新版湘教版2020年九年级数学上册单元清七检测内容期末测试一
- 格式:doc
- 大小:194.84 KB
- 文档页数:6
湘教版九年级上册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、如图,在△ABC中,点D在BC边上,连接AD,点G在线段AD上,GE∥BD,且交AB于点E,GF∥AC,且交CD于点F,则下列结论一定正确的是()A. =B. =C. =D. =2、如图,平行四边形AOBC中,∠AOB=60°,AO=8,AC=15,反比例函数y =(x>0)图象经过点A,与BC交于点D,则的值为()A. B. C. D.3、如图,菱形的顶点分别在反比例函数和的图象上,若,则()A. B.3 C. D.4、已知x1, x2是方程x2﹣3x﹣2=0的两根,则x12+x22的值为()A.5B.10C.11D.135、如图,且则=()A.2︰ 1B.1︰3C.1︰8D.1︰96、已知点在反比例函数(a为常数)的图象上,则为的大小关系是()A. B. C. D.7、如图,已知点A、B分别在反比例函数y= (x>0),y=﹣(x>0)的图象上,且OA⊥OB,则的值为()A. B.2 C. D.48、已知2是关于x的方程3x2﹣2a=0的一个解,则a的值是()A.3B.4C.5D.69、一元二次方程(x+6)2=16可转化为两个一元一次方程,其中一个一元一次方程是x+6=4,则另一个一元一次方程是()A.x-6=-4B.x-6=4C.x+6=4D.x+6=-410、图中两个四边形是位似图形,它们的位似中心是()A.点MB.点NC.点OD.点P11、若=2,则=()A. B. C. D.212、点,点,在反比例函数的图象上,且,则()A. B. C. D.不能确定13、二次函数y=ax2+bx+c的图象如图所示,则一次函数y=ax+b与反比例函数y=的大致图象是( )A. B. C. D.14、已知点(x1,y1),(x2,y2)是反比例函数y=图象上的两点,且0<x1<x2,则y1,y2的大小关系是()A.0<y1<y2B.0<y2<y1C. y1<y2<0D. y2<y<0115、在Rt△ABC中,∠C=90°,∠B=25°,AB=5,则BC的长为()A.5sin25°B.5tan65°C.5cos25°D.5tan25°二、填空题(共10题,共计30分)16、如图,△ABC内接于⊙O,∠CAB=30°,∠CBA=45°,CD⊥AB于点D,若⊙O的半径为2,则CD的长为________。
2020年湘教版九年级数学上册期末试题及答案一、单选题(共10题;共30分)1.下列方程中,是一元二次方程的为()A. x2+3x=0B. 2x+y=3C. 1x2−x=0 D. x(x2+2)=02.若x1、x2是一元二次方程x2+2x﹣3=0的二个根,则x1•x2的值是()A. 2B. -2C. 3D. -33.下列条件中,能判定两个等腰三角形相似的是()A. 都含有一个30°的内角B. 都含有一个45°的内角C. 都含有一个60°的内角D. 都含有一个80°的内角4.如图,在△ABC中,DE∥BC,AD=1,AB=3,DE=2,则BC的长是()A. 2B. 4C. 6D. 85.在Rt△ABC中,∠C=90°,AB=6,AC=b,下列选项中一定正确的是()A. b=6sinAB. b=6cosAC. b=6tanAD. b=6cotA6.如图,两条宽度均为40m的国际公路相交成α角,那么这两条公路在相交处的公共部分(图中阴影部分)的路面面积是().A. 1600sinαm2 B. 1600cosαm2 C. 1600sinα(m2) D. 600cosα(m2)7.如图反映的是某中学八(3)班学生外出乘车、步行、骑车的人数直方图和扇形分布图,则下列说法错误的是()A. 八(3)班外出步行的有8人B. 八(3)班外出的共有40人C. 则扇形统计图中,步行人数所占圆心角度数为82°D. 若该校八年级外出的学生共有500人,那么估计全年级外出骑车的约有150人8.若函数y=m+2x的图象在其象限内y的值随x值的增大而增大,则m的取值范围是()A. m>-2B. m<-2C. m>2D. m<29.不解方程判断下列方程中无实数根的是( )A. -x2=2x-1B. 4x2+4x+54=0 C. √2x2-x-√3=0 D. (x+2)(x-3)==-510.在△ABC和△A1B1C1中,有下列条件:①ABA1B1=BCB1C1② BCB1C1=ACA1C1③∠A=∠A1④∠B=∠B1⑤∠C=∠C1,如果从中任取两个条件组成一组,那么能判断△ABC∽△A1B1C1的有( )A. 4组B. 5组C. 6组D. 7组二、填空题(共10题;共30分)11.一元二次方程x2+3x=0的解是________.12.当m=________时,关于x的方程是一元二次方程;13.已知2x=3y(y≠0),那么x+yy=________.14.点(a﹣1,y1)、(a+1,y2)在反比例函数y= kx(k>0)的图象上,若y1<y2,则a 的范围是________.15.近年来,我国持续大面积的雾霾天气让环保和健康问题成为焦点,为进一步普及环保和健康知识,我市某校举行了“建设宜居扬州,关注环境保护”的知识竞赛,某班学生的成绩统计如下:则该班学生成绩的中位数是________.16.在开展“全民阅读”活动中,某校为了解全校1500名学生课外阅读的情况,随机调查了50名学生一周的课外阅读时间,并绘制成如图所示的条形统计图.根据图中数据,估计该校1500名学生一周的课外阅读时间不少于7小时的人数是________.17.已知△ABC∽△DEF,且相似比为3:4,S△ABC=12cm2,则S△DEF=________cm2.18.如图所示,点E是平行四边形ABCD的边BC延长线上一点,连接AE,交CD于点F,连接BF.写出图中任意一对相似三角形:________.19.一次函数y=3x﹣1与反比例函数y= 2的图象交点的个数为________.x20.如图,Rt△ABC的直角边BC在x轴正半轴上,点D为斜边AC上一点,AD=2CD,DB的延(k>0)的图象经过点A,若S△BCE=2,则k=________.长线交y轴于点E,函数y= kx三、解答题(共8题;共60分)21.如图所示的网格中,每个小方格都是边长为1的小正方形,B(﹣1,﹣1),C(5,﹣1)(1)把△ABC绕点C按顺时针旋转90°后得到△A1B1C1,请画出这个三角形并写出点B1的坐标;(2)以点A为位似中心放大△ABC,得到△A2B2C2,使放大前后的面积之比为1:4,请在下面网格内出△A2B2C2.22.如图,小明在操场上放风筝,已知风筝线AB长100 米,风筝线与水平线的夹角α=37°,小王拿风筝线的手离地面的高AD为1.5米,求风筝离地面的高度BE(精确到0.1米).23.如图,OA⊥OB,AB⊥x轴于C,点A(√3,1)在反比例函数y= k的图象上.x的表达式;(1)求反比例函数y= kxS△AOB,求点P的坐标.(2)在x轴的负半轴上存在一点P,使S△AOP= 1224.已知反比例函数y= k−1(k为常数,k≠1).x(Ⅰ)其图象与正比例函数y=x的图象的一个交点为P,若点P的纵坐标是2,求k的值;(Ⅱ)若在其图象的每一支上,y随x的增大而减小,求k的取值范围;(Ⅲ)若其图象的一支位于第二象限,在这一支上任取两点A(x1,y1)、B(x2,y2),当y1>y2时,试比较x1与x2的大小.25.如图,在Rt△ABC中,∠B=90°,AB=6cm,BC=8cm,点D从点A出发以1cm/s的速度运动到点C停止.作DE⊥AC交边AB或BC于点E,以DE为边向右作正方形DEFG.设点D的运动时间为t(s).(1)求AC的长.(2)请用含t的代数式表示线段DE的长.(3)当点F在边BC上时,求t的值.(4)设正方形DEFG与△ABC重叠部分图形的面积为S(cm2),当重叠部分图形为四边形时,求S与t之间的函数关系式.26.许多高校均投放了使用手机就可随用的共享单车.某运营商为提高其经营的A品牌共享单车的市场占有率,准备对收费作如下调整:一天中,同一个人第一次使用的车费按0.5元收取,每增加一次,当次车费就比上次车费减少0.1元,第6次开始,当次用车免费.具体收费标准如下:同时,就此收费方案随机调查了某高校100名师生在一天中使用A品牌共享单车的意愿,得到如下数据:(Ⅰ)写出a,b的值;(Ⅱ)已知该校有5000名师生,且A品牌共享单车投放该校一天的费用为5800元.试估计:收费调整后,此运营商在该校投放A品牌共享单车能否获利?说明理由.27.如图,某中心广场灯柱AB被钢缆CD固定,已知CB=5米,且sin∠BCD=45.(1)求钢缆CD的长度;(2)若AD=2米,灯的顶端E距离A处1.6米,且∠EAB=120°,则灯的顶端E距离地面多少米?28.小明在热气球A上看到正前方横跨河流两岸的大桥BC,并测得B,C两点的俯角分别为45°,35°.已知大桥BC与地面在同一水平面上,其长度为100m,请求出热气球离地面的高度.(结果保留整数)(参考数据:sin35°≈ 712,cos35°≈ 56,tan35°≈ 710)参考答案1~5 ADCCB 6~10 ACBBC11. 0,-312. -313. 5214. ﹣1<a<115. 8016. 60017. 64318. △ADF∽△ECF19. 220. 821. (1)解:如图所示:△A1B1C1,即为所求,点B1的坐标为:(5,5)(2)解:如图所示:△A2B2C222. 解:∵AB=100米,α=37°,∴BC=AB•sinα=100sin37°,∵AD=CE=1.5米,∴BE=BC+CE=100×sin37°+1.5≈100×0.60+1.5=61.5(米),答:风筝离地面的高度BE为:61.5米23. (1)解:把A(√3,1)代入反比例函数y= k得:k=1× √3= √3,x所以反比例函数的表达式为y= √3;x(2)解:∵A(√3,1),OA⊥AB,AB⊥x轴于C,∴OC= √3,AC=1,OA= √OC2+AC2= √(√3)2+12=2,∵tanA= OCAC= √3,∴∠A=60°,∵OA⊥OB,∴∠AOB=90°,∴∠B=30°,∴OB=2OC﹣2 √3,∴S△AOB= 12OA⋅OB= 12×2×2√3=2 √3,∵S△AOP= 12S△AOB,∴12×OP×AC=12×2√3,∵AC=1,∴OP=2 √3,∴点P的坐标为(﹣2 √3,0).24. 解:(Ⅰ)由题意,设点P的坐标为(m,2)∵点P在正比例函数y=x的图象上,∴2=m,即m=2.∴点P的坐标为(2,2).∵点P在反比例函数y= k−1x的图象上,∴2= k−12,解得k=5.(Ⅱ)∵在反比例函数y= k−1x图象的每一支上,y随x的增大而减小,∴k﹣1>0,解得k>1.(Ⅲ)∵反比例函数y= k−1x图象的一支位于第二象限,∴在该函数图象的每一支上,y随x的增大而增大.∵点A(x1,y1)与点B(x2,y2)在该函数的第二象限的图象上,且y1>y2,∴x1>x225. (1)解:在Rt△ABC中,∠B=90°,AB=6cm,BC=8cm,根据勾股定理得:AC= √62+82=10cm;(2)解:分两种情况考虑:如图1所示,过B作BH⊥AC,∵S△ABC= 12AB·BC= 12AC•BH,∴BH= AB⋅BCAC =6×810=245,AH= √62−(245)2=185,∵∠ADE=∠AHB=90°,∠A=∠A,∴△AED∽△ABH,∴ADAH =EDBH,即t185=ED245,解得:DE= 43t,则当0≤t≤ 185时,DE= 43t;如图2所示,同理得到△CED∽△CBH,∴DEBH =CDCH,即DE245=10−t325,解得:DE= 34(10﹣t)=﹣34t+152,则当185<t≤10时,DE= 34(10﹣t)=﹣34t+152;(3)解:如图3所示,如图3,当点F刚好落在BC边上时,∵∠C=∠C,∠EGC=∠ABC=90°,∴△FGC∽△ABC,∴GCBC =FGAB,即GC8=43t6,∴GC= 169t,∵AD+DG+GC=AC=10,∴t+43t+169t=10,解得:t=9037;(4)如图1所示,当0<t≤ 9037 时,S=DE 2= (43t)2=169t 2;如图2所示,当185≤t <10时,∵EF ∥CG ,∴△EFM ∽△CGM ∽△CBA , ∴FM BA=EF BC,即 FM 6=34(10−t)8,解得:FM= 916(10−t) ,∴S=S 正方形DEFG -S △EFM=DE 2- 12 DE·FM= [34(10−t)]2 −12×34(10−t)×916×(10−t) =45128(10−t)2 .26. 解:(Ⅰ)a=0.9+0.3=1.2,b=1.2+0.2=1.4; (Ⅱ)根据用车意愿调查结果,抽取的100名师生每人每天使用A 品牌共享单车的平均车费为:×(0×5+0.5×15+0.9×10+1.2×30+1.4×25+1.5×15)=1.1(元),所以估计5000名师生一天使用共享单车的费用为:5000×1.1=5500(元), 因为5500<5800,故收费调整后,此运营商在该校投放A 品牌共享单车不能获利. 27. 解:(1)在Rt △DCB 中,sin ∠DCB=DB DC =45,∴设DB=4x ,DC=5x , ∴(4x )2+25=(5x )2 , 解得x=±53,∴CD=253米,DB=203米.(2)如图,过点E 作EF ⊥AB 于点F . ∵∠EAB=120°,∴∠EAF=60°, ∴AF=AE•cos ∠EAF=1.6×12=0.8(米), ∴FB=AF+AD+DB=0.8+2+203=14215(米). ∴灯的顶端E 距离地面14215米.28. 解:作AD⊥BC交CB的延长线于D,设AD为x,由题意得,∠ABD=45°,∠ACD=35°,在Rt△ADB中,∠ABD=45°,∴DB=x,在Rt△ADC中,∠ACD=35°,∴tan∠ACD= ,∴= ,解得,x≈233m.。
