2018一轮北师大版(理)数学训练:第8章 第6节 课时分层训练50 抛物线 Word版含答案
- 格式:doc
- 大小:113.50 KB
- 文档页数:7
[时间:35分钟 分值:80分]基础热身1.抛物线y =-2x 2的焦点坐标是( ) A.⎝ ⎛⎭⎪⎫-12,0 B .(-1,0) C.⎝ ⎛⎭⎪⎫0,-14 D.⎝⎛⎭⎪⎫0,-18 2.已知抛物线y 2=2px (p >0),过其焦点且斜率为1的直线交抛物线于A 、B 两点,若线段AB 的中点的纵坐标为2,则该抛物线的准线方程为( )A .x =1B .x =-1C .x =2D .x =-23.边长为1的正三角形AOB ,O 为坐标原点,AB ⊥x 轴,以O 为顶点且过A 、B 两点的抛物线方程是( )A .y 2=36xB .y 2=-36xC .y 2=±36x D .y 2=±33x 4.抛物线y 2=-x 上的点到直线3x +4y -8=0的距离的最小值为________. 能力提升5.已知点M (1,0),直线l :x =-1,点B 是l 上的动点,过点B 垂直于y 轴的直线与线段BM 的垂直平分线交于点P ,则点P 的轨迹是( )A .抛物线B .椭圆C .双曲线的一支D .直线6.[2011·济宁模拟] 已知点A 的坐标为(3,2),F 为抛物线y 2=2x 的焦点,若点P 在抛物线上移动,当|PA |+|PF |取得最小值时,则点P 的坐标是( )A .(1,2)B .(2,2)C .(2,-2)D .(3,6)7.[2011·大连模拟] 已知M (a,2)是抛物线y 2=2x 上的一点,直线MP 、MQ 分别与抛物线交于P 、Q 两点,且直线MP 、MQ 的倾斜角之和为π,则直线PQ 的斜率为( )A.14B.12 C .-12 D .-148.设O 为坐标原点,F 为抛物线y 2=4x 的焦点,A 为抛物线上一点,若OA →·AF →=-4,则点A 的坐标为( )A .(2,±22)B .(1,±2)C .(1,2)D .(2,22)9.若垂直于x 轴的直线交抛物线y 2=4x 于点A ,B ,且AB =43,则直线AB 的方程为____________.10.探照灯的反射镜的纵截面是抛物线的一部分,灯口直径60 cm ,灯深40 cm ,则光源放置位置为灯轴上距顶点________处.11.[2011·三明联考] 过抛物线y 2=4x 焦点的直线l 的倾斜角为π3,且l 与抛物线相交于A 、B 两点,O 为原点,那么△AOB 的面积为________.12.(13分)[2011·福建卷] 如图K52-1,直线l :y =x +b 与抛物线C :x 2=4y 相切于点A .(1)求实数b 的值;(2)求以点A 为圆心,且与抛物线C 的准线相切的圆的方程.图K52-1难点突破13.(12分)[2011·上海黄浦区二模] 已知点P 是直角坐标平面内的动点,点P 到直线x =-p 2-1(p 是正常数)的距离为d 1,到点F ⎝ ⎛⎭⎪⎫p2,0的距离为d 2,且d 1-d 2=1.(1)求动点P 所在曲线C 的方程;(2)直线l 过点F 且与曲线C 交于不同两点A 、B ,分别过A 、B 点作直线l 1:x =-p2的垂线,对应的垂足分别为M 、N ,求证:FM →·FN →=0.课时作业(五十二)A【基础热身】1.D [解析] 抛物线的标准方程为x 2=-12y ,p =14,所以焦点坐标为⎝ ⎛⎭⎪⎫0,-18.故选D.2.B [解析] 抛物线的焦点F ⎝ ⎛⎭⎪⎫p 2,0,所以过焦点且斜率为1的直线方程为y =x -p2,即x =y +p 2,将其代入y 2=2px =2p ⎝ ⎛⎭⎪⎫y +p 2=2py +p 2,所以y 2-2py -p 2=0,所以y 1+y 22=p=2,所以抛物线的方程为y 2=4x ,准线方程为x =-1,故选B.3.C [解析] 设AB ⊥x 轴于点D ,则|OD |=1·cos30°=32,|AD |=1·sin30°=12,所以A ⎝⎛⎭⎪⎫32,12.由题意可设抛物线方程为y 2=2px (p >0),将点A 的坐标代入,即可得2p =36.结合图形的对称性知应选C.4.43[解析] 设抛物线上动点P (-y 2,y ),则该点到直线3x +4y -8=0的距离为d =|-3y 2+4y -8|5=|3y 2-4y +8|5=⎪⎪⎪⎪⎪⎪3⎝ ⎛⎭⎪⎫y -232+2035≥43.【能力提升】5.A [解析] 由点P 在BM 的垂直平分线上,故|PB |=|PM |.又PB ⊥l ,因而点P 到直线l 的距离等于点P 到点M 的距离,所以点P 的轨迹是抛物线.故选A.6.B [解析] 过P 作抛物线准线l :x =-12的垂线,垂足为Q ,则|PF |=|PQ |,所以只需求|PA |+|PQ |的最小值.当A 、P 、Q 三点共线时,|PA |+|PQ |最小,此时P 点纵坐标为2,代入抛物线方程得横坐标为2,所以点P 坐标为(2,2).故选B.7.C [解析] 易知a =2,设直线MP 、MQ 的方程分别为y =x -2+2,y =-(x -2)+2,分别代入抛物线方程,可得点P (0,0),Q (8,-4),所以可求得直线PQ 斜率为-12.故选C.8.B [解析] 设A (x 0,y 0),F (1,0),OA →=(x 0,y 0),AF →=(1-x 0,-y 0), OA →·AF →=x 0(1-x 0)-y 20=-4.