【金版教程】高考数学(理)二轮复习考前冲刺攻略练习:立体几何含答案
- 格式:doc
- 大小:352.50 KB
- 文档页数:13
高考数学二轮复习立体几何多选题知识点及练习题含答案一、立体几何多选题1.如图,正方体1111ABCD A B C D -中的正四面体11A BDC -的棱长为2,则下列说法正确的是( )A .异面直线1AB 与1AD 所成的角是3πB .1BD ⊥平面11AC DC .平面1ACB 截正四面体11A BDC -所得截面面积为3D .正四面体11A BDC -的高等于正方体1111ABCD A B C D -体对角线长的23【答案】ABD 【分析】选项A ,利用正方体的结构特征找到异面直线所成的角;选项B ,根据正方体和正四面体的结构特征以及线面垂直的判定定理容易得证;选项C ,由图得平面1ACB 截正四面体11A BDC -所得截面面积为1ACB 面积的四分之一;选项D ,分别求出正方体的体对角线长和正四面体11A BDC -的高,然后判断数量关系即可得解. 【详解】A :正方体1111ABCD ABCD -中,易知11//AD BC ,异面直线1A B 与1AD 所成的角即直线1A B 与1BC 所成的角,即11A BC ∠,11A BC 为等边三角形,113A BC π∠=,正确;B :连接11B D ,1B B ⊥平面1111DC B A ,11A C ⊂平面1111D C B A ,即111AC B B ⊥,又1111AC B D ⊥,1111B B B D B ⋂=,有11A C ⊥平面11BDD B ,1BD ⊂平面11BDD B ,所以111BD AC ⊥,同理可证:11BD A D ⊥,1111AC A D A ⋂=,所以1BD ⊥平面11AC D ,正确;C :易知平面1ACB 截正四面体11A BDC -所得截面面积为134ACB S=,错误;D :易得正方体1111ABCD A B C D -()()()2222226++=2的正四面体11A BDC -的高为22222262213⎛⎫--⨯= ⎪⎝⎭,故正四面体11A BDC -的高等于正方体1111ABCD A B C D -体对角线长的23,正确. 故选:ABD. 【点睛】关键点点睛:利用正方体的性质,找异面直线所成角的平面角求其大小,根据线面垂直的判定证明1BD ⊥平面11AC D ,由正四面体的性质,结合几何图形确定截面的面积,并求高,即可判断C 、D 的正误.2.如图,在边长为4的正方形ABCD 中,点E 、F 分别在边AB 、BC 上(不含端点)且BE BF =,将AED ,DCF 分别沿DE ,DF 折起,使A 、C 两点重合于点1A ,则下列结论正确的有( ).A .1A D EF ⊥B .当12BE BF BC ==时,三棱锥1A F DE -6π C .当14BE BF BC ==时,三棱锥1A F DE -217 D .当14BE BF BC ==时,点1A 到平面DEF 的距离为177【答案】ACD 【分析】A 选项:证明1A D ⊥面1A EF ,得1A D EF ⊥;B 选项:当122BE BF BC ===时,三棱锥1A EFD -的三条侧棱111,,A D A E A F 两两相互垂直,利用分隔补形法求三棱锥1A EFD -的外接球体积; C 选项:利用等体积法求三棱锥1A EFD -的体积; D 选项:利用等体积法求出点1A 到平面DEF 的距离. 【详解】 A 选项:正方形ABCD,AD AE DC FC ∴⊥⊥由折叠的性质可知:1111,A D A E A D A F ⊥⊥又111A E A F A ⋂=1A D ∴⊥面1A EF又EF ⊂面1A EF ,1A D EF ∴⊥;故A 正确.B 选项:当122BE BF BC ===时,112,A E A F EF ===在1A EF 中,22211A E A F EF +=,则11A E A F ⊥由A 选项可知,1111,A D A E A D A F ⊥⊥∴三棱锥1A EFD -的三条侧棱111,,A D A E A F 两两相互垂直,把三棱锥1A EFD -=,三棱锥1A EFD -,体积为334433R ππ==,故B 错误C 选项:当114BE BF BC ===时,113,A E A F EF ===在1A EF中,22222211111338cos 22339A E A F EF EA F A E A F+-+-∠===⋅⨯⨯,1sin 9EA F ∠=则111111sin 332292A EFSA E A F EA F =⋅⋅∠=⨯⨯⨯=111111433A EFD D A EF A EF V V SA D --∴==⋅⋅==故C 正确;D 选项:设点1A 到平面EFD 的距离为h ,则在EFD △中,2222225524cos 225525DE DF EF EDF DE DF +-+-∠===⋅⨯⨯, 7sin 25EDF ∠=则1177sin 5522252EFDSDE DF EDF =⋅⋅∠=⨯⨯⨯=11173323A EFD DEFV Sh h -∴=⋅⋅=⨯⨯=即7h =故D 正确; 故选:ACD 【点睛】方法点睛:求三棱锥的体积时要注意三棱锥的每个面都可以作为底面,例如三棱锥的三条侧棱两两垂直,我们就选择其中的一个侧面作为底面,另一条侧棱作为高来求体积.3.在三棱柱111ABC A B C -中,ABC ∆是边长为23的等边三角形,侧棱长为43,则( )A .直线1A C 与直线1BB 之间距离的最大值为3B .若1A 在底面ABC 上的投影恰为ABC ∆的中心,则直线1AA 与底面所成角为60︒ C .若三棱柱的侧棱垂直于底面,则异面直线AB 与1A C 所成的角为30D .若三棱柱的侧棱垂直于底面,则其外接球表面积为64π 【答案】AD 【分析】建立空间直角坐标系,用向量法求解. 【详解】如图示,以A 为原点,AC 为y 轴正方向,Ax 为x 轴正方向,过A 点垂直于面ABC 的向上方向为z 轴正方向建系,则()()()0,0,0,3,0,0,23,0,A B C 设()()()100010001000,,,3,3,,,23,,A x y z B x y z C x y z ++所以()()()1000100011,23,,,,,3,3,0,AC x y z BB x y z A B =---== 对于A:设n 为直线1A C 与直线1BB 的公垂线的方向向量,则有:11·0·0AC n BB n ⎧=⎪⎨=⎪⎩,即()()000000230x x y y zz x x y y zz ⎧-+-=⎪⎨++=⎪⎩解得:()00,0n z x =-设直线1A C 与直线1BB 之间距离为d ,则22011222200009||||z A B nd dx z n x z ==∴=++ 22009x d ≥∴≤,即3d ≤,故A 正确;对于B :若1A 在底面ABC 上的投影恰为ABC ∆的中心,则()11,3,211A 底面法向量()()10,0,1,1,3,211m AA ==,设直线 1AA 与底面所成角为θ,则:121133sin |cos ,|143AA n θ===⨯,故B 错误; 对于C : 三棱柱的侧棱垂直于底面时,则()()()1110,0,43,3,3,43,0,23,43,A B C则()()13,3,0,0,23,43,AB AC ==-设异面直线AB 与1A C 所成的角为θ,则1115cos |cos ,|||10||||23215AB AC AB AC AB AC θ====⨯,故C 错误;对于D :若三棱柱的侧棱垂直于底面时,外接球的球心O 为上下底面中心DD 1连线的中点,所以外接球的半径()222324R =+=,所以2464S R ππ==.故D 正确故选:AD 【点睛】向量法解决立体几何问题的关键: (1)建立合适的坐标系; (2)把要用到的向量正确表示; (3)利用向量法证明或计算.4.已知四面体ABCD 的所有棱长均为2,则下列结论正确的是( ) A .异面直线AC 与BD 所成角为60︒B .点A 到平面BCD 的距离为3C .四面体ABCDD .动点P 在平面BCD 上,且AP 与AC 所成角为60︒,则点P 的轨迹是椭圆 【答案】BC 【分析】在正四面体中通过线面垂直可证得AC ⊥BD ,通过计算可验证BC,通过轨迹法可求得P 的轨迹为双曲线方程即可得D 错误. 【详解】取BD 中点E ,连接,AE CE ,可得BD ⊥面ACE ,则AC ⊥BD ,故A 错误;在四面体ABCD 中,过点A 作AF ⊥面BCD 于点F ,则F 为为底面正三角形BCD 的重心,因为所有棱长均为2,AF ==即点A 到平面BCD 的距离为3,故B 正确;设O 为正四面体的中心则OF 为内切球的半径,OA 我外接球的半径, 因为11433A BCD BCD BCD V S AF S OF -=⋅=⨯⋅△△,所以4AF OF =,即2=6OF AO =,所以四面体ABCD 的外接球体积334433V R OA ππ===,故C 正确;建系如图:,A C ⎛⎛⎫⎪ ⎪⎝⎭⎝⎭,设(,,0)P x y ,则,,0,,333AP x y AC →→⎛⎛=-=- ⎝⎭⎝⎭,因为cos 60AP AC AP AC →→→→⋅=,所以241392y +=,83y +,平方化简可得:22400399y x y ----,可知点P 的轨迹为双曲线,故D 错误. 故选:BC .【点睛】方法点睛:立体几何中动点轨迹的求解问题,解决此类问题可采用空间向量法,利用空间向量法表示出已知的角度或距离的等量关系,从而得到轨迹方程.5.在三棱锥M ABC -中,下列命题正确的是( )A .若1233AD AB AC =+,则3BC BD = B .若G 为ABC 的重心,则111333MG MA MB MC =++C .若0MA BC ⋅=,0MC AB ⋅=,则0MB AC ⋅=D .若三棱锥M ABC -的棱长都为2,P ,Q 分别为MA ,BC 中点,则2PQ = 【答案】BC 【分析】作出三棱锥M ABC -直观图,在每个三角形中利用向量的线性运算可得. 【详解】对于A ,由已知12322233AD AB AC AD AC AB AD AC AB AD =+⇒=+⇒-=-,即2CD DB =,则32BD BD DC BC =+=,故A 错误; 对于B ,由G 为ABC 的重心,得0GA GB GC ++=,又MG MA AG =+,MG MB BG =+,MG MC CG =+,3MA MB MC MG ∴++=,即111333MG MA MB MC =++,故B 正确;对于C ,若0MA BC ⋅=,0MC AB ⋅=,则0MC MA BC AB ⋅+⋅=,即()00MA BC AC CB MA BC AC C MC C M B M C ⋅++=⇒⋅++⋅⋅=⋅()00MA BC A MC MC MC MC C BC MA BC AC ⋅⋅⋅⇒⋅+-=⇒-+=⋅()000MC M CA BC AC AC CB AC CB AC C MC ⇒+=⇒+=⇒+=⋅⋅⋅⋅⋅,即0MB AC ⋅=,故C 正确;对于D ,111()()222PQ MQ MP MB MC MA MB MC MA ∴=-=+-=+- ()21122PQ MB MC MA MB MC MA ∴=+-=+-,又()2222222MB MC MA MB MC MA MB MC MB MA MC MA+-=+++⋅-⋅-⋅2221112222222222228222=+++⨯⨯⨯-⨯⨯⨯-⨯⨯⨯=,1PQ ∴==,故D 错误. 故选:BC 【点睛】关键点睛:本题考查向量的运算,用已知向量表示某一向量的三个关键点: (1)用已知向量来表示某一向量,一定要结合图形,以图形为指导是解题的关键.(2)要正确理解向量加法、减法与数乘运算的几何意义,如首尾相接的若干向量之和,等于由起始向量的始点指向末尾向量的终点的向量. (3)在立体几何中三角形法则、平行四边形法则仍然成立.6.在长方体1111ABCD A B C D -中,AB =12AD AA ==,P 、Q 、R 分别是AB 、1BB 、1A C 上的动点,下列结论正确的是( )A .对于任意给定的点P ,存在点Q 使得1D P CQ ⊥B .对于任意给定的点Q ,存在点R 使得1D R CQ ⊥C .当1AR A C ⊥时,1ARD R ⊥D .当113AC A R =时,1//D R 平面1BDC【答案】ABCD 【分析】本题先建立空间直角坐标系,再运用空间向量在立体几何中的应用逐一判断即可. 【详解】如图所示,建立空间直角坐标系,设(2,,0)P a ,023a ⎡⎤∈⎣⎦,,(2,23,)Q b ,[]0,2b ∈,设11A R AC λ=,得到(22,23,22)R λλλ--,[]0,1λ∈. 1(2,,2)D P a =-,(2,0,)CQ b =,142D P CQ b ⋅=-,当2b =时,1D P CQ ⊥,A 正确;1(22,23,2)D R λλλ=--,12(22)2D R CQ b λλ⋅=--,取22bλ=+时,1D R CQ ⊥,B 正确;1AR A C ⊥,则1(2,23,22)(2,23,2)412440AR AC λλλλλλ⋅=--⋅--=+-+=,解得:15λ=,此时122328232(,,)(,,)05555AR D R ---⋅=⋅=,1AR D R ⊥,C 正确;113AC A R =,则4234(,,)333R ,14232(,,)333D R =-,设平面1BDC 的法向量为(,,)n x y z =,则100n BD n DC ⎧⋅=⎪⎨⋅=⎪⎩,解得(3,1,3)n =-,故10n D R ⋅=,故1//D R 平面1BDC ,D 正确.故选:ABCD.【点睛】本题考查了空间向量在立体几何中的应用,是偏难题.7.在长方体1111ABCD A B C D -中,23AB =12AD AA ==,,,P Q R 分别是11,,AB BB AC 上的动点,下列结论正确的是( ) A .对于任意给定的点P ,存在点Q 使得1D P CQ ⊥ B .对于任意给定的点Q ,存在点R 使得1D R CQ ⊥C .当1AR A C ⊥时,1ARD R ⊥D .当113AC A R =时,1//D R 平面1BDC 【答案】ABD【分析】如图所示建立空间直角坐标系,计算142D P CQ b ⋅=-,()12222D R CQ b λλ⋅=--,134AR D R ⋅=-,10D R n ⋅=,得到答案. 【详解】如图所示,建立空间直角坐标系,设()2,,0P a,a ⎡∈⎣,()Q b ,[]0,2b ∈,设11A R AC λ=,得到()22,22R λλ--,[]0,1λ∈. ()12,,2P a D -=,()2,0,CQ b =,142D P CQ b ⋅=-,当2b =时,1D P CQ ⊥,A 正确;()122,2D R λλ=--,()12222D R CQ b λλ⋅=--,取22bλ=+时,1D R CQ ⊥,B 正确;1AR A C ⊥,则()()12,222212440AR AC λλλλλ⋅=--⋅--=-+-+=, 14λ=,此时113313,,02222224AR D R ⎛⎫⎛⎫⋅=-⋅-=-≠ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,C 错误; 113AC A R =,则4433R ⎛⎫ ⎪ ⎪⎝⎭,14233D R ⎛⎫=- ⎪ ⎪⎝⎭,设平面1BDC 的法向量为(),,n x y z =,则100n BD n DC ⎧⋅=⎪⎨⋅=⎪⎩,解得(3,n =-, 故10D R n ⋅=,故1//D R 平面1BDC ,D 正确.故选:ABD .【点睛】本题考查了空间中的线线垂直,线面平行,意在考查学生的计算能力和空间想象能力,推断能力.8.半正多面体(semiregularsolid)亦称“阿基米德多面体”,是由边数不全相同的正多边形围成的多面体,体现了数学的对称美.二十四等边体就是一种半正多面体,是由正方体切截而成的,它由八个正三角形和六个正方形构成(如图所示),若它的所有棱长都为2,则()A.BF⊥平面EABB.该二十四等边体的体积为20 3C.该二十四等边体外接球的表面积为8πD.PN与平面EBFN所成角的正弦值为2 2【答案】BCD【分析】A 用反证法判断;B 先补齐八个角成正方体,再计算体积判断;C 先找到球心与半径,再计算表面积判断;D 先找到直线与平面所成角,再求正弦值判断.【详解】解:对于A ,假设A 对,即BF ⊥平面EAB ,于是BF AB ⊥,90ABF ∠=︒,但六边形ABFPQH 为正六边形,120ABF ∠=︒,矛盾,所以A 错;对于B ,补齐八个角构成棱长为2的正方体, 则该二十四等边体的体积为3112028111323-⋅⋅⋅⋅⋅=, 所以B 对;对于C ,取正方形ACPM 对角线交点O ,即为该二十四等边体外接球的球心,其半径为2R =,其表面积为248R ππ=,所以C 对;对于D ,因为PN 在平面EBFN 内射影为NS ,所以PN 与平面EBFN 所成角即为PNS ∠,其正弦值为22PS PN ==,所以D 对. 故选:BCD .【点睛】本题考查了正方体的性质,考查了直线与平面所成角问题,考查了球的体积与表面积计算问题.。