湘教版最新九年级数学上学期期末测试(二)(时间:90分钟 满分:120分)题号 一 二 三 总分 合分人 复分人 得分一、选择题(每小题3分,共24分)1.(本溪中考)已知2x =5y(y ≠0),则下列比例式成立的是( )A.x2=y5 B.x5=y2 C.x y =25 D.x 2=5y2.某超市一月份的营业额为36万元,三月份的营业额为48万元.设每月的平均增长率为x ,则可列方程为( )A .48(1-x)2=36B .48(1+x)2=36C .36(1-x)2=48D .36(1+x)2=483.(崇左中考)若反比例函数y =kx的图象经过点(m ,3m),其中m ≠0,则此反比例函数图象经过( )A .第一、三象限B .第一、二象限C .第二、四象限D .第三、四象限4.(怀化中考)设x 1,x 2是方程x 2+5x -3=0的两个根,则x 21+x 22的值是( ) A .19 B .25 C .31 D .305.在△ABC 中,∠A =120°,AB =4,AC =2,则sinB 的值是( )A.5714B.2114C.35 D.2176.下列四组条件中,能判定△ABC ∽△DEF 的是( )A .∠A =45°,∠B =55°;∠D =45°,∠F =75°B .AB =5,BC =4,∠A =45°;DE =10,EF =8,∠D =45° C .AB =6,BC =5,∠B =40°;DE =5,EF =4,∠E =40° D .BC =4,AC =6,AB =9;DE =18,EF =8,DF =127.从鱼塘打捞草鱼240尾,从中任选9尾,称得每尾的质量分别是1.5,1.6,1.4,1.6,1.2,1.7,1.8,1.3,1.4(单位:kg),依此估计这240尾草鱼的总质量大约是( )A .300 kgB .360 kgC .36 kgD .30 kg8.(白银中考)如图,边长为1的正方形ABCD 中,点E 在CB 延长线上,连接ED 交AB 于点F ,AF =x(0.2≤x ≤0.8),EC =y.则在下面函数图象中,大致能反映y 与x 之间函数关系的是( )二、填空题(每小题3分,共24分)9.在Rt △ABC 中,∠C =90°,sinA =35,则tanB =________.10.(酒泉中考)关于x 的方程kx 2-4x -23=0有实数根,则k 的取值范围是________.11.已知线段MN 的长为2厘米,点P 是线段MN 的黄金分割点,那么较长的线段MP 的长是________厘米. 12.(沈阳中考)如图,△ABC 与△DEF 位似,位似中心为点O ,且△ABC 的面积等于△DEF 面积的49,则AB ∶DE =________.13.如图,已知AB ∥CD ∥EF ,它们依次交直线l 1、l 2于点A 、D 、F 和点B 、C 、E ,如果AD =6,DF =3,BC =5,那么BE =________.14.(济宁中考)如图是反比例函数y =k -2x的图象的一个分支,对于给出的下列说法:①常数k 的取值范围是k >2; ②另一个分支在第三象限;③在函数图象上取点A(a 1,b 1)和点B(a 2,b 2),当a 1>a 2时,则b 1<b 2;④在函数图象的某一个分支上取点A(a 1,b 1)和点B(a 2,b 2),当a 1>a 2时,则b 1<b 2. 其中正确的是________(在横线上填出正确的序号).15.(达州中考)“每天锻炼一小时,健康生活一辈子”,自开展“阳光体育运动”以来,学校师生的锻炼意识都增强了,某校有学生8 200人,为了解学生每天的锻炼时间,学校体育组随机调查了部分学生,统计结果如表.时间段 频数 频率 29分钟及以下 108 0.54 30~39分钟 24 0.12 40~49分钟 m 0.15 50~59分钟 18 0.09 1小时及以上200.1表格中,m =________,这组数据的众数是________________,该校每天锻炼时间达到1小时的约有________人.16.如图,在边长为6 cm的正方形ABCD中,点P从点A开始沿AB边向点B以1 cm/s的速度移动,点Q从点B开始沿BC和CD边向D点以2 cm/s的速度移动,如果点P、Q分别从A、B同时出发,其中一点到终点,另一点也随之停止.过了________秒,△PBQ的面积等于8 cm2.三、解答题(共72分)17.(6分)计算:(1)2tan60°·sin30°+cos230°-6cos45°;(2)2sin60°-4cos230°+sin45°·tan60°.K18.(6分)解下列方程:(1)x2-3x-7=0;(2)(x+3)2=x(5x-2)-7.19.(8分)如图,已知O是坐标原点,B、C两点的坐标分别为(3,-1)、(2,1).以O点为位似中心在y轴的左侧将△OBC放大到两倍(即新图与原图的相似比为2).(1)画出图形;(2)分别写出B 、C 两点的对应点B ′、C ′的坐标;(3)如果△OBC 内部一点M 的坐标为(x ,y),写出M 的对应点M ′的坐标.20.(8分)(昭通中考)如图,直线y =k 1x +b(k 1≠0)与双曲线y =k 2x(k 2≠0)相交于A(1,m)、B(-2,-1)两点.(1)求直线和双曲线的解析式;(2)若A1(x1,y1)、A2(x2,y2)、A3(x3,y3)为双曲线上的三点,且x1<x2<0<x3,请直接写出y1,y2,y3的大小关系式.21.(10分)(广东中考)如图,某数学兴趣小组想测量一棵树CD的高度,他们先在点A处测得树顶C的仰角为30°,然后沿AD方向前行10 m,到达B点,在B处测得树顶C的仰角为60°(A、B、D三点在同一直线上).请你根据他们测量的数据计算这棵树CD的高度(结果精确到0.1 m).(参考数据:2≈1.414,3≈1.732)22.(10分)(绥化中考)某校240名学生参加植树活动,要求每人植树4~7棵,活动结束后抽查了20名学生每人的植树量,并分为四类:A类4棵、B类5棵、C类6棵、D类7棵,将各类的人数绘制成如图所示不完整的条形统计图,回答下列问题:(1)补全条形图;(2)估计这240名学生共植树多少棵?23.(10分)百货大楼服装柜销售中发现:“宝乐”牌童装平均每天可售出20件,每件盈利40元.为了迎接“十一”国庆节,商场决定采取适当的降价措施,扩大销售量,增加盈利,尽快减少库存.经市场调查发现:如果每件童装降价1元,那么平均每天就可多售出2件,要使平均每天销售这种童装盈利1 200元,那么每件童装应降价多少元?请先填空后再列方程求解:设每件童装降价________元,那么平均每天就可多售出________件,现在一天可售出________件,每件盈利________元.24.(14分)(巴中中考)ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B.(1)求证:△ADF∽△DEC;(2)若AB=8,AD=63,AF=43,求AE的长.参考答案1.B 2.D 3.A 4.C 5.B 6.D 7.B8.C 提示:根据题意知,BF =1-x ,BE =y -1,且△EFB ∽△EDC ,则BF DC =BEEC ,即1-x 1=y -1y ,所以y =1x (0.2≤x ≤0.8).该函数图象是位于第一象限的双曲线的一部分.9.4310.k ≥-6 11.5-1 12.2∶3 13.7.5 14.①②④15.30 29分钟及以下 820 16.2或10317.(1)原式=23×12+(32)2-6×22=3+34-3=34.(2)原式=2×32-4×(32)2+22×3=62-3+62=6-3.18.(1)在方程x 2-3x -7=0中,a =1,b =-3,c =-7. 则x =-b ±b 2-4ac 2a=3±(-3)2-4×1×(-7)2×1 =3±372,解得x 1=3+372,x 2=3-372.(2)原方程可化为x 2-2x -4=0.∴(x -1)2=5. ∴x -1=±5.∴x 1=1+5,x 2=1-5.19.(1)图略. (2)B ′(-6,2),C ′(-4,-2). (3)M ′的坐标为(-2x ,-2y).20.(1)把B(-2,-1)代入y =k 2x中,得k 2=2.∴y =2x .把点A(1,m)代入y =2x,得m =2,则A(1,2).把点A(1,2)、B(-2,-1)分别代入y =k 1x +b ,得⎩⎪⎨⎪⎧k 1+b =2,-2k 1+b =-1.解得⎩⎪⎨⎪⎧k 1=1,b =1.∴y =x +1. (2)y 2<y 1<y 3. 21.∵∠CBD =∠A +∠ACB ,∴∠ACB =∠CBD -∠A =60°-30°=30°. ∴∠A =∠ACB.∴BC =AB =10 m .在Rt △BCD 中,CD =BC ·sin ∠CBD =10×32=53≈8.7(m).答:这棵树CD 的高度约为8.7 m .22.(1)D 类的人数为:20-4-8-6=2(人).图略.(2)x =4×4+5×8+6×6+7×220=5.3(棵),240×5.3=1 272(棵).答:估计这240名学生共植树1 272棵.23.x 2x (20+2x) (40-x) 设每件童装降价x 元,则(40-x)(20+2x)=1 200,即x 2-30x +200=0.解得x 1=10,x 2=20.∵要扩大销售量,减少库存,∴舍去x 1=10.答:每件童装应降价20元. 24.(1)∵四边形ABCD 是平行四边形,∴AB ∥CD ,AD ∥BC ,∴∠C +∠B =180°,∠ADF =∠DEC. ∵∠AFD +∠AFE =180°,∠AFE =∠B ,∴∠AFD =∠C.在△ADF 与△DEC 中,⎩⎪⎨⎪⎧∠AFD =∠C ,∠ADF =∠DEC ,∴△ADF ∽△DEC.(2)∵四边形ABCD 是平行四边形,∴CD =AB =8.由(1)知△ADF ∽△DEC ,∴AD DE =AF CD ,∴DE =AD ·CD AF =63×843=12.在Rt △ADE 中,由勾股定理,得AE =DE 2-AD 2=122-(63)2=6.。