因为y 20=4x 0,所以x 0-x 20-4x 0+4=0,即x 20+3x 0-4=0,x 1=1,x 2=-4(舍).所以x 0=1,y 0=±2.故选B.9.x =3 [解析] 由题意知,点A ,B 的纵坐标为23和-23,代入抛物线方程求得x =3,所以直线AB 的方程为x =3.10.5.625 cm [解析] 将抛物线放到直角坐标系中,使顶点与原点重合,焦点在x 轴正半轴上,则由题意可知点(40,30)在抛物线上,代入y 2=2px 中,解得p =454,而光源放在焦点位置,距离顶点12p =458=5.625 cm 处.11.433 [解析] 抛物线焦点为F (1,0),直线l 的方程为y =3(x -1),代入抛物线方程消去x 得3y 2-4y -43=0,解得y A =-23,y B =63,所以△AOB 的面积为12|OF |·|y B-y A |=12×83=433.12.[解答] (1)由⎩⎪⎨⎪⎧y =x +b ,x 2=4y 得x 2-4x -4b =0.(*)因为直线l 与抛物线C 相切, 所以Δ=(-4)2-4×(-4b )=0. 解得b =-1.(2)由(1)可知b =-1,故方程(*)即为x 2-4x +4=0.解得x =2,代入x 2=4y ,得y =1, 故点A (2,1).因为圆A 与抛物线C 的准线相切,所以圆A 的半径r 等于圆心A 到抛物线的准线y =-1的距离,即r =|1-(-1)|=2.所以圆A 的方程为(x -2)2+(y -1)2=4. 【难点突破】13.[解答] (1)设动点为P (x ,y ), 依据题意,有⎪⎪⎪⎪⎪⎪x +p 2+1-⎝ ⎛⎭⎪⎫x -p 22+y 2=1,化简得y 2=2px .因此,动点P 2(2)故可设直线l :x =my +p2,如图所示.联立方程组⎩⎪⎨⎪⎧y 2=2px ,x =my +p2,可化为y 2-2mpy -p 2=0,则点A (x 1,y 1)、B (x 2,y 2)的坐标满足⎩⎪⎨⎪⎧y 1+y 2=2mp ,y 1y 2=-p 2.又AM ⊥l 1、BN ⊥l 1,可得点M ⎝ ⎛⎭⎪⎫-p2,y 1、N ⎝ ⎛⎭⎪⎫-p2,y 2. 于是,FM →=(-p ,y 1),FN →=(-p ,y 2),因此FM →·FN →=(-p ,y 1)·(-p ,y 2)=p 2+y 1y 2=0.。
学习资料第八章 平面解析几何第六节 抛物线课时规范练A 组—-基础对点练1.已知抛物线y 2=错误!x ,则它的准线方程为( )A .y =-2B .y =2C .x =-错误!D 。
y =错误!解析:因为抛物线y 2=错误!x ,所以p =错误!,错误!=错误!,它的准线方程为x =-错误!。
答案:C2.过点P (-2,3)的抛物线的标准方程是( )A .y 2=-92x 或x 2=错误!y B .y 2=错误!x 或x 2=错误!yC .y 2=错误!x 或x 2=-错误!yD .y 2=-错误!x 或x 2=-错误!y解析:设抛物线的标准方程为y 2=kx 或x 2=my ,代入点P (-2,3),解得k =-92,m =错误!,∴y 2=-错误!x 或x 2=错误!y ,选A.答案:A3.若抛物线y =ax 2的焦点坐标是(0,1),则a =( )A .1B .错误!C .2D 。
错误!解析:因为抛物线的标准方程为x 2=错误!y ,所以其焦点坐标为(0,错误!),则有错误!=1,a =错误!,故选D.答案:D4.(2020·洛阳模拟)已知点M 是抛物线C :y 2=2px (p >0)上一点,F 为C 的焦点,MF 的中点坐标是(2,2),则p 的值为( )A .1B .2C .3 D.4解析:F 错误!,那么M 错误!在抛物线上,即16=2p 错误!,即p 2-8p +16=0,解得p =4。
答案:D5.若抛物线y 2=2px (p >0)上的点P (x 0,2)到其焦点F 的距离是P 到y 轴距离的3倍,则p 等于( )A 。
错误!B .1C.错误!D。
2解析:根据焦半径公式|PF|=x0+错误!,所以x0+错误!=3x0,解得x0=错误!,代入抛物线方程(错误!)2=2p×错误!,解得p=2.答案:D6.抛物线C:y2=2px(p>0)的焦点为F,P是C上一点,若P到F的距离是P到y轴距离的两倍,且△OPF的面积为1(O为坐标原点),则p的值为()A.1 B.2C.3 D.4解析:设点P(x,y),根据已知可得x+错误!=2x,解得:x=错误!,|y|=p,所以S△OPF=错误!×错误!×p=1,解得p=2。
