=FC=5∵AE=5∴△ABE 、△DCF 为等腰直角三角形∴∠B=∠C=45°故答案为:45°【点睛】本题考点涉及等腰梯形的性质、三角形全等的判定及性质、等腰直角三角形的性质,根据题意画出图形,作出辅助线以及熟练掌握相关性质定理是解题关键,17.5解析:5先根据题意得出∠EAC=∠FAC ,∠E=∠F=90°,CE=CF ,再证明△ACE ≌△ACF 和RT △CEB ≌RT △CFD 得出AE=AF 以及BE=DF ,进而利用线段之间的数量关系求解即可得出答案.解:∵AC 平分BAD ∠且CE AB ⊥,CF AD ⊥∴∠EAC=∠FAC ,∠E=∠F=90°,CE=CF在△ACE 和△ACF 中90EAC FAC E F AC AC ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩∴△ACE ≌△ACF∴AE=AF又在RT △CEB 和RT △CFD 中CE CF CB CD =⎧⎨=⎩RT △CEB ≌RT △CFD (HL )∴BE=DF设DF=x ,则BE=x又7AB =,10AD =∴AE=7+x=AFAD=7+x+x=10解得:x=1.5即DF=1.5故答案为:1.5.【点睛】本题主要考查了全等三角形的判定与性质以及角平分线的性质,需熟练掌握全等三角形的判定与性质.18.①②④解析:①②④.根据等边对等角的性质求出∠DCF=∠DFC,然后求出DF=DB ,根据等边对等角求出∠DBF=∠DFB,然后求出∠BFC 是直角,根据直角三角形的性质求出△BCF 和△CEF 相似,根据相似三角形对应边成比例列式整理即可得到①正确;根据互余关系求出∠G=∠ACG,再根据等角对等边的性质求出AG=AC ,然后求出AG=BC ,然后利用“角角边”证明△BCE 和△AGF 全等,根据全等三角形对应边相等可得AG=BC ,从而判断②正确;根据角的互余关系可以求出∠EAF+∠ADC=90°,∠AFE+∠DFC=90°再根据∠ADC 的正切值为2可知∠ADC≠60°,然后求出∠FDC≠∠DFC,然后求出∠EAF≠∠EFA,从而得到AE≠EF,判断出③错误;根据根据直角三角形的性质求出△CEF 和△BCE 相似,根据相似三角形的对应边成比例列式求出EC2=EF•EB,再根据全等三角形对应边相等可得AF=CE ,从而判断出④正确.解:∵DF=CD,∴∠DCF=∠DFC,∵AC=BC,点D 是BC 的中点,∴DF=DB=DC,∴∠DBF=∠DFB,又∵∠DBF+∠DFB+∠DFC+∠DCF=180°, ∴∠BFC=12×180°=90°, ∴CF⊥BE,∴Rt△BCF∽Rt△CEF, ∴CF EF =BF CF, ∴CF2=EF•BF,故①正确;∵AG⊥AD,∴∠G+∠AFG=90°, 又∵∠ACG+∠DCF=90°,∠DCF=∠DFC=∠AFG,∴∠G=∠ACG,∴AG=AC,∵AC=BC,∴AG=BC,又∵∠CBE=∠ACG,∴∠CBE=∠G,在△BCE 和△AGF 中,∵∠GAF=∠BCE=90°,∠CBE=∠G,AG=BC ,,∴△BCE≌△AGF(AAS ),∴AG=BC,∵点D 是BC 的中点,∴BC=2DC,∴AG=2DC,故②正确;根据角的互余关系,∠EAF+∠ADC=90°,∠AFE+∠DFC=90°,∵tan∠ADC=2,∴∠ADC≠60°,∵∠DCF=∠DFC,∴∠FDC≠∠DFC,∴∠EAF≠∠EFA,∴AE≠EF,故③错误;∵∠ACB=90°,CF⊥BE,∴△CEF∽△BCE, ∴EC EB =EF EC, ∴EC2=EF•EB,∵△BCE≌△AGF(已证),∴AF=EC,∴AF•EC=EF•EB,故④正确;所以,正确的结论有①②④.