高考数学二轮复习立体几何多选题知识归纳总结及解析一、立体几何多选题1.已知图1中,A 、B 、C 、D 是正方形EFGH 各边的中点,分别沿着AB 、BC 、CD 、DA 把ABF 、BCG 、CDH △、DAE △向上折起,使得每个三角形所在的平面都与平面ABCD 垂直,再顺次连接EFGH ,得到一个如图2所示的多面体,则( )A .AEF 是正三角形B .平面AEF ⊥平面CGHC .直线CG 与平面AEF 2D .当2AB =时,多面体ABCD EFGH -的体积为83【答案】AC 【分析】取CD 、AB 的中点O 、M ,连接OH 、OM ,证明出OH ⊥平面ABCD ,然后以点O 为坐标原点,OM 、OC 、OH 所在直线分别为x 、y 、z 轴建立空间直角坐标系,求出EF ,可判断A 选项的正误,利用空间向量法可判断BC 选项的正误,利用几何体的体积公式可判断D 选项的正误. 【详解】取CD 、AB 的中点O 、M ,连接OH 、OM , 在图1中,A 、B 、C 、D 是正方形EFGH 各边的中点,则1122CH GH EH DH ===,O 为CD 的中点,OH CD ∴⊥,平面CDH ⊥平面ABCD ,平面CDH 平面ABCD CD =,OH ⊂平面CDH ,OH ∴⊥平面ABCD ,在图1中,设正方形EFGH 的边长为()220a a >,可得四边形ABCD 的边长为2a , 在图1中,ADE 和ABF 均为等腰直角三角形,可得45BAF DAE ∠=∠=, 90BAD ∴∠=,∴四边形ABCD 是边长为2a 的正方形,O 、M 分别为CD 、AB 的中点,则//OC BM 且OC BM =,且90OCB ∠=,所以,四边形OCBM 为矩形,所以,OM CD ⊥,以点O 为坐标原点,OM 、OC 、OH 所在直线分别为x 、y 、z 轴建立空间直角坐标系,则()2,,0A a a -、()2,,0B a a 、()0,,0C a 、()0,,0D a -、(),,E a a a -、()2,0,F a a 、(),,G a a a 、()0,0,H a .对于A 选项,由空间中两点间的距离公式可得2AE AF EF a ===,所以,AEF 是正三角形,A 选项正确;对于B 选项,设平面AEF 的法向量为()111,,m x y z =,(),0,AE a a =-,()0,,AF a a =,由11110m AE ax az m AF ay az ⎧⋅=-+=⎪⎨⋅=+=⎪⎩,取11z =,则11x =,11y =-,则()1,1,1m =-,设平面CGH 的法向量为()222,,n x y z =,(),0,CG a a =,()0,,CH a a =-, 由222200n CG ax az n CH ay az ⎧⋅=+=⎪⎨⋅=-+=⎪⎩,取21z =-,可得21x =,21y =-,则()1,1,1n =--,()22111110m n ⋅=+--⨯=≠,所以,平面AEF 与平面CGH 不垂直,B 选项错误;对于C 选项,6cos ,23CG m CG m a CG m⋅<>===⨯⋅, 设直线CG 与平面AEF 所成角为θ,则sin 6θ=,23cos 1sin θθ=-=,所以,sin tan 2cos θθθ==,C 选项正确; 对于D 选项,以ABCD 为底面,以OH 为高将几何体ABCD EFGH -补成长方体1111ABCD A B C D -,则E 、F 、G 、H 分别为11A D 、11A B 、11B C 、11C D 的中点,因为2AB =,即1a =,则1OH =,长方体1111ABCD A B C D -的体积为2214V =⨯=,11211111113326A A EF A EF V S AA -=⋅=⨯⨯⨯=△,因此,多面体ABCD EFGH -的体积为111044463ABCD EFGH A A EF V V V --=-=-⨯=, D 选项错误. 故选:AC. 【点睛】方法点睛:计算线面角,一般有如下几种方法:(1)利用面面垂直的性质定理,得到线面垂直,进而确定线面角的垂足,明确斜线在平面内的射影,即可确定线面角;(2)在构成线面角的直角三角形中,可利用等体积法求解垂线段的长度h ,从而不必作出线面角,则线面角θ满足sin hlθ=(l 为斜线段长),进而可求得线面角; (3)建立空间直角坐标系,利用向量法求解,设a 为直线l 的方向向量,n 为平面的法向量,则线面角θ的正弦值为sin cos ,a n θ=<>.2.如图所示,正三角形ABC 中,D ,E 分别为边AB ,AC 的中点,其中AB =8,把△ADE 沿着DE 翻折至A 'DE 位置,使得二面角A '-DE -B 为60°,则下列选项中正确的是( )A .点A '到平面BCED 的距离为3B .直线A 'D 与直线CE 所成的角的余弦值为58C .A 'D ⊥BDD .四棱锥A '-BCED 237【答案】ABD 【分析】作AM ⊥DE ,交DE 于M ,延长AM 交BC 于N ,连接A'M ,A'N .利用线面垂直的判定定理判定CD ⊥平面A'MN ,利用面面垂直的判定定理与性质定理得到'A 到平面面BCED 的高A'H ,并根据二面角的平面角,在直角三角形中计算求得A'H 的值,从而判定A;根据异面直线所成角的定义找到∠A'DN 就是直线A'D 与CE 所成的角,利用余弦定理计算即可判定B;利用勾股定理检验可以否定C;先证明底面的外接圆的圆心为N ,在利用外接球的球心的性质进行得到四棱锥A'-BCED 的外接球的球心为O ,则ON ⊥平面BCED ,且OA'=OC ,经过计算求解可得半径从而判定D. 【详解】如图所示,作AM ⊥DE ,交DE 于M ,延长AM 交BC 于N ,连接A'M ,A'N . 则A'M ⊥DE ,MN ⊥DE , ,∵'A M ∩MN =M ,∴CD ⊥平面A'MN , 又∵CD ⊂平面ABDC ,∴平面A'MN ⊥平面ABDC , 在平面A'MN 中作A'H ⊥MN ,则A'H ⊥平面BCED , ∵二面角A'-DE -B 为60°,∴∠A'EF =60°,∵正三角形ABC 中,AB =8,∴AN =∴A'M ,∴A'H =A'M sin60°=3,故A 正确; 连接DN ,易得DN ‖EC ,DN =EC =4, ∠A'DN 就是直线A'D 与CE 所成的角,DN =DA'=4,A'N =A'M ,cos ∠A'DN =22441252448+-=⨯⨯,故B 正确;A'D =DB =4,==,∴222A D DB A B '≠'+,∴A'D 与BD 不垂直,故C 错误’ 易得NB =NC =ND =NG =4,∴N 为底面梯形BCED 的外接圆的圆心, 设四棱锥A'-BCED 的外接球的球心为O ,则ON ⊥平面BCED ,且OA'=OC , 若O 在平面BCED 上方,入图①所示:设ON =x ,外接球的半径为R ,过O 作A'H 的垂线,垂足为P ,则HP =x ,易得()2222243x x R +=-+=,解得23x =-,舍去;故O 在平面BCED 下方,如图②所示:设ON =x ,外接球的半径为R ,过O 作A'H 的垂线,垂足为P ,则HP =x ,易得()2222243x x R +=++=, 解得23x =,∴244371699R ⨯=+=,R ∴=故D 正确. 故选:ABD .【点睛】本题考查立体几何中的折叠问题,涉及二面角问题,异面直线所成的角,用到线面、面面垂直的判定与性质及外接球的球心的性质和有关计算,余弦定理等,属综合性较强的题目,关键是利用线面垂直,面面垂直的判定和性质进行空间关系和结构的判定,注意球心在四棱锥的底面上方和下方的讨论与验证.3.如图,直三棱柱11,ABC A B C -,ABC 为等腰直角三角形,AB BC ⊥,且12AC AA ==,E ,F 分别是AC ,11A C 的中点,D ,M 分别是1AA ,1BB 上的两个动点,则( )A .FM 与BD 一定是异面直线B .三棱锥D MEF -的体积为定值14C .直线11B C 与BD 所成角为2π D .若D 为1AA 中点,则四棱锥1D BB FE -55【答案】CD 【分析】A 当特殊情况M 与B 重合有FM 与BD 相交且共面;B 根据线面垂直、面面垂直判定可证面1BEFB ⊥面11ACC A ,可知EMFS、D 到面1BEFB 的距离,可求D EMF V -;C 根据线面垂直的判定及性质即可确定11B C 与BD 所成角;D 由面面垂直、勾股、矩形性质等确定外接球半径,进而求体积,即可判断各项的正误. 【详解】A :当M 与B 重合时,FM 与BD 相交且共面,错误; B :由题意知:BE AC ⊥,AC EF ⊥且BEEF E =,则AC ⊥面1BEFB ,又AC ⊂面11ACC A ,面1BEFB ⋂面11ACC A EF =,所以面1BEFB ⊥面11ACC A ,又1121122EMFSEF BE =⋅⋅=⨯⨯=,D 到面1BEFB 的距离为1h =,所以1133D EMF EMFV h S-=⋅⋅=,错误; C :由AB BC ⊥,1BC B B ⊥,1B BAB B =,所以BC ⊥面11ABB A ,又11//BC B C ,即11B C ⊥面11ABB A ,而BD ⊂面11ABB A ,则11BD B C ⊥,正确;D :由B 中,面1BEFB ⊥面11ACC A ,即面DEF ⊥面1BEFB ,则D 到面1BEFB 的距离为1h =,又D 为1AA 中点,若1,BF EB 交点为O ,G 为EF 中点,连接,,OG GD OD ,则OG GD ⊥,故2252OD OG GD =+=,由矩形的性质知:15OB OE OF OB ====令四棱锥1D BB FE -的外接球半径为R ,则52R =,所以四棱锥1D BB FE -的外接球体积为35435V R π==,正确. 故选:CD. 【点睛】关键点点睛:利用线面、面面关系确定几何体的高,结合棱锥体积公式求体积,根据线面垂直、勾股定理及矩形性质确定外接球半径,结合球体体积公式求体积.4.在正方体1111ABCD A B C D -中,M 、N 分别是棱AB 、1CC 的中点,1MB P 的顶点P 在棱1CC 与棱11C D 上运动,有以下四个命题正确命题的序号是( )A .平面1MB P 1ND ⊥ B .平面1MB P ⊥平面11ND AC .1MB P 在底面ABCD 上的射影图形的面积为定值 D .1MB P 在侧面11D C CD 上射影图形是三角形 【答案】BC 【分析】取N 与P 重合,结合勾股定理可判断A 选项的正误;利用面面垂直的判定定理可判断B 选项的正误;分点P 在棱1CC 、11C D 上运动两种情况讨论,利用三角形的面积公式可判断C 选项的正误;取点P 与点1C 重合,判断1MB P 在侧面11D C CD 上射影图形形状,可判断D 选项的正误. 【详解】对于A 选项,设正方体1111ABCD A B C D -的棱长为2,如下图所示:当点P 与点N 重合时, 若1ND ⊥平面1MB P ,1B N ⊂平面1MB P ,则11ND B N ⊥,由勾股定理可得2211115D N C N C D =+=,同理可得15B N =,1122B D =,2221111B N D N B D ∴+≠,则1ND 与1B N 不垂直,假设不成立,A 选项错误;对于B 选项,取1BB 的中点E ,连接1A E 、EN ,在正方体1111ABCD A B C D -中,11//BB CC ,且E 、N 分别为1BB 、1CC 的中点, 则11//B E C N 且11B E C N =,所以,四边形11B ENC 为平行四边形,则11//EN B C 且11EN B C =,1111//A D B C 且1111A D B C =,所以,11//A D EN 且11A D EN =,所以,四边形11A END 为平行四边形,所以,11//A E D N ,111A B BB =,1B E BM =,11190A B E B BM ∠=∠=,所以,111Rt A B E Rt B BM ≅△△,所以,111B A E BB M ∠=∠,所以,111111190A EB BB M A EB B A E ∠+∠=∠+∠=,190B FE ∴∠=,所以,11B M A E ⊥,11A D ⊥平面11AA B B ,1B M ⊂平面11AA B B ,111B M A D ∴⊥, 1111A D A E A =,11A D 、1A E ⊂平面11ND A ,1MB ∴⊥平面11ND A ,1MB ⊂平面1MB P ,所以,平面1MB P ⊥平面11ND A ,B 选项正确;对于C 选项,设正方体1111ABCD A B C D -的棱长为a .若点P 在棱1CC 上运动时,1MB P 在底面ABCD 上的射影为MBC △, 此时,射影图形的面积为21224MBCa a S a =⋅=△; 若点P 在棱11C D 上运动时,设点P 在底面ABCD 上的射影点为G ,则G CD ∈, 且点G 到AB 的距离为a ,1MB 在底面ABCD 内的射影为MB ,则1MB P 在底面ABCD 内的射影为MBG △,且21224MBGa a S a =⋅⋅=△.综上所述,1MB P 在底面ABCD 内的射影图形的面积为定值,C 选项正确; 对于D 选项,当点P 与1C 重合时,P 、1B 两点在平面11D C CD 上的射影重合, 此时,1MB P 在侧面11D C CD 上的射影不构成三角形,D 选项错误. 故选:BC. 【点睛】方法点睛:证明面面垂直常用的方法: (1)面面垂直的定义; (2)面面垂直的判定定理.在证明面面垂直时,一般假设面面垂直成立,然后利用面面垂直转化为线面垂直,即为所证的线面垂直,组织论据证明即可.5.如图四棱锥P ABCD -,平面PAD ⊥平面ABCD ,侧面PAD 是边长为26的正三角形,底面ABCD 为矩形,23CD =,点Q 是PD 的中点,则下列结论正确的是( )A .CQ ⊥平面PADB .PC 与平面AQC 22C .三棱锥B ACQ -的体积为62D .四棱锥Q ABCD -外接球的内接正四面体的表面积为3【答案】BD 【分析】取AD 的中点O ,BC 的中点E ,连接,OE OP ,则由已知可得OP ⊥平面 ABCD ,而底面ABCD 为矩形,所以以O 为坐标原点,分别以,,OD OE OP 所在的直线为x 轴,y 轴 ,z 轴,建立空间直角坐标系,利用空间向量依次求解即可. 【详解】解:取AD 的中点O ,BC 的中点E ,连接,OE OP , 因为三角形PAD 为等边三角形,所以OP AD ⊥, 因为平面PAD ⊥平面ABCD ,所以OP ⊥平面 ABCD , 因为AD OE ⊥,所以,,OD OE OP 两两垂直,所以,如下图,以O 为坐标原点,分别以,,OD OE OP 所在的直线为x 轴,y 轴 ,z 轴, 建立空间直角坐标系,则(0,0,0),(6,0,0),(6,0,0)O D A ,(0,0,32),6,23,0),(6,23,0)P C B ,因为点Q 是PD 的中点,所以632,0,)22Q , 平面PAD 的一个法向量为(0,1,0)m =,632(23,2QC =-,显然 m 与QC 不共线, 所以CQ 与平面PAD 不垂直,所以A 不正确;3632(6,23,32),(,0,),(26,23,0)PC AQ AC =-==,设平面AQC 的法向量为(,,)n x y z =,则3602260n AQ x zn AC ⎧⋅=+=⎪⎨⎪⋅=+=⎩,令=1x ,则y z ==, 所以(1,2,n =-,设PC 与平面AQC 所成角为θ,则21sin 36n PCn PC θ⋅===, 所以cos θ=,所以B 正确;三棱锥B ACQ -的体积为1132B ACQ Q ABC ABC V V S OP --==⋅1116322=⨯⨯⨯=,所以C 不正确;设四棱锥Q ABCD -外接球的球心为)M a ,则MQ MD =,所以222222a a ⎛++-=++ ⎝⎭⎝⎭,解得0a =,即M 为矩形ABCD 对角线的交点,所以四棱锥Q ABCD -外接球的半径为3,设四棱锥Q ABCD -外接球的内接正四面体的棱长为x ,将四面体拓展成正方体,其中正四面体棱为正方体面的对角线,故正方体的棱长为2x,所以22362x ⎛⎫= ⎪ ⎪⎝⎭,得224x =, 所以正四面体的表面积为24x =,所以D 正确. 故选:BD【点睛】此题考查线面垂直,线面角,棱锥的体积,棱锥的外接球等知识,综合性强,考查了计算能力,属于较难题.6.如果一个棱锥的底面是正方形,且顶点在底面内的射影是底面的中心,那么这样的棱锥叫正四棱锥.若一正四棱锥的体积为18,则该正四棱锥的侧面积最小时,以下结论正确的是( ).A 2B .侧棱与底面所成的角为4π C 2D .侧棱与底面所成的角为3π 【答案】AB【分析】 设四棱锥S ABCD -的高为h ,底面边长为a ,由21183V a h ==得254h a =,然后可得侧242108a a+32a =时侧面积取得最小值,此时3h =,然后求出棱锥的高与底面边长的比和SAO ∠即可选出答案.【详解】设四棱锥S ABCD -的高为h ,底面边长为a 可得21183V a h ==,即254h a= 所以其侧面积为2222244215410842244a a a h a a a⋅⋅+=+=+令()242108f a a a =+,则()23321084f a a a ⨯'=- 令()233210840f a a a ⨯'=-=得32a = 当(0,32a ∈时()0f a '<,()f a 单调递减 当()32,a ∈+∞时()0f a '>,()f a 单调递增 所以当32a =时()f a 取得最小值,即四棱锥的侧面积最小此时3h = 所以棱锥的高与底面边长的比为22,故A 正确,C 错误 侧棱与底面所成的角为SAO ∠,由3h =,32a =可得3AO = 所以4SAO π∠=,故B 正确,D 错误 故选:AB【点睛】本题考查的知识点有空间几何体的体积和表面积、线面角及利用导数求最值,属于综合题.7.如图所示,正方体ABCD A B C D ''''-的棱长为1,E ,F 分别是棱AA ',CC '的中点,过直线EF 的平面分别与棱BB ',DD '交于点M ,N ,以下四个命题中正确的是( )A .0MN EF ⋅=B .ME NE =C .四边形MENF 的面积最小值与最大值之比为2:3D .四棱锥A MENF -与多面体ABCD EMFN -体积之比为1:3【答案】ABD【分析】证明EF ⊥平面BDD B '',进而得EF MN ⊥,即可得A 选项正确;证明四边形MENF 为菱形即可得B 选项正确;由菱形性质得四边形MENF 的面积12S MN EF =⋅,再分别讨论MN 的最大值与最小值即可;根据割补法求解体积即可.【详解】对于A 选项,如图,连接BD ,B D '',MN .由题易得EF BD ⊥,EF BB '⊥,BD BB B '⋂=,所以EF ⊥平面BDD B '',又MN ⊂平面BDD B '',所以EF MN ⊥,因此0MN EF ⋅=,故A 正确.对于B 选项,由正方体性质得:平面''//BCC B 平面''ADD A ,平面''BCC B 平面EMFN MF =,平面''ADD A 平面EMFN EN =, 所以//MF EN ,同理得//ME NF ,又EF MN ⊥,所以四边形MENF 为菱形, 因此ME NE =,故B 正确.对于C 选项,由B 易得四边形MENF 的面积12S MN EF =⋅, 所以当点M ,N 分别为BB ',DD '的中点时,四边形MENF 的面积S 最小, 此时2MN EF ==,即面积S 的最小值为1; 当点M ,N 分别与点B (或点B '),D (或D )重合时,四边形MENF 的面积S 最大,此时3MN =,即面积S 的最大值为6, 所以四边形MENF 的面积最小值与最大值之比为2:6,故C 不正确.对于D 选项,四棱锥A MENF -的体积1112123346M AEF N AEF AEF V V V DB S --=+=⋅=⨯⨯=△; 因为E ,F 分别是AA ',CC '的中点,所以BM D N '=,DN B M '=,于是被截面MENF 平分的两个多面体是完全相同的,则它们的体积也是相同的,因此多面体ABCD EMFN -的体积21122ABCD A B C D V V ''''-==正方体, 所以四棱锥A MENF -与多面体ABCD EMFN -体积之比为1:3,故D 正确. 故选:ABD .【点睛】本题考查立体几何与向量的综合、截面面积的最值、几何体的体积,考查空间思维能力与运算求解能力,是中档题.本题解题的关键在于证明四边形MENF 为菱形,利用割补法将四棱锥A MENF -的体积转化为三棱锥M AEF - 和N AEF -的体积之和,将多面体ABCD EMFN -的体积转化为正方体的体积的一半求解.8.半正多面体(semiregularsolid )亦称“阿基米德多面体”,是由边数不全相同的正多边形围成的多面体,体现了数学的对称美.二十四等边体就是一种半正多面体,是由正方体切截而成的,它由八个正三角形和六个正方形构成(如图所示),若它的所有棱长都为2 )A .BF ⊥平面EABB .该二十四等边体的体积为203C .该二十四等边体外接球的表面积为8πD .PN 与平面EBFN 2 【答案】BCD【分析】 A 用反证法判断;B 先补齐八个角成正方体,再计算体积判断;C 先找到球心与半径,再计算表面积判断;D 先找到直线与平面所成角,再求正弦值判断.【详解】解:对于A ,假设A 对,即BF ⊥平面EAB ,于是BF AB ⊥,90ABF ∠=︒,但六边形ABFPQH 为正六边形,120ABF ∠=︒,矛盾,所以A 错;对于B ,补齐八个角构成棱长为2的正方体, 则该二十四等边体的体积为3112028111323-⋅⋅⋅⋅⋅=, 所以B 对;对于C ,取正方形ACPM 对角线交点O ,即为该二十四等边体外接球的球心, 其半径为2R =248R ππ=,所以C 对;对于D ,因为PN 在平面EBFN 内射影为NS ,所以PN 与平面EBFN 所成角即为PNS ∠, 其正弦值为22PS PN =,所以D 对. 故选:BCD .【点睛】本题考查了正方体的性质,考查了直线与平面所成角问题,考查了球的体积与表面积计算问题.。