课时分层训练(四十五) 椭 圆A 组 基础达标 (建议用时:30分钟)一、选择题1.设F 1,F 2分别是椭圆x 225+y 216=1的左、右焦点,P 为椭圆上一点,M 是F 1P 的中点,|OM |=3,则P 点到椭圆左焦点的距离为( )A .4B .3C .2D .5A [由题意知,在△PF 1F 2中,|OM |=12|PF 2|=3,∴|PF 2|=6,∴|PF 1|=2a -|PF 2|=10-6=4.]2.已知椭圆的方程为2x 2+3y 2=m (m >0),则此椭圆的离心率为( )【导学号:66482395】A.13 B .33 C.22D .12B [原方程化为x 2m 2+y 2m 3=1(m >0),∴a 2=m 2,b 2=m 3,则c 2=a 2-b 2=m 6,则e 2=13,∴e =33.]3.(2016·盐城模拟)已知两圆C 1:(x -4)2+y 2=169,C 2:(x +4)2+y 2=9,动圆在圆C 1内部且和圆C 1相内切,和圆C 2相外切,则动圆圆心M 的轨迹方程为( )A.x 264-y 248=1 B .x 248+y 264=1 C.x 248-y 264=1D .x 264+y 248=1D [设圆M 的半径为r ,则|MC 1|+|MC 2|=(13-r )+(3+r )=16, ∴M 的轨迹是以C 1,C 2为焦点的椭圆,且2a =16,2c =8,故所求的轨迹方程为x 264+y 248=1,故选D.]4.若点O 和点F 分别为椭圆x 24+y 23=1的中心和左焦点,若P 为椭圆上的任意一点,则OP →·FP →的最大值为( )A .2B .3C .6D .8C [由题意知,O (0,0),F (-1,0),设P (x ,y ),则OP →=(x ,y ),FP →=(x +1,y ),∴OP →·FP →=x (x +1)+y 2=x 2+y 2+x .又∵x 24+y 23=1,∴y 2=3-34x 2,∴OP →·FP →=14x 2+x +3=14(x +2)2+2.∵-2≤x ≤2,∴当x =2时,OP →·FP →有最大值6.]5.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点为F 1,F 2,离心率为33,过F 2的直线l 交C 于A ,B 两点.若△AF 1B 的周长为43,则C 的方程为( )A.x 23+y 22=1 B.x 23+y 2=1 C.x 212+y 28=1 D.x 212+y 24=1A [∵x 2a 2+y 2b 2=1(a >b >0)的离心率为33,∴c a =33.又∵过F 2的直线l 交椭圆于A ,B 两点,△AF 1B 的周长为43,∴4a =43,∴a =3,∴b =2,∴椭圆方程为x23+y22=1.]二、填空题6.已知椭圆的方程是x2a2+y225=1(a>5),它的两个焦点分别为F1,F2,且|F1F2|=8,弦AB(椭圆上任意两点的线段)过点F1,则△ABF2的周长为__________.441[∵a>5,∴椭圆的焦点在x轴上.∵|F1F2|=8,∴c=4,∴a2=25+c2=41,则a=41.由椭圆定义,|AF1|+|AF2|=|BF2|+|BF1|=2a,∴△ABF2的周长为4a=441.]7.(2017·湖南长沙一中月考)如图8-5-3,∠OFB=π6,△ABF的面积为2-3,则以OA为长半轴,OB为短半轴,F为一个焦点的椭圆方程为__________.图8-5-3【导学号:66482396】x2 8+y22=1[设所求椭圆方程为x2a2+y2b2=1(a>b>0),由题意可知,|OF|=c,|OB|=b,∴|BF|=a.∵∠OFB=π6,∴bc=33,a=2b.∴S△ABF =12·|AF|·|BO|=12(a-c)·b=12(2b-3b)b=2-3,解得b2=2,则a=2b=2 2.∴所求椭圆的方程为x28+y22=1.]8.(2016·江苏高考)如图8-5-4,在平面直角坐标系xOy中,F是椭圆x2a2+y2b2=1(a>b>0)的右焦点,直线y=b2与椭圆交于B,C两点,且∠BFC=90°,则该椭圆的离心率是________.图8-5-463 [将y =b 2代入椭圆的标准方程,得x 2a 2+b 24b 2=1, 所以x =±32a ,故B ⎝ ⎛⎭⎪⎫-32a ,b 2,C ⎝ ⎛⎭⎪⎫32a ,b 2.又因为F (c,0),所以BF →=⎝ ⎛⎭⎪⎫c +32a ,-b 2,CF →=⎝ ⎛⎭⎪⎫c -32a ,-b 2.因为∠BFC =90°,所以BF →·CF →=0,所以⎝ ⎛⎭⎪⎫c +32a ⎝ ⎛⎭⎪⎫c -32a +⎝ ⎛⎭⎪⎫-b 22=0,即c 2-34a 2+14b 2=0,将b 2=a 2-c 2代入并化简,得a 2=32c 2,所以e 2=c 2a 2=23,所以e =63(负值舍去).]三、解答题9.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为22,其中左焦点为F (-2,0). (1)求椭圆C 的方程;(2)若直线y =x +m 与椭圆C 交于不同的两点A ,B ,且线段AB 的中点M 在圆x 2+y 2=1上,求m 的值.【导学号:66482397】[解](1)由题意,得⎩⎪⎨⎪⎧c a =22,c =2,a 2=b 2+c 2,解得⎩⎨⎧a =22,b =2.3分∴椭圆C 的方程为x 28+y 24=1. 5分(2)设点A ,B 的坐标分别为(x 1,y 1),(x 2,y 2),线段AB 的中点为M (x 0,y 0), 由⎩⎪⎨⎪⎧x 28+y 24=1,y =x +m ,消去y 得,3x 2+4mx +2m 2-8=0,Δ=96-8m 2>0,∴-23<m <2 3. 8分∵x 0=x 1+x 22=-2m 3,∴y 0=x 0+m =m3. 10分∵点M (x 0,y 0)在圆x 2+y 2=1上,∴⎝ ⎛⎭⎪⎫-2m 32+⎝ ⎛⎭⎪⎫m 32=1,∴m =±355. 