湘教版九年级数学上册期末测试卷及答案【A4打印版】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.﹣3的绝对值是( )A .﹣3B .3C .-13D .132.若分式211x x -+的值为0,则x 的值为( ) A .0B .1C .﹣1D .±1 3.关于x 的方程32211x m x x -=+++无解,则m 的值为( ) A .﹣5 B .﹣8 C .﹣2 D .54.若不等式组11324x x x m+⎧<-⎪⎨⎪<⎩无解,则m 的取值范围为( ) A .2m ≤ B .2m < C .2m ≥ D .2m >5.《九章算术》是我国古代数学名著,卷七“盈不足”中有题译文如下:今有人合伙买羊,每人出5钱,会差45钱;每人出7钱,会差3钱.问合伙人数、羊价各是多少?设合伙人数为x 人,所列方程正确的是( )A .54573x x -=-B .54573x x +=+C .45357x x ++=D .45357x x --= 6.要反映台州市某一周每天的最高气温的变化趋势,宜采用( )A .条形统计图B .扇形统计图C .折线统计图D .频数分布统计图7.在平面直角坐标系中,一次函数y=kx+b 的图象如图所示,则k 和b 的取值范围是( )A.k>0,b>0 B.k>0,b<0 C.k<0,b>0 D.k<0,b<0 8.如图,∠ACD是△ABC的外角,CE平分∠ACD,若∠A=60°,∠B=40°,则∠ECD等于()A.40°B.45°C.50°D.55°9.将一副直角三角板按如图所示的位置放置,使含30°角的三角板的一条直角边和含45°角的三角板的一条直角边放在同一条直线上,则∠α的度数是().A.45°B.60°C.75°D.85°10.如图,点P是矩形ABCD的对角线AC上一点,过点P作EF∥BC,分别交AB,CD于E、F,连接PB、PD.若AE=2,PF=8.则图中阴影部分的面积为()A.10 B.12 C.16 D.18二、填空题(本大题共6小题,每小题3分,共18分)1.计算:2|18+(﹣12)﹣3=_____.2.分解因式:2x+xy=_______.3.已知AB//y轴,A点的坐标为(3,2),并且AB=5,则B的坐标为__________.4.如图,△ABC中,∠BAC=90°,∠B=30°,BC边上有一点P(不与点B,C重合),I 为△APC 的内心,若∠AIC 的取值范围为m °<∠AIC <n °,则m +n =__________.5.如图所示,直线a 经过正方形ABCD 的顶点A ,分别过正方形的顶点B 、D 作BF ⊥a 于点F ,DE ⊥a 于点E ,若DE =8,BF =5,则EF 的长为__________.6.二次函数y =﹣x 2+bx+c 的部分图象如图所示,由图象可知,不等式﹣x 2+bx+c <0的解集为__________.三、解答题(本大题共6小题,共72分)1.解分式方程:22x 1x 4x 2+=--2.先化简代数式1﹣1x x-÷2212x x x -+,并从﹣1,0,1,3中选取一个合适的代入求值.3.如图,点E 、F 在BC 上,BE=CF ,AB=DC ,∠B=∠C ,AF 与DE 交于点G ,求证:GE=GF .4.如图,BD 是菱形ABCD 的对角线,75CBD ∠=︒,(1)请用尺规作图法,作AB 的垂直平分线EF ,垂足为E ,交AD 于F ;(不要求写作法,保留作图痕迹)(2)在(1)条件下,连接BF ,求DBF ∠的度数.5.在一次中学生田径运动会上,根据参加男子跳高初赛的运动员的成绩(单位:m ),绘制出如下的统计图①和图②,请根据相关信息,解答下列问题:(1)图1中a 的值为 ;(2)求统计的这组初赛成绩数据的平均数、众数和中位数;(3)根据这组初赛成绩,由高到低确定9人进入复赛,请直接写出初赛成绩为1.65m 的运动员能否进入复赛.6.一商店销售某种商品,平均每天可售出20件,每件盈利40元.为了扩大销售、增加盈利,该店采取了降价措施,在每件盈利不少于25元的前提下,经过一段时间销售,发现销售单价每降低1元,平均每天可多售出2件.(1)若降价3元,则平均每天销售数量为________件;(2)当每件商品降价多少元时,该商店每天销售利润为1200元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、B3、A4、A5、B6、C7、C8、C9、C10、C二、填空题(本大题共6小题,每小题3分,共18分)1、-72、()x x+y.3、(3,7)或(3,-3)4、255.5、136、x<−1或x>5.三、解答题(本大题共6小题,共72分)1、x3=-2、-11x+,-14.3、略.4、(1)答案略;(2)45°.5、(1) 25 ; (2) 这组初赛成绩数据的平均数是 1.61.;众数是 1.65;中位数是1.60;(3)初赛成绩为1.65 m的运动员能进入复赛.6、(1)26;(2)每件商品降价10元时,该商店每天销售利润为1200元.。
期末测试(一)(时间:题号—►二三总分合分人复分人得分一、选择题(每小题3分,共分)1. I、-列函数:①y=£;②y=—?;③y=^~i:④y=F^宁其中是反比例函数的有()A. 1个B. 2个C. 3个D. 4个2. (厦门模拟)两个相似三角形的而积比为1 :4,那么它们的对应边的比为()A・ 1 : 16 B. 16 : 1 C. 1 : 2 D・ 2 : 13. 关于X的一元二次方程x2-6x + 2k=0有两个不相等的实数根,则实数k的取值范围是()Q OA・k≤2 B. k<2D. k>∣4. 计•算cos6(Γ -sin30o +tan45o的结果为()A・ 2 B. 一2C. 1 D・一15. 某农科院对甲、乙两种甜玉米各用10块(I相同条件的试验出进行试验,得到两个品种每公顷产量的两组数据,苴方差分别为S市=0.002, SAo.03,贝∣J()A.甲比乙的产量稳定B.乙比甲的产量稳定C.甲、乙的产量一样稳左D.无法确圧哪一品种的产量更稳立6. 如图,在Rt∆ABC中,ZC=90o , ZA=30o , c=10,则下列不正确的是()A. ZB=60oB. a=5C. b=5√3D. IanB=習7・如图,AB√CD, AC、BD、EF相交于点O•则图中相似三角形共有()A・1对 B. 2对C. 3对D・4对&如图.将矩形ABCD沿对角线BD折叠,使点C落在点C处,BCr交AD于点E,则下列结论不一左成立的是()A. AD=BC lB. ZEBD=ZEDBC. ∆ABE^ΔCBDB二、填空题(毎小题3分,共24分)V 4- 19. _________________________________________________________________ (无锡中考)已知双曲线y=飞一经过点(一1, 2),那么k的值等于_____________________________________________10.某校开展“节约每一滴水”活动,为了了解开展活动一个月以来节约用水的情况,从八年级的400名同学中选取20名同学统计了各自家庭一个月节约用水情况・如表:节水量∕π?0.2 0.25 ().3 0.4 ().5家庭数/个 2 4 6 7 1请你估计这400名同学的家庭一个月节约用水的总量大约是_________11.(舟山中考)方程X2~3X=0的根为______ .12.如图,以O为位似中心,把五边形ABCDE的面积扩大为原来的4倍,得五边形A I B I C l D1E1,则OD : OD l =13. __________________________________________________________________________________ (济宁中考)如图,在厶ABC中,ZA=30o , ZB=45o, AC=2√3,则AB的长为__________________________________14. __________________________________________________ (丽水中考)如图,某小区规划在一个长30 m、宽20 m 的长方形ABCD ±修建三条同样宽的通道,使其中两条与AB平行,另一条与AD平行,其余部分种花草.要使每一块花草的面积都为78 n*,那么通道的宽应设计成多少米?设通道的宽为XnB由题意列得方程・15.(包头中考)如图,在平而直角坐标系中,Rt∆ABO的顶点O与原点重合,顶点B在X轴上,ZABO=90Q , OA与反比例函数y=f的图象交于点D,且OD=2AD,过点D作X轴的垂线交X轴于点C.若Sm fi ABcD= 10,则k的值为 _______16.(贵阳中考L如图,在Rt∆ABC中,Z∙BAC=90° , AB=AC=I6 cm, AD为BC边上。
湘教版九年级上册数学期末考试试题一、选择题。
(每小题只有一个正确答案)1.已知反比例函数y=kx的图像经过点(﹣3,1)则k的值为()A.﹣3 B.1 C.3 D.﹣12.如图,点A在函数y=4x(x>0)的图象上,且OA=4,过点A作AB⊥x轴于点B,则△ABO的周长为()A.B.C.D.3.图中的两个三角形是位似图形,它们的位似中心是()A.点P B.点O C.点M D.点N4.学校九年级举办了一次数学测试,为了评价甲乙两班学生的测试成绩,经计算他们的方差分别是:S2甲=10.2,S2乙=8.8,则下列说法正确的是()A.甲班比乙班的成绩更稳定B.乙班比甲班的成绩更稳定C.甲班跟乙班的成绩同样稳定D.无法确定哪班成绩稳定5.下列比例式中,不能..由mn ab=得到的比例式是A.a nm b=B.a mn b=C.m na b=D.m ba n=6.若关于x的一元二次方程(k﹣1)x2﹣2kx+k﹣3=0有实数根,则k的取值范围为()A.k≥0B.k≥0且k≠1C.k≥34D.k≥34且k≠17.如图,△ABC中,AB=AC=13,BC=10,则sin B=()A .512B .1013C .513D .12138.关于函数y =x 2﹣4x +4的图像与x 轴的交点个数,下列说法正确的是( ) A .两个相同的交点B .两个不同的交点C .没有交点D .无法判断9.给出一种运算:对于函数n y x =,规定1n y nx -'=.例如:若函数4y x =,则有34y x '=.已知函数3y x =,则方程36y '=的解是A .x 1=x 2=0B .x 1x 2=﹣C .x 1=2,x 2=﹣2D .x 1=4,x 2=﹣4 10.抛物线y =ax 2+bx +c 的顶点坐标(﹣2,3),抛物线与x 轴的一个交点在点(﹣4,0)和点(﹣3,0)之间,其部分图象如图所示,有下列说法:①4a ﹣b =0;②a ﹣b +c =0; ③若(﹣4,y 1),(1,y 2)是抛物线上的两点,则y 1>y 2; ④b 2+3b =4ac .其中正确的个数有A .4B .3C .2D .1二、填空题11.抛物线y =﹣(x +1)2+3的顶点坐标是_____.12.若关于x 的一元二次方程x 2﹣3x +c =0有一个根是2,则另一根是_____.13.如图,已知∠ADE =∠C ,且AD =3,AF =8,AC =6,则AE =_____.14.两个相似三角形的相似比为2:3,则它们的面积之比为_____.15.已知点A (﹣2,y 1),B (3,y 2),C (5,y 3)是反比例函数y =﹣1x图像上的三个点,请你把y 1,y 2,y 3按从小到大的顺序排列为_____.16.二次函数的图像向下平移3个单位长度后,再向右平移3个单位长度,得到y =x 2+1的图像,则原函数表达式为_____.17.如图,是一个长为30m ,宽为20m 的矩形花园,现要在花园中修建等宽的小道,剩余的地方种植花草.如图所示,要使种植花草的面积为468m 2,那么小道进出口的宽度应为 ___m .18.如图,等腰Rt △ABC 中,∠ACB =90°,AC =BC =2,且AC 边在直线a 上,将△ABC绕A 顺时针旋转到位置①可得到点P 1,此时AP 1=①的三角形绕点P 1顺时针旋转到位置②,可得到点P 2,此时AP 2=②的三角形绕点P 2顺时针旋转到位置③,可得到点P 3,此时AP 3=…按此规律继续旋转,直至得到点P 2020为止,则AP 2020=_____.三、解答题19.(3.14﹣π)0﹣3tan30°2|﹣11()2.20.解一元二次方程:(1)x 2﹣6x =1;(2)4(x +2)2=(x ﹣2)2.21.已知反比例函数y =k x(k ≠0)的图像与一次函数y =ax +b 的图像在第一象限相交于A (1,3),B (3,1)两点.(1)求反比例函数与一次函数的表达式;(2)若点P(m,0)(m>0),过点P作平行于y轴的直线在第一象限内交一次函数y=ax+b的图象于M点,交反比例函数y=kx于N点,若PM>PN,请你结合图像,直接写出m的取值范围.22.我县某校为了让学生的课余生活丰富多彩,开展了以下课外活动:A学习兴趣小组、B健身体育活动、C美术绘画、D音乐、E其他为了解学生的选择情况,现从该校随机抽取了部分学生进行问卷调查(参与问卷调查的每名学生只能选择其中一项),并根据调查得到的数据绘制了如图所示的两幅不完整的统计图.请根据统计图提供的信息回答下列问题(要求写出简要的解答过程).(1)此次共调查了名学生;(2)将条形统计图补充完整;(3)“健身体育活动”所在扇形的圆心角的度数为;(4)若该校共有4000名学生,请估计该校喜欢A,B,C三类活动的学生共有多少人?23.如图,建设“五化东安”,打造“绿色发展样板城市”.在数学课外实践活动中,小薇在紫水河北岸的自行车绿化道AC上,在A处测得对岸的吴公塔D位于南偏东60°方向,往东走300米到达B处,测得对岸的吴公塔D位于南偏东30°方向.(1)求吴公塔D到紫水河北岸AC的距离约为多少米?(精确到1)(2)小薇继续向东走到轮船码头C处,测得对岸的吴公塔D位于西南方向.已知小薇的平均速度为每小时5千米,小薇从B处到轮船码头大约几分钟?