【金版教程】2016届高三数学二轮复习第二编考前冲刺攻略 1.4立体几何理1.若直线a⊥平面α,直线b∥平面α,则a与b的关系是( )A.a⊥b,且a与b相交B.a⊥b,且a与b异面C.a⊥b,且a与b可能相交也可能异面D.a与b不一定垂直答案 C解析过直线b作一个平面β,使得β∩α=c,则b∥c.因为直线a⊥平面α,c⊂α,所以a⊥c.因为b∥c,所以a⊥b.当b与a相交时为相交垂直,当b与a不相交时为异面垂直.故选C.2.如图所示,用过A1、B、C1和C1、B、D的两个截面截去正方体ABCD-A1B1C1D1的两个角后得到一个新的几何体,则该几何体的正视图为( )答案 A解析在画几何体的正视图时,要按照平行投影的方式,先将点投影,再确定棱.按照平行投影的方式,几何体的6个顶点投影得到的平面为正方形,其中A1、D1的投影点重合,A、D的投影点重合;再确定棱,A1B能看见,画成实线,C1D在正视图中看不见,画成虚线.3.[2015·河北名校联盟联考]多面体的三视图如图所示,则该多面体的表面积为(单位:cm)( )A .(28+45) cm 2B .(30+45) cm 2C.(30+410) cm 2 D .(28+410) cm 2答案 A解析 由三视图可知该几何体是一个三棱锥,如图所示,在三棱锥D -ABC 中,底面是等腰三角形且底AB 及底边上的高CE 均为4,侧棱AD ⊥平面ABC ,所以AC =BC =⎝ ⎛⎭⎪⎫AB 22+CE 2=22+42=25,所以S △ABC =12×4×4=8,S △ABD =12×4×4=8,S △ACD =12×4×25=4 5.过A 作AF ⊥BC ,垂足为F ,连接DF ,因为AD ⊥平面ABC ,BC ⊂平面ABC ,所以AD ⊥BC ,所以BC ⊥平面ADF ,又因为DF ⊂平面ADF ,所以BC ⊥DF ,在△ABC 中,AB ·CE =BC ·AF ,所以AF =AB ·CE BC =4×425=855,DF =AF 2+AD 2=⎝ ⎛⎭⎪⎫8552+42=1255,所以S △BCD =12×BC ×DF =12×25×1255=12,所以三棱锥的表面积S =S △ABC +S △ABD +S △ACD +S △BCD =8+8+45+12=28+45(cm 2),故选A.4.已知m ,n 是两条不同的直线,α,β是两个不同的平面,且m ∥α,n ⊂β,则下列叙述正确的是( )A.若α∥β,则m ∥n B .若m ∥n ,则α∥β C.若n ⊥α,则m ⊥β D .若m ⊥β,则α⊥β答案 D解析 A 中m ,n 有可能异面;B 中α,β有可能相交;C 中有可能m ∥β,故选D. 5.下列命题中错误的是( )A.如果平面α⊥平面β,那么平面α内一定存在直线平行于平面βB.如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面βC.如果平面α⊥平面β,直线a ⊂α,则a ⊥βD.如果平面α⊥平面γ,平面β⊥平面γ,α∩β=l ,那么l ⊥平面γ 答案 C解析 对于A ,如果平面α⊥平面β,那么在平面α内作出与两平面交线平行的直线,则该直线与平面β平行,故A 正确;对于B ,若平面α内存在一条直线垂直于平面β,由面面垂直的判定定理可知,平面α一定垂直于平面β,与已知矛盾,故B 正确;对于C ,在平面α内作一直线平行于交线,则该直线平行于平面β,而不垂直于平面β,故C 错误;对于D ,可以证明l ⊥平面γ,故D 正确,故选C.6.设A 、B 、C 、D 是半径为2的球面上的四点,且满足AB ⊥AC ,AD ⊥AC ,AB ⊥AD ,则S△ABC+S △ABD +S △ACD 的最大值是( ) A.4 B .8 C.16 D .32答案 B解析 因为AB ⊥AC ,AD ⊥AC ,AB ⊥AD ,所以以AC 、AB 、AD 为长、宽、高,做长方体如图所示,可得长方体的外接球就是三棱锥D -ABC 的外接球.因为球的半径为2,可得球的直径为4,所以长方体的体对角线长为4,得AB 2+AC 2+AD 2=16.因为S △ABC =12AB ·AC ,S △ABD=12AB ·AD ,S △ACD =12AC ·AD ,所以S △ABC +S △ABD +S △ACD =12(AB ·AC +AB ·AD +AC ·AD ),因为AB ·AC +AB ·AD +AC ·AD ≤AB 2+AC 2+AD 2=16,当且仅当AB =AC =AD 时,等号成立,所以当且仅当AB =AC =AD 时,S △ABC +S △ABD +S △ACD 取得最大值,且最大值为8.故选B.7.[2015·西安八校联考]某空间几何体的三视图及尺寸如图,则该几何体的体积是________.答案 2解析 根据三视图可知该几何体为三棱柱,其体积V =12×1×2×2=2.8.已知某几何体由正方体和直三棱柱组成,其三视图和直观图如图所示.记直观图中从点B 出发沿棱柱的侧面到达PD 1的中点R 的最短距离为d ,则d 2=________.答案252+6 2解析 将由正方体与直三棱柱构成的五棱柱沿侧棱BB 1展开,如图所示.由图易知BR 为从点B 出发沿棱柱的侧面到达PD 1的中点R 的最短距离,即d =BR .由三视图知A 1B 1=BB 1=2,A 1P =PD 1=2,所以PR =12PD 1=22,所以B 1R =A 1B 1+A 1P +PR =2+322,故d 2=BR 2=B 1R 2+BB 21=⎝ ⎛⎭⎪⎫2+3222+22=252+6 2.9.已知侧棱与底面垂直的三棱柱的底面是边长为23的正三角形,该三棱柱存在一个与上、下底面和所有侧面都相切的内切球,则该三棱柱的外接球与内切球的半径之比为________.答案5∶1解析 由题意,三棱柱的内切球的半径r 等于底面内切圆的半径,即r =1,此时棱柱的高为2r =2,底面外接圆的半径为2,所以三棱柱的外接球的半径R =22+12= 5.所以三棱柱的外接球与内切球的半径之比为Rr=5∶1.10.已知点P ,A ,B ,C ,D 是球O 表面上的点,且球心O 在线段PC 上,PA ⊥平面ABCD ,E 为AB 的中点,∠BCD =90°.(1)求证:OE ∥平面PAD ;(2)若PA =AB =4,AD =3,求三棱锥O -ADE 的体积.解 (1)证明:连接BD ,设BD 的中点为O ′,连接OO ′,O ′E , 因为∠BCD =90°,所以OO ′⊥平面ABCD ,又PA ⊥平面ABCD , 所以OO ′∥PA ,又PA ⊂平面PAD ,所以OO ′∥平面PAD . 又E 为AB 的中点,所以O ′E ∥AD ,即O ′E ∥平面PAD . 又OO ′∩O ′E =O ′, 所以平面OO ′E ∥平面PAD . 又OE ⊂平面OO ′E , 所以OE ∥平面PAD .(2)因为E 为AB 的中点,所以AE =12AB =2.因为点P ,A ,C 在球面上,O 为球心,OO ′⊥平面ABCD ,PA ⊥平面ABCD , 所以OO ′=12PA =2.又AD =3,所以V 三棱锥O -ADE =13×OO ′×S △ADE =13×OO ′×12×AD ×AE =13×2×12×3×2=2.11.如图,直线PA ,QC 都与正方形ABCD 所在的平面垂直,AB =PA =2CQ =2,AC 与BD 相交于点O ,E 在线段PD 上,且CE ∥平面PBQ .(1)求证:OP ⊥平面QBD ; (2)求二面角E -BQ -P 的余弦值.解 (1)证法一:∵PA ⊥平面ABCD ,∴PA ⊥AB ,PA ⊥AD .又AB =AD ,∴Rt △PAB ≌Rt △PAD ,∴PB =PD . ∵O 是BD 的中点,∴OP ⊥BD .连接OQ ,OQ 2=OC 2+CQ 2=(2)2+12=3,OP 2=OA 2+AP 2=(2)2+22=6,PQ 2=AC 2+(AP -CQ )2=(22)2+(2-1)2=9,即PQ 2=OP 2+OQ 2,∴OP ⊥OQ .又BD ∩OQ =O ,BD ,OQ ⊂平面QBD ,∴OP ⊥平面QBD.证法二:建立如图所示的空间直角坐标系,则P (0,0,2),B (2,0,0),C (2,2,0),D (0,2,0),Q (2,2,1),O (1,1,0),∴OP →=(-1,-1,2),BD →=(-2,2,0),BQ →=(0,2,1),∴⎩⎪⎨⎪⎧OP →·BD →=2-2+0=0OP →·BQ →=0-2+2=0,∴OP ⊥BD ,OP ⊥BQ ,又BD ∩BQ =B ,BD ,BQ ⊂平面QBD ,∴OP ⊥平面QBD .(2)由(1)中的证法二知,设PE →=λED →,则E ⎝ ⎛⎭⎪⎫0,2λ1+λ,21+λ,CE →=⎝ ⎛⎭⎪⎫-2,-21+λ,21+λ. 又BP →=(-2,0,2),BQ →=(0,2,1),设平面PBQ 的法向量为m =(x ,y ,z ),则⎩⎪⎨⎪⎧m ·BP →=0m ·BQ →=0,即⎩⎪⎨⎪⎧-2x +2z =02y +z =0,令y =1,得x =z =-2,∴平面PBQ 的一个法向量为m =(-2,1,-2).由CE ∥平面PBQ ,得C E →·m =0,即4-21+λ-41+λ=0,解得λ=12,∴E ⎝ ⎛⎭⎪⎫0,23,43. ∴QE →=⎝ ⎛⎭⎪⎫-2,-43,13,又BQ →=(0,2,1), 设平面EBQ 的法向量为n =(x 1,y 1,z 1), 则⎩⎪⎨⎪⎧n ·QE →=0n ·BQ →=0,即⎩⎪⎨⎪⎧-2x 1-43y 1+13z 1=02y 1+z 1=0,令y 1=-1,得x 1=1,z 1=2,∴平面EBQ 的一个法向量为n =(1,-1,2).∴cos 〈m ,n 〉=m ·n |m ||n |=-736=-7618,观察图知二面角E -BQ -P 为锐角, 故二面角E -BQ -P 的余弦值为7618.12.如图,三棱柱ABC -A 1B 1C 1所有的棱长均为2,B 1在底面上的射影D 在棱BC 上,且A 1B ∥平面ADC 1.(1)求证:平面ADC 1⊥平面BCC 1B 1;(2)求平面ADC 1与平面A 1AB 所成的角的正弦值.解 (1)证明:连接A 1C 交AC 1于点O ,连接OD ,则平面A 1BC ∩平面ADC 1=OD .∵A 1B ∥平面ADC 1, ∴A 1B ∥OD ,又O 为A 1C 的中点,∴D 为BC 的中点,则AD ⊥BC , 又B 1D ⊥平面ABC , ∴AD ⊥B 1D ,BC ∩B 1D =D , ∴AD ⊥平面BCC 1B 1,又AD ⊂平面ADC 1,从而平面ADC 1⊥平面BCC 1B 1.(2)以D 为坐标原点,DC ,DA ,DB 1所在的直线分别为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系,则D (0,0,0),B (-1,0,0),A (0,3,0),B 1(0,0,3),C 1(2,0,3),易知BA →=(1,3,0),BB 1→=(1,0,3),设平面A 1AB 的法向量为m =(x ,y ,z ),则 ⎩⎪⎨⎪⎧BA →·m =0BB 1→·m =0,即⎩⎨⎧x +3y =0x +3z =0,取x =-3,则m =(-3,1,1).易知DA →=(0,3,0),DC 1→=(2,0,3),同理可得平面ADC 1的一个法向量为n =(-3,0,2).∴cos 〈m ,n 〉=m ·n |m ||n |=55×7=357,sin 〈m ,n 〉=147,那么平面ADC 1与平面14 7.A1AB所成角的正弦值为。
高考数学二轮复习专题六立体几何【重点知识回顾】稳定中有所创新,由知识立意转为能力立意(1)考查重点及难点稳定:高考始终把空间直线与直线、直线与平面、平面与平面的平行与垂肓的性质与判定,以及求线面角、二而角等知识都是重点考杏的内容,其屮线线角、线面角、二面角的求解更是重中Z重在难度上平稳过渡,始终以中等偏难为主。
实行新课程的高考,命题者在求稳的同吋注重创新高考创新,主耍体现在命题的立意和思路上注重对学生能力的考查(2)空间几何体中的三视图仍是高考的一个重婆知识点解答题的考查形式仍要注重在一个具体立体儿何模型中考查线面的关系(3)使用,“向最"仍将会成为高考命题的热点,-•般选择题、填空题重在考杳向最的概念、数量积及其运算律在有些立体几何的解答题中,建立空间直角坐标系,以向量为工具, 利用空间向量的处标和数量积解决直线、平血问题的位置关系、角度、长度等问题,比用传统立体几何的方法简便快捷,空间向最的数量积及坐标运算仍是2012年高考命题的重点(4)支持新课改,在重叠部分做文章,在知识交汇点处命题立体几何屮平行、垂肓关系证明的思路清楚吗?平行垂直的证明主要利用线面关系的转化:线〃线《——> 线〃面 <——> 面〃面判定》线丄线~~线丄而~~而丄而(性质线〃线——线丄面——面〃面线面平行的判定:a〃b, bu 面oc,auana〃面oc线而平行的性质:a〃面a, au 面p, aClp = b =>a//b三垂线定理(及逆定理):PA丄面a, AO为PO在oc内射影,au面a,则a丄OA => a丄PO; a丄PO=>a丄AO三类角的定义及求法(1) 异面直线所成的角e, o°<o<9o°线面垂直:a 丄b ,a 丄c ,b ,c u a, 血血垂了 ba 丄面a, au 面卩=>卩丄aifljot 丄面仿 ap|[3 = /, aua ,a 丄/=> a 丄[3a 丄面ot ,b 丄面ana 〃b 而a 丄a,而卩丄a a a 〃[3b(2)直线与平面所成的角e, 0°<0<90°6=0° 时,b 〃a 或bua(3)二面角:二面角a-/-p 的平面角0, 0° <0<180°(三垂线左理法:AUa 作或证AB 丄卩于B,作BO 丄棱于O,连AO,则AO 丄棱/, ・•・ZAOB 为所求。
常考题型大通关(新高考)解答题:立体几何1.如图,正方形ABCD 和直角梯形ACEF 所在的平面互相垂直,,,2,1FA AC EF AC AB EF FA ⊥===.(1)求证:CE平面BDF ;(2)求证:BE ⊥平面DEF .2.如图,三棱柱111ABC A B C -中,11,,60CA CB AB AA BAA ==∠=︒.(1)证明:1AB AC ⊥; (2)若12,6AB CB AC ===111ABC A B C -的体积. 3.如图,四棱锥P ABCD -中,PA ⊥底面,,3,4,ABCD AD BC AB AD AC PA BC M=====为线段AD 上一点,2,AM MD N =为PC 的中点.(1)证明MN平面PAB ;(2)求直线AN 与平面PMN 所成角的正弦值. 4.如图,在四棱锥P ABCD -中,ABCD ,且90BAP CDP ∠=∠=︒.(1)证明:平面PAB ⊥平面PAD ;(2)若,90PA PD AB DC APD ===∠=︒,求二面角A PB C --的余弦值.5.如图,三棱锥P ABC -中,平面PAB ⊥平面,,90ABC PA PB APB ACB =∠=∠=︒,点,E F 分别是棱,AB PB 的中点,点G 是BCE 的重心.(1)证明:GF平面PAC ;(2)若GF 与平面ABC 所成的角为60°,求二面角B AP C --的余弦值.6.如图1,平面四边形ABCD 中,2,,,AB AC AB AC AC CD E ==⊥⊥为BC 的中点,将ACD 沿对角线AC 折起,使CD BC ⊥,连接BD ,得到如图2所示的三棱锥D ABC -.(1)证明:平面ADE ⊥平面BCD ; (2)已知直线DE 与平面ABC 所成的角为π4,求二面角A BD C --的余弦值. 7.如图,ABEDFC 为多面体,平面ABED 与平面ACFD 垂直,点O 在线段AD 上,1,2,,,,OA OD OAB OAC ODE ODF ==都是正三角形.(1)证明:直线BC平面OEF .(2)在线段DF 上是否存在一点M ,使得二面角M OE D --313?若不存在,请说明理由;若存在,请求出M 点所在的位置.8.如图,在三棱锥P ABC -中,2,4,AB BC PA PB PC AC O ======为AC 的中点.(1)证明:PO⊥平面ABC;--为30°,求PC与平面PAM所成角的正弦(2)若点M在棱BC上,且二面角M PA C值.答案以及解析1.答案:(1)如图,设正方形ABCD 的对角线AC 与BD 交于点O ,连接FO ,由题知1EF OC ==.因为EFAC ,所以四边形CEFO 为平行四边形, 所以CEOF .又CE ⊄平面,BDF OF ⊂平面BDF , 所以CE平面BDF .(2)因为平面ABCD ⊥平面ACEF ,平面ABCD ⋂平面,,ACEF AC FA AC FA =⊥⊂平面ACEF ,所以FA ⊥平面ABCD .连接EO ,易知四边形AOEF 为边长为1的正方形, 所以EO ⊥平面ABCD , 所以EO BD ⊥, 所以BDE 为等腰三角形,222BD BO OC ===,222BE DE BO EO ==+=.因为222BD BE DE =+, 所以BE DE ⊥. 同理,在BEF 中,BE EF ⊥.因为DE EF E ⋂=, 所以BE ⊥平面DEF .2.答案:(1)如图,取AB 的中点O ,连接11,,OC OA A B .因为CA CB =,所以OC AB ⊥. 由于11,60AB AA BAA =∠=︒,故1AA B 为等边三角形,所以1OA AB ⊥. 因为1OC OA O ⋂=,所以AB ⊥平面1OAC . 又1A C ⊂平面1OAC ,故1AB AC ⊥. (2)由题设知ABC 与1AA B 都是边长为2的等边三角形, 所以13OC OA ==又16AC =22211A C OC OA =+,故1OA OC ⊥. 因为OC AB O ⋂=,所以1OA ⊥平面ABC , 即1OA 为三棱柱111ABC A B C -的高. 又ABC 的面积3ABCS=故三棱柱111ABC A B C -的体积13ABCV S OA =⨯=.3.答案:(1)由已知得223AM AD ==. 取BP 的中点T ,连接,AT TN . 由N 为PC 的中点知1,22TN BC TN BC ==.又AD BC ,故TN AM ,四边形AMNT 为平行四边形,于是MNAT .因为AT⊂平面,PAB MN ⊄平面PAB ,所以MN 平面PAB .(2)取BC 的中点E ,连接AE .由AB AC =得AE BC ⊥,从而AE AD ⊥,且222252BC AE AB BE AB ⎛⎫=--= ⎪⎝⎭以A 为坐标原点,AE 的方向为x 轴正方向,建立如图所示的空间直角坐标系A xyz -.由题意知,()()50,0,4,0,2,0,(5,2,0),,1,2P M C N ⎛⎫⎪ ⎪⎝⎭,55(0,2,4),,1,2,,1,2PM PN AN ⎛⎫⎛⎫=-=-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭.设(,,)x y z =n 为平面PMN 的法向量,则0,0,PM PN ⎧⋅=⎪⎨⋅=⎪⎩n n即240,520,y z y z -=⎧+-=可取(0,2,1)=n .于是||85|cos ,|||||AN AN AN ⋅〈〉==n n n AN 与平面PMN 85. 4.答案:(1)由已知90BAP CDP ∠=∠=︒, 得,AB AP CD PD ⊥⊥. 