12分 10.设椭圆E 的方程为x 2a 2+y 2b 2=1(a >b >0),点O 为坐标原点,点A 的坐标为(a,0),点B 的坐标为(0,b ),点M 在线段AB 上,满足|BM |=2|MA |,直线OM 的斜率为510.(1)求E 的离心率e ;(2)设点C 的坐标为(0,-b ),N 为线段AC 的中点,证明:MN ⊥AB . [解] (1)由题设条件知,点M 的坐标为⎝ ⎛⎭⎪⎫23a ,13b ,2分又k OM =510,从而b 2a =510.进而a =5b ,c =a 2-b 2=2b ,故e =c a =255. 5分(2)证明:由N 是AC 的中点知,点N 的坐标为⎝ ⎛⎭⎪⎫a2,-b 2,可得NM →=⎝ ⎛⎭⎪⎫a 6,5b 6. 8分又AB →=(-a ,b ),从而有AB →·NM →=-16a 2+56b 2=16(5b 2-a 2). 10分 由(1)的计算结果可知a 2=5b 2, 所以AB →·NM →=0,故MN ⊥AB . 12分B 组 能力提升 (建议用时:15分钟)1.已知圆M :x 2+y 2+2mx -3=0(m <0)的半径为2,椭圆C :x 2a 2+y 23=1的左焦点为F (-c,0),若垂直于x 轴且经过F 点的直线l 与圆M 相切,则a 的值为( )A.34 B .1 C .2D .4C [圆M 的方程可化为(x +m )2+y 2=3+m 2, 则由题意得m 2+3=4,即m 2=1(m <0),∴m =-1,则圆心M 的坐标为(1,0). 又直线l 过椭圆C 的左焦点,且垂直于x 轴, ∴直线l 的方程为x =-c . 又∵直线l 与圆M 相切, ∴c =1,∴a 2-3=1,∴a =2.]2.过椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左顶点A 且斜率为k 的直线交椭圆C 于另一个点B ,且点B 在x 轴上的射影恰好为右焦点F 2,若13<k <12,则椭圆的离心率的取值范围是__________.【导学号:66482398】⎝ ⎛⎭⎪⎫12,23 [如图所示,|AF 2|=a +c ,|BF 2|=a 2-c 2a ,∴k =tan ∠BAF 2=|BF 2||AF 2|=a 2-c 2a a +c=a -ca =1-e . 又∵13<k <12,∴13<1-e <12,解得12<e <23.]3.(2017·西安调研)如图8-5-5,椭圆E :x 2a 2+y 2b 2=1(a >b >0)经过点A (0,-1),且离心率为22.图8-5-5(1)求椭圆E 的方程;(2)经过点(1,1),且斜率为k 的直线与椭圆E 交于不同的两点P ,Q (均异于点A ),证明:直线AP 与AQ 的斜率之和为2.[解] (1)由题设知c a =22,b =1, 结合a 2=b 2+c 2,解得a = 2. 3分 所以椭圆的方程为x 22+y 2=1. 5分(2)证明:由题设知,直线PQ 的方程为y =k (x -1)+1(k ≠2),代入x 22+y 2=1,得(1+2k 2)x 2-4k (k -1)x +2k (k -2)=0. 7分由已知Δ>0,设P (x 1,y 1),Q (x 2,y 2),x 1x 2≠0,则x 1+x 2=4k (k -1)1+2k 2,x 1x 2=2k (k -2)1+2k 2. 9分 从而直线AP ,AQ 的斜率之和k AP +k AQ =y 1+1x 1+y 2+1x 2=kx 1+2-k x 1+kx 2+2-kx 2=2k +(2-k )⎝ ⎛⎭⎪⎫1x 1+1x 2=2k +(2-k )x 1+x 2x 1x 2=2k +(2-k )4k (k -1)2k (k -2)=2k -2(k -1)=2.所以直线AP 与AQ 的斜率之和为定值2. 12分。
第六节抛物线[考纲传真] 1.了解抛物线的实际背景,了解抛物线在刻画现实世界和解决实际问题中的作用.2.掌握抛物线的定义、几何图形、标准方程及简单几何性质.3.了解抛物线的简单应用.4.理解数形结合的思想.1.抛物线的概念平面内与一个定点F和一条定直线l(l不过F)的距离相等的点的集合叫作抛物线.点F叫作抛物线的焦点,直线l叫作抛物线的准线.2.抛物线的标准方程与几何性质1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”) (1)平面内与一个定点F 和一条定直线l 的距离相等的点的轨迹一定是抛物线.( )(2)方程y =ax 2(a ≠0)表示的曲线是焦点在x 轴上的抛物线,且其焦点坐标是⎝ ⎛⎭⎪⎫a 4,0,准线方程是x =-a 4.( )(3)抛物线既是中心对称图形,又是轴对称图形.( )(4)AB 为抛物线y 2=2px (p >0)的过焦点F ⎝ ⎛⎭⎪⎫p 2,0的弦,若A (x 1,y 1),B (x 2,y 2),则x 1x 2=p 24,y 1y 2=-p 2,弦长|AB |=x 1+x 2+p .( )[答案] (1)× (2)× (3)× (4)√2.(教材改编)若抛物线y =4x 2上的一点M 到焦点的距离为1,则点M 的纵坐标是( )A.1716B.1516C.78D .0B [M 到准线的距离等于M 到焦点的距离,又准线方程为y =-116, 设M (x ,y ),则y +116=1,∴y =1516.] 