(精确到1分钟)24.2020年初新冠疫情袭击全国,永州市教育局出台《永州市中小学教师志愿辅导工作实施意见》,鼓励教师参与志愿辅导,我县率先示范,推出名师公益大课堂,为学生提供线上线下免费辅导,据统计,第一批公益课受益学生15000人次,第三批公益课受益学生21600人次.(1)如果第二批、第三批公益课受益学生人次的增长率相同,求这个增长率;(2)按照这个增长率,预计第四批公益课受益学生将达到多少人次?x2+bx+c与x轴交于点(﹣2,0),且关于直线x=1对称.25.如图,已知抛物线y=12(1)求抛物线的解析式;x﹣1相交于P,Q两点,平行于y轴的直线x=m交PQ (2)设此抛物线与直线l:y=﹣12于M点,交抛物线于N点.①当点M在点N上方的时候,求MN的表达式(用含m的代数式表示);②在①的条件下当△PQN的面积最大的时候,求m的值及面积的最大值.26.在△ABC中,AB=3,AC=4,BC=5,D是△ABC内部或BC边上的一个动点(与B,C不重合),以D为顶点作△DEF,使△DEF∽△ABC(相似比k>1),EF∥BC.(1)求∠D的度数;(2)若两三角形重叠部分的形状始终是四边形AGDH.①如图,连接GH,AD,当GH⊥AD时,请判断四边形AGDH的形状,并证明;②当四边形AGDH的面积最大时,过A作AP⊥EF于P,且AP=1.2,直接写出k的值.参考答案1.A【分析】把(﹣3,1)代入,求解析式即可.【详解】解:把(﹣3,1)代入y=kx得,13k =-, 解得,k=-3故选:A .【点睛】本题考查了待定系数法求反比例函数比例系数k ,解题关键是熟练运用待定系数法求比例系数.2.D【解析】【分析】由点A 在反比例函数的图象上,设出点A 的坐标,结合勾股定理可以表现出OA 2=AB 2+OB 2,再根据反比例函数图象上点的坐标特征可得出AB •OB 的值,根据配方法求出(AB +OB )2,由此即可得出AB +OB 的值,结合三角形的周长公式即可得出结论.【详解】解:∵点A 在函数y =4x(x >0)的图象上, ∴设点A 的坐标为(n ,4n)(n >0). 在Rt △ABO 中,∠ABO =90°,OA =4,∴OA 2=AB 2+OB 2,又∵AB •OB =4n•n =4, ∴(AB +OB )2=AB 2+OB 2+2AB •OB =42+2×4=24,∴AB +OB =AB +OB =-.∴C △ABO =AB +OB +OA =4.故答案为4.故选D.【点睛】本题考查了反比例函数图象上点的坐标特征、完全平方公式以及三角形的周长,解题的关键是求出AB +OB 的值.本题属于基础题,难度不大,解决该题型题目时,巧妙的利用完全平方公式直接求出两直角边之和是关键.3.A【分析】连接其中的两对对应点,它们所在直线的交点即为位似中心.【详解】解:如图所示,连接两对对应点之后,它们的连线都经过点P,因此位似中心是点P;故选:A.【点睛】本题考查了位似图形、位似中心的概念,要求学生理解相关概念并能通过连线正确判断出位似中心,本题较基础,考查了学生对基础概念的理解与掌握.4.B【分析】根据方差越小越稳定可以判断.【详解】解:∵S2甲=10.2,S2乙=8.8,∴S2>S2乙,甲∴乙班比甲班的成绩更稳定;故选:B.【点睛】本题考查了方差的意义,解题关键是理解方差是描述数据的波动情况的,方差越小越稳定.5.C【分析】根据两内项之积等于两外项之积对各选项分析判断即可得解.【详解】A 、由a n mb =得,ab mn =,故本选项不符合题意; B 、由a m nb =得,ab mn =,故本选项不符合题意; C 、由m n a b =得,bm an =,故本选项符合题意; D 、由m b a n=得,ab mn =,故本选项不符合题意; 故选:C .【点睛】本题考查了比例的性质,主要利用了两内项之积等于两外项之积.6.D【分析】根据二次项系数不为0和△≥0列不等式组即可.【详解】解:根据关于x 的一元二次方程(k ﹣1)x 2﹣2kx +k ﹣3=0有实数根,列不等式组得,210(2)4(1)(3)0k k k k -≠⎧⎨----≥⎩, 解得,k ≥34且k ≠1, 故选:D .【点睛】本题考查了一元二次方程根的判别式,解题关键是熟练运用根的判别式列不等式,注意:一元二次方程二次项系数不为0.7.D【分析】过点A 作AD ⊥BC ,垂足为D ,求出AD 长,再根据三角函数的意义计算即可.【详解】解:过点A 作AD ⊥BC ,垂足为D ,∵AB =AC =13,BC =10,∴BD=CD=5,12=,sin B=1213 ADAB=,故选:D.【点睛】本题考查了等腰三角形的性质和三角函数,解题关键是作高构建直角三角形,利用三角函数的意义进行计算.8.A【分析】根据二次函数的图像与x轴的交点问题可直接进行求解.【详解】解:由函数y=x2﹣4x+4可得:()22444140b ac-=--⨯⨯=,∴该二次函数的图像与x轴的交点个数为一个,即两个相同的交点;故选A.【点睛】本题主要考查二次函数的图像与性质,熟练掌握二次函数图像与x轴的交点问题是解题的关键.9.B【详解】由函数y=3x得n=3,则y′=32x,∴32x=36,2x=12,x=±x 1x 2=﹣故选:B.10.B【分析】根据抛物线的对称轴可判断①;由抛物线与x 轴的交点及抛物线的对称性以及由x =﹣1时y >0可判断②,由抛物线对称性和增减性,即可判断③;利用抛物线的顶点的纵坐标为3得到244ac b a-=3,即可判断④. 【详解】解:∵抛物线的对称轴为直线x 2b a=-=-2, ∴4a ﹣b =0,所以①正确;∵与x 轴的一个交点在(﹣3,0)和(﹣4,0)之间,∴由抛物线的对称性知,另一个交点在(﹣1,0)和(0,0)之间,∴x =﹣1时y >0,即a ﹣b +c >0,∴所以②错误;由抛物线的对称性知(﹣4,y 1)与(0,y 1)关于对称轴对称,∵抛物线开口向下,对称轴为直线x 2b a =-=-2 ∴当x >-2时,y 随x 的增大而减小,∵-2<0<1∴y 1>y 2∴所以③正确;∵抛物线的顶点坐标为(﹣2,3), ∴244ac b a -=3, ∴b 2+12a =4ac ,∵4a ﹣b =0,∴b =4a ,∴b 2+3b =4ac ,所以④正确;故选:B .【点睛】本题考查了二次函数图象与系数的关系:对于二次函数y =ax 2+bx +c (a ≠0),二次项系数a 决定抛物线的开口方向和大小:当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时(即ab >0),对称轴在y 轴左; 当a 与b 异号时(即ab <0),对称轴在y 轴右;常数项c 决定抛物线与y 轴交点位置:抛物线与y 轴交于(0,c ):抛物线与x 轴交点个数由△决定:△=b 2﹣4ac >0时,抛物线与x 轴有2个交点;△=b 2﹣4ac =0时,抛物线与x 轴有1个交点;△=b 2﹣4ac <0时,抛物线与x 轴没有交点.11.()1,3-【分析】由题意可直接进行求解.【详解】解:由抛物线()213y x =-++可得顶点坐标为()1,3-; 故答案为()1,3-.【点睛】本题主要考查二次函数的性质,熟练掌握二次函数的性质是解题的关键.12.1.【分析】利用一元二次方程根与系数关系可直接求得另一根.【详解】解:设关于x 的一元二次方程x 2﹣3x +c =0的另一根为a ,根据根与系数关系可得,a+2=3,解得,a=1;故答案为:1.【点睛】 本题考查了一元二次方程根与系数关系,解题关键是熟知一元二次方程两根之和等于b a-. 13.4【分析】由题意易得△ADE∽△ACF,进而根据相似三角形的性质可求解.【详解】解:∵∠ADE=∠C,∠A=∠A,∴△ADE∽△ACF,∴AD AE AC AF=,∵AD=3,AF=8,AC=6,∴368AE =,∴AE=4;故答案为4.【点睛】本题主要考查相似三角形的性质与判定,熟练掌握相似三角形的性质与判定是解题关键.14.4∶9【分析】根据相似三角形的性质可直接进行求解.【详解】解:由两个相似三角形的面积比等于相似比的平方可得:两个相似三角形的相似比为2:3,则它们的面积之比为4∶9;故答案为4∶9.【点睛】本题主要考查相似三角形的性质,熟练掌握相似三角形的性质是解题的关键.15.y2<y3<y1【分析】根据反比例函数的比例系数的符号可得反比例函数所在象限为二、四,其中在第四象限的点的纵坐标总小于在第二象限的纵坐标,进而判断在同一象限内的点B和点C的纵坐标的大小即可.【详解】解:∵反比例函数的比例系数为﹣1,∴图象的两个分支在二、四象限;∵第四象限的点的纵坐标总小于在第二象限的纵坐标,点A在第二象限,点B、C在第四象限,∴y1最大,∵3<5,y随x的增大而增大,∴y2<y3,∴y2<y3<y1.故答案:y2<y3<y1.【点睛】考查反比例函数图象上点的坐标特征;用到的知识点为:反比例函数的比例系数小于0,图象的2个分支在二、四象限;第四象限的点的纵坐标总小于在第二象限的纵坐标;在同一象限内,y随x的增大而增大.16.y=(x+3)2+4.【分析】将得到的抛物线再平移回原抛物线,根据平移方向与距离可求.【详解】解:∵二次函数的图像向下平移3个单位长度后,再向右平移3个单位长度,得到y=x2+1的图像,∴将y=x2+1的图像向上平移3个单位长度后,再向左平移3个单位长度,得到原抛物线图象,∴原抛物线的解析式为:y=(x+3)2+4,故答案为:y=(x+3)2+4.【点睛】本题考查了二次函数图象平移的变化规律,解题关键是熟记抛物线平移变化规律:左加右减自变量,上加下减常数项.17.2【分析】设小道进出口的宽度应为xm,则剩余部分可合成长为(30﹣2x)m,宽为(20﹣x)m的矩形,根据矩形的面积计算公式,结合种植花草的面积为468m2,即可得出关于x的一元二次方程,解之取其符合题意的值即可得出结论.【详解】解:设小道进出口的宽度应为xm,则剩余部分可合成长为(30﹣2x)m,宽为(20﹣x)m的矩形,依题意得:(30﹣2x)(20﹣x)=468,整理得:x2﹣35x+300=0,解得:x1=2,x2=35.当x=2时,30﹣2x=26,符合题意;当x=35时,30﹣2x=﹣40<0,不合题意,舍去.故答案为:2.【点睛】本题主要考查了一元二次方程的实际应用,解题的关键在于找到等量关系列出方程.18.【分析】观察图形的变化可得,122AP=;2222AP=+;3422AP=+;4442AP=+;5642AP=+;68422(422)AP=+=+;.发现规律即可求解.【详解】解:观察图形的变化可知:AP1=AP2=2+AP3=4+AP4=AP5=AP6=2(;….发现规律:AP3n=n(;AP3n+1=n(AP3n+2=n(.∴AP2020=AP673×3+1=673(故答案为:【点睛】本题考查了规律型﹣图形的变化类,解决本题的关键是根据图形的变化寻找规律,总结规律,运用规律.19.【分析】先计算0指数、三角函数值、负指数和绝对值,再加减.【详解】解:(3.14﹣π)0﹣3tan30°2|﹣11()2-.,【点睛】本题考查了包含三角函数、0指数和负指数的实数计算,解题关键是熟记特殊角三角函数值,明确0指数、负指数的意义.20.(1)123,3x x =(2)1226,3x x =-=-【分析】(1)根据配方法进行求解一元二次方程即可;(2)根据直接开平方法进行求解即可.【详解】解:(1)261x x -=26910x x -+= ()2310x -=3x -=∴123,3x x =(2)()()22422x x +-= ()()222x x +±-=∴()222x x +=-或()222x x +=-,解得:1226,3x x =-=-. 【点睛】 本题主要考查一元二次方程的解法,熟练掌握一元二次方程的解法是解题的关键. 21.(1)一次函数解析式为4y x =-+,反比例函数解析式为3y x=;(2)13m <<【分析】(1)把点A 、B 分别代入一次函数和反比例函数解析式进行求解即可;(2)由题意易得k ax b x +>,然后由图象可直接进行求解. 【详解】解:(1)把点A (1,3),B (3,1)代入一次函数解析式得: 331a b a b +=⎧⎨+=⎩,解得:14a b =-⎧⎨=⎩, ∴一次函数解析式为4y x =-+,把点点A (1,3)代入反比例函数解析式得:3k =,∴反比例函数解析式为3y x=;(2)如图所示:由题意得:点M 、N 和点P 的横坐标相同,代入解析式有:点()4M m,m -+,点3,N m m ⎛⎫ ⎪⎝⎭, ∴34,PM m PN m=-+=, ∵PM PN >, ∴34m m-+>, ∴由图象可得m 的范围为13m <<.【点睛】本题主要考查一次函数与反比例函数的综合,熟练掌握反比例函数的性质是解题的关键.22.