第九章应力状态分析与强度理论
- 格式:doc
- 大小:3.42 MB
- 文档页数:21
第九章 应力、应变分析、强度理论一、是非题9-1、单元体最大正应力面上的剪应力恒等于零。
( )9-2、单元体最大剪应力面上的正应力恒等于零。
( )9-3、依照剪应力互等定理,一单元体中两个平面上的剪应力数值相等,符号相反,则这两平面必定相互垂直。
( )9-4、 只要构件横截面上的轴力N=0,则该横截面正应力处处为零。
( )9-5、 梁受横力弯曲时,其横截面上各点处的主应力必定是σ1≥0,σ3≤0。
( )9-6、 等截面圆杆受纯扭转时,杆内任一点处只有剪应力,而无正应力。
( )9-7、若受力构件中一点处,某方向上的线应变为零,则该方向上的正应力必为零。
( )9-8、若受力钢质构件中的一点处,某相互垂直方向的剪应变为零,则该方向上的剪应力必为零。
( ) 9-9、若各向同性材料单元体的三个正应力σx >σy >σz ,则对应的三个线应变也有εx >εy >εz 。
( ) 9-10、 各向同性单元体的三个主应变为ε1≠0,ε2≠0,ε3=0,若(1)、当ε1>0,则必有σ1>0;( )(2)、当ε1>ε2,则必有σ1>σ2;( )(3)、当ε1>ε2>0,则()()21max 12εεμτ-+=E 。
( ) 9-11、各向同性材料在三向均匀压缩或拉伸时,其形状改变比能恒等于零。
( )二、选择题9-12、单元体应力状态如图9-1所示,由x 轴至σ1方向的夹角为( )。
A 、+13.5°;B 、-76.5°;C 、+76.5°;D 、-13.5°。
9-13、 若已知σ1=5MP a ,则另一个主应力为( )。
A 、σ2=-85MP a ;B 、σ3=-85MP a ;C 、σ2=75MP a ;D 、σ3=-75MP a 。
9-14、 三种应力状态分别如图9-2a 、b 、c 所示,则三者间的关系为( )。
A 、完全等价;B 、完全不等价;C 、(b )和(c )等价;D 、(a )和(c )等价。
第九章 强度理论1.图示应力状态,用第三强度理论校核时,其相当应力为:(A )213τσγ=; (B )=3γστ;(C )=3γστ213; (D )=3γσ2τ;正确答案是 。
2和许用拉应力的关系为:(A )[τ] = [σ]; (B )[τ] =[σ] / 2 ;(C )[τ] = [σ] / 213; (D )[τ] = [σ] / 3 ;正确答案是 。
3.塑性材料的下列应力状态中,那一种最易发生剪切破坏:45.第三强度理论和第四强度理论的相当应力分别为3γσ 及4γσ ,对于纯剪应力状态,恒有3γσ / 4γσ= 。
6.按第三强度理论计算图示单元体的相当应力3γσ= 。
7.图示①、②、③为三个平面应力状态的应力圆,试画出各应力圆所对应的主平面微元体上的应力。
8.图示为承受气体压力p 的封闭薄壁圆筒,平均直径为D ,壁厚t ,气体压强p 均为已知,用第三强度理论校核筒壁强度的相当应力3γσ= 。
9.单元体如图,已知αττσ42−==xy y 。
证明:2/3/=y x σσ ;6/7/=x σσα。
τx10.证明线弹性材料的泊松比μ满足关系式:0<μ<0.511.图(a )、(b )表示同一材料的两个单元体。
材料的屈服极限s σ= 275 MPa 。
试根据第三强度理论求两个单元体同时进入屈服极限时拉应力σ 与剪应力τ的值。
若σ> τ。
(a) (b)12.图示受扭圆轴的d = 30 mm ,材料的弹性模量 ,v =0.3 ,屈服极限MPa E 5101.2×=S σ= 240MPa ,实验测得a b 方向的应变为 0002.0=ε 。
试按第三强度理论确定设计该轴时采用的安全系数。
13.从低碳钢零件中某点处取出一单元体,其应力状态如图所示,试按第三、四强度理论计算单元体的相当应力。
单元体上的应力为60=ασ,80−=βσ,(°+=90αβ),40−=ατ (单位:MPa 。
材料力学应力状态分析和强度理论材料力学是一门研究物质内部各个部分之间的相互作用关系的科学。
在材料力学中,应力状态分析和强度理论是非常重要的概念和方法,用来描述和分析材料的力学行为和变形性能。
材料的应力状态是指在外力作用下,物体内部各个部分所受到的力的分布情况。
应力有三个分量:法向应力、剪应力和旋转应力。
法向应力是垂直于物体表面的作用力,剪应力是平行于物体表面的作用力,旋转应力则是物体受到扭转力产生的应力分量。
应力状态的描述可以用应力矢量来表示。
应力状态分析的目的是确定材料内部各个部分的应力分布情况,进而推导出物体的变形和破坏行为。
常用的应力状态分析方法有平面应力问题、平面应变问题和三维应力问题。
平面应力问题是指在一个平面上的应变为零,而垂直于该平面的应力不为零;平面应变问题是指在一个平面上的变形为零,而垂直于该平面的应力不为零;三维应力问题则是指在空间中3个方向的应力都不为零。
强度理论是指根据材料的内部应力状态来评估其抗拉强度、抗压强度和抗剪强度等,以判断材料是否能够承受外力而不发生破坏。
常见的强度理论有最大正应力理论、最大剪应力理论和最大扭转应力理论。
最大正应力理论是指在材料的任何一个点,其法向应力都不能超过材料的抗拉强度;最大剪应力理论则是指剪应力不能超过材料的抗剪强度;最大扭转应力理论则是指旋转应力不能超过材料的极限扭转强度。
实际应用中,强度理论通常与材料的断裂理论结合起来,以评估材料的破坏行为。
材料断裂的主要原因是应力超过了材料的强度极限,从而导致材料的破坏。
为了提高材料的强度和抗拉性能,可以通过选择合适的材料、改变材料的结构和制造工艺等方法来实现。
综上所述,材料力学应力状态分析和强度理论是描述和分析材料力学行为和变形性能的重要理论和方法。
通过深入研究应力状态、应力分析和强度理论,可以为材料的设计和制造提供指导和支持,从而提高材料的强度和抗拉性能。