由于ABCD ,故AB PD ⊥,从而AB ⊥平面PAD . 又AB ⊂平面PAB , 所以平面PAB ⊥平面PAD .(2)如图,在平面PAD 内作PF AD ⊥,垂足为F .由(1)可知,AB ⊥平面PAD ,故AB PF ⊥,可得PF ⊥平面ABCD . 以F 为坐标原点,FA 的方向为x 轴正方向,||AB 为单位长,建立如图所示的空间直角坐标系F xyz -.由(1)及已知可得2222,,,A P B C ⎫⎛⎫⎛⎫⎪ ⎪ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭. 所以2222,1,,(2,0,0),,0,,(0,1,0)PC CB PA AB ⎛⎫⎛⎫=--==-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭. 设()111,,x y z =n 是平面PCB 的法向量,则0,0,PC CB ⎧⋅=⎪⎨⋅=⎪⎩n n 即1111220,20.y x ⎧+=⎪⎨⎪=⎩ 可取(0,1,2)=--n .设()222,,x y z =m 是平面PAB 的法向量,则0,0,PA AB ⎧⋅=⎪⎨⋅=⎪⎩m m 即222220,0.x y ⎧=⎪⎪=⎩可取(1,0,1)=m .则3cos ,||||⋅〈〉==n m n m n m 所以二面角A PB C --的余弦值为35.答案:(1)连接EF ,连接EG 并延长,交BC 于点D , 可知点D 是BC 的中点,,,D E F 分别是棱,,CB AB PB 的中点,,DE AC EF AP ∴,,DE EF ⊄平面,,PAC AC AP ⊂平面PAC ,DE∴平面,PAC EF平面PAC ,,DE EF ⊂平面,,EFG DE EF E ⋂=∴平面EFG平面PAC ,G F ⊂平面,EFG GF ∴平面PAC .(2)连接,,PE PA PB E =是AB 的中点,PE AB ∴⊥,平面PAB ⊥平面ABC ,平面PAB ⋂平面,ABC AB PE =⊂平面PAB ,P E ∴⊥平面ABC ,连接CG 并延长交BE 于点O ,则O 为BE 的中点,连接OF ,则OFPE ,OF ∴⊥平面,ABC FGO ∴∠是GF 与平面ABC 所成的角, 60FGO ∴∠=︒,在Rt FGO 中,设2GF =,则1,3,OG OF OC PE ===,AB CE OE ∴===,222,OE OC CE OC AB ∴+=∴⊥,以O 为原点,OC 为x 轴,OB 为y 轴,OF 为z 轴,建立空间直角坐标系,如图.则(0,(3,0,0),(0,A C P -,(3,33,0),(0,2AC AP ==,设平面PAC 的法向量(,,)x y z =n ,则30,230,AC x AP ⎧⋅=+=⎪⎨⋅=+=⎪⎩n n 取1z =,得1,1)=-n ,平面PAB 的一个法向量(1,0,0)=m , 设二面角B AP C --的平面角为θ,则cos ||||θ⋅===⋅m nm n ,二面角B AP C --.6.答案:(1)在三棱锥D ABC -中, 因为,,CD BC CD AC AC BC C ⊥⊥⋂=, 所以CD ⊥平面ABC .又AE ⊂平面ABC ,所以AE CD ⊥, 因为,AB AC E =为BC 的中点, 所以AE BC ⊥,又BC CD C ⋂=, 所以AE ⊥平面BCD . 又AE ⊂平面ADE , 所以平面ADE ⊥平面BCD .(2)由(1)可知DEC ∠即为直线DE 与平面ABC 所成的角, 所以π4DEC ∠=,故1CD CE ==. 如图,作EFCD 交BD 于点F ,由(1)知,,EA EB EF 两两垂直,以E 为原点,,,EA EB EF 所在直线分别为,,x y z 轴建立空间直角坐标系, 则()()()()0,0,0,1,0,0,0,1,,00,1,1E A B D -, 易知平面BCD 的一个法向量1(1,0,0)=n ,又(1,1,0),(1,1,1)AB AD =-=--,设平面ABD 的法向量为2(,,)x y z =n ,则220,0,AB x y AD x y z ⎧⋅=-+=⎪⎨⋅=--+=⎪⎩n n令1x =,得2(1,1,2)=n , 所以1212126cos ,⋅==⋅n n n n n n , 由图可知该二面角为锐角,所以二面角A BD C --的余弦值为6.7.答案:(1)依题意知,在平面ADFC 中,60,CAO FOD ACOF ∠=∠=︒∴,又OF ⊂平面,OEF AC ⊄平面,OEF AC ∴平面OEF . 在平面ABED 中,60BAO EOD ∠=∠=︒,AB OE ∴,又OE ⊂平面,OEF AB ⊄平面,OEF AB ∴平面OEF .,AB AC A AB ⋂=⊂平面,ABC AC ⊂平面,ABC ∴平面ABC平面OEF . 又BC ⊂平面,ABC ∴直线BC 平面OEF .(2)设OD 的中点为G ,如图,连接,CE GF ,由题意可得,,GE GD GF 两两垂直,以G 为坐标原点,,,GE GD GF 所在的直线分别为x 轴、y 轴、z 轴建立空间直角坐标系.易知,(0,1,0),(3,0,0),3),(0,1,0)O E F D -,则(3,1,0)OE =.假设在线段DF 上存在一点M ,使得二面角M OE D --的余弦值是313.设,[0,1]DM DF λλ=∈,则(0,1,3),(0,2,3)M OM λλλλ-=-.设(),,x y z =n 为平面MOE 的法向量,由0,0,OM OE ⎧⋅=⎪⎨⋅=⎪⎩n n 得(2)30,30,y z x y λλ⎧-⋅+⋅=⎪⎨+=⎪⎩可取x λ=-,则3,2,(,3,2)y z λλλλλ==-=--n .又平面OED 的一个法向量()0,0,1=m ,22313|cos ,|4(2)λλ∴=〈〉=+-m n , (21)(1)0λλ∴-+=,又1[0,1],2λλ∈∴=. 经验证,12λ=满足题意, 存在满足条件的点,M M 为DF 的中点.8.答案:(1)因为4,AP CP AC O ===为AC 的中点,所以OP AC ⊥,且23OP =连接OB .因为2AB BC AC =,所以ABC 为等腰直角三角形, 且1,22OB AC OB AC ⊥==. 由222OP OB PB +=知PO OB ⊥.由,OP OB OP AC ⊥⊥知PO ⊥平面ABC .(2)如图,以O 为坐标原点,OB 的方向为x 轴正方向,建立空间直角坐标系O xyz -.由已知得()()()()(0,0,0,2,0,0,0,2,0,0,2,0,3,(0,2,23)O B A C P AP -=.取平面PAC 的一个法向量()2,0,0OB =.设(),2,002)(M a a a -<≤,则(,4,0)AM a a =-.设平面PAM 的法向量为(,,)x y z =n .由0,0AP AM ⋅=⋅=n n 得 230,(4)0,y z ax a y ⎧+=⎪⎨+-=⎪⎩可取(3(3,)a a a =--n , 所以22223(4)cos ,23(4)3a OB a a a-〈〉=-++n . 由已知可得3|cos ,|OB 〈〉n , 22223|4|323(4)3a a a a -=-++,解得4a =-(舍去),43a =, 所以834343⎛⎫=- ⎪ ⎪⎝⎭n . 又(0,2,23)PC =-,所以3cos ,PC 〈〉=n .所以PC与平面PAM所成角的正弦值为.。
高考数学二轮复习立体几何多选题复习题附解析一、立体几何多选题1.如图①,矩形ABCD 的边2BC =,设AB x =,0x >,三角形BCM 为等边三角形,沿BC 将三角形BCM 折起,构成四棱锥M ABCD -如图②,则下列说法正确的有( )A .若T 为BC 中点,则在线段MC 上存在点P ,使得//PD 平面MATB .当)3,2x ∈时,则在翻折过程中,不存在某个位置满足平面MAD ⊥平面ABCDC .若使点M 在平面ABCD 内的射影落在线段AD 上,则此时该四棱锥的体积最大值为1 D .若1x =,且当点M 在平面ABCD 内的射影点H 落在线段AD 上时,三棱锥M HAB -6322++【答案】BCD 【分析】对于A ,延长AT 与DC 的延长线交于点N ,此时,DP 与MN 必有交点; 对于B ,取AD 的中点H ,表示出2223MH MT HT x --,验证当)3,2x ∈时,无解即可; 对于C ,利用体积公式21233V x x =⨯⨯-,借助基本不等式求最值即可; 对于D ,要求外接球半径与内切球半径,找外接圆的圆心,又内接圆半径为2323r =++【详解】对于A ,如图,延长AT 与DC 的延长线交于点N ,则面ATM ⋂面()MDC N MN =.此时,DP 与MN 必有交点,则DP 与面ATM 相交,故A 错误; 对于B ,取AD 的中点H ,连接MH ,则MH AD ⊥.若面MAD ⊥面ABCD ,则有2223MH MT HT x =-=- 当)3,2x ∈时,无解,所以在翻折过程中,不存在某个位置满足平面MAD ⊥平面ABCD故B 正确;对于C ,由题可知,此时面MAD ⊥面ABCD ,由B 可知,(3x ∈,所以()22222221223232331333232x x V x x x x ⎛⎫+-⎛⎫=⨯⨯-=-≤== ⎪ ⎪⎝⎭⎝⎭当且仅当223x x =-,即6x =时等号成立.故C 正确; 对于D ,由题可知,此时面MAD ⊥面ABCD ,且2MH =因为AHB ,MHB 都是直角三角形,所以M ABH -底面外接圆的圆心是中点,所以1R =,由等体积法,可求得内接圆半径为2323r =++,故61322R r ++=,故D 正确.故选:BCD . 【点睛】本题从多个角度深度考查了立体几何的相关内容,注意辅助线的作法,以及求内接圆半径的公式、基本不等式、构造函数等核心思想.2.一副三角板由一块有一个内角为60°的直角三角形和一块等腰直角三角形组成,如图所示,090B F ∠=∠=,060,45,A D BC DE ∠=∠==,现将两块三角形板拼接在一起,得三棱锥F CAB -,取BC 中点O 与AC 中点M ,则下列判断中正确的是( )A .BC FM ⊥B .AC 与平面MOF 所成的角的余弦值为32C .平面MOF 与平面AFB 所成的二面角的平面角为45°D .设平面ABF 平面MOF l =,则有//l AB【答案】AD 【分析】证明BC ⊥面FOM 可判断A ;根据AC 与平面MOF 所成的角为060CMO ∠=判断B ;利用特殊位置判断C ;先证明//AB 面MOF ,由线面平行的性质定理可判断D ; 【详解】由三角形中位线定理以及等腰三角形的性质可得,,BC OF BC OM OM OF O ⊥⊥=,所以BC ⊥面FOM BC FM ⇒⊥,故A 正确;因为BC ⊥面FOM ,所以AC 与平面MOF 所成的角为060CMO ∠=,所以余弦值为12,故B 错误; 对于C 选项可以考虑特殊位置法,由BC ⊥面FOM 得面ABC ⊥面FOM ,所以点F 在平面ABC 内的射影在直线OM 上,不妨设点F 平面ABC 内的射影为M ,过点M 作//BC MN ,连结NF .易证AB ⊥面MNF ,则l ⊥面MNF ,所以MFN ∠为平面MOF与平面AFB 所成的二面角的平面角,不妨设2AB =,因为060A,所以23BC =,则13,12OF BC OM ===,显然MFN ∠不等于45°,故C 错误. 设面MOF 与平面ABF 的交线为l ,又因为//,AB OM AB ⊄面MOF ,OM ⊂面MOF ,所以//AB 面MOF ,由线面平行的性质定理可得://l AB ,故D 正确; 故选:AD.【点睛】方法点睛:求直线与平面所成的角有两种方法:一是传统法,证明线面垂直找到直线与平面所成的角,利用平面几何知识解答;二是利用空间向量,求出直线的方向向量以及平面的方向向量,利用空间向量夹角余弦公式求解即可.3.如图,已知正方体1ABCD ABC D -的棱长为a ,E 是棱CD 上的动点.则下列结论中正确的有( )A .11EB AD ⊥B .二面角11E A B A --的大小为4π C .三棱锥11A B D E -体积的最小值为313a D .1//D E 平面11A B BA 【答案】ABD 【分析】连接1A D 、1B C ,则易证1AD ⊥平面11A DCB ,1EB ⊂平面11A DCB ,则由线面垂直的性质定理可以判断选项A 正确;二面角11E A B A --的平面角为1DA A ∠,易知14DA A π∠=,则可判断选项B 正确;用等体积法,将求三棱锥11A B D E -的体积转化为求三棱锥11E AB D -的体积,当点E 与D 重合时,三棱锥11E AB D -的体积最小,此时的值为316a ,则选项C 错误;易知平面11//D DCC 平面11A B BA ,而1D E ⊂平面11D DCC ,则根据面面平行的性质定理可得1//D E 平面11A B BA ,可判断选项D 正确. 【详解】选项A ,连接1A D 、1B C ,则由正方体1ABCD ABC D -可知,11A D AD ⊥,111A B AD ⊥,1111A DA B A =,则1AD ⊥平面11A DCB ,又因为1EB ⊂平面11A DCB ,所以11EB AD ⊥,选项A 正确; 选项B ,因为11//DE A B ,则二面角11E A B A --即为二面角11D A B A --, 由正方体1ABCD ABC D -可知,11A B ⊥平面1DA A , 则1DA A ∠为二面角11D A B A --的平面角,且14DA A π∠=,所以选项B 正确;选项C ,设点E 到平面11AB D 的距离为d , 则11111113A B D E E AB D AB D V V S d --==⋅,连接1C D 、1C B ,易证平面1//BDC 平面11AB D ,则在棱CD 上,点D 到平面11AB D 的距离最短, 即点E 与D 重合时,三棱锥11A B D E -的体积最小, 由正方体1ABCD ABC D -知11A B ⊥平面1ADD , 所以1111123111113326D AB D B ADDADD a V V S A B a a --==⋅=⋅⋅=, 则选项C 错误;选项D ,由正方体1ABCD ABC D -知,平面11//CC D D 平面11A B BA ,且1D E ⊂平面11CC D D , 则由面面平行的性质定理可知1//D E 平面11A B BA ,则选项D 正确. 故选:ABD. 【点睛】关键点点睛:本题对于选项C 的判断中,利用等体积法求三棱锥的体积是解题的关键.4.如图,正方体1111ABCD A B C D -的棱长为3,线段11B D 上有两个动点,E F ,且1EF =,以下结论正确的有( )A .AC BE ⊥B .异面直线,AE BF 所成的角为定值C .点A 到平面BEF 的距离为定值D .三棱锥A BEF -的体积是定值 【答案】ACD 【详解】由AC BD ⊥,1AC DD ⊥可证AC ⊥平面11D DBB ,从而AC BE ⊥,故A 正确; 取特例,当E 与1D 重合时,F 是F ',AE 即1AD ,1AD 平行1BC ,异面直线,AE BF '所成的角是1C BF '∠,当F 与1B 重合时,E 是E ',BF 即1BB ,异面直线,AE BF '所成的角是1A AE '∠,可知1C BF '∠与1A AE '∠不相等,故异面直线,AE BF 所成的角不是定值,故B 错误;连结BD 交AC 于O ,又AC ⊥平面11D DBB ,点A 到平面11BDD B 的距离是2=AO ,也即点A 到平面BEF 的距离是22,故C 正确; 2=AO 为三棱锥A BEF -的高,又1111224BEFS =⨯⨯=△,故三棱锥A BEF -的体积为112234224⨯⨯=为定值,D 正确. 故选:ACD 【点睛】求空间中点到平面的距离常见方法为: (1)定义法:直接作平面的垂线,求垂线;(2)等体积法:不作垂线,通过等体积法间接求点到面的距离; (3)向量法:计算斜线在平面的法向量上的投影即可.5.(多选题)如图所示,正方体1111ABCD A B C D -中,1AB =,点P 在侧面11BCC B 及其边界上运动,并且总是保持1AP BD ⊥,则以下四个结论正确的是( )A .113P AA D V -=B .点P 必在线段1BC 上 C .1AP BC ⊥D .AP ∥平面11AC D【答案】BD 【分析】 对于A ,1111111113326P AA D AA DV S CD -=⋅=⨯⨯⨯⨯=,对于B,C,D ,如图以D 为坐标原点可建立空间直角坐标系,利用空间向量判即可. 【详解】对于A ,因为点P 在平面11BCC B ,平面11BCC B ∥平面1AA D , 所以点P 到平面1AA D 即为C 到平面1AA D 的距离,即为正方体棱长, 所以1111111113326P AA D AA DV S CD -=⋅=⨯⨯⨯⨯=,A 错误; 对于B ,以D 为坐标原点可建立如下图所示的空间直角坐标系:则11(1,0,0),(,1,),(1,1,0),(0,0,1),(1,1,1),(0,1,0)A P x z B D B C 所以11(1,1,),(1,1,1),(1,0,1)AP x z BD BC =-=--=--, 因为1AP BD ⊥,所以1110AP BD x z ⋅=--+=,所以x z =,即(,1,)P x x , 所以(,0,)CP x x =,所以1CP xBC =-,即1,,B C P 三点共线, 所以点P 必在线段1B C 上,B 正确;对于C ,因为1(1,1,),(1,0,1)AP x x BC =-=-, 所以111AP BC x x ⋅=-+=, 所以1AP BC ⊥不成立,C 错误;对于D ,因为11(1,0,1),(0,1,1),(0,0,0)A C D , 所以11(1,0,1),(0,1,1)DA DC ==,设平面11AC D 的法向量为(,,)n x y z =,则1100n DA x z n DC y z ⎧⋅=+=⎪⎨⋅=+=⎪⎩,令1x =,则1,1z y =-=,所以(1,1,1)n =-, 所以110AP n x x ⋅=-+-=,所以AP n ⊥, 所以AP ∥平面11AC D ,D 正确, 故选:BD 【点睛】此题考查了空间线线垂直的判定,线面平行的判定,三棱锥的体积,考查空间想象能力,考查计算能力,属于较难题.6.在边长为2的等边三角形ABC 中,点,D E 分别是边,AC AB 上的点,满足//DE BC 且AD ACλ=,(()01λ∈,),将ADE 沿直线DE 折到A DE '△的位置.在翻折过程中,下列结论不成立的是( )A .在边A E '上存在点F ,使得在翻折过程中,满足//BF 平面A CD 'B .存在102λ∈⎛⎫⎪⎝⎭,,使得在翻折过程中的某个位置,满足平面A BC '⊥平面BCDEC .若12λ=,当二面角A DE B '--为直二面角时,||4A B '= D .在翻折过程中,四棱锥A BCDE '-体积的最大值记为()f λ,()f λ【答案】ABC 【分析】对于A.在边A E '上点F ,在A D '上取一点N ,使得//FN ED ,在ED 上取一点H ,使得//NH EF ,作//HG BE 交BC 于点G ,即可判断出结论.对于B ,102λ∈⎛⎫⎪⎝⎭,,在翻折过程中,点A '在底面BCDE 的射影不可能在交线BC 上,即可判断出结论. 对于C ,12λ=,当二面角A DE B '--为直二面角时,取ED 的中点M ,可得AM ⊥平面BCDE .