(1)200;(2)见详解;(3)108︒;(4)1300人.【分析】(1)用选A的人数除以选A的人所占的百分比即可得到答案;(2)根据调查的总人数分别求出选B和选D的人数即可;(3)根据选“健身体育活动”的人所占的比例即可求出圆心角的度数;(4)根据调查的喜欢A,B,C三类活动人的比例可估计该校喜欢这三类活动的人数.【详解】解:(1)4020%=200÷(名)因此共调查了200名学生;(2)20025%=50⨯(名)选D的有50名学生,20040503020=60----(名)选B的有60名学生,统计图如下(3)60360=108200︒⨯︒,“健身体育活动”所在扇形的圆心角的度数为108︒;(4)4060302000=1300200++⨯(人),喜欢A,B,C三类活动的学生共有1300人.【点睛】本题考查了条形统计图和扇形统计图,读懂统计图,从统计图中找到必要的信息是解题的关键.23.(1)260,(2)5;【分析】(1)如图,过点D作DH⊥AC于点H.设DH=x米,通过解直角三角形列方程,得到DH 的长度.(2)求出BC长,再求时间即可.【详解】解:过点D作DH⊥AC于点H.由题意可知,∠HBD=60°,∠DAC=30°,AB=300,设DH=x米,在直角△BHD中,tan60°=DH BH,BH=tan30°=DH AH,,解得,x=∴DH=.答:求吴公塔D到紫水河北岸AC的距离约为260米.(2)由(1)可知,BH=150米,小薇继续向东走到轮船码头C处,测得对岸的吴公塔D位于西南方向,可知DH=HC=260米,BC=150+260=410(米),410米=0.41千米,小薇从B 处到轮船码头的时间为0.410.0825=(小时), 0.082×60=4.92≈5(分钟), 小薇从B 处到轮船码头的时间为5分钟.【点睛】本题考查解直角三角形的应用,解题关键是构造直角三角形,熟练运用解直角三角形的知识进行计算.24.(1)这个增长率为20%;(2)按照这个增长率,预计第四批公益课受益学生将达到25920人次.【分析】(1)设增长率为x ,然后根据题意可列出方程进行求解;(2)由(1)可直接进行列式求解.【详解】解:(1)设增长率为x ,由题意得:()2150********x +=, 解得:120.2, 2.2x x ==-(不符合题意,舍去)答:这个增长率为20%(2)由(1)可得增长率为20%,∴第四批受益学生人数为()2160012025920⨯+=%(人);答:按照这个增长率,预计第四批公益课受益学生将达到25920人次.【点睛】本题主要考查一元二次方程的应用,熟练掌握一元二次方程的应用是解题的关键. 25.(1)y =12x 2-x -4,(2)-12m 2+12m +3,(3)当m=12时,面积最大,最大值为12516. 【分析】(1)根据对称轴可求b ,把(﹣2,0),代入可求c ;(2)①表示出M 、N 点坐标,纵坐标相减即可;②根据铅锤法表示三角形面积,求二次函数顶点坐标即可.【详解】解:(1)抛物线的对称轴为x =1可得,1122b -=⨯,解得,b=-1,把b=-1,(﹣2,0),代入得,0=2+2+c ,解得,c=-4,抛物线解析式为:y =12x 2-x -4 (2)由题意可知,M (m, ﹣12m ﹣1),N (m ,12m 2-m -4),MN=﹣12m ﹣1-(12m 2-m -4)=-12m 2+12m +3,(3)抛物线与直线l :y =﹣12x ﹣1相交于P ,Q 两点可得,2112142y x y x x ⎧=--⎪⎪⎨⎪=--⎪⎩, 解得,1120x y =-⎧⎨=⎩,22352x y =⎧⎪⎨=-⎪⎩, ∴P (-2,0)Q (3,52-) S △PQN =12(-12m 2+12m +3) ×[3-(-2)]=25515442m m -++, 写成顶点式为:S △PQN =251125()4216m --+, 当m=12时,面积最大,最大值为12516. 【点睛】 本题考查了二次函数的综合,解题关键是熟练的运用待定系数法求解析式,准确理解题意,用铅锤法表示三角形面积,利用二次函数顶点坐标求最值.26.(1)90°,(2)正方形,证明见解析,(3)32. 【分析】(1)先判断△ABC 是直角三角形,即可;(2)①延长ED 交BC 于M ,延长FD 交BC 于N ,先证AB ∥DE ,DF ∥AC ,得到平行四边形,再判断出是正方形;②先判断面积最大时点D 的位置,利用高的比等于相似比求k 值.【详解】解:(1)∵AB2+AC2=25,BC2=25,∴AB2+AC2=BC2,∴∠BAC=90°,∵△DEF∽△ABC,∴∠D=∠BAC=90°,(2)①四边形AGDH为正方形,证明:如图1,延长ED交BC于M,延长FD交BC于N,∵△DEF∽△ABC,∴∠B=∠E,∵EF∥BC,∴∠E=∠EMC,∴∠B=∠EMC,∴AB∥DE,同理:DF∥AC,∴四边形AGDH为平行四边形,∵∠D=90°,∴四边形AGDH为矩形,∵GH⊥AD,∴四边形AGDH为正方形;②由①可知,四边形AGDH一定是矩形,当点D在△ABC内部时,四边形AGDH的面积不可能最大,理由:如图2,点D在内部时延长GD交BC于N,过N作NM⊥AC于M,∴矩形GNMA面积大于矩形AGDH,∴点D在△ABC内部时,四边形AGDH的面积不可能最大,只有点D在BC边上时,面积才有可能最大,如图3,点D在BC上,延长P A,交BC于点Q,∵EF∥BC,QP⊥EF,∴QP⊥BC,∴PQ是EF,BC之间的距离,∴D到EF的距离为PQ的长,在△ABC中,12AB×AC=12BC×AQ∴AQ=2.4,PQ=1.2+2.4=3.6∵△DEF∽△ABC,∴k=32 PQAQ.【点睛】此题是相似三角形的综合题,主要考查了相似三角形的性质和判定,平行四边形,矩形,正方形的判定和性质,极值的确定,勾股定理的逆定理,解本题的关键是作出辅助线.。
湘教版九年级数学上册期末测试卷及答案【A4打印版】班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.比较2,5,37的大小,正确的是()A.3257<<B.3275<<C.3725<<D.3752<<2.中国人很早开始使用负数,中国古代数学著作《九章算术》的“方程”一章,在世界数学史上首次正式引入负数.如果收入100元记作+100元.那么﹣80元表示()A.支出20元B.收入20元C.支出80元D.收入80元3.等式33=11x xxx--++成立的x的取值范围在数轴上可表示为()A.B.C.D.4.“绿水青山就是金山银山”.某工程队承接了60万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前30天完成了这一任务.设实际工作时每天绿化的面积为x万平方米,则下面所列方程中正确的是()A.606030(125%)x x-=+B.606030(125%)x x-=+C.60(125%)6030x x⨯+-=D.6060(125%)30x x⨯+-=5.下列对一元二次方程x2+x﹣3=0根的情况的判断,正确的是()A.有两个不相等实数根B.有两个相等实数根C.有且只有一个实数根D.没有实数根6.函数123y xx=+--的自变量x的取值范围是()A .2x ≥,且3x ≠B .2x ≥C .3x ≠D .2x >,且3x ≠7.如图所示,阴影是两个相同菱形的重合部分,假设可以随机在图中取点,那么这个点取在阴影部分的概率是( )A .15B .16C .17D .188.如图,⊙O 中,半径OC ⊥弦AB 于点D ,点E 在⊙O 上,∠E=22.5°,AB=4,则半径OB 等于( )A .2B .2C .22D .39.如图,在方格纸中,以AB 为一边作△ABP ,使之与△ABC 全等,从P 1,P 2,P 3,P 4四个点中找出符合条件的点P ,则点P 有( )A .1个B .2个C .3个D .4个10.如图,四边形ABCD 内接于⊙O ,若四边形ABCO 是平行四边形,则∠ADC 的大小为( )A .45︒B .50︒C .60︒D .75︒二、填空题(本大题共6小题,每小题3分,共18分)1.8的立方根为___________.2.因式分解:x 3﹣4x=_______.3.若式子x 1x+有意义,则x 的取值范围是_______. 4.如图,ABC ∆中,D 为BC 的中点,E 是AD 上一点,连接BE 并延长交AC 于F ,BE AC =,且9BF =,6CF =,那么AF 的长度为__________.5.如图,直线y =x +2与直线y =ax +c 相交于点P (m ,3),则关于x 的不等式x +2≤ax +c 的解为__________. 6.二次函数y =﹣x 2+bx+c 的部分图象如图所示,由图象可知,不等式﹣x 2+bx+c <0的解集为__________.三、解答题(本大题共6小题,共72分)1.解方程:33122x x x -+=--2.先化简,再求值:2443(1)11m m m m m -+÷----,其中22m =.3.如图,在四边形ABCD 中,AB DC ,AB AD =,对角线AC ,BD 交于点O ,AC 平分BAD ∠,过点C 作CE AB ⊥交AB 的延长线于点E ,连接OE .(1)求证:四边形ABCD 是菱形;(2)若5AB =,2BD =,求OE 的长.4.如图,在平面直角坐标系中,一次函数1y ax b =+的图象与反比例函数2k y x=的图象交于点()A 1,2和()B 2,m -. (1)求一次函数和反比例函数的表达式;(2)请直接写出12y y >时,x 的取值范围;(3)过点B 作BE //x 轴,AD BE ⊥于点D ,点C 是直线BE 上一点,若AC 2CD =,求点C 的坐标.5.“校园安全”越来越受到人们的关注,我市某中学对部分学生就校园安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面两幅尚不完整的统计图.根据图中信息回答下列问题:(1)接受问卷调查的学生共有______人,条形统计图中m的值为______;(2)扇形统计图中“了解很少”部分所对应扇形的圆心角的度数为______;(3)若该中学共有学生1800人,根据上述调查结果,可以估计出该学校学生中对校园安全知识达到“非常了解”和“基本了解”程度的总人数为______人;(4)若从对校园安全知识达到“非常了解”程度的2名男生和2名女生中随机抽取2人参加校园安全知识竞赛,请用列表或画树状图的方法,求恰好抽到1名男生和1名女生的概率.6.某超市预测某饮料有发展前途,用1600元购进一批饮料,面市后果然供不应求,又用6000元购进这批饮料,第二批饮料的数量是第一批的3倍,但单价比第一批贵2元.(1)第一批饮料进货单价多少元?(2)若二次购进饮料按同一价格销售,两批全部售完后,获利不少于1200元,那么销售单价至少为多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、C3、B4、C5、A6、A7、C8、C9、C10、C二、填空题(本大题共6小题,每小题3分,共18分) 1、2.2、x (x+2)(x ﹣2)3、x 1≥-且x 0≠4、32;5、x ≤1.6、x <−1或x >5.三、解答题(本大题共6小题,共72分)1、4x =2、22mm -+ 1.3、(1)略;(2)2.4、(1)反比例函数的解析式为22y x =,一次函数解析式为:1y x 1=+;(2)当2x 0-<<或x 1>时,12y y >;(3)当点C 的坐标为()11-或)1,1-时,AC 2CD =.5、(1)60,10;(2)96°;(3)1020;(4)236、(1)第一批饮料进货单价为8元.(2) 销售单价至少为11元.。