“点睛”本题考查了相似三角形的判定与性质,全等三角形的判定与性质,等腰直角三角形的性质,根据等角对等边以及等边对等角的性质求出AG=AC ,然后证明△BCE 和△AGF 全等是证明的关键,也是本题的难点.三、解答题19.(1)如图所示,见解析;线段DF 即为所求;(2) 见解析.(1)直接利用过一点作已知直线的垂线做法进而得出答案;(2)利用AAS 可证明DAF DCE ≌,得到DE DF ,利用平分线的判定即可得结论.(1)如图所示,线段DF 即为所求.(2)由作图可得,90DFA ∠=︒.180BAD C ∠+∠=︒,且180BAD DAF ∠+∠=︒,C DAF ∴∠=∠.,90AD CD DEC DFA =∠=∠=︒,DAF DCE ∴≌,∴DE DF =,∴点D 在ABC ∠的平分线上.【点睛】此题主要考查了过一点作已知直线的垂线以及角平分线的判定,正确掌握角平分线的判定是解题关键.20.(1)α+β=180°,理由见解析;(2)当点D 在线段BC 上移动或点D 在BC 延长线上移动时,α+β=180°;当点D 在CB 延长线上移动时,α=β,理由见解析.(1)利用SAS 证出△DAB ≌△EAC ,可得∠B=∠ACE ,然后根据三角形的内角和定理即可求出结论;(2)根据点D 的位置分类讨论,分别画出对应的图形,根据全等三角形的判定及性质、三角形的内角和定理和三角形外角的性质即可得出结论.解:(1)α+β=180°,理由如下∵∠DAE =∠BAC∴∠DAE -∠DAC=∠BAC -∠DAC∴∠EAC=∠DAB在△DAB 和△EAC 中AB AC DAB EACAD AE =⎧⎪∠=∠⎨⎪=⎩∴△DAB ≌△EAC∴∠B=∠ACE∵∠BAC +∠B +∠ACB=180°∴α+∠ACE +∠ACB=180°∴α+∠BCE=180°∴α+β=180°(2)①当点D 在线段BC 上移动时,由(1)知α+β=180°;②当点D 在BC 延长线上移动时,如下图所示∵∠DAE =∠BAC∴∠DAE +∠DAC=∠BAC +∠DAC∴∠EAC=∠DAB在△DAB 和△EAC 中AB AC DAB EACAD AE =⎧⎪∠=∠⎨⎪=⎩∴△DAB ≌△EAC∴∠B=∠ACE ∵∠BAC +∠B +∠ACB=180°∴α+∠ACE +∠ACB=180°∴α+∠BCE=180°∴α+β=180°③当点D 在CB 延长线上移动时,如下图所示,连接BE∵∠DAE =∠BAC∴∠DAE -∠BAE=∠BAC -∠BAE∴∠DAB=∠EAC在△DAB 和△EAC 中AB AC DAB EACAD AE =⎧⎪∠=∠⎨⎪=⎩∴△DAB ≌△EAC∴∠ABD=∠ACE ∵∠ABD=∠BAC +∠BCA ,∠ACE=∠BCA +∠BCE∴∠BAC +∠BCA=∠BCA +∠BCE∴∠BAC=∠BCE∴α=β.综上:当点D 在线段BC 上移动或点D 在BC 延长线上移动时,α+β=180°;当点D 在CB 延长线上移动时,α=β.【点睛】此题考查的是全等三角形判定及性质、三角形的内角和定理和三角形外角的性质,掌握利用SAS 判定两个三角形全等和分类讨论的数学思想是解决此题的关键.21.先根据同角的余角相等证得,再结合可证得≌,从而可以证得结论. 试题分析:∵∴∵ ∴ ∴在和中 ∵∴≌ ∴. 考点:全等三角形的判定和性质点评:全等三角形的判定和性质是初中数学的重点,贯穿于整个初中数学的学习,是中考中比较常见的知识点,一般难度不大,需熟练掌握.22.