可得A B '=.对于D.在翻折过程中,取平面AED ⊥平面BCDE ,四棱锥A BCDE '-体积()313BCDE f S λλλ=⋅=-,()01λ∈,,利用导数研究函数的单调性即可得出.【详解】对于A.在边A E '上点F ,在A D '上取一点N ,使得//FN ED ,在ED 上取一点H ,使得//NH EF ,作//HG BE 交BC 于点G ,如图所示,则可得FN 平行且等于BG ,即四边形BGNF 为平行四边形, ∴//NG BE ,而GN 始终与平面ACD 相交,因此在边A E '上不存在点F ,使得在翻折过程中,满足//BF 平面A CD ',A 不正确.对于B ,102λ∈⎛⎫⎪⎝⎭,,在翻折过程中,点A '在底面BCDE 的射影不可能在交线BC 上,因此不满足平面A BC '⊥平面BCDE ,因此B 不正确. 对于C.12λ=,当二面角A DE B '--为直二面角时,取ED 的中点M ,如图所示:可得AM ⊥平面BCDE , 则22223111010()1()21cos120222A B AM BM '=+=++-⨯⨯⨯︒=≠,因此C 不正确;对于D.在翻折过程中,取平面AED ⊥平面BCDE ,四棱锥A BCDE '-体积()3133BCDE f S λλλλ=⋅=-,()01λ∈,,()213f λλ'=-,可得3λ=()f λ取得最大值()31231339f λ⎛⎫=-=⎪⎝⎭,因此D 正确. 综上所述,不成立的为ABC. 故选:ABC. 【点睛】本题考查了利用运动的观点理解空间线面面面位置关系、四棱锥的体积计算公式、余弦定理、利用导数研究函数的单调性极值与最值,考查了推理能力空间想象能力与计算能力,属于难题.7.如图,1111ABCD A B C D -为正方体,下列结论中正确的是( )A .11A C ⊥平面11BB D DB .1BD ⊥平面1ACBC .1BD 与底面11BCC B 2D .过点1A 与异面直线AD 与1CB 成60角的直线有2条【答案】ABD【分析】由直线与平面垂直的判定判断A 与B ;求解1BD 与底面11BCC B 所成角的正切值判断C ;利用空间向量法可判断D .【详解】对于A 选项,如图,在正方体1111ABCD A B C D -中,1BB ⊥平面1111D C B A ,11A C ⊂平面1111D C B A ,则111BB A C ⊥,由于四边形1111D C B A 为正方形,则1111AC B D ⊥, 1111BB B D B =,因此,11A C ⊥平面11BB D D ,故A 正确;对于B 选项,在正方体1111ABCD A B C D -中,1DD ⊥平面ABCD ,AC ⊂平面ABCD ,1AC DD ∴⊥,因为四边形ABCD 为正方形,所以,AC BD ⊥,1D DD BD =,AC ∴⊥平面11BB D D , 1BD ⊂平面11BB D D ,1AC BD ∴⊥,同理可得11BD B C ⊥,1AC B C C =,1BD ∴⊥平面1ACB ,故B 正确; 对于C 选项,由11C D ⊥平面11BCC B ,得11C BD ∠为1BD 与平面11BCC B 所成角, 且111112tan 2C D C BD BC ∠==,故C 错误; 对于D 选项,以点D 为坐标原点,DA 、DC 、1DD 所在直线分别为x 、y 、z 轴建立如下图所示的空间直角坐标系,设正方体的棱长为1,则()1,0,0A 、()0,0,0D 、()0,1,0C 、()11,1,1B ,()1,0,0DA =,()11,0,1CB =,设过点1A 且与直线DA 、1CB 所成角的直线的方向向量为()1,,m y z =, 则221cos ,21DA mDA m DA m y z ⋅<>===⋅++, 1122111cos ,221CB m z CB m CB m y z ⋅+<>===⋅⋅++, 整理可得2222341y z y z z ⎧+=⎨=++⎩,消去y 并整理得2210z z +-=,解得12z =-12z =-由已知可得3z ≤,所以,12z =-+22y =±因此,过点1A 与异面直线AD 与1CB 成60角的直线有2条,D 选项正确.故选:ABD.【点睛】方法点睛:证明线面垂直的方法:一是线面垂直的判定定理;二是利用面面垂直的性质定理;三是平行线法(若两条平行线中一条垂直于这个平面,则另一条也垂直于这个平面),解题时,注意线线、线面与面面关系的相互转化;另外,在证明线线垂直时,要注意题中隐含的垂直关系,如等腰三角形的底边上的高、中线和顶角的角平分线三线合一、矩形的内角、直径所对的圆周角、菱形的对角线互相垂直、直角三角形(或给出线段长度,经计算满足勾股定理)、直角梯形等等.8.如图所示,正方体ABCD A B C D ''''-的棱长为1,E ,F 分别是棱AA ',CC '的中点,过直线EF 的平面分别与棱BB ',DD '交于点M ,N ,以下四个命题中正确的是( )A .0MN EF ⋅=B .ME NE =C .四边形MENF 的面积最小值与最大值之比为2:3D .四棱锥A MENF -与多面体ABCD EMFN -体积之比为1:3【答案】ABD【分析】证明EF ⊥平面BDD B '',进而得EF MN ⊥,即可得A 选项正确;证明四边形MENF 为菱形即可得B 选项正确;由菱形性质得四边形MENF 的面积12S MN EF =⋅,再分别讨论MN 的最大值与最小值即可;根据割补法求解体积即可.【详解】对于A 选项,如图,连接BD ,B D '',MN .由题易得EF BD ⊥,EF BB '⊥,BD BB B '⋂=,所以EF ⊥平面BDD B '',又MN ⊂平面BDD B '',所以EF MN ⊥,因此0MN EF ⋅=,故A 正确.对于B 选项,由正方体性质得:平面''//BCC B 平面''ADD A ,平面''BCC B 平面EMFN MF =,平面''ADD A 平面EMFN EN =, 所以//MF EN ,同理得//ME NF ,又EF MN ⊥,所以四边形MENF 为菱形, 因此ME NE =,故B 正确.对于C 选项,由B 易得四边形MENF 的面积12S MN EF =⋅, 所以当点M ,N 分别为BB ',DD '的中点时,四边形MENF 的面积S 最小, 此时2MN EF ==,即面积S 的最小值为1; 当点M ,N 分别与点B (或点B '),D (或D )重合时,四边形MENF 的面积S 最大,此时3MN =,即面积S 的最大值为6, 所以四边形MENF 的面积最小值与最大值之比为2:6,故C 不正确.对于D 选项,四棱锥A MENF -的体积1112123346M AEF N AEF AEF V V V DB S --=+=⋅=⨯⨯=△; 因为E ,F 分别是AA ',CC '的中点,所以BM D N '=,DN B M '=,于是被截面MENF 平分的两个多面体是完全相同的,则它们的体积也是相同的,因此多面体ABCD EMFN -的体积21122ABCD A B C D V V ''''-==正方体, 所以四棱锥A MENF -与多面体ABCD EMFN -体积之比为1:3,故D 正确. 故选:ABD .【点睛】本题考查立体几何与向量的综合、截面面积的最值、几何体的体积,考查空间思维能力与运算求解能力,是中档题.本题解题的关键在于证明四边形MENF 为菱形,利用割补法将四棱锥A MENF -的体积转化为三棱锥M AEF - 和N AEF -的体积之和,将多面体ABCD EMFN -的体积转化为正方体的体积的一半求解.。
2021届高考数学(理)考前60天冲刺六大解答题立体几何立体几何知识点概述考试内容平面及其基本性质。
平面图形可视化图形的绘制方法平行直线.对应边分别平行的角.异面直线所成的角.异面直线的公垂线.异面直线的距离.直线和平面平行的判定与性质.直线和平面垂直的判定与性质.点到平面的距离.斜线在平面上的射影.直线和平面所成的角.三垂线定理及其逆定理.平行平面的测定和性质。
平行平面之间的距离。
二面角及其平面角。
两个垂直平面的确定及其性质多面体.正多面体.棱柱.棱锥.球.考试要求(1)掌握平面的基本性质,能用斜二次测量的作图方法绘制水平平面图形的直观图;能够画出空间中两条直线、直线和平面的各种位置关系的图形,并根据这些图形想象它们的位置关系。
(2)掌握两条直线平行度和垂直度的判定定理和性质定理,掌握两条直线形成的角度和距离的概念。
对于不同平面直线之间的距离,只要给出公共垂直线,就可以计算出距离(3)掌握直线和平面平行的判定定理和性质定理;掌握直线和平面垂直的判定定理和性质定理;掌握斜线在平面上的射影、直线和平面所成的角、直线和平面的距离的概念掌握三垂线定理及其逆定理.(4)掌握两平行平面的判定定理和性质定理,掌握二面角、二面角平面角和两平行平面之间距离的概念,掌握两垂直平面的判定定理和性质定理。
(5)能够通过反证来证明简单的问题(6)了解多面体、凸多面体的概念,了解正多面体的概念.(7)了解棱柱的概念,掌握棱柱的性质,会画直棱柱的直观图.(8)了解棱锥的概念,掌握正棱锥的性质,会画正棱锥的直观图.(9)了解球的概念,掌握球的性质,掌握球的表面积、体积公式.9(b).直线、平面、简单几何体考试内容:平面及其基本性质。
平面图形的可视图形的表示。
平行线直线和平面平行的判定与性质.直线和平面垂直的判定.三垂线定理及其逆定理.两个平面的位置关系.空间向量及其加法、减法和乘法。
空间向量的坐标表示。
空间向量的量积。
直线的方向向量。
1.[2021·长春质监(三)]如图,在四棱锥P-ABCD中,底面ABCD是菱形,∠DAB=60°,PD⊥平面ABCD,PD=AD=1,点E,F分别为AB和PD的中点.(1)求证:直线AF∥平面PEC;(2)求三棱锥P-BEF的表面积.解(1)证明:作FM∥CD交PC于M,连接ME.∵点F为PD的中点,∴FM綊12CD,又AE綊12CD,∴AE綊FM,∴四边形AEMF为平行四边形,∴AF∥EM,∵AF⊄平面PEC,EM⊂平面PEC,∴直线AF∥平面PEC.(2)连接ED,BD,可知ED⊥AB,⎭⎪⎬⎪⎫⎭⎪⎬⎪⎫⎭⎬⎫PD⊥平面ABCDAB⊂平面ABCD⇒PD⊥ABDE⊥AB⇒AB⊥平面PEFPE,FE⊂平面PEF⇒AB⊥PE,AB⊥FE,故S△PEF=12PF·ED=12×12×32=38;S△PBF=12PF·BD=12×12×1=14;S△PBE=12PE·BE=12×72×12=78;S△BEF=12EF·EB=12×1×12=14.因此三棱锥P-BEF的表面积S P-BEF=S△PEF+S△PBF+S△PBE+S△BEF=4+3+78.2.[2021·太原模拟]如图,在底面是正三角形的直三棱柱ABC-A1B1C1中,AA1=AB=2,D是BC的中点.(1)求证:A1C∥平面AB1D;(2)求点A1到平面AB1D的距离.解(1)证明:连接A1B,交AB1于点O,连接OD.∵ABC-A1B1C1是直三棱柱,∴四边形ABB1A1是平行四边形,∴O是A1B的中点.又D是BC的中点,∴OD∥A1C,∵OD⊂平面AB1D,A1C⊄平面AB1D,∴A1C∥平面AB1D.(2)由(1)知,O是A1B的中点,∴点A1到平面AB1D的距离等于点B到平面AB1D的距离.∵ABC-A1B1C1是直三棱柱,∴BB1⊥平面ABC,∴平面BCC1B1⊥平面ABC,∵△ABC是正三角形,D是BC的中点,∴AD⊥BC,∴AD⊥平面BCC1B1,∴AD⊥B1D,3.如图,在四棱锥P-ABCD中,底面ABCD为梯形,∠ABC=∠BAD=90°,BC=22,AP=AD=AB=2,∠P AB=∠P AD=α.(1)试在棱P A上确定一个点E,使得PC∥平面BDE,并求出此时AEEP的值;(2)当α=60°时,求证:CD⊥平面PBD.解 (1)解法一:连接AC ,BD 交于点F ,在平面PCA 中作EF ∥PC 交P A 于E ,连接BE ,DE ,由于PC ⊄平面BDE ,EF ⊂平面BDE ,所以PC ∥平面BDE ,由于AD ∥BC ,所以AF FC =AD BC =12, 由于EF ∥PC ,所以AE EP =AFFC , 所以AE EP =AF FC =AD BC =12.解法二:在棱P A 上取一点E ,使得AE EP =12. 连接AC ,BD 交于点F ,连接EF ,BE ,DE , 由于AD ∥BC , 所以AF FC =AD BC =12, 所以AE EP =AF FC , 所以EF ∥PC ,由于PC ⊄平面BDE ,EF ⊂平面BDE , 所以PC ∥平面BDE .(2)证法一:取BC 的中点G ,连接DG ,则ABGD 为正方形. 连接AG ,BD 交于点O ,连接PO , 由于AP =AD =AB ,∠P AB =∠P AD =60°, 所以△P AB 和△P AD 都是等边三角形, 因此P A =PB =PD , 又由于OD =OB ,所以△POB ≌△POD , 所以∠POB =∠POD =90°, 同理得△POA ≌△POB ,∠POA =90°, 所以PO ⊥平面ABC . 所以PO ⊥CD .由∠ABC =∠BAD =90°,BC =2AD =2AB =22, 可得BD =2,CD =2, 所以BD 2+CD 2=BC 2, 所以BD ⊥CD , 所以CD ⊥平面PBD .证法二:取BC 的中点G ,连接DG ,则ABGD 为正方形. 过P 作PO ⊥平面ABCD ,垂足为O , 连接OA ,OB ,OD ,OG .由于AP =AD =AB ,∠P AB =∠P AD =60°,所以△P AB 和△P AD 都是等边三角形,因此P A =PB =PD , 所以OA =OB =OD ,即点O 为正方形ABGD 对角线的交点, 所以PO ⊂平面PBD .又∠ABC =∠BAD =90°,BC =2AD =2AB =22, 所以BD ⊥CD , 又由于PO ⊥CD , 所以CD ⊥平面PBD .4.[2021·山西四校联考(三)]如图,AB 是圆O 的直径,点C 在圆O 上,矩形DCBE 所在的平面垂直于圆O 所在的平面,AB =4,BE = 1.(1)证明:平面ADE ⊥平面ACD ;(2)当三棱锥C -ADE 的体积最大时,求点C 到平面ADE 的距离. 解 (1)证明:∵AB 是直径,∴BC ⊥AC ,又四边形DCBE 为矩形,∴CD ⊥DE ,BC ∥DE ,∴DE ⊥AC , ∵CD ∩AC =C ,∴DE ⊥平面ACD , 又DE ⊂平面ADE ,∴平面ADE ⊥平面ACD .(2)由(1)知V C -ADE =V E -ACD =13×S △ACD ×DE =13×12×AC ×CD ×DE =16×AC ×BC ≤112×(AC 2+BC 2)=112×AB 2=43,当且仅当AC =BC =22时等号成立.∴当AC =BC =22时,三棱锥C -ADE 的体积最大,为43. 此时,AD =12+(22)2=3,S △ADE =12×AD ×DE =32,设点C 到平面ADE 的距离为h ,则V C -ADE =13×S △ADE ×h =43,h =223. 5.[2021·南昌一模]如图,AC 是圆O 的直径,B 、D 是圆O 上两点,AC =2BC =2CD =2,P A ⊥圆O 所在的平面,P A =3,点M 在线段BP 上,且BM =13BP .(1)求证:CM ∥平面P AD ;(2)求异面直线BP 与CD 所成角的余弦值.解 (1)证明:作ME ⊥AB 于E ,连接CE ,则ME ∥AP . ∵AC 是圆O 的直径,AC =2BC =2CD =2, ∴AD ⊥DC ,AB ⊥BC ,∴∠BAC =∠CAD =30°,∠BCA =∠DCA =60°,AB =AD =3, ∵BM =13BP ,∴BE =13BA =33,tan ∠BCE =BE BC =33,∴∠BCE =∠ECA =30°=∠CAD ,∴EC ∥AD . 又ME ∩CE =E ,P A ∩DA =A ,∴平面MEC ∥平面P AD ,又CM ⊂平面MEC ,CM ⊄平面P AD ,∴CM ∥平面P AD .(2)过点A 作平行于BC 的直线交CD 的延长线于G , 作BF ∥CG ,交AG 于F ,连接PF ,则∠PBF 为异面直线BP 与CD 所成的角,设∠PBF =θ. 易知AF =1,PB =6,BF =2,PF =2, 故cos θ=PB 2+BF 2-PF 22PB ·BF =6+4-426×2=64. 6.[2021·河南洛阳统考]如图,四边形ABCD 中,AB ⊥AD ,AD ∥BC ,AD =6,BC =2AB =4,E ,F 分别在BC ,AD 上,EF ∥AB .现将四边形ABCD 沿EF 折起,使平面ABEF ⊥平面EFDC .(1)若BE =1,是否在折叠后的线段AD 上存在一点P ,且AP →=λPD →,使得CP ∥平面ABEF ?若存在,求出λ的值;若不存在,说明理由;(2)求三棱锥A -CDF 的体积的最大值,并求此时点F 到平面ACD 的距离. 解 (1)AD 上存在一点P ,使得CP ∥平面ABEF ,此时λ=32.理由如下:当λ=32时,AP →=32PD →,可知AP AD =35,过点P 作MP ∥FD 交AF 于点M ,连接EM ,则有MP FD =AP AD =35,又BE =1,可得FD =5,故MP =3,又EC =3,MP ∥FD ∥EC ,故MP 綊EC ,故四边形MPCE 为平行四边形, 所以CP ∥ME .又CP ⊄平面ABEF ,ME ⊂平面ABEF , 故CP ∥平面ABEF .(2)设BE =x ,所以AF =x (0<x ≤4),FD =6-x , 故V 三棱锥A -CDF =13×12×2×(6-x )x =13(-x 2+6x ), 当x =3时,V 三棱锥A -CDF 有最大值,且最大值为3,此时,EC =1,AF =3,FD =3,DC =2 2.在Rt △EFC 中,FC =5,在Rt △AFD 中,AD =32,在Rt △AFC 中,AC =14. 在△ACD 中,cos ∠ADC =AD 2+DC 2-AC 22AD ·DC =18+8-142×32×22=12,故sin ∠ADC =1-⎝ ⎛⎭⎪⎫122=32, S △ADC =12DA ·DC ·sin ∠ADC =12×32×22×32=3 3.设点F 到平面ACD 的距离为h ,由V 三棱锥A -CDF =V 三棱锥F -ADC ,即3=13×h ×S △ADC =13×h ×33, 得h =3,故此时点F 到平面ACD 的距离为 3.。