湘教版九年级数学上册期末测试卷及答案【必考题】班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.2020的相反数是( )A .2020B .2020-C .12020D .12020- 2.已知=2{=1x y 是二元一次方程组+=8{ =1mx ny nx my -的解,则2m n -的算术平方根为( )A .±2BC .2D .43.某车间有26名工人,每人每天可以生产800个螺钉或1000个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套.设安排x 名工人生产螺钉,则下面所列方程正确的是( )A .2×1000(26﹣x )=800xB .1000(13﹣x )=800xC .1000(26﹣x )=2×800xD .1000(26﹣x )=800x4.“绿水青山就是金山银山”.某工程队承接了60万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前30天完成了这一任务.设实际工作时每天绿化的面积为x 万平方米,则下面所列方程中正确的是( )A .606030(125%)x x -=+B .606030(125%)x x-=+ C .60(125%)6030x x ⨯+-= D .6060(125%)30x x⨯+-= 5.已知点A (m ,n )在第二象限,则点B (|m|,﹣n )在( )A .第一象限B .第二象限C .第三象限D .第四象限6.要反映台州市某一周每天的最高气温的变化趋势,宜采用( )A .条形统计图B .扇形统计图C.折线统计图D.频数分布统计图7.如图,某小区计划在一块长为32m,宽为20m的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为570m2.若设道路的宽为xm,则下面所列方程正确的是()A.(32﹣2x)(20﹣x)=570 B.32x+2×20x=32×20﹣570 C.(32﹣x)(20﹣x)=32×20﹣570 D.32x+2×20x﹣2x2=5708.如图,A,B是反比例函数y=4x在第一象限内的图象上的两点,且A,B两点的横坐标分别是2和4,则△OAB的面积是()A.4 B.3 C.2 D.19.如图,点P是∠AOB内任意一点,且∠AOB=40°,点M和点N分别是射线OA和射线OB上的动点,当△PMN周长取最小值时,则∠MPN的度数为()A.140°B.100°C.50°D.40°10.如图,能判定EB∥AC的条件是()A.∠C=∠1 B.∠A=∠2C.∠C=∠3 D.∠A=∠1二、填空题(本大题共6小题,每小题3分,共18分)1.化简:4=____________.2.分解因式:34=________.x x3.若实数a,b满足(4a+4b)(4a+4b-2)-8=0,则a+b=__________.4.如图,已知△ABC的两边AB=5,AC=8,BO、CO分别平分∠ABC、∠ACB,过点O作DE∥BC,则△ADE的周长等于__________.5.如图,从一块半径为1m的圆形铁皮上剪出一个圆周角为120°的扇形ABC,如果将剪下来的扇形围成一个圆锥,则该圆锥的底面圆的半径为_________m.6.如图,已知反比例函数y=(k为常数,k≠0)的图象经过点A,过A点作AB ⊥x轴,垂足为B,若△AOB的面积为1,则K=_______.三、解答题(本大题共6小题,共72分)1.解方程:23121x x =+-2.已知a 、b 、c 满足2225(32)0a b c -+-+-= (1)求a 、b 、c 的值.(2)试问:以a 、b 、c 为三边长能否构成三角形,如果能,请求出这个三角形的周长,如不能构成三角形,请说明理由.3.如图,点A 、D 、C 、F 在同一条直线上,AD=CF ,AB=DE ,BC=EF.(1)求证:ΔABC ≌△DEF ;(2)若∠A=55°,∠B=88°,求∠F 的度数.4.如图,点A ,B ,C 都在抛物线y=ax 2﹣2amx+am 2+2m ﹣5(其中﹣14<a <0)上,AB ∥x 轴,∠ABC=135°,且AB=4.(1)填空:抛物线的顶点坐标为 (用含m 的代数式表示);(2)求△ABC 的面积(用含a 的代数式表示);(3)若△ABC 的面积为2,当2m ﹣5≤x ≤2m ﹣2时,y 的最大值为2,求m 的值.5.我市某中学举行“中国梦•校园好声音”歌手大赛,高、初中部根据初赛成绩,各选出5名选手组成初中代表队和高中代表队参加学校决赛.两个队各选出的5名选手的决赛成绩如图所示.(1)根据图示填写下表;平均数(分)中位数(分)众数(分)初中部85高中部85 100(2)结合两队成绩的平均数和中位数,分析哪个队的决赛成绩较好;(3)计算两队决赛成绩的方差并判断哪一个代表队选手成绩较为稳定.平均数中位数众数6.文美书店决定用不多于20000元购进甲乙两种图书共1200本进行销售.甲、乙两种图书的进价分别为每本20元、14元,甲种图书每本的售价是乙种图书每本售价的1.4倍,若用1680元在文美书店可购买甲种图书的本数比用1400元购买乙种图书的本数少10本.(1)甲乙两种图书的售价分别为每本多少元?(2)书店为了让利读者,决定甲种图书售价每本降低3元,乙种图书售价每本降低2元,问书店应如何进货才能获得最大利润?(购进的两种图书全部销售完.)参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、C4、C5、D6、C7、A8、B9、B10、D二、填空题(本大题共6小题,每小题3分,共18分)1、22、x (x +2)(x ﹣2).3、-12或14、135、136、-2三、解答题(本大题共6小题,共72分)1、x =52、(1)a =,b =5,c =;(2)能;.3、(1)略;(2)37°4、(1)(m ,2m ﹣5);(2)S △ABC =﹣82a a ;(3)m 的值为72或.5、(1)(2)初中部成绩好些(3)初中代表队选手成绩较为稳定6、(1)甲种图书售价每本28元,乙种图书售价每本20元;(2)甲种图书进货533本,乙种图书进货667本时利润最大.。
第一学期期末测试卷一、选择题(每题3分,共24分)1.方程x2-2x=0的根是()A.x1=x2=0 B.x1=x2=2C.x1=0,x2=2 D.x1=0,x2=-22.下列各点中,在函数y=12x图象上的是()A.(-2,6) B.(3,-4) C.(-2,-6) D.(-3,4)3.为了比较甲、乙两种水稻秧苗谁出苗更整齐,每种秧苗各随机抽取100株,分别量出每株长度,发现两组秧苗的平均长度一样,甲、乙的方差分别是0.32,1.5,则下列说法正确的是()A.甲秧苗出苗更整齐B.乙秧苗出苗更整齐C.甲、乙出苗一样整齐D.无法确定甲、乙出苗谁更整齐4.已知函数y=kx+b的图象如图所示,则一元二次方程x2+x+k-1=0的根的存在情况是()A.没有实数根B.有两个相等的实数根C.有两个不相等的实数根D.无法确定5.已知反比例函数y=6x的图象上有两点A(1,m),B(2,n),则m与n的大小关系是()A.m>n B.m<n C.m=n D.不能确定6.某地修建高速公路,要从B地向C地修一座隧道(B,C在同一水平面上).为了测量B,C两地之间的距离,某工程师乘坐热气球从C地出发,垂直上升100 m到达A处,在A处观察B地的俯角为30°,则B,C两地之间的距离为()A.100 3 m B.50 2 m C.50 3 m D.100 33m7.如图,在△ABC 中,∠C =90°,D 是AC 上一点,DE ⊥AB 于点E ,若AC =8,BC =6,DE =3,则AD 的长为( )A .3B .4C .5D .68.如图,已知等腰三角形ABC 中,顶角∠A =36°,BD 平分∠ABC ,则AD AC 的值为( )A.12 B.5-12 C .1 D.5+12 二、填空题(每题4分,共32分) 9.若x y =23,则y x +y=____________.10.某校在一次期末考试中,随机抽取七年级30名学生的数学成绩进行分析,其中5名学生的数学成绩达90分以上.据此估计该校七年级360名学生中期末考试数学成绩达90分以上的学生约有____________. 11.在△ABC 中,∠C =90°,若tan A =125,则sin A =________.12.某楼盘2017年房价为每平方米10 000元,经过两年连续降价后,2019年房价为每平方米8 100元.设该楼盘这两年房价平均降低率为x ,根据题意可列方程为________________.13.利用标杆CD 测量建筑物的高度的示意图如图所示,若标杆CD 的高为1.5米,测得DE =2米,BD =18米,则建筑物的高AB 为________米.14.如图,点A 在反比例函数y =kx 的图象上,AB ⊥x 轴,垂足为B ,且S △AOB =4,则k =________.15.已知关于x 的一元二次方程x 2-(2m +3)x +m 2=0有两个实数根,且满足x 1+x 2=m 2,则m 的值是____________.16.如图,在平面直角坐标系xOy 中,以O 为位似中心,将边长为8的等边三角形OAB 作n 次位似变换,经第一次变换后得到等边三角形OA 1B 1,其边长OA 1缩小为OA 的12,经第二次变换后得到等边三角形OA 2B 2,其边长OA 2缩小为OA 1的12,经第三次变换后得到等边三角形OA 3B 3,其边长OA 3缩小为OA 2的12,…,按此规律,经第n 次变换后,所得等边三角形OA n B n 的顶点A n的坐标为(128 ,0),则n 的值是____________.三、解答题(17,18题每题6分,19,20题每题8分,21~24题每题9分,共64分)17.计算:(1)(-1)2 021-2-1+cos 60°+(π-3.14)0;(2)sin 45°·tan 45°+tan 60°·tan 30°-2sin 30°·cos 45°.18.用适当的方法解下列方程:(1)x2-4x+3=0;(2)-x2+8x+4=0.19.如图,A,B是双曲线y=kx上的点,点A的坐标是(1,4),B是线段AC的中点.(1)求k的值;(2)求点B的坐标;(3)求△OAC的面积.20.某校体育处为了解该校2019~2020学年度七年级同学对排球、乒乓球、羽毛球、篮球和足球五种球类运动项目的喜爱情况(每名同学必须且只能选择最喜爱的一种运动项目),进行了随机抽样调查,并将调查结果统计后绘制成了如下不完整的统计图表.(1)m=________,并请你补全条形统计图;(2)若2019~2020学年度七年级学生总人数为920人,请你估计2019~2020学年度七年级学生喜爱羽毛球运动项目的人数.样本人数分布表类别人数百分比排球 3 6%乒乓球14 28%羽毛球15 m篮球20%足球8 16%合计100%21.为加强我市创建文明卫生城市宣传力度,需要在甲楼A处到E处悬挂一幅宣传条幅,在乙楼顶部D点测得条幅顶端A点的仰角为45°,条幅底端E点的俯角为30°,若甲、乙两楼的水平距离BC为21米,求条幅AE的长约是多少米.(结果精确到0.1米,3≈1.732)22.用长为32米的篱笆围一个矩形养鸡场,设围成的矩形一边长为x 米. (1)当x 为何值时,围成的养鸡场面积为60平方米?(2)能否围成面积为70平方米的养鸡场?如果能,请求出其边长;如果不能,请说明理由.23.如图,直线y =ax +1与x 轴,y 轴分别交于A ,B 两点,与双曲线y =kx (x >0)交于点P ,PC ⊥x 轴于点C ,且PC =2,点A 的坐标为(-2,0). (1)求双曲线的表达式;(2)若点Q 为双曲线上点P 右侧的一点,且Q H ⊥x 轴于H ,当以点Q ,C ,H 为顶点的三角形与△AOB 相似时,求点Q 的坐标.24.已知四边形ABCD中,E,F分别是AB,AD边上的点,DE与CF交于点G.(1)如图①,若四边形ABCD是矩形,且DE⊥CF.求证:DECF=ADCD;(2)如图②,若四边形ABCD是平行四边形.试探究:当∠B与∠EGC满足什么关系时,使得DECF=ADCD成立?并证明你的结论.答案一、1.C 2.C3.A :方差反映一组数据的波动大小,方差越大,波动性越大,∵甲、乙方差分别是0.32,1.5,即s 甲2<s 乙2,∴甲秧苗出苗更整齐. 4.C :根据函数y =kx +b 的图象可得k <0,b <0,在一元二次方程x 2+x +k -1=0中,Δ=12-4×1×(k -1)=5-4k >0, 则一元二次方程x 2+x +k -1=0的根的存在情况是有两个不相等的实数根. 5.A :∵k =6>0,∴在反比例函数y =6x中,在每个象限内y 随x 的增大而减小.∵反比例函数y =6x 的图象上有两点A (1,m ),B (2,n ),1<2,∴m >n .6.A :根据题意得∠ABC =30°,AC ⊥BC ,AC =100 m , 在Rt △ABC 中,BC =AC tan ∠ABC=100 3 m.7.C :在△ABC 中,∠C =90°,AC =8,BC =6,∴AB =AC 2+BC 2=10. ∵DE ⊥AB ,∴∠AED =∠C .又∵∠A =∠A ,∴△ADE ∽△ABC ,则DE BC =AD AB ,即36=AD 10,∴AD =3×106=5.8.B :设AB =AC =m ,AD =x ,则CD =m -x ,∵∠A =36°,BD 平分∠ABC ,∴∠CBD =12∠ABC =12×12×(180°-36°)=36°.