3.抛物线y =14x 2的准线方程是( ) A .y =-1 B .y =-2 C .x =-1D .x =-2A [∵y =14x 2,∴x 2=4y ,∴准线方程为y =-1.]4.(2017·西安质检)若抛物线y 2=2px (p >0)的准线经过双曲线x 2-y 2=1的一个焦点,则p =__________.22 [抛物线的准线方程为x =-p2,p >0,双曲线的焦点为F 1(-2,0),F 2(2,0),所以-p2=-2,p =2 2.]5.(2016·浙江高考)若抛物线y 2=4x 上的点M 到焦点的距离为10,则M 到y 轴的距离是________.9 [设点M 的横坐标为x 0,则点M 到准线x =-1的距离为x 0+1,由抛物线的定义知x 0+1=10,∴x 0=9,∴点M 到y 轴的距离为9.]00)是C 上一点,|AF |=54x 0,则x 0=( )A .1B .2C .4D .8(2)(2017·广东汕头调研)已知P 是抛物线y 2=4x 上的一个动点,Q 是圆(x -3)2+(y -1)2=1上的一个动点,N (1,0)是一个定点,则|PQ |+|PN |的最小值为( )A .3B .4C .5D .2+1(1)A (2)A [(1)由y 2=x ,知2p =1,即p =12, 因此焦点F ⎝ ⎛⎭⎪⎫14,0,准线l 的方程为x =-14. 设点A (x 0,y 0)到准线l 的距离为d ,则由抛物线的定义可知d =|AF |. 从而x 0+14=54x 0,解得x 0=1.(2)由抛物线方程y 2=4x ,可得抛物线的焦点F (1,0),又N (1,0),所以N 与F 重合.过圆(x -3)2+(y -1)2=1的圆心M 作抛物线准线的垂线MH ,交圆于Q ,交抛物线于P ,则|PQ |+|PN |的最小值等于|MH |-1=3.][规律方法] 1.凡涉及抛物线上的点到焦点距离时,一般运用定义转化为到准线距离处理.如本例充分运用抛物线定义实施转化,使解答简捷、明快.2.若P (x 0,y 0)为抛物线y 2=2px (p >0)上一点,由定义易得|PF |=x 0+p2;若过焦点的弦AB 的端点坐标为A (x 1,y 1),B (x 2,y 2),则弦长为|AB |=x 1+x 2+p ,x 1+x 2可由根与系数的关系整体求出.[变式训练1] (2017·郑州调研)已知抛物线C :y 2=8x 的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 的一个交点,若FP →=4 FQ →,则|QF |=( )A.72 B .52C .3D .2C [∵FP →=4 FQ →, ∴|FP →|=4|FQ →|, ∴|PQ ||PF |=34.如图,过Q 作QQ ′⊥l ,垂足为Q ′,设l 与x 轴的交点为A ,则|AF |=4, ∴|PQ ||PF |=|QQ ′||AF |=34, ∴|QQ ′|=3.根据抛物线定义可知|QF |=|QQ ′|=3.]方程是( )【导学号:57962399】A .x 2=112y B .x 2=112y 或x 2=-136y C .x 2=-136yD .x 2=12y 或x 2=-36y(2)(2016·全国卷Ⅰ)以抛物线C 的顶点为圆心的圆交C 于A ,B 两点,交C的准线于D ,E 两点.已知|AB |=42,|DE |=25,则C 的焦点到准线的距离为( )A .2B .4C .6D .8(1)D (2)B [(1)将y =ax 2化为x 2=1a y .当a >0时,准线y =-14a ,则3+14a =6,∴a =112. 当a <0时,准线y =-14a ,则⎪⎪⎪⎪⎪⎪3+14a =6,∴a =-136. ∴抛物线方程为x 2=12y 或x 2=-36y .(2)设抛物线的方程为y 2=2px (p >0),圆的方程为x 2+y 2=r 2. ∵|AB |=42,|DE |=25, 抛物线的准线方程为x =-p2, ∴不妨设A ⎝ ⎛⎭⎪⎫4p ,22,D ⎝ ⎛⎭⎪⎫-p 2,5.∵点A ⎝ ⎛⎭⎪⎫4p ,22,D ⎝ ⎛⎭⎪⎫-p 2,5在圆x 2+y 2=r 2上,∴⎩⎪⎨⎪⎧16p 2+8=r 2,p 24+5=r 2,∴16p 2+8=p 24+5,∴p =4(负值舍去).∴C 的焦点到准线的距离为4.[规律方法] 1.求抛物线的标准方程的方法:(1)求抛物线的标准方程常用待定系数法,因为未知数只有p ,所以只需一个条件确定p 值即可.(2)因为抛物线方程有四种标准形式,因此求抛物线方程时,需先定位,再定量.2.由抛物线的方程可以确定抛物线的开口方向、焦点位置、焦点到准线的距离;从而进一步确定抛物线的焦点坐标及准线方程.[变式训练2] (1)(2017·河南中原名校联考)抛物线y 2=2px (p >0)的焦点为F ,O 为坐标原点,M 为抛物线上一点,且|MF |=4|OF |,△MFO 的面积为43,则抛物线的方程为 ( )【导学号:57962400】A .y 2=6xB .y 2=8xC .y 2=16xD .y 2=15x2(2)若抛物线y 2=2px 的焦点与椭圆x 29+y 25=1的右焦点重合,则该抛物线的准线方程为__________.