黄金冲刺大题03 立体几何1.(2024·黑龙江·二模)如图,已知正三棱柱111ABC A B C -的侧棱长和底面边长均为2,M 是BC 的中点,N 是1AB 的中点,P 是11B C 的中点.(1)证明://MN 平面1A CP ;(2)求点P 到直线MN 的距离.2.(2024·安徽合肥·二模)如图,在四棱锥P ABCD -中,底面ABCD 是边长为2的菱形,60,BAD M ∠=︒是侧棱PC 的中点,侧面PAD 为正三角形,侧面PAD ⊥底面ABCD .(1)求三棱锥M ABC -的体积;(2)求AM 与平面PBC 所成角的正弦值.3.(2023·福建福州·模拟预测)如图,在三棱柱111ABC A B C -中,平面11AA C C ⊥平面1,2ABC AB AC BC AA ====,1A B =.(1)设D 为AC 中点,证明:AC ⊥平面1A DB ;(2)求平面11A AB 与平面11ACC A 夹角的余弦值.4.(2024·山西晋中·三模)如图,在六面体ABCDE 中,BC BD ==,EC ED ⊥,且EC ED ==AB 平行于平面CDE ,AE 平行于平面BCD ,AE CD ⊥.(1)证明:平面ABE ⊥平面CDE ;(2)若点A 到直线CD 的距离为F 为棱AE 的中点,求平面BDF 与平面BCD 夹角的余弦值.5.(2024·辽宁·二模)棱长均为2的斜三棱柱111ABC A B C -中,1A 在平面ABC 内的射影O 在棱AC 的中点处,P 为棱11A B (包含端点)上的动点.(1)求点P 到平面1ABC 的距离;(2)若AP ⊥平面α,求直线1BC 与平面α所成角的正弦值的取值范围.6.(2024·重庆·模拟预测)在如图所示的四棱锥P -ABCD 中,已知AB CD ∥,90BAD ︒∠=,2CD AB =,PAB 是正三角形,点M 在侧棱PB 上且使得//PD 平面AMC .(1)证明:2PM BM =;(2)若侧面PAB ⊥底面ABCD ,CM 与底面ABCD P AC B --的余弦值.7.(2024·安徽·模拟预测)2023年12月19日至20日,中央农村工作会议在北京召开,习近平主席对“三农”工作作出指示.某地区为响应习近平主席的号召,积极发展特色农业,建设蔬菜大棚.如图所示的七面体ABG CDEHF -是一个放置在地面上的蔬菜大棚钢架,四边形ABCD 是矩形,8AB =m ,4=AD m ,1ED CF ==m ,且ED ,CF 都垂直于平面ABCD ,5GA GB ==m ,HE HF =,平面ABG ⊥平面ABCD .(1)求点H 到平面ABCD 的距离;(2)求平面BFHG 与平面AGHE 所成锐二面角的余弦值.8.(2024·重庆·模拟预测)如图,ACDE 为菱形,2AC BC ==,120ACB ∠=︒,平面ACDE ⊥平面ABC ,点F 在AB 上,且2AF FB =,M ,N 分别在直线CD ,AB 上.(1)求证:CF ⊥平面ACDE ;(2)把与两条异面直线都垂直且相交的直线叫做这两条异面直线的公垂线,若60EAC ∠=︒,MN 为直线CD ,AB 的公垂线,求AN AF的值;(3)记直线BE 与平面ABC 所成角为α,若tan α>BCD 与平面CFD 所成角余弦值的范围.9.(2024·安徽·二模)将正方形ABCD 绕直线AB 逆时针旋转90︒,使得CD 到EF 的位置,得到如图所示的几何体.(1)求证:平面ACF ⊥平面BDE ;(2)点M 为 DF 上一点,若二面角C AM E --的余弦值为13,求MAD ∠.10.(2024·安徽黄山·二模)如图,已知AB 为圆台下底面圆1O 的直径,C 是圆1O 上异于,A B 的点,D 是圆台上底面圆2O 上的点,且平面DAC ⊥平面ABC ,2DA DC AC ===,4BC =,E 是CD 的中点,2BF FD = .(1)证明:2//DO BC ;(2)求直线DB 与平面AEF 所成角的正弦值.11.(2024·黑龙江哈尔滨·一模)正四棱台1111ABCD A B C D -的下底面边长为1112A B AB =,M 为BC 中点,已知点P 满足()1112AP AB AD AA λλλ=-+⋅+ ,其中()0,1λ∈.(1)求证1D P AC ⊥;(2)已知平面1AMC 与平面ABCD 所成角的余弦值为37,当23λ=时,求直线DP 与平面1AMC 所成角的正弦值.12.(2024·辽宁·三模)如图,在三棱柱111ABC A B C -中,侧面11ACC A ⊥底面1,2ABC AC AA ==,1,AB BC =,点E 为线段AC 的中点.(1)求证:1AB 平面1BEC ;(2)若1π3A AC ∠=,求二面角1A BE C --的余弦值.13.(2024·广东广州·一模)如图,在四棱锥P ABCD -中,底面ABCD 是边长为2的菱形,DCP 是等边三角形,π4DCB PCB ∠∠==,点M ,N 分别为DP 和AB 的中点.(1)求证://MN 平面PBC ;(2)求证:平面PBC ⊥平面ABCD ;(3)求CM 与平面PAD 所成角的正弦值.14.(2024·广东梅州·二模)如图,在四棱锥P ABCD -中,平面PAD ⊥平面ABCD ,底面ABCD 为直角梯形,PAD 为等边三角形,//AD BC ,AD AB ⊥,22AD AB BC ===.(1)求证:AD PC ⊥;(2)点N 在棱PC 上运动,求ADN △面积的最小值;(3)点M 为PB 的中点,在棱PC 上找一点Q ,使得//AM 平面BDQ ,求PQ QC的值.15.(2024·广东广州·模拟预测)如图所示,圆台12O O 的轴截面11A ACC 为等腰梯形,111224,AC AA AC B===为底面圆周上异于,A C 的点,且,AB BC P =是线段BC 的中点.(1)求证:1C P //平面1A AB .(2)求平面1A AB 与平面1C CB 夹角的余弦值.16.(2024·广东深圳·二模)如图,三棱柱111ABC A B C -中,侧面11BB C C ⊥底面ABC ,且AB AC =,11A B A C =.(1)证明:1AA ⊥平面ABC ;(2)若12AA BC ==,90BAC ∠=︒,求平面1A BC 与平面11A BC 夹角的余弦值.17.(2024·河北保定·二模)如图,在四棱锥P ABCD -中,平面PCD 内存在一条直线EF 与AB 平行,PA ⊥平面ABCD ,直线PC 与平面ABCD ,PA BC ==,24CD AB ==.(1)证明:四边形ABCD 是直角梯形.(2)若点E 满足2PE ED = ,求二面角P EF B --的正弦值.18.(2024·湖南衡阳·模拟预测)如图,在圆锥PO 中,P 是圆锥的顶点,O 是圆锥底面圆的圆心,AC 是圆锥底面圆的直径,等边三角形ABD 是圆锥底面圆O 的内接三角形,E 是圆锥母线PC 的中点,6,4PO AC ==.(1)求证:平面BED ⊥平面ABD ;(2)设点M 在线段PO 上,且2OM =,求直线DM 与平面ABE 所成角的正弦值.19.(2024·湖南岳阳·三模)已知四棱锥P ABCD -的底面ABCD 是边长为4的菱形,60DAB ∠=︒,PA PC =,PB PD ==M 是线段PC 上的点,且4PC MC = .(1)证明:PC ⊥平面BDM ;(2)点E 在直线DM 上,求BE 与平面ABCD 所成角的最大值.20.(2024·湖南·二模)如图,直四棱柱1111ABCD A B C D -的底面是边长为2的菱形,160,ABC BD ∠=⊥ 平面11AC D .(1)求四棱柱1111ABCD A B C D -的体积;(2)设点1D 关于平面11AC D 的对称点为E ,点E 和点1C 关于平面α对称(E 和α未在图中标出),求平面11AC D 与平面α所成锐二面角的大小.21.(2024·山东济南·二模)如图,在四棱锥P ABCD -中,四边形ABCD 为直角梯形,AB ∥CD ,60,1,3,DAB PCB CD AB PC ∠=∠=︒===,平面PCB ⊥平面ABCD ,F 为线段BC 的中点,E 为线段PF 上一点.(1)证明:PF AD ⊥;(2)当EF 为何值时,直线BE 与平面PAD .22.(2024·山东潍坊·二模)如图1,在平行四边形ABCD 中,24AB BC ==,60ABC ∠=︒,E 为CD 的中点,将ADE V 沿AE 折起,连结BD ,CD ,且4BD =,如图2.(1)求证:图2中的平面ADE ⊥平面ABCE ;(2)在图2中,若点F 在棱BD 上,直线AF 与平面ABCE F 到平面DEC 的距离.23.(2024·福建·模拟预测)如图,在三棱锥-P ABC 中,,,3,PA PB AB BC AB BC ⊥⊥==P AB C --的大小为θ,PAB θ∠=.(1)求点P 到平面ABC 的距离;(2)当三棱锥-P ABC 的体积取得最大值时,求:(Ⅰ)二面角P AB C --的余弦值;(Ⅱ)直线PC 与平面PAB 所成角.24.(2024·浙江杭州·二模)如图,在多面体ABCDPQ 中,底面ABCD 是平行四边形,60,244,DAB BC PQ AB M ∠=︒===为BC 的中点,,,PQ BC PD DC QB MD ⊥⊥∥.(1)证明:90ABQ ∠=︒;(2)若多面体ABCDPQ 的体积为152,求平面PCD 与平面QAB 夹角的余弦值.25.(2024·浙江嘉兴·二模)在如图所示的几何体中,四边形ABCD 为平行四边形,PA ⊥平面,ABCD PA QD ,222,60BC AB PA ABC ∠==== .(1)证明:平面PCD ⊥平面PAC ;(2)若PQ =,求平面PCQ 与平面DCQ 夹角的余弦值.26.(2024·浙江绍兴·二模)如图,在三棱锥-P ABC 中,4AB =,2AC =,60CAB ∠=︒,BC AP ⊥.(1)证明:平面ACP ⊥平面ABC ;(2)若2PA =,4PB =,求二面角P AB C --的平面角的正切值.27.(2024·河北沧州·一模)如图,在正三棱锥A BCD -中,4BC CD BD ===,点P 满足AP AC λ= ,(0,1)λ∈,过点P 作平面α分别与棱AB ,BD ,CD 交于Q ,S ,T 三点,且//AD α,//BC α.(1)证明:(0,1)λ∀∈,四边形PQST 总是矩形;(2)若4AC =,求四棱锥C PQST -体积的最大值.28.(2024·湖北·二模)如图1.在菱形ABCD 中,120ABC ∠=︒,4AB =,AE AD λ= ,(01)AF AB λλ=<< ,沿EF 将AEF △向上折起得到棱锥P BCDEP -.如图2所示,设二面角P EF B --的平面角为θ.(1)当λ为何值时,三棱锥P BCD -和四棱锥P BDEF -的体积之比为95?(2)当θ为何值时,()0,1λ∀∈,平面PEF 与平面PFB 的夹角ϕ29.(2024·湖北·模拟预测)空间中有一个平面α和两条直线m ,n ,其中m ,n 与α的交点分别为A ,B ,1AB =,设直线m 与n 之间的夹角为π3,(1)如图1,若直线m ,n 交于点C ,求点C 到平面α距离的最大值;(2)如图2,若直线m ,n 互为异面直线,直线m 上一点P 和直线n 上一点Q 满足//PQ α,P Q n ⊥且PQ m ⊥,(i )求直线m ,n 与平面α的夹角之和;(ii )设()01PQ d d =<<,求点P 到平面α距离的最大值关于d 的函数()f d .30.(2024·浙江绍兴·模拟预测)如图所示,四棱台1111ABCD A B C D -,底面ABCD 为一个菱形,且120BAD ︒∠=.底面与顶面的对角线交点分别为O ,1O . 1122AB A B ==,11BB DD =1AA 与底面夹角余弦值为(1)证明:1OO ⊥平面ABCD ;(2)现将顶面绕1OO 旋转θ角,旋转方向为自上而下看的逆时针方向. 此时使得底面与1DC 的夹角正弦值为θ的值(90θ︒<);(3)求旋转后1AA 与1BB 的夹角余弦值.黄金冲刺大题03 立体几何1.(2024·黑龙江·二模)如图,已知正三棱柱111ABC A B C -的侧棱长和底面边长均为2,M 是BC 的中点,N 是1AB 的中点,P 是11B C 的中点.(1)证明://MN 平面1A CP ;(2)求点P 到直线MN 的距离.【答案】(1)证明见解析【分析】(1)建立如图空间直角坐标系A xyz -,设平面1A CP 的一个法向量为(,,)n x y z =,利用空间向量法证明0MN n ⋅= 即可;(2)利用空间向量法即可求解点线距.【详解】(1)由题意知,1AA ⊥平面ABC ,60BAC ︒∠=,而AB ⊂平面ABC ,所以1AA AB ⊥,在平面ABC 内过点A 作y 轴,使得AB ⊥ y 轴,建立如图空间直角坐标系A xyz -,则11(0,0,0),(2,0,0),(0,0,2),(2,0,2)A B C A B ,得33((1,0,1),(22M N P ,所以11312),((,22AC A P MN =-==- ,设平面1A CP 的一个法向量为(,,)n x y z = ,则1120302n A C x z n A P x y ⎧⋅=-=⎪⎨⋅==⎪⎩,令1x =,得1y z ==-,所以(1,1)n =- ,所以11((1(1)02MN n ⋅=-⨯+⨯+⨯-= ,又MN 不在平面1A CP 内即//MN 平面1A CP ;(2)如图,连接PM ,由(1)得(0,0,2)PM =-,则2MN PM ⋅=- ,2MN PM == ,所以点P 到直线MN的距离为d =.2.(2024·安徽合肥·二模)如图,在四棱锥P ABCD -中,底面ABCD 是边长为2的菱形,60,BAD M ∠=︒是侧棱PC 的中点,侧面PAD 为正三角形,侧面PAD ⊥底面ABCD .(1)求三棱锥M ABC -的体积;(2)求AM 与平面PBC 所成角的正弦值.【答案】(1)12【分析】(1)作出辅助线,得到线线垂直,进而得到线面垂直,由中位线得到M 到平面ABCD的距离为(2)证明出BO AD ⊥,建立空间直角坐标系,求出平面的法向量,进而由法向量的夹角余弦值的绝对值求出线面角的正弦值.【详解】(1)如图所示,取AD 的中点O ,连接PO .因为PAD 是正三角形,所以PO AD ⊥.又因为平面PAD ⊥底面,ABCD PO ⊂平面PAD ,平面PAD ⋂平面ABCD AD =,所以PO ⊥平面ABCD,且PO =.又因为M 是PC 的中点,M 到平面ABCD12π22sin 23ABC S =⨯⨯⨯=△所以三棱锥M ABC -的体积为1132=.(2)连接,BO BD ,因为π3BAD ∠=,所以ABD △为等边三角形,所以BO AD ⊥,以O 为原点,,,OA OB OP 所在直线分别为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系,则(()()(),1,0,0,,P A B C -,所以((),,,2,0,0M AM PB BC ⎛⎛-=-==- ⎝⎝ .设平面PBC 的法向量为(),,n x y z =,则00PB n BC n ⎧⋅=⎪⎨⋅=⎪⎩,即020x =-=⎪⎩,解得0x =,取1z =,则1y =,所以()0,1,1n = .设AM 与平面PBC 所成角为θ,则sin cos AM θ=即AM 与平面PBC .3.(2023·福建福州·模拟预测)如图,在三棱柱111ABC A B C -中,平面11AA C C ⊥平面1,2ABC AB AC BC AA ====,1A B =.(1)设D 为AC 中点,证明:AC ⊥平面1A DB ;(2)求平面11A AB 与平面11ACC A 夹角的余弦值.【答案】(1)证明见解析;【分析】(1)根据等边三角形的性质得出BD AC ⊥,根据平面11ACC A ⊥平面ABC 得出BD ⊥平面11ACC A ,1BD A D ⊥,利用勾股定理得出1AC A D ⊥,从而证明AC ⊥平面1A DB ;(2)建立空间直角坐标系,利用坐标表示向量,求出平面11A AB 的法向量和平面11ACC A 的一个法向量,利用向量求平面11A AB 与平面11ACC A 的夹角余弦值.【详解】(1)证明:因为D 为AC 中点,且2AB AC BC===,所以在ABC 中,有BD AC ⊥,且BD =,又平面11ACC A ⊥平面ABC ,且平面11ACC A 平面ABC AC =,BD ⊂平面ABC ,所以BD ⊥平面11ACC A ,又1A D ⊂平面11ACC A ,则1BD A D ⊥,由1A B =BD =,得1A D =,因为1AD =,12AA =,1A D =,所以由勾股定理,得1AC A D ⊥,又AC BD ⊥,11,,A D BD D A D BD =⊂ 平面1A DB ,所以AC ⊥平面1A DB ;(2)如图所示,以D 为原点,建立空间直角坐标系D xyz -,可得1(1,0,0),A A B ,则(()1,AA AB =-=- ,设平面11A AB 的法向量为(,,)n x y z = ,由100n AA x n AB x ⎧⋅=-=⎪⎨⋅=-=⎪⎩,令x =1y =,1z =,所以)n = ,由(1)知,BD ⊥平面11ACC A ,所以平面11ACC A的一个法向量为(0,BD =,记平面11A AB 与平面11ACC A 的夹角为α,则||cos ||||n BD n BD α⋅= ,所以平面11A AB 与平面11ACC A4.(2024·山西晋中·三模)如图,在六面体ABCDE中,BC BD ==,EC ED ⊥,且EC ED ==AB平行于平面CDE ,AE 平行于平面BCD ,AE CD ⊥.(1)证明:平面ABE ⊥平面CDE ;(2)若点A 到直线CD 的距离为F 为棱AE 的中点,求平面BDF 与平面BCD 夹角的余弦值.【答案】(1)证明见解析【分析】(1)设平面ABE 与直线CD 交于点M ,使用线面平行的性质,然后用面面垂直的判定定理即可;(2)证明BE ⊥平面CDE ,然后构造空间直角坐标系,直接用空间向量方法即可得出结果.【详解】(1)设平面ABE 与直线CD 交于点M ,连接,ME MB ,则平面ABE 与平面CDE 的交线为ME ,平面ABE 与平面BCD 的交线为MB ,因为AB 平行于平面CDE ,AB ⊂平面ABE ,平面ABE 和平面CDE 的交线为ME ,所以AB ME ∥.同理AE MB ,所以四边形ABME 是平行四边形,故AE MB ,AB ME ∥.因为CD AE ⊥,AE MB ,所以CD MB ⊥,又BC BD ==,所以M 为棱CD 的中点在CDE 中,EC ED =,MC MD =,所以CD ME ⊥,由于AB ME ∥,故CD AB ⊥.而CD AE ⊥,AB AE A = ,,AB AE ⊂平面ABE ,所以CD ⊥平面ABE ,又CD ⊂平面CDE ,所以平面ABE ⊥平面.CDE (2)由(1)可知,CD ⊥平面ABME ,又AM ⊂平面ABME ,所以CD AM ⊥.而点A 到直线CD 的距离为,故AM =在等腰直角三角形CDE 中,由EC ED ==得2, 1.CD MC MD ME ====在等腰三角形BCD 中,由1MC MD ==,BC BD ==,得BM =在平行四边形ABME 中,AE BM ==1AB EM ==,AM =由余弦定理得222cos 2·EM AE AM MEA EM AE +-∠==,所以cos BME ∠=2BE ==.因为22222221BE ME BM +=+==,所以BE ME ⊥.因为平面ABME ⊥平面CDE ,平面ABME 和平面CDE 的交线为ME ,BE 在平面ABME 内.所以BE ⊥平面.CDE 如图,以E 为坐标原点,,,EC ED EB 分别为,,x y z 轴正方向,建立空间直角坐标系.则())()()0,0,0,,,0,0,2,2,E C D B A F ⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭.所以()(),0,2,.CD DB FB ⎫===⎪⎪⎭ 设平面BCD 的法向量为()111,,m x y z = ,则00m CD m DB ⎧⋅=⎪⎨⋅=⎪⎩,即1111020z ⎧+=⎪⎨+=⎪⎩.则可取12x =,得(2,m = .设平面BDF 的法向量为()222,,n x y z = ,则00n FB n DB ⎧⋅=⎪⎨⋅=⎪⎩,即22222020y z z +=⎪+=⎩.取21z =,则()n =- .设平面BDF 与平面BCD 的夹角为θ,则cos θ所以平面BDF 与平面BCD5.(2024·辽宁·二模)棱长均为2的斜三棱柱111ABC A B C -中,1A 在平面ABC 内的射影O 在棱AC 的中点处,P 为棱11A B(包含端点)上的动点.