(1)BE+DF=EF ;(2)存在,BD 的最大值为6;(3)存在,AC 的最大值为26. (1)作辅助线,首先证明△ABE ≌△ADG ,再证明△AEF ≌△AEG ,进而得到EF=FG 问题即可解决;(2)将△ABD 绕着点B 顺时针旋转60°,得到△BCE ,连接DE ,由旋转可得,CE=AD=2,BD=BE ,∠DBE=60°,可得DE=BD ,根据DE <DC+CE ,则当D 、C 、E 三点共线时,DE 存在最大值,问题即可解决;(3)以BC 为边作等边三角形BCE ,过点E 作EF ⊥BC 于点F ,连接DE ,由旋转的性质得△DBE 是等边三角形,则DE=AC ,根据在等边三角形BCE 中,EF ⊥BC ,可求出BF ,EF ,以BC为直径作⊙F,则点D在⊙F上,连接DF,可求出DF,则AC=DE≤DF+EF,代入数值即可解决问题.(1)如图①,延长CD至G,使得DG=BE,∵正方形ABCD中,AB=AD,∠B=∠AFG=90°,∴△ABE≌△ADG,∴AE=AG,∠BAE=∠DAG,∵∠EAF=45°,∠BAD=90°,∴∠BAE+∠DAF=45°,∴∠DAG+∠DAF=45°,即∠GAF=∠EAF,又∵AF=AF,∴△AEF≌△AEG,∴EF=GF=DG+DF=BE+DF,故答案为:BE+DF=EF;(2)存在.在等边三角形ABC中,AB=BC,∠ABC=60°,如图②,将△ABD绕着点B顺时针旋转60°,得到△BCE,连接DE.由旋转可得,CE=AD=2,BD=BE,∠DBE=60°,∴△DBE是等边三角形,∴DE=BD,∴在△DCE中,DE<DC+CE=4+2=6,∴当D、C、E三点共线时,DE存在最大值,且最大值为6,∴BD的最大值为6;(3)存在.如图③,以BC为边作等边三角形BCE,过点E作EF⊥BC于点F,连接DE,∵AB=BD,∠ABC=∠DBE,BC=BE,∴△ABC≌△DBE,∴DE=AC,∵在等边三角形BCE中,EF⊥BC,∴BF=BC=2,∴EF=BF=×2=2,以BC为直径作⊙F,则点D在⊙F上,连接DF,∴DF=BC=×4=2,∴A C=DE≤DF+EF=2+2,即AC的最大值为2+2.【点睛】本题考查了全等三角形的判定与性质以及旋转的性质,解题的关键是熟练的掌握全等三角形的判定与性质以及旋转的性质.23.如图所示,见解析.根据已知∠α和线段a,分别画∠CAB=∠α;画AB=a,画∠ABC=2∠α,即可得出答案.解:如图所示:画∠CAB=∠α;画AB=a,画∠ABC=2∠α,∴△ABC即是所求.【点睛】此题主要考查了画一个角等于已知角以及由已知线段画未知线段,正确画出一角等于已知角是解决问题的关键.24.见解析先作∠MBN=α,再在BN上截取BC=a,然后以C为圆心,b为半径画弧交BM于A或A′,则,△ABC和△A′BC为所作.解:如图,△ABC和△A′BC为所作.【点睛】此题主要考查尺规作图,解题的关键是熟知尺规作角的方法.25.4或8试题分析:分△ABC≌△PQA和△ABC≌△QPA两种情况求AP的长.试题解析:当△ABC≌△PQA时,AP=CA=8;当△ABC≌△QPA时,AP=CB=4.26.见解析试题分析:首先根据等腰三角形的性质得到AB=AC,AD=AE,∠BAC+∠CAE=∠DAE+∠CAE,进而可以推出∠BAE=∠CAD;根据上述分析结合全等三角形的判定定理SAS即可得到△ABE≌△ACD,则∠ABE=∠ACD=45°,再结合∠ACB=45°,即可求出∠BCD的度数,至此本题不难解答.:证明:∵△ABC与△AED均为等腰直角三角形,∴AB=AC,AE=AD,∠BAC=∠EAD=90°.∴∠BAC+∠CAE=∠EAD+∠CAE.即∠BAE=∠CAD,在△ABE与△ACD中,∵AB=AC ,∠BAE=∠CAD,AE=AD,∴△ABE≌△ACD.∵△ABE≌△ACD,∴∠ACD=∠ABE=45°.又∵∠ACB=45°,∴∠BCD=∠ACB+∠ACD=90°.∴DC⊥BE.点睛:本题考查全等三角形的判定与性质及等腰三角形的性质,灵活选择全等三角形的判定方法和等腰三角形的性质是解答本题的关键.。