在△ACB 和△BCD 中,⎩⎨⎧∠C =∠C ,∠A =∠CBD =36°, ∴△ACB ∽△BCD ,∴AC ∶BC =BC ∶DC ,易知BC =BD =DA =x ,∴m ∶x =x ∶(m -x ),∴x 2+mx -m 2=0, 解得x =5-12m (已舍去负根),∴AD ∶AC =5-12.二、9.35 :∵x y =23,∴x +y y =x y +1=53,∴y x +y =35.10.60名 :由题意可得530×360=60(名).11.1213 :∵tan A =a b =125,设a =12k ,则b =5k ,∴c =a 2+b 2=13k ,∴sin A =a c =1213. 12.10 000(1-x )2=8 100 13.15 :∵AB ∥CD , ∴△EDC ∽△EBA , ∴CD AB =ED EB ,即1.5AB =22+18, ∴AB =15米.14.8 :设A (a ,b ),则OB =a ,AB =b ,∵S △AOB =4,∴12ab =4,∴ab =8=k .15.3 :根据根与系数的关系得x 1+x 2=2m +3,∵x 1+x 2=m 2,∴m 2=2m +3,解得m =3或-1.又∵方程有两个实数根,∴[-(2m +3)]2-4m 2≥0,即m ≥-34,∴m =3. 16.11三、17.解:(1)原式=-1-12+12+1=0.(2)原式=22×1+3×33-2×12×22=22+1-22=1. 18.解:(1)分解因式得(x -1)(x -3)=0, 可得x -1=0或x -3=0,解得x 1=1,x 2=3. (2)∵a =-1,b =8,c =4,∴Δ=64+16=80,∴x =-8±4 5-2=4±2 5,则x 1=4-2 5,x 2=4+2 5.19.解:(1)把(1,4)代入y =k x 得4=k1,解得k =4.(2)由B 是AC 的中点可得B 点的纵坐标是A 点纵坐标的一半,即y =2,把y =2代入y =4x 得2=4x ,解得x =2,故点B 的坐标为(2,2).(3)由点A ,B 的坐标求得直线AB 的表达式为y =-2x +6,令y =0,求得x =3, ∴点C 的坐标为(3,0),∴△OAC 的面积为12×3×4=6.20.解:(1)30%补全条形统计图如下:(2)920×30%=276(人).∴估计2019~2020学年度七年级学生喜爱羽毛球运动项目的有276人.21.解:如图,过点D作DF⊥AB于点F.在Rt△ADF中,DF=21米,∠ADF=45°,∴AF=DF×tan 45°=21米.在Rt△EDF中,DF=21米,∠EDF=30°,∴EF=DF×tan 30°=7 3米.∴AE=AF+EF=21+7 3≈33.1(米).答:条幅AE的长约为33.1米.22.解:因为围成的矩形一边长为x米,所以矩形的邻边长为(16-x)米.(1)依题意得x(16-x)=60,即(x-6)(x-10)=0.解得x1=6,x2=10,即当x是6或10时,围成的养鸡场面积为60平方米.(2)不能围成面积为70平方米的养鸡场.理由如下:当养鸡场面积为70平方米时,x(16-x)=70,即x2-16x+70=0.因为Δ=(-16)2-4×1×70=-24<0,所以该方程无解.即不能围成面积为70平方米的养鸡场.23.解:(1)把(-2,0)代入y=ax+1中,求得a=12,∴y=12x+1,∵PC=2,∴P点纵坐标为2,把y=2代入y=12x+1,得x=2,即P(2,2),把P点坐标代入y=kx得k=4,则双曲线表达式为y=4x.(2)如图,设Q(m,n),∵Q(m,n)在双曲线y=4x上,∴n=4m,当△QCH∽△BAO时,可得CHAO=QHBO,即m-22=n1,∴m-2=2n,即m-2=8m,解得m=4或m=-2(舍去).当m=4时,n=1.∴Q(4,1);当△QCH∽△ABO时,可得CHBO=QHAO,即m-21=n2,整理得2m-4=4m,解得m=1+3或m=1-3(舍去),当m=1+3时,n=2 3-2,∴Q(1+3,2 3-2).综上,Q(4,1)或Q(1+3,2 3-2).24.(1)证明:∵四边形ABCD是矩形,∴∠A=∠FDC=90°.∵CF⊥DE,∴∠DGF=90°,∴∠ADE+∠DFC=90°,∠ADE+∠AED=90°,∴∠AED=∠DFC,∵∠A=∠CDF,∴△AED∽△DFC,∴DECF=ADCD.(2)解:当∠B+∠EGC=180°时,DECF=ADCD成立.证明如下:∵四边形ABCD是平行四边形,∴∠B=∠ADC,AD∥BC,∴∠B+∠A=180°.∵∠B+∠EGC=180°,∴∠A=∠EGC=∠FGD.∵∠EDA=∠FDG,∴△DEA∽△DFG,∴DEDF=ADDG,即DEAD=DFDG.∵∠B=∠ADC,∠B+∠EGC=180°,∠EGC+∠DGC=180°,∴∠CGD=∠CDF.∵∠GCD=∠DCF,∴△CGD∽△CDF,∴DFDG=CFCD,∴DEAD=CFCD,∴DECF=ADCD,即当∠B+∠EGC=180°时,DECF=ADCD成立.。
湘教版最新九年级数学上学期期末复习检测题时间:120分钟 满分:120分一、选择题(本大题共10个小题,每小题3分,共30分) 1.一元二次方程x(x -2)=2-x 的根是( D ) A .-1 B. 2 C .1和 2 D .-1和 2 2.cos60°-sin30°+tan45°的值为( C ) A .2 B .-2 C .1 D .-13.在反比例函数y =k x (k<0)的图象上有两点(-1,y 1),(-14,y 2),则y 1-y 2的值是( A )A .负数B .非正数C .正数D .不能确定4.某校为了解八年级学生每周课外阅读情况,随机调查了50名八年级学生,得到他们在某一周里课外阅读所用时间的数据,并绘制成频数分布直方图,如图所示,根据统计图,可以估计在这一周该校八年级学生平均课外阅读的时间约为( B )A .2.8小时B .2.3小时C .1.7小时D .0.8小时,第4题图) ,第5题图),第6题图) ,第7题图)5.如图,河坝横断面迎水坡AB 的坡比是1∶3(坡比是坡面的铅直高度BC 与水平宽度AC 之比),坝高BC =3 m ,则坡面AB 的长度是( B )A .9 mB .6 mC .6 3 mD .3 3 m6.如图,在Rt △ABC 中,∠C =90°,∠A =30°,c =10,则下列不正确的是( D ) A .∠B =60° B .a =5 C .b =5 3 D .tanB =337.如图,五边形ABCDE 与五边形A ′B ′C ′D ′E ′是位似图形,O 为位似中心,OD =12OD ′,则A ′B ′∶AB 为( D )A .2∶3B .3∶2C .1∶2D .2∶18.如图,AB ∥CD ,AC ,BD ,EF 相交于点O ,则图中相似三角形共有( C ) A .1对 B .2对 C .3对 D .4对9.方程x 2-(m +6)x +m 2=0有两个相等的实数根,且满足x 1+x 2=x 1x 2,则m 的值是( C )A .-2或3B .3C .-2D .-3或210.如图,将矩形ABCD 沿对角线BD 折叠,使点C 落在点C ′处,BC ′交AD 于点E ,则下列结论不一定成立的是( C )A .AD =BC ′B .∠EBD =∠EDBC .△ABE ∽△CBD D .sin ∠ABE =AEED二、填空题(本大题共8个小题,每小题3分,共24分)11.若代数式(x -4)2与代数式9(4-x)的值相等,则x =__4或-5__.12.若a a -b =12,则ab=__-1__.13.如图,在△ABC 中,D 是AB 边上的一点,连接CD ,请添加一个适当的条件__∠ACD =∠ABC 或∠ADC =∠ACB 或AC ∶AB =AD ∶AC 等__,使△ABC ∽△ACD.(只填一个即可),第13题图) ,第14题图),第15题图)14.某学校为了解学生课间体育活动情况,随机抽取本校100名学生进行调查,整理收集到的数据,绘制成如图所示的统计图.若该校共有800名学生,估计喜欢“踢毽子”的学生有__200__人.15.如图,以O 为位似中心,把五边形ABCDE 的面积扩大为原来的4倍,得五边形A 1B 1C 1D 1E 1,则OD ∶OD 1=__1∶2__.16.如图,点A 是反比例函数y =6x 的图象上一点,过点A 作AB ⊥x 轴,垂足为点B ,线段AB 交反比例函数y =2x的图象于点C ,则△OAC 的面积为__2__.,第16题图),第17题图) ,第18题图)17.如图,一渔船由西往东航行,在A 点测得海岛C 位于北偏东60°的方向,前进20海里到达B 点,此时,测得海岛C 位于北偏东30°的方向,则海岛C 到航线AB 的距离CD 等于__103__海里.18.如图,在正方形ABCD 中,E 是BC 的中点,F 是CD 上一点,且CF =14CD ,下列结论:①∠BAE =30°;②△ABE ∽△ECF ;③AE ⊥EF ;④△ADF ∽△ECF.其中正确结论是__②③__.(填序号)三、解答题(共66分) 19.(8分)解方程或计算: (1)x 2-2x =5; (2)|-1|-128-(5-π)0+4cos45°. 解:(1)x 1=1+6,x 2=1- 6 (2) 220.(8分)已知:关于x 的方程2x 2+kx -1=0. (1)求证:方程有两个不相等的实数根;(2)若方程的一个根是-1,求另一个根及k 的值.解:(1)∵b 2-4ac =k 2-4×2×(-1)=k 2+8,无论k 取何值,k 2≥0,∴k 2+8>0,即b 2-4ac>0.∴方程2x 2+kx -1=0有两个不相等的实数根 (2)令原方程的另一个根为x 2,则⎩⎪⎨⎪⎧-1·x 2=-12,-1+x 2=-k 2.解得⎩⎪⎨⎪⎧x 2=12,k =1.即另一个根为12,k 的值是121.(9分)游泳是一项深受青少年喜爱的体育活动,学校为了加强学生的安全意识,组织学生观看了纪实片“孩子,请不要私自下水”,并于观看后在本校的2000名学生中作了抽样调查.请根据下面两个不完整的统计图回答以下问题:(1)这次抽样调查中,共调查了__400__名学生; (2)补全两个统计图;(3)根据抽样调查的结果,估算该校2000名学生中大约有多少人“一定会下河游泳”? 解:(2)“一定不会”的人数为400×25%=100(名),“家长陪同时会”的百分率为1-25%-12.5%-5%=57.5%,图略 (3)根据题意得:2000×5%=100(人).答:该校2000名学生中大约有100人“一定会下河游泳”22.(8分)如图,在电线杆上的C 处引拉线CE ,CF 固定电线杆,拉线CE 和地面成60°角,在离电线杆6米的B 处安置测角仪,在A 处测得电线杆上C 处的仰角为30°,已知测角仪高AB 为1.5米,求拉线CE 的长.(结果保留根号)解:过A 作AG ⊥CD 交CD 于点G ,在Rt △ACG 中,tan30°=CG AG ,∴CG =AG ·tan30°=6×33=23米,CD =CG +DG =(23+1.5)米,在Rt △CDE 中,sin60°=CD CE ,∴CE =CD sin60°=23+1.532=(4+3)米,即拉线CE 的长为(4+3)米23.(11分)如图,在正方形ABCD 中,E ,F 分别是边AD ,CD 上的点,AE =ED ,DF =14DC ,连接EF 并延长交BC 的延长线于点G. (1)求证:△ABE ∽△DEF ;(2)若正方形的边长为4,求BG 的长.解:(1)∵DF DE =AE AB =12,即AB DE =AEDF,又∠A =∠D =90°,∴△ABE ∽△DEF (2)∵∠D =∠FCG =90°,∠DFE =∠CFG ,∴△DEF ∽△CGF ,∴DE CG =DF CF =13,∴CG =3DE=3×42=6,∴BG =BC +CG =4+6=1024.(10分)某新建火车站站前广场需要绿化的面积为46000平方米,施工队在绿化了22000平方米后,将每天的工作量增加为原来的1.5倍,结果提前4天完成了该项绿化工程.(1)该项绿化工程原计划每天完成多少平方米?(2)该项绿化工程中有一块长为20米,宽为8米的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为56米2,两块绿地之间及周边留有宽度相等的人行通道(如图所示),问人行通道的宽度是多少米?解:(1)设原计划每天完成x 米2,则有46000-22000x -46000-220001.5x =4,解得x =2000,经检验x =2000是原方程的解,即:原计划每天完成2000平方米 (2)设人行通道宽度是y 米,则有(20-3y)(8-2y)=56,解得y 1=2,y 2=263.当y =263时,8-2y<0,所以舍去,∴y =2,即人行通道的宽度是2米25.(12分)如图,一次函数y =-x +2的图象与反比例函数y =-3x 的图象交于A ,B两点,与x 轴交于D 点,且C ,D 两点关于y 轴对称.(1)求A ,B 两点的坐标; (2)求△ABC 的面积.解:(1)把y =-x +2与y =-3x 联立,⎩⎪⎨⎪⎧y =-x +2y =-3x 解得⎩⎨⎧x =3y =-1或⎩⎨⎧x =-1y =3,∴A(-1,3),B(3,-1) (2)D(2,0),∴C(-2,0),S △ABC =S △ACD +S △BCD =12×4×3+12×4×1=8。