(1)求点P 到平面1ABC 的距离;(2)若AP ⊥平面α,求直线1BC 与平面α所成角的正弦值的取值范围.【答案】(2)2[5.【分析】(1)以O 为原点建立空间直角坐标系,求出平面1ABC 的法向量,再利用点到平面距离的向量求法求解即得.(2)由向量共线求出向量AP 的坐标,再利用线面角的向量求法列出函数关系,并求出函数的值域即可.【详解】(1)依题意,1A O ⊥平面ABC ,OB AC ⊥(底面为正三角形),且1A O OB ==以O 为原点,1,,OB OC OA 的方向分别为,,x y z 轴的正方向,建立空间直角坐标系,如图,则11(0,0,0),(0,1,0),(0,2),(0,1,0),O A C A B C -,1AC = ,1(BC = ,1AA = ,由11//A B AB ,11A B ⊄平面1ABC ,AB ⊂平面1ABC ,则11//A B 平面1ABC ,即点P 到平面1ABC 的距离等于点1A 到平面1ABC 的距离,设(,,)n x y z = 为平面1ABC的一个法向量,由113020n AC y n BC y ⎧⋅==⎪⎨⋅=+=⎪⎩,取3z =,得(1,n = ,因此点1A 到平面1ABC的距离1||||AA n d n ⋅=== 所以点P 到平面1ABC.(2)设111A P A B λ= ,[0,1]λ∈,则111,1AP AA A P AA AB λλλ=+=+=+=+ ,由AP α⊥,得AP 为平面α的一个法向量,设直线1BC 与平面α所成角为θ,则111||sin |cos ,|||||BC AP BC AP BC AP θ⋅=〈〉=== 令5t λ=-,则5t λ=-,[4,5]t ∈,则sin θ====,由[4,5]t ∈,得111[,54t ∈,于是21752557()[,]38762516t -+∈,5]2,则2sin [5θ∈,所以直线1BC 与平面α所成角的正弦值的取值范围是2[5.6.(2024·重庆·模拟预测)在如图所示的四棱锥P -ABCD 中,已知AB CD ∥,90BAD ︒∠=,2CD AB =,PAB 是正三角形,点M 在侧棱PB 上且使得//PD 平面AMC .(1)证明:2PM BM =;(2)若侧面PAB ⊥底面ABCD ,CM 与底面ABCDP AC B --的余弦值.【答案】(1)证明见解析;【分析】(1)连接BD 与AC 交于点E ,连接EM ,由已知得AB EB CD ED=,由线面平行的性质得PD EM ∥,根据三角形相似可得12EB BM ED PM ==,即2PM BM =(2)设AB 的中点O ,首先由已知得PO ⊥底面ABCD ,在PAB 中过点M 作MF PO ∥交AB 于点F ,得MF ⊥底面ABCD ,则MCF ∠为CM 与底面ABCD 所成角,在底面ABCD 上过点O 作OG AC ⊥于点G ,则PGO ∠是二面角P AC B --的平面角,根据条件求解即可【详解】(1)证明:连接BD 与AC 交于点E ,连接EM ,在EAB 与ECD 中,∵AB CD ∥,∴AB EB CD ED=,由2CD AB =,得2ED EB =,又∵//PD 平面AMC ,而平面PBD 平面AMC ME =,PD ⊂平面PBD ,∴PD EM ∥,∴在PBD △中,12EB BM ED PM ==,∴2PM BM =;(2)设AB 的中点O ,在正PAB 中,PO AB ⊥,而侧面PAB ⊥底面ABCD ,侧面PAB ⋂底面ABCD AB =,且PO ⊂平面PAB ,∴PO ⊥底面ABCD ,在PAB 中过点M 作//MF PO 交AB 于点F ,∴MF ⊥底面ABCD ,∴MCF ∠为CM 与底面ABCD 所成角,∴MF CF =,设6AB a =,则MF =,∴11CF a =,BF a ==,则在直角梯形ABCD 中,5AF a =,而12CD a =,则AD ==,在底面ABCD 上过点O 作OG AC ⊥于点G ,则PGO ∠是二面角P AC B --的平面角,易得3OA a =,AC =,在梯形ABCD 中,由3OA AC a OG AD OG =⇒=OG =,在Rt POG △中,PG =,∴cos OG PGO PG ∠==.7.(2024·安徽·模拟预测)2023年12月19日至20日,中央农村工作会议在北京召开,习近平主席对“三农”工作作出指示.某地区为响应习近平主席的号召,积极发展特色农业,建设蔬菜大棚.如图所示的七面体ABG CDEHF -是一个放置在地面上的蔬菜大棚钢架,四边形ABCD 是矩形,8AB =m ,4=AD m ,1ED CF ==m ,且ED ,CF 都垂直于平面ABCD ,5GA GB ==m ,HE HF =,平面ABG ⊥平面ABCD .(1)求点H 到平面ABCD 的距离;(2)求平面BFHG 与平面AGHE 所成锐二面角的余弦值.【答案】(1)4(2)413【分析】(1)取,AB CD 的中点,M N ,证得平面//ADE 平面MNHG ,得到//AE GH ,再由平面//ABG 平面CDEHG ,证得//AG EH ,得到平行四边形AGHE ,得到GH AE =,求得4HN =,结合⊥HN 平面ABCD ,即可求解;(2)以点N 为原点,建立空间直角坐标系,分别求得平面BFHG 和平面AGHE 的法向量(1,3,4)n = 和(1,3,4)m =- ,结合向量的夹角公式,即可求解.【详解】(1)如图所示,取,AB CD 的中点,M N ,连接,,GM MN HN ,因为GA GB =,可得GM AB ⊥,又因为平面ABG ⊥平面ABCD ,且平面ABG ⋂平面ABCD AB =,GM ⊂平面ABG ,所以GM ⊥平面ABCD ,同理可得:⊥HN 平面ABCD ,因为ED ⊥平面ABCD ,所以//ED HN ,又因为ED ⊄平面MNHG ,HN ⊂平面MNHG ,所以//ED 平面MNHG ,因为//MN AD ,且AD ⊄平面MNHG ,MN ⊂平面MNHG ,所以//AD 平面MNHG ,又因为AD DE D ⋂=,且,AD DE ⊂平面ADE ,所以平面//ADE 平面MNHG ,因为平面AEHG 与平面ADE 和平面MNHG 于,AE GH ,可得//AE GH ,又由//GM HN ,//AB CD ,且AB GM M = 和CD HN N = ,所以平面//ABG 平面CDEHG ,因为平面AEHG 与平面ABG 和平面CDEHF 于,AG EH ,所以//AG EH ,可得四边形AGHE 为平行四边形,所以GH AE =,因为AE ===,所以GH =在直角AMG,可得3GM ===,在直角梯形GMNH中,可得34HN ==,因为⊥HN 平面ABCD ,所以点H 到平面ABCD 的距离为4.(2)解:以点N 为原点,以,,NM NC NH 所在的直线分别为,,x y z 轴,建立空间直角坐标系,如图所示,则(0,4,1),(0,4,1),(4,0,3),(0,0,4)E F G H -,可得(0,4,3),(0,4,3),(4,0,1)HE HF HG =--=-=- ,设平面BFHG 的法向量为(,,)n x y z = ,则40430n HG x z n HF y z ⎧⋅=-=⎪⎨⋅=-=⎪⎩ ,取4z =,可得1,3x y ==,所以(1,3,4)n = ,设平面AGHE 的法向量为(,,)m a b c = ,则40430m HG a c m HE b c ⎧⋅=-=⎪⎨⋅=--=⎪⎩ ,取4c =,可得1,3a b ==-,所以(1,3,4)m =- ,则4cos ,13m n m n m n ⋅=== ,即平面BFHG 与平面AGHE 所成锐二面角的余弦值413.8.(2024·重庆·模拟预测)如图,ACDE 为菱形,2AC BC ==,120ACB ∠=︒,平面ACDE ⊥平面ABC ,点F 在AB 上,且2AF FB =,M ,N 分别在直线CD ,AB 上.(1)求证:CF ⊥平面ACDE ;(2)把与两条异面直线都垂直且相交的直线叫做这两条异面直线的公垂线,若60EAC ∠=︒,MN 为直线CD ,AB 的公垂线,求AN AF的值;(3)记直线BE 与平面ABC 所成角为α,若tan α>BCD 与平面CFD 所成角余弦值的范围.【答案】(1)证明见解析(2)913AN AF =(3)【分析】(1)先通过余弦定理及勾股定理得到CF AC ⊥,再根据面面垂直的性质证明;(2)以C 为原点,CA 的方向为x 轴正方向,建立如图所示空间直角坐标系C xyz -,利用向量的坐标运算根据00MN CD MN AF ⎧⋅=⎪⎨⋅=⎪⎩ ,列方程求解即可;(3)利用向量法求面面角,然后根据tan α>.【详解】(1)2222cos 12AB AC BC AC BC ACB AB =+-⋅⋅∠==,2AF FB =,所以AF =1233CF CA CB =+ ,22214449993CF CA CB CA CB =++⋅= ,222416433AC CF AF +=+==,则CF AC ⊥,又因为平面ACDE ⊥平面ABC ,平面ACDE 平面ABC AC CF =⊂,面ABC ,故CF ⊥平面ACDE ;(2)以C 为原点,CA 的方向为x 轴正方向,建立如图所示空间直角坐标系C xyz -,由60EAC ∠=︒,可得120DCA ∠=︒,2DC =,所以()(()0,0,0,,2,0,0,C D A F ⎛⎫- ⎪ ⎪⎝⎭所以AF ⎛⎫=- ⎪ ⎪⎝⎭,(CD =- ,设2,0AN AF λλ⎛⎫==- ⎪ ⎪⎝⎭,则22,0N λ⎛⎫- ⎪ ⎪⎝⎭,设CM CD μ=,则()M μ-,22,MN λμ⎛⎫=-+ ⎪ ⎪⎝⎭ ,由题知,223004442003MN CD MN AF λμμλμλ---=⎧⎧⋅=⎪⎪⇒⎨⎨--+=⋅=⎪⎪⎩⎩,解得913λ=,213μ=-,故913AN AF =;(3)()B -,设EAC θ∠=,则()22cos ,0,2sin E θθ-,()32cos ,2sin BE θθ=- ,可取平面ABC 的法向量()0,0,1n = ,则sin cos ,n BE n BE n BEα⋅====⋅,cos α=,则tan α=>整理得210cos 9cos 20θθ-+<,故21cos ,52θ⎛⎫∈ ⎪⎝⎭,CF ⎛⎫= ⎪⎝⎭ ,()2cos ,0,2sin CD θθ=-,()CB =- ,记平面CDF 的法向量为()1,,n x y z =,则有112cos 2sin 0000x z n CD y n CF θθ-+=⎧⎧⋅=⎪⎪⇒⎨⎨=⋅=⎪⎪⎩⎩,可得()1sin ,0,cos n θθ= ,记平面CBD 的法向量为()2,,n a b c =,则有222cos 2sin 0000a c n CD a n CB θθ⎧-+=⎧⋅=⎪⎪⇒⎨⎨-=⋅=⎪⎪⎩⎩ ,可得)2,sin n θθθ= ,记平面BCD 与平面CFD 所成角为γ,则12cos cos ,n n γ== 21cos ,52θ⎛⎫∈ ⎪⎝⎭,所以2321sin ,425θ⎛⎫∈ ⎪⎝⎭,故cos γ=.9.(2024·安徽·二模)将正方形ABCD 绕直线AB 逆时针旋转90︒,使得CD 到EF 的位置,得到如图所示的几何体.(1)求证:平面ACF ⊥平面BDE;(2)点M 为 DF 上一点,若二面角C AM E --的余弦值为13,求MAD ∠.【答案】(1)证明见解析(2)45MAD ︒∠=【分析】(1)根据面面与线面垂直的性质可得BD AF ⊥,结合线面、面面垂直的判定定理即可证明;(2)建立如图空间直角坐标系,设MAD α∠=,1AB =,利用空间向量法求出二面角C AM E --的余弦值,13=,结合三角恒等变换求出α即可.【详解】(1)由已知得平面ABCD ⊥平面ABEF ,AF AB ⊥,平面ABCD ⋂平面ABEF AB =,AF ⊂平面ABEF ,所以AF ⊥平面ABCD ,又BD ⊂平面ABCD ,故BD AF ⊥,因为ABCD 是正方形,所以BD AC ⊥,AC ,AF ⊂平面ACF ,AC AF A ⋂=,所以BD ⊥平面ACF ,又BD ⊂平面BDE ,所以平面ACF ⊥平面BDE .(2)由(1)知AD ,AF ,AB 两两垂直,以AD ,AF ,AB 所在直线分别为x ,y ,z 轴,建立空间直角坐标系,如图.设MAD α∠=,1AB =,则()0,0,0A ,()cos ,sin ,0M αα,()1,0,1C ,()0,1,1E ,故()cos ,sin ,0AM αα= ,()1,0,1AC = ,()0,1,1AE = 设平面AMC 的法向量为()111,,m x y z = ,则0m AC ⋅= ,0m AM ⋅= 故111100x z x cos y sin αα+=⎧⎨+=⎩,取1sin x α=,则1cos y α=-,1sin z α=-所以()sin ,cos ,sin m ααα=--设平面AME 的法向量为()222,,n x y z = ,0n AE ⋅= ,0n AM ⋅= 故222200y z x cos y sin αα+=⎧⎨+=⎩,取2sin x α=,则2cos y α=-,2cos z α=所以()sin ,cos ,cos n ααα=- ,所以cos ,m n = ,13=,化简得:22sin 29sin 270αα-+=,解得sin 21α=或7sin 22α=(舍去)故45α=︒,即45MAD ∠=︒.10.(2024·安徽黄山·二模)如图,已知AB 为圆台下底面圆1O 的直径,C 是圆1O 上异于,A B 的点,D 是圆台上底面圆2O 上的点,且平面DAC ⊥平面ABC ,2DA DC AC ===,4BC =,E 是CD 的中点,2BF FD = .(1)证明:2//DO BC ;(2)求直线DB 与平面AEF 所成角的正弦值.【答案】(1)证明见解析【分析】(1)取AC 的中点O ,根据面面垂直的性质定理,可得DO ⊥平面ABC ,即可求证21//DO OO ,进而可证矩形,即可根据线线平行以及平行的传递性求解.(2)建系,利用向量法,求解法向量1(1,2n =-与方向向量(1,4,DB =-的夹角,即可求解.【详解】(1)证明:取AC 的中点为O ,连接DO ,1OO ,12O O ,DA DC =Q ,O 为AC 中点,DO AC ∴⊥,又平面DAC ⊥平面ABC ,且平面DAC ⋂平面ABC AC =,DO ⊂平面DAC,DO ∴⊥平面ABC ,12//DO O O ∴,12DO O O =,故四边形12DOO O 为矩形,21//DO OO ∴,又O ,1O 分别是AC ,AB 的中点,1//OO BC ∴,2//DO BC ∴;(2)C 是圆1O 上异于A ,B 的点,且AB 为圆1O 的直径,BC AC ∴⊥,1OO AC ∴⊥,∴如图以O为原点建立空间直角坐标系,由条件知DO =(1A ∴,0,0),(1B -,4,0),(1C -,0,0),D ,∴1(2E -,设(F x ,y ,)z ,∴(1,4,)BF x y z =+-,(,)FD x y z =--- ,由2BF FD =,得14(,33F -,∴44(,33AF =- ,∴(1,4,DB =-,3(2AE =- ,设平面AEF 法向量为111(,,)n x y z = ,则1111130244033n AE x n AF x y z ⎧⋅=-=⎪⎪⎨⎪⋅=-++=⎪⎩,取1(1,2n =- ,设直线BD 与平面AEF 所成角为θ,则sin |cos ,|n DB θ=<>= ∴直线BD 与平面AEF11.(2024·黑龙江哈尔滨·一模)正四棱台1111ABCD A B C D -的下底面边长为1112A B AB =,M 为BC 中点,已知点P 满足()1112AP AB AD AA λλλ=-+⋅+ ,其中()0,1λ∈.(1)求证1D P AC ⊥;(2)已知平面1AMC 与平面ABCD 所成角的余弦值为37,当23λ=时,求直线DP 与平面1AMC 所成角的正弦值.【答案】(1)证明见解析【分析】(1)方法一运用空间向量的线性运算,进行空间位置关系的向量证明即可.方法二:建立空间直角坐标系,进行空间位置关系的向量证明即可.(2)建立空间直角坐标系,利用线面角的向量求法求解即可.【详解】(1)方法一:∵1112A B AB =,∴112AA AB AA AD ⋅=⋅== .∵1112D A AD AA =-- ∴()()111111122D P D A AP AB AD AA λλλ⎛⎫=+=-+-+- ⎪⎝⎭ ∴()()()11111122D P AC AB AD AA AB AD λλλ⎡⎤⎛⎫⋅=-+-+-⋅+ ⎪⎢⎥⎝⎭⎣⎦ ()()()22111111122AB AD AB AA AD AA λλλλ⎛⎫=-+-+-⋅+-⋅ ⎪⎝⎭ ()()1181841022λλλ⎛⎫=-+-+-= ⎪⎝⎭.∴1D P AC ⊥ ,即1D P AC ⊥.方法二:以底面ABCD 的中心O 为原点,以OM 方向为y 轴,过O 点平行于AD 向前方向为x 轴,以过点O 垂直平面ABCD 向上方向为z 轴,建立如图所示空间直角坐标系,设正四棱台的高度为h,则有)A,)B,()C,()D,1A h⎫⎪⎪⎭,1C h⎛⎫⎪⎪⎝⎭,1D h⎛⎫⎪⎪⎝⎭,()M,()AC=-()()()110,,,2AP h λλλλ⎛⎫⎛⎫=-+-+=⎪ ⎪⎪ ⎪⎝⎭⎝⎭1D A h⎫=-⎪⎪⎭,11D P D A AP h hλ⎛⎫=+=-⎪⎪⎝⎭.故1AC D P⋅=,所以1D P AC⊥.(2)设平面ABCD的法向量为()0,0,1n=,设平面1AMC的法向量为(),,m x y z=,()AM=,1AC h⎛⎫= ⎪⎪⎝⎭,则有1AM mAC m⎧⋅=⎪⎨⋅=⎪⎩,即x y hz⎧+=⎪⎨++=⎪⎩,令x=,则(),3m=.又题意可得3cos,7m n==,可得2h=.因为23λ=,经过计算可得40,0,3P⎛⎫⎪⎝⎭,12D⎛⎫⎪⎪⎝⎭,143D P⎫=⎪⎭.将2h=代入,可得平面1AMC的法向量()m=.设直线DP与平面1AMC所成角的为θsin cos DP θ= 12.(2024·辽宁·三模)如图,在三棱柱111ABC A B C -中,侧面11ACC A ⊥底面1,2ABC AC AA ==,1,AB BC =,点E 为线段AC 的中点.(1)求证:1AB 平面1BEC ;(2)若1π3A AC ∠=,求二面角1A BE C --的余弦值.【答案】(1)证明见详解(2)【分析】(1)连接1BC ,交1B C 于点N ,连接NE ,利用线面平行的判定定理证明;(2)由已知可知,1AA C △为等边三角形,故1A E AC ⊥,利用面面垂直的性质定理可证得1A E ⊥底面ABC ,进而建立空间直角坐标系,利用向量法即可求二面角余弦值.【详解】(1)连接1BC ,交1B C 于点N ,连接NE ,因为侧面11BCC B 是平行四边形,所以N 为1B C 的中点,又因为点E 为线段AC 的中点,所以1//NE AB,因为1AB ⊄面1BEC ,NE ⊂面1BEC ,所以1//AB 面1BEC .