(1)B (2)x =-2 [(1)设M (x ,y ),因为|OF |=p2,|MF |=4|OF |, 所以|MF |=2p ,由抛物线定义知x +p2=2p , 所以x =32p ,所以y =±3p . 又△MFO 的面积为43,所以12×p2×3p =43,解得p =4(p =-4舍去). 所以抛物线的方程为y 2=8x .(2)由椭圆x 29+y 25=1,知a =3,b =5, 所以c 2=a 2-b 2=4,所以c =2. 因此椭圆的右焦点为(2,0), 又抛物线y 2=2px 的焦点为⎝ ⎛⎭⎪⎫p 2,0.依题意,得p2=2, 于是抛物线的准线x =-2.](2016·全国卷Ⅰ)在直角坐标系xOy 中,直线l :y =t (t ≠0)交y 轴于点M ,交抛物线C :y 2=2px (p >0)于点P ,M 关于点P 的对称点为N ,连接ON 并延长交C 于点H .(1)求|OH ||ON |;(2)除H 以外,直线MH 与C 是否有其他公共点?说明理由. [解] (1)如图,由已知得M (0,t ),P ⎝ ⎛⎭⎪⎫t 22p ,t .又N 为M 关于点P 的对称点, 故N ⎝ ⎛⎭⎪⎫t 2p ,t ,2分故直线ON 的方程为y =p t x ,将其代入y 2=2px 整理得px 2-2t 2x =0,解得x 1=0,x 2=2t 2p .因此H ⎝ ⎛⎭⎪⎫2t 2p ,2t .所以N 为OH 的中点,即|OH ||ON |=2. 5分(2)直线MH 与C 除H 以外没有其他公共点.理由如下: 直线MH 的方程为y -t =p 2t x ,即x =2tp (y -t ).8分代入y 2=2px 得y 2-4ty +4t 2=0,解得y 1=y 2=2t , 即直线MH 与C 只有一个公共点,所以除H 以外,直线MH 与C 没有其他公共点. 12分[规律方法] 1.(1)本题求解的关键是求出点N ,H 的坐标.(2)第(2)问将直线MH 的方程与抛物线C 的方程联立,根据方程组的解的个数进行判断.2.(1)判断直线与圆锥曲线的交点个数时,可直接求解相应方程组得到交点坐标,也可利用消元后的一元二次方程的判别式来确定,需注意利用判别式的前提是二次项系数不为0.(2)解题时注意应用根与系数的关系及设而不求、整体代换的技巧.☞角度2 与抛物线弦长或中点有关的问题(2017·泰安模拟)已知抛物线C :y 2=2px (p >0)的焦点为F ,抛物线C 与直线l 1:y =-x 的一个交点的横坐标为8.(1)求抛物线C 的方程;(2)不过原点的直线l 2与l 1的垂直,且与抛物线交于不同的两点A ,B ,若线段AB 的中点为P ,且|OP |=|PB |,求△F AB 的面积.【导学号:57962401】[解] (1)易知直线与抛物线的交点坐标为(8,-8), 2分 ∴(-8)2=2p ×8,∴2p =8,∴抛物线方程为y 2=8x .5分(2)直线l 2与l 1垂直,故可设直线l 2:x =y +m ,A (x 1,y 1),B (x 2,y 2),且直线l 2与x 轴的交点为M .6分由⎩⎨⎧y 2=8x ,x =y +m ,得y 2-8y -8m =0, Δ=64+32m >0,∴m >-2. y 1+y 2=8,y 1y 2=-8m ,∴x 1x 2=y 21y 2264=m 2.8分由题意可知OA ⊥OB ,即x 1x 2+y 1y 2=m 2-8m =0, ∴m =8或m =0(舍), ∴直线l 2:x =y +8,M (8,0).10分故S △F AB =S △FMB +S △FMA =12·|FM |·|y 1-y 2| =3(y 1+y 2)2-4y 1y 2=24 5.12分[规律方法] 1.有关直线与抛物线的弦长问题,要注意直线是否过抛物线的焦点,若过抛物线的焦点,可直接使用公式|AB |=x 1+x 2+p ,若不过焦点,则必须用一般弦长公式.2.涉及抛物线的弦长、中点、距离等相关问题时,一般利用根与系数的关系采用“设而不求”“整体代入”等方法.3.涉及弦的中点、斜率时,一般用“点差法”求解.[思想与方法]1.抛物线定义的实质可归结为“一动三定”:一个动点M ,一个定点F (抛物线的焦点),一条定直线l (抛物线的准线),一个定值1(抛物线的离心率).2.抛物线的定义中指明了抛物线上点到焦点的距离与到准线距离的等价性,故二者可相互转化,这一转化思想在解题中有着重要作用.3.抛物线的焦点弦:设过抛物线y 2=2px (p >0)的焦点的直线与抛物线交于A (x 1,y 1),B (x 2,y 2),则:(1)y 1y 2=-p 2,x 1x 2=p 24;(2)若直线AB 的倾斜角为θ,则|AB |=2psin 2θ=x 1+x 2+p . [易错与防范]1.认真区分四种形式的标准方程.(1)区分y =ax 2(a ≠0)与y 2=2px (p >0),前者不是抛物线的标准方程. (2)求标准方程要先确定形式,必要时要进行分类讨论,标准方程有时可设为y 2=mx 或x 2=my (m ≠0).2.直线与抛物线结合的问题,不要忘记验证判别式.3.抛物线的定义中易忽视“定点不在定直线上”这一条件,当定点在定直线上时,动点的轨迹是过定点且与直线垂直的直线.当直线与抛物线有一个公共点,并不表明直线与抛物线相切.。