检测内容:期末测试(一)得分 卷后分 评价一、选择题(每小题3分,共24分)1.在Rt △ABC 中,∠C =90°,AC =3,BC =4,那么∠A 的余弦值等于(A )A .35B .45C .34D .432.在反比例函数y =1-kx 的图象的每一条曲线上, y 都随x 的增大而增大,则k 的值可以是(D )A .-1B .0C .1D .23.某校关注学生的用眼健康,从九年级500名学生中随机抽取了30名学生进行视力检查,发现有12名学生近视眼,据此估计这500名学生中,近视的学生人数约是(B )A .150B .200C .350D .4004.如图,▱ABCD 中,E 是CD 延长线上一点,BE 与AD 交于点F ,CD =2DE ,若△DEF 的面积为a ,则▱ABCD 的面积为(D )A .6 aB .8 aC .9 aD .12 a第4题图第5题图第7题图第8题图5.如图,下列条件能使△BPE 和△CPD 相似的有(C )①∠B =∠C;②AD AC =AE AB ;③∠ADB=∠AEC;④AD AB =AE AC ;⑤PE PD =BPPC.A .2个B .3个C .4个D .5个6.某生物兴趣小组的学生,将自己制作的标本向本组其他成员各赠送一件,全组共送出182件,如果全组共有x 名学生,则依题意可列出的方程为(C )A .x (x +1)=182B .12x (x +1)=182 C .x (x -1)=182 D .2x (x -1)=1827.(2019·绵阳)公元三世纪,我国汉代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”如图所示,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形.如果大正方形的面积是125,小正方形面积是25,则(sin θ-cos θ)2=(A )A .15B .55 C .355 D .958.已知:如图,在平面直角坐标系中,有菱形OABC ,A 点的坐标为(10,0),对角线OB ,AC 相交于D 点,反比例函数y =kx(x >0且k≠0)经过D 点,交BC 的延长线于E 点,且OB·AC =160,有下列四个结论:①反比例函数的解析式为y =40x (x >0);②E 点的坐标是(5,8);③sin ∠COA =45;④AC +OB =12 5 .其中正确的结论有(B )A .1个B .2个C .3个D .4个二、填空题(每小题3分,共24分)9.当m = -2 时,方程(m -3)xm 2-m -4+mx +10=0是关于x 的一元二次方程.10.如图,已知正比例函数与反比例函数交于A (-1,2),B (1,-2)两点,当正比例函数的值大于反比例函数值时,x 的取值范围为 x <-1或0<x <1 W.11.若x ∶y ∶z =3∶4∶7,且2x -y +z =18,则x +2y -z = 8 W.12.某市移动公司为了调查手机发送短信的情况,在本区域的100位用户中抽取了10位用户来统计他们某周发送短信息的条数,结果如表:手机用户序号 1 2 3 4 5 6 7 8 9 10 发送短信息条数20192020211715232025本次调查中这100位用户大约每周发送 2 000 条短信.13.如图,在东西方向的海岸线上有A ,B 两个港口,甲货船从A 港沿北偏东60°的方向以4海里/小时的速度出发,同时乙货船从B 港沿西北方向出发,2小时后相遇在点P 处,问乙货船每小时航行 22 海里.第13题图第14题图第15题图第16题图14.(包头中考)如图,在平面直角坐标系中,Rt △ABO 的顶点O 与原点重合,顶点B 在x 轴上,∠ABO =90°,OA 与反比例函数y =k x的图象交于点D ,且OD =2AD ,过点D 作x 轴的垂线交x 轴于点C .若S 四边形△ABCD =10,则k 的值为 -16 W.15.如图,一次函数y =-12x -2的图象分别交x 轴、y 轴于A ,B 两点,P 为AB 的中点,PC ⊥x 轴于点C ,延长PC 交反比例函数y =k x (x <0)的图象于点Q ,且tan ∠AOQ =12,则k = -2 W.16.(贵阳中考)如图,在Rt △ABC 中,∠BAC =90°,AB =AC =16 cm ,AD 为BC 边上的高.动点P 从点A 出发,沿A →D 方向以2 cm/s 的速度向点D 运动.设△ABP 的面积为S 1,矩形PDFE 的面积为S 2,运动时间为t 秒(0<t <8),则t = 6 秒时,S 1=2S 2.三、解答题(共72分) 17.(6分)解方程:(1)x 2+4x -12=0; (2)3x 2+5(2x +1)=0.解:x 1=2,x 2=-6; 解:x 1=-5+103 ,x 2=-5-103.18.(9分) 某校教导处为了解该校七年级同学对排球、乒乓球、羽毛球、篮球和足球五种球类运动项目的喜爱情况(每位同学必须且只能选择最喜爱的一项运动项目),进行了随机抽样调查,并将调查结果统计后绘制成了如图所示的不完整统计图表.(1)请你补全下列样本人数分布表和条形统计图(如图); (2)若七年级学生总人数为920人,请你估计七年级学生喜爱羽毛球运动项目的人数. 错误! 解:(1)3÷6%=50(人),则篮球的人数为50×20%=10(人),补全条形统计图略,羽毛球占总数的百分比为15÷50=30%,补全人数分布表略;(2)920×30%=276人,故七年级学生喜爱羽毛球运动项目的人数为276人.19.(7分)如图,等边三角形ABC 放置在平面直角坐标系中,已知A (0,0),B (6,0),反比例函数的图象经过点C .(1)求点C 的坐标及反比例函数的解析式;(2)将等边△ABC 向上平移n 个单位,使点B 恰好落在双曲线上,求n 的值.解:(1)过C 点作CD ⊥x 轴,垂足为D ,设反比例函数的解析式为y =k x,∵△ABC 是等边三角形,∴AC =AB =6,∠CAB =60°,∴AD =3,CD =sin 60°×AC =32×6=33 ,∴点C 坐标为(3,33 ),∵反比例函数的图象经过点C ,∴k =93 ,∴反比例函数的解析式为y =93x;(2)若等边△ABC 向上平移n 个单位,使点B 恰好落在双曲线上,则此时B 点的横坐标为6,则纵坐标y =936 =332 ,即应向上平移n =332个单位.故n 的值为332.20.(8分)如图,在Rt △ABC 中,∠C =90°,BD 平分∠ABC ,tan A =33,AD =20.求BC 的长.解:∵tan A =33,∴∠A =30°,∴∠ABC =60°.又BD 平分∠ABC ,∴∠A =∠ABD =∠CBD =30°,∴AD =BD =20.∴DC =10,即AC =AD +DC =30,又tan A =BCAC,∴BC =AC ·tanA =30×33=103 .21.(7分)为落实素质教育要求,促进学生全面发展,某中学2013年投资11万元新增一批计算机,计划以后每年以相同增长率进行投资,2015年投资18.59万元.(1)求该学校为新增计算机投资的年平均增长率;(2)从2013年到2015年,该中学三年为新增计算机共投资多少万元?解:(1)设年平均增长率为x ,则11(1+x )2=18.59,解得x 1=-2.3(舍去),x 2=0.3=30%;(2)该中学三年共投资11+11×(1+30%)+11×(1+30%)2=43.89(万元).22.(8分)如图,第一象限内的点A 在反比例函数y =k x的图象上,且OA =10 ,OA 与x 轴正方向的夹角为α,tan α=13.(1)求k 的值,并求当y ≤1时自变量x 的取值范围;(2)点B (m ,-2)也在反比例函数y =k x的图象上,连接AB ,与x 轴交于点C ,若AC 与x 轴正方向的夹角为β,求sin β的值.解:(1)过A 作AE ⊥x 轴于点E ,tan ∠AOE =13 ,∴OE =3AE ,又∵OA =10 ,∴由勾股定理得:OE 2+AE 2=10,解得AE =1,OE =3,∵A 点在双曲线上,∴1=k3 ,∴k =3,当y ≤1时,x ≥3或x <0;(2)∵B (m ,-2)在双曲线y =3x 上,∴-2=3m ,解得m =-32 ,∴B的坐标是(-32 ,-2).设A ,B 两点所在直线的解析式为y =ax +b ,将A ,B 两点的坐标代入直线解析式得⎩⎪⎨⎪⎧3a +b =1,-32a +b =-2, 解得a =23 ,b =-1,∴直线AB 的解析式为y =23 x -1,∴C (32 ,0),∴sin β=21313.23.(6分)如图,ABCD 为等腰梯形,其中AB ∥CD , 已知AB =10,CD =2,梯形的高为4.现要在梯形内部剪出一个长方形EFGH ,使E ,F 分别落在BC ,AD 上,G ,H 落在AB 上,且长方形EFGH 的面积为8个平方单位,试求出长方形EFGH 的长和宽分别为多少?解:由已知条件可推知∠A =∠B =45°,设EF 的长为x ,则FG 为10-x2,列方程得x ·10-x2=8,解得x 1=2,x 2=8,故长方形EFGH 的长和宽分别为4和2或8和1,长和宽分别为4和2或8和1.24.(9分)如图,某校综合实践活动小组的同学欲测量公园内一棵树DE 的高度,他们在这棵树正前方一座楼亭前台阶上A 点测得树顶端D 的仰角为30°,朝着这棵树的方向走到台阶下的点C 处,测得树顶端D 的仰角为60°.已知A 点的高度AB 为2米,台阶C 的坡度为1∶3 (即AB ∶BC =1∶3 ),且B ,C ,E 三点在同一条直线上.请根据以上条件求出树DE 的高度.(测倾器的高度忽略不计)解:过点A 作AF ⊥DE 于点F ,四边形ABEF 为矩形,∵AF =BE ,EF =AB =2,设DE =x ,在Rt △CDE 中,CE =DEtan ∠DCE =DE tan60° =33 x ,在Rt △ABC 中,∵AB BC =13,AB =2,∴BC =23 ,在Rt △AFD 中,DF =DE -EF =x -2,∴AF =DFtan ∠DAF =x -2tan30°=3 (x-2),∵AF =BE =BC +CE .∴3 (x -2)=23 +33x ,解得x =6.故树DE 的高度为6 m .25.(12分)直线y =x +b 与x 轴交于点C (4,0),与y 轴交于点B ,并与双曲线y =m x(x <0)交于点A (-1,n ).(1)求直线与双曲线的解析式; (2)连接OA ,求∠OAB 的正弦值;(3)若点D 在x 轴的正半轴上,是否存在以点D ,C ,B 构成的三角形与△OAB 相似?若存在,求出点D 的坐标;若不存在,请说明理由.解:(1)∵直线y =x +b 与x 轴交于点C (4,0),∴把点C (4,0)代入y =x +b 得,b =-4,∴直线的解析式是y =x -4;∵直线也过A 点,∴把A 点代入y =x -4得到n =5,∴A (-1,-5),再将A 点代入y =m x(x <0),得m =5,∴双曲线的解析式是y =5x;(2)过点O 作OM ⊥AC 于点M ,∵B 点经过y 轴,∴x =0,∵0-4=y ,∴y =-4,∴B (0,-4),AO =12+52 =26 ,∵OC =OB =4,∴△OCB 是等腰三角形,∴∠OBC =∠OCB =45°,∴在△OMB 中,sin45°=OM OB =OM 4 ,∴OM =22 ,∴在△AOM 中,sin ∠OAB =OM OA =2226=21313;(3)存在.过点A 作AN ⊥y 轴,垂足为N .则AN =1,BN =1,AB =12+12=2 ,∵OB =OC =4,∴BC =42+42=42 ,∠OBC =∠OCB =45°,∴∠OBA =∠BCD =135°,∴△OBA ∽△BCD 或△OBA ∽△DCB .∴OB BC =BA CD或OB DC =BA BC ,∴442 =2CD 或4DC =242,∴CD =2或16.∴D 点坐标为(6,0)或(20,0).1、在最软入的时候,你会想起谁。