(2)连接1AC ,1A E ,因为1π3A AC ∠=,12AC AA ==,所以1AA C △为等边三角形,12AC =,因为点E 为线段AC 的中点,所以1A E AC ⊥,因为侧面11ACC A ⊥底面ABC ,平面11ACC A 平面ABC AC =,1A E ⊂平面11ACC A ,所以1A E ⊥底面ABC ,过点E 在底面ABC 内作EF AC ⊥,如图以E 为坐标原点,分布以EF ,EC ,1EA 的方向为,,x y z 轴正方向建立空间直角坐标系,则()0,0,0E,1,02B ⎫-⎪⎪⎭,(10,C ,所以1,02EB ⎫=-⎪⎪⎭,(10,EC = ,设平面1BEC 的法向量为(),,m x y z = ,则110220m EB x y m EC y ⎧⋅=-=⎪⎨⎪⋅==⎩ ,令1x =,则2y z ==-,所以平面1BEC的法向量为()2m =- ,又因为平面ABE 的法向量为()0,0,1n =,则cos ,m n == ,经观察,二面角1A BE C --的平面角为钝角,所以二面角1A BE C --的余弦值为13.(2024·广东广州·一模)如图,在四棱锥P ABCD -中,底面ABCD 是边长为2的菱形,DCP 是等边三角形,π4DCB PCB ∠∠==,点M ,N 分别为DP 和AB 的中点.(1)求证://MN 平面PBC ;(2)求证:平面PBC ⊥平面ABCD ;(3)求CM 与平面PAD 所成角的正弦值.【答案】(1)证明见解析;(2)证明见解析;【分析】(1)取PC 中点E ,由已知条件,结合线面平行的判断推理即得.(2)过P 作PQ BC ⊥于点Q ,借助三角形全等,及线面垂直的判定、面面垂直的判定推理即得.(3)建立空间直角坐标系,利用线面角的向量求法求解即得.【详解】(1)取PC 中点E ,连接,ME BE ,由M 为DP 中点,N 为AB 中点,得1//,2ME DC ME DC =,又1//,2BN CD BN CD =,则//,ME BN ME BN =,因此四边形BEMN 为平行四边形,于是//MN BE ,而MN ⊄平面,PBC BE ⊂平面PBC ,所以//MN 平面PBC .(2)过P 作PQ BC ⊥于点Q ,连接DQ ,由π,,4DCB PCB CD PC QC QC ∠=∠===,得QCD ≌QCP △,则π2DQC PQC ∠=∠=,即DQ BC ⊥,而2224PQ DQ PQ DQ PD ==+==,因此PQ DQ ⊥,又,,DQ BC Q DQ BC =⊂ 平面ABCD ,则PQ ⊥平面ABCD ,PQ ⊂平面PBC ,所以平面PBC ⊥平面ABCD .(3)由(2)知,直线,,QC QD QP 两两垂直,以点Q 为原点,直线,,QC QD QP 分别为,,x y z 轴建立空间直角坐标系,则(C P D M A -,((2,0,0),(0,CM AD DP === ,设平面PAD 的一个法向量(,,)n x y z =,则200n AD x n DP ⎧⋅==⎪⎨⋅==⎪⎩ ,令1y =,得(0,1,1)n = ,设CM 与平面PAD 所成角为θ,||sin |cos ,|||||CM n CM n CM n θ⋅=〈〉=== 所以CM 与平面PAD14.(2024·广东梅州·二模)如图,在四棱锥P ABCD -中,平面PAD ⊥平面ABCD ,底面ABCD 为直角梯形,PAD 为等边三角形,//AD BC ,AD AB ⊥,22AD AB BC ===.(1)求证:AD PC ⊥;(2)点N 在棱PC 上运动,求ADN △面积的最小值;(3)点M 为PB 的中点,在棱PC 上找一点Q ,使得//AM 平面BDQ ,求PQ QC的值.【答案】(1)证明见解析(3)4【分析】(1)取AD 的中点H ,连接PH ,CH ,依题意可得四边形ABCH 为矩形,即可证明CH AD ⊥,再由PH AD ⊥,即可证明AD ⊥平面PHC ,从而得证;(2)连接AC 交BD 于点G ,连接MC 交BQ 于点F ,连接FG ,即可得到12CG AG =,再根据线面平行的性质得到12CF FM =,在PBC 中,过点M 作//MK PC ,即可得到2MK CQ =,最后由2PQ MK =即可得解.【详解】(1)取AD 的中点H ,连接PH ,CH ,则//AH BC 且AH BC =,又AD AB ⊥,所以四边形ABCH 为矩形,所以CH AD ⊥,又PAD 为等边三角形,所以PH AD ⊥,PH CH H = ,,PH CH ⊂平面PHC ,所以AD ⊥平面PHC ,又PC ⊂平面PHC ,所以AD PC ⊥.(2)连接HN ,由AD ⊥平面PHC ,又HN ⊂平面PHC ,所以AD HN ⊥,所以12ADH S AD HN HN =⋅= ,要使ADN △的面积最小,即要使HN 最小,当且仅当HN PC ⊥时HN 取最小值,因为平面PAD ⊥平面ABCD ,平面PAD ⋂平面ABCD AD =,PH ⊂平面PAD ,所以PH ⊥平面ABCD ,又HC ⊂平面ABCD ,所以PH HC ⊥,在Rt HPC 中,2CH =,PH =PC ==当HN PC ⊥时PH CH HN PC ⋅===所以ADN △.(3)连接AC 交BD 于点G ,连接MC 交BQ 于点F ,连接FG ,因为//AD BC 且22AD BC ==,所以CGB AGD ∽,所以12CG BC AG AD ==,因为//AM 平面BDQ ,又AM ⊂平面ACM ,平面BDQ 平面ACM GF =,所以//GF AM ,所以12CF CG FM AG ==,在PBC 中,过点M 作//MK PC ,则有2MK MF CQ CF==,所以2PQ MK =,所以24PQ MK CQ ==,即4PQ QC =15.(2024·广东广州·模拟预测)如图所示,圆台12O O 的轴截面11A ACC 为等腰梯形,111224,AC AA AC B ===为底面圆周上异于,A C 的点,且,AB BC P =是线段BC 的中点.(1)求证:1C P //平面1A AB .(2)求平面1A AB 与平面1C CB 夹角的余弦值.【答案】(1)证明见解析(2)17【分析】(1)取AB 的中点H ,连接1,A H PH ,证明四边形11A C PH 为平行四边形,进而得1C P //1A H ,即可证明;(2)建立空间直角坐标系,求两平面的法向量,利用平面夹角公式求解.【详解】(1)取AB 的中点H ,连接1,A H PH ,如图所示,因为P 为BC 的中点,所以PH //1,2AC PH AC =.在等腰梯形11A ACC 中,11A C //111,2AC A C AC =,所以HP //1111,A C HP A C =,所以四边形11A C PH 为平行四边形,所以1C P //1A H ,又1A H ⊂平面11,A AB C P ⊄平面1A AB ,所以1C P //平面1A AB .(2)因为,AB BC =故2O B AC ⊥,以直线22,O A O B ,21O O 分别为,,x y z 轴,建立空间直角坐标系,如图所示,在等腰梯形11A ACC 中,111224AC AA AC ===,此梯形的高为h ==因为11111,2A C AC A C =//AC ,则()()(()210,0,0,2,0,0,,0,2,0,O A A B ()(12,0,0,C C --,所以11(1,(2,2,0),(2,2,0),(1,2,BC BC AB A B =--=--=-=- .设平面1A AB 的法向量为(),,m x y z =,则220,20,x y x y -+=⎧⎪⎨-+=⎪⎩令1y =,得m ⎛= ⎝ .设平面1C CB 的法向量为(),,n a b c = ,则20,220,a b a b ⎧--=⎪⎨--=⎪⎩令a =1)n =- .设平面1A AB 与平面1C CB 的夹角为θ,则1cos cos 7θ= .16.(2024·广东深圳·二模)如图,三棱柱111ABC A B C -中,侧面11BB C C ⊥底面ABC ,且AB AC =,11A B A C =.(1)证明:1AA ⊥平面ABC ;(2)若12AA BC ==,90BAC ∠=︒,求平面1A BC 与平面11A BC 夹角的余弦值.【答案】(1)证明见解析;【分析】(1)取BC 的中点M ,连结MA 、1MA ,根据等腰三角形性质和线面垂直判定定理得BC ⊥平面1A MA ,进而由11A A B B 得1B B BC ^,再证明1B B ⊥平面ABC 即可得证.(2)建立空间直角坐标系,用向量法求解即可;也可用垂面法作出垂直于1A B 的垂面,从而得出二面角的平面角再进行求解即可.【详解】(1)取BC 的中点M ,连结MA 、1MA .因为AB AC =,11A B A C =,所以BC AM ⊥,1BC A M ⊥,由于AM ,1A M ⊂平面1A MA ,且1AM A M M ⋂=,因此BC ⊥平面1A MA ,因为1A A ⊂平面1A MA ,所以1BC A A ⊥,又因为11A A B B ,所以1B B BC ^,。
1.若直线a⊥平面α,直线b∥平面α,则a与b的关系是()A.a⊥b,且a与b相交B.a⊥b,且a与b异面C.a⊥b,且a与b可能相交也可能异面D.a与b不一定垂直答案 C解析过直线b作一个平面β,使得β∩α=c,则b∥c.因为直线a ⊥平面α,c⊂α,所以a⊥c.因为b∥c,所以a⊥b.当b与a相交时为相交垂直,当b与a不相交时为异面垂直.故选C.2.如图所示,用过A1、B、C1和C1、B、D的两个截面截去正方体ABCD-A1B1C1D1的两个角后得到一个新的几何体,则该几何体的正视图为()答案 A解析在画几何体的正视图时,要按照平行投影的方式,先将点投影,再确定棱.按照平行投影的方式,几何体的6个顶点投影得到的平面为正方形,其中A1、D1的投影点重合,A、D的投影点重合;再确定棱,A1B能看见,画成实线,C1D在正视图中看不见,画成虚线.3.[2015·河北名校联盟联考]多面体的三视图如图所示,则该多面体的表面积为(单位:cm)()A.(28+45) cm2B.(30+45) cm2C.(30+410) cm2D.(28+410) cm2答案 A解析 由三视图可知该几何体是一个三棱锥,如图所示,在三棱锥D -ABC 中,底面是等腰三角形且底AB 及底边上的高CE 均为4,侧棱AD ⊥平面ABC ,所以AC =BC =⎝ ⎛⎭⎪⎫AB 22+CE 2=22+42=25,所以S △ABC =12×4×4=8,S △ABD =12×4×4=8,S △ACD =12×4×25=4 5.过A 作AF ⊥BC ,垂足为F ,连接DF ,因为AD ⊥平面ABC ,BC ⊂平面ABC ,所以AD ⊥BC ,所以BC ⊥平面ADF ,又因为DF ⊂平面ADF ,所以BC ⊥DF ,在△ABC 中,AB ·CE =BC ·AF ,所以AF =AB ·CE BC =4×425=855,DF =AF 2+AD 2=⎝ ⎛⎭⎪⎫8552+42=1255,所以S △BCD =12×BC ×DF =12×25×1255=12,所以三棱锥的表面积S =S △ABC +S △ABD +S △ACD +S △BCD =8+8+45+12=28+45(cm 2),故选A.4.已知m ,n 是两条不同的直线,α,β是两个不同的平面,且m ∥α,n ⊂β,则下列叙述正确的是( )A.若α∥β,则m ∥n B .若m ∥n ,则α∥βC.若n ⊥α,则m ⊥β D .若m ⊥β,则α⊥β答案 D解析 A 中m ,n 有可能异面;B 中α,β有可能相交;C 中有可能m∥β,故选D.5.下列命题中错误的是()A.如果平面α⊥平面β,那么平面α内一定存在直线平行于平面βB.如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面βC.如果平面α⊥平面β,直线a⊂α,则a⊥βD.如果平面α⊥平面γ,平面β⊥平面γ,α∩β=l,那么l⊥平面γ答案 C解析对于A,如果平面α⊥平面β,那么在平面α内作出与两平面交线平行的直线,则该直线与平面β平行,故A正确;对于B,若平面α内存在一条直线垂直于平面β,由面面垂直的判定定理可知,平面α一定垂直于平面β,与已知矛盾,故B正确;对于C,在平面α内作一直线平行于交线,则该直线平行于平面β,而不垂直于平面β,故C错误;对于D,可以证明l⊥平面γ,故D正确,故选C.6.设A、B、C、D是半径为2的球面上的四点,且满足AB⊥AC,AD⊥AC,AB⊥AD,则S△ABC+S△ABD+S△ACD的最大值是()A.4 B.8C.16 D.32答案 B解析因为AB⊥AC,AD⊥AC,AB⊥AD,所以以AC、AB、AD为长、宽、高,做长方体如图所示,可得长方体的外接球就是三棱锥D -ABC 的外接球.因为球的半径为2,可得球的直径为4,所以长方体的体对角线长为4,得AB 2+AC 2+AD 2=16.因为S △ABC =12AB ·AC ,S △ABD =12AB ·AD ,S △ACD =12AC ·AD ,所以S △ABC +S △ABD +S △ACD =12(AB ·AC +AB ·AD +AC ·AD ),因为AB ·AC +AB ·AD +AC ·AD ≤AB 2+AC 2+AD 2=16,当且仅当AB =AC =AD 时,等号成立,所以当且仅当AB =AC =AD 时,S △ABC +S △ABD +S △ACD 取得最大值,且最大值为8.故选B.7.[2015·西安八校联考]某空间几何体的三视图及尺寸如图,则该几何体的体积是________.答案 2解析 根据三视图可知该几何体为三棱柱,其体积V =12×1×2×2=2.8.已知某几何体由正方体和直三棱柱组成,其三视图和直观图如图所示.记直观图中从点B 出发沿棱柱的侧面到达PD 1的中点R 的最短距离为d ,则d 2=________.答案 252+6 2解析 将由正方体与直三棱柱构成的五棱柱沿侧棱BB 1展开,如图所示.由图易知BR 为从点B 出发沿棱柱的侧面到达PD 1的中点R 的最短距离,即d =BR .由三视图知A 1B 1=BB 1=2,A 1P =PD 1=2,所以PR =12PD 1=22,所以B 1R =A 1B 1+A 1P +PR =2+322,故d 2=BR 2=B 1R 2+BB 21=⎝ ⎛⎭⎪⎫2+3222+22=252+6 2.9.已知侧棱与底面垂直的三棱柱的底面是边长为23的正三角形,该三棱柱存在一个与上、下底面和所有侧面都相切的内切球,则该三棱柱的外接球与内切球的半径之比为________.答案 5∶1解析 由题意,三棱柱的内切球的半径r 等于底面内切圆的半径,即r =1,此时棱柱的高为2r =2,底面外接圆的半径为2,所以三棱柱的外接球的半径R =22+12= 5.所以三棱柱的外接球与内切球的半径之比为R r =5∶1.10.已知点P ,A ,B ,C ,D 是球O 表面上的点,且球心O 在线段PC 上,P A ⊥平面ABCD ,E 为AB 的中点,∠BCD =90°.(1)求证:OE ∥平面P AD ;(2)若P A =AB =4,AD =3,求三棱锥O -ADE 的体积.解 (1)证明:连接BD ,设BD 的中点为O ′,连接OO ′,O ′E , 因为∠BCD =90°,所以OO ′⊥平面ABCD ,又P A ⊥平面ABCD , 所以OO ′∥P A ,又P A ⊂平面P AD ,所以OO ′∥平面P AD . 又E 为AB 的中点,所以O ′E ∥AD ,即O ′E ∥平面P AD .又OO ′∩O ′E =O ′,所以平面OO ′E ∥平面P AD .又OE ⊂平面OO ′E ,所以OE ∥平面P AD .(2)因为E 为AB 的中点,所以AE =12AB =2.因为点P ,A ,C 在球面上,O 为球心,OO ′⊥平面ABCD ,P A ⊥平面ABCD ,所以OO ′=12P A =2.又AD =3,所以V 三棱锥O -ADE =13×OO ′×S △ADE =13×OO ′×12×AD ×AE =13×2×12×3×2=2.11.如图,直线P A ,QC 都与正方形ABCD 所在的平面垂直,AB =P A =2CQ =2,AC 与BD 相交于点O ,E 在线段PD 上,且CE ∥平面PBQ .(1)求证:OP ⊥平面QBD ;(2)求二面角E -BQ -P 的余弦值.解 (1)证法一:∵P A ⊥平面ABCD ,∴P A ⊥AB ,P A ⊥AD . 又AB =AD ,∴Rt △P AB ≌Rt △P AD ,∴PB =PD .∵O 是BD 的中点,∴OP ⊥BD .连接OQ ,OQ 2=OC 2+CQ 2=(2)2+12=3,OP 2=OA 2+AP 2=(2)2+22=6,PQ 2=AC 2+(AP -CQ )2=(22)2+(2-1)2=9,即PQ 2=OP 2+OQ 2,∴OP ⊥OQ .又BD ∩OQ =O ,BD ,OQ ⊂平面QBD ,∴OP ⊥平面QBD .证法二:建立如图所示的空间直角坐标系,则P (0,0,2),B (2,0,0),C (2,2,0),D (0,2,0),Q (2,2,1),O (1,1,0),∴OP →=(-1,-1,2),BD →=(-2,2,0),BQ →=(0,2,1),∴⎩⎪⎨⎪⎧ OP →·BD →=2-2+0=0OP →·BQ →=0-2+2=0, ∴OP ⊥BD ,OP ⊥BQ ,又BD ∩BQ =B ,BD ,BQ ⊂平面QBD ,∴OP ⊥平面QBD .(2)由(1)中的证法二知,设PE →=λED →,则E ⎝ ⎛⎭⎪⎫0,2λ1+λ,21+λ,CE →=⎝ ⎛⎭⎪⎫-2,-21+λ,21+λ. 又BP →=(-2,0,2),BQ →=(0,2,1),设平面PBQ 的法向量为m =(x ,y ,z ),则⎩⎪⎨⎪⎧ m ·BP →=0m ·BQ →=0,即⎩⎪⎨⎪⎧ -2x +2z =02y +z =0,令y =1,得x =z =-2,∴平面PBQ 的一个法向量为m =(-2,1,-2).由CE ∥平面PBQ ,得C E →·m =0,即4-21+λ-41+λ=0,解得λ=12,∴E ⎝ ⎛⎭⎪⎫0,23,43. ∴QE →=⎝ ⎛⎭⎪⎫-2,-43,13,又BQ →=(0,2,1), 设平面EBQ 的法向量为n =(x 1,y 1,z 1),则⎩⎪⎨⎪⎧ n ·QE →=0n ·BQ →=0,即⎩⎨⎧ -2x 1-43y 1+13z 1=02y 1+z 1=0,令y 1=-1,得x 1=1,z 1=2,∴平面EBQ 的一个法向量为n =(1,-1,2).∴cos 〈m ,n 〉=m ·n |m ||n |=-736=-7618, 观察图知二面角E -BQ -P 为锐角,故二面角E -BQ -P 的余弦值为7618.12.如图,三棱柱ABC-A1B1C1所有的棱长均为2,B1在底面上的射影D在棱BC上,且A1B∥平面ADC1.(1)求证:平面ADC1⊥平面BCC1B1;(2)求平面ADC1与平面A1AB所成的角的正弦值.解(1)证明:连接A1C交AC1于点O,连接OD,则平面A1BC∩平面ADC1=OD.∵A1B∥平面ADC1,∴A1B∥OD,又O为A1C的中点,∴D为BC的中点,则AD⊥BC,又B1D⊥平面ABC,∴AD⊥B1D,BC∩B1D=D,∴AD⊥平面BCC1B1,又AD⊂平面ADC1,从而平面ADC1⊥平面BCC1B1.(2)以D为坐标原点,DC,DA,DB1所在的直线分别为x轴,y轴,z轴,建立如图所示的空间直角坐标系,则D(0,0,0),B(-1,0,0),A(0,3,0),B1(0,0,3),C1(2,0,3),易知BA →=(1,3,0),BB 1→=(1,0,3),设平面A 1AB 的法向量为m =(x ,y ,z ),则⎩⎪⎨⎪⎧ BA →·m =0BB 1→·m =0,即⎩⎪⎨⎪⎧x +3y =0x +3z =0, 取x =-3,则m =(-3,1,1).易知DA →=(0,3,0),DC 1→=(2,0,3),同理可得平面ADC 1的一个法向量为n =(-3,0,2).∴cos 〈m ,n 〉=m ·n |m ||n |=55×7=357,sin 〈m ,n 〉=147,那么平面ADC 1与平面A 1AB 所成角的正弦值为147.。