课时分层训练(四十六) 抛物线A 组 基础达标 (建议用时:30分钟)一、选择题1.(2016·四川高考)抛物线y 2=4x 的焦点坐标是( ) A .(0,2) B .(0,1) C .(2,0)D .(1,0)D [由y 2=4x 知p =2,故抛物线的焦点坐标为(1,0).]2.(2017·云南昆明一中模拟)已知点F 是抛物线C :y 2=4x 的焦点,点A 在抛物线C 上,若|AF |=4,则线段AF 的中点到抛物线C 的准线的距离为( )A .4B .3C .2D .1B [由题意易知F (1,0),F 到准线的距离为2,A 到准线的距离为|AF |=4,则线段AF 的中点到抛物线C 的准线的距离为2+42=3.]3.抛物线y 2=4x 的焦点到双曲线x 2-y 23=1的渐近线的距离是( )【导学号:66482402】A.12 B .32C .1D . 3B [由双曲线x 2-y 23=1知其渐近线方程为y =±3x ,即3x ±y =0,又y 2=4x 的焦点F (1,0),∴焦点F 到直线的距离d =332+-2=32.] 4.已知抛物线C 与双曲线x 2-y 2=1有相同的焦点,且顶点在原点,则抛物线C 的方程是( )A .y 2=±22x B .y 2=±2x C .y 2=±4xD .y 2=±42xD [因为双曲线的焦点为(-2,0),(2,0). 设抛物线方程为y 2=±2px (p >0),则p2=2,p =2 2.所以抛物线方程为y 2=±42x .]5.O 为坐标原点,F 为抛物线C :y 2=42x 的焦点,P 为C 上一点,若|PF |=42,则△POF 的面积为( )A .2B .2 2C .2 3D .4C [如图,设点P 的坐标为(x 0,y 0),由|PF |=x 0+2=42,得x 0=32, 代入抛物线方程得,y 20=42×32=24, 所以|y 0|=26,所以S △POF =12|OF ||y 0|=12×2×26=2 3.]二、填空题6.(2017·山西四校三联)过抛物线y 2=4x 的焦点F 作倾斜角为45°的直线交抛物线于A ,B 两点,则弦长|AB |为__________.【导学号:66482403】8 [设A (x 1,y 1),B (x 2,y 2).易得抛物线的焦点是F (1,0),所以直线AB 的方程是y =x -1.联立⎩⎪⎨⎪⎧y 2=4x ,y =x -1,消去y 得x 2-6x +1=0.所以x 1+x 2=6,所以|AB |=x 1+x 2+p =6+2=8.]7.已知点A (-2,3)在抛物线C :y 2=2px 的准线上,记C 的焦点为F ,则直线AF 的斜率为__________.-34 [∵点A (-2,3)在抛物线C 的准线上. ∴-p2=-2,∴p =4,焦点F (2,0).因此k AF =3-0-2-2=-34.]8.已知抛物线x 2=ay 与直线y =2x -2相交于M ,N 两点,若MN 中点的横坐标为3,则此抛物线方程为__________.x 2=3y [设点M (x 1,y 1),N (x 2,y 2).由⎩⎪⎨⎪⎧x 2=ay ,y =2x -2,消去y ,得x 2-2ax +2a =0,所以x 1+x 22=2a2=3,即a =3,因此所求的抛物线方程是x 2=3y .] 三、解答题9.抛物线的顶点在原点,对称轴为y 轴,它与圆x 2+y 2=9相交,公共弦MN 的长为25,求该抛物线的方程,并写出它的焦点坐标与准线方程.[解] 由题意,设抛物线方程为x 2=2ay (a ≠0). 设公共弦MN 交y 轴于A ,则|MA |=|AN |, 且AN = 5. 3分 ∵|ON |=3,∴|OA |=32-52=2,∴N (5,±2). 6分∵N 点在抛物线上,∴5=2a ·(±2),即2a =±52,故抛物线的方程为x 2=52y 或x 2=-52y . 8分抛物线x 2=52y 的焦点坐标为⎝ ⎛⎭⎪⎫0,58,准线方程为y =-58. 10分抛物线x 2=-52y 的焦点坐标为⎝ ⎛⎭⎪⎫0,-58,准线方程为y =58. 12分10.已知过抛物线y 2=2px (p >0)的焦点,斜率为22的直线交抛物线于A (x 1,y 1),B (x 2,y 2)(x 1<x 2)两点,且|AB |=9.(1)求该抛物线的方程;(2)O 为坐标原点,C 为抛物线上一点,若OC →=OA →+λOB →,求λ的值.【导学号:66482404】[解] (1)由题意得直线AB 的方程为y =22⎝ ⎛⎭⎪⎫x -p 2,与y 2=2px 联立,从而有4x 2-5px +p 2=0, 所以x 1+x 2=5p4. 3分由抛物线定义得|AB |=x 1+x 2+p =5p4+p =9,所以p =4,从而该抛物线的方程为y 2=8x . 5分(2)由(1)得4x 2-5px +p 2=0,即x 2-5x +4=0,则x 1=1,x 2=4,于是y 1=-22,y 2=42,从而A (1,-22),B (4,42). 8分设C (x 3,y 3),则OC →=(x 3,y 3)=(1,-22)+λ(4,42)=(4λ+1,42λ-22). 10分又y 23=8x 3,所以[22(2λ-1)]2=8(4λ+1),整理得(2λ-1)2=4λ+1,解得λ=0或λ=2. 12分B 组 能力提升 (建议用时:15分钟)1.(2014·全国卷Ⅱ)设F 为抛物线C :y 2=3x 的焦点,过F 且倾斜角为30°的直线交C 于A ,B 两点,则|AB |=( )A.303B .6C .12D .7 3C [∵F 为抛物线C :y 2=3x 的焦点,∴F ⎝ ⎛⎭⎪⎫34,0, ∴AB 的方程为y -0=tan30°⎝ ⎛⎭⎪⎫x -34,即y =33x -34. 联立⎩⎪⎨⎪⎧y 2=3x ,y =33x -34,得13x 2-72x +316=0, ∴x 1+x 2=--7213=212,即x A +x B =212.由于|AB |=x A +x B +p , ∴|AB |=212+32=12.]2.已知抛物线C :y 2=8x 与点M (-2,2),过C 的焦点且斜率为k 的直线与C 交于A ,B 两点.若MA →·MB →=0,则k =__________.2 [抛物线C 的焦点为F (2,0),则直线方程为y =k (x -2),与抛物线方程联立,消去y 化简得k 2x 2-(4k 2+8)x +4k 2=0.设点A (x 1,y 1),B (x 2,y 2).则x 1+x 2=4+8k2,x 1x 2=4.所以y 1+y 2=k (x 1+x 2)-4k =8k,y 1y 2=k 2[x 1x 2-2(x 1+x 2)+4]=-16.因为MA →·MB →=(x 1+2,y 1-2)·(x 2+2,y 2-2) =16k 2-16k+4.所以16k 2-16k+4=0,则k 2-4k +4=0.因此得k =2.]3.抛物线y 2=4x 的焦点为F ,过点F 的直线交抛物线于A ,B 两点. (1)若AF →=2 FB →,求直线AB 的斜率;(2)设点M 在线段AB 上运动,原点O 关于点M 的对称点为C ,求四边形OACB 面积的最小值.【导学号:66482405】[解] (1)依题意知F (1,0),设直线AB 的方程为x =my +1. 将直线AB 的方程与抛物线的方程联立,消去x 得y 2-4my -4=0. 2分设A (x 1,y 1),B (x 2,y 2),所以y 1+y 2=4m ,y 1y 2=-4. 因为AF →=2 FB →,所以y 1=-2y 2. 联立上述三式,消去y 1,y 2得m =±24. 所以直线AB 的斜率是±2 2. 5分(2)由点C 与原点O 关于点M 对称,得M 是线段OC 的中点,从而点O 与点C 到直线AB 的距离相等,所以四边形OACB 的面积等于2S △AOB . 8分 因为2S △AOB =2×12·|OF |·|y 1-y 2|=y 1+y 22-4y 1y 2=41+m 2,所以当m =0时,四边形OACB 的面积最小,最小值是4. 12分。
课时作业(五十)B [第50讲 抛物线] [时间:35分钟 分值:80分] 1.若点P(x,y)到点F(0,2)的距离比它到直线y+4=0的距离小2,则P(x,y)的轨迹方程为( ) A.y2=8x B.y2=-8x C.x2=8y D.x2=-8y 2.抛物线x2=(2a-1)y的准线方程是y=1,则实数a=( ) A. B. C.- D.- 3.已知抛物线y2=4x,若过焦点F且垂直于对称轴的直线与抛物线交于A,B两点,O是坐标原点,则OAB的面积是( ) A.1 B.2 C.4 D.6 4.对于抛物线y2=4x上任意一点Q,点P(a,0)都满足|PQ|≥|a|,则a的取值范围是( ) A.(-∞,0) B.(-∞,2] C.[0,2] D.(0,2) 5.已知A,B是抛物线y2=2px(p>0)上的两点,O是原点,若|OA|=|OB|,且AOB的垂心恰好是抛物线的焦点,则直线AB的方程是( ) A.x=p B.x=3p C.x=p D.x=p 6.已知抛物线y2=2px(p>0)的焦点为F,点P1(x1,y1),P2(x2,y2),P3(x3,y3)均在抛物线上,且2x2=x1+x3,则有( ) A.|FP1|+|FP2|=|FP3| B.|FP1|2+|FP2|2=|FP3|2 C.2|FP2|=|FP1|+|FP3| D.|FP2|2=|FP1|·|FP3| 7.已知点P是抛物线y2=2x上的一个动点,则点P到点(0,2)的距离与P到该抛物线准线的距离之和的最小值为( ) A. B.3 C. D. 8.已知抛物线C:y2=8x的焦点为F,准线与x轴的交点为K,点A在C上且|AK|=|AF|,则AFK的面积为( ) A.4 B.8 C.16 D.32 9.已知抛物线C的顶点坐标为原点,焦点在x轴上,直线y=x与抛物线C交于A,B两点,若P(2,2)为AB的中点,则抛物线C的方程为________. 10.[2010·全国卷] 已知抛物线C:y2=2px(p>0)的准线为l,过M(1,0)且斜率为的直线与l相交于点A,与C的一个交点为B.若=,则p=________. 11.[2010·重庆卷] 已知以F为焦点的抛物线y2=4x上的两点A、B满足=3,则弦AB的中点P到准线的距离为________. 12.(13分)[2012·珠海模拟] 在平面直角坐标系xOy中,设点F,直线l:x=-,点P在直线l上移动,R是线段PF与y轴的交点,RQFP,PQl. (1)求动点Q的轨迹方程C; (2)设圆M过A(1,0),且圆心M在曲线C上,TS是圆M在y轴上截得的弦,当M运动时,弦长|TS|是否为定值?请说明理由. 图K50-1 13.(12分)[2010·湖北卷] 已知一条曲线C在y轴右边,C上每一点到点F(1,0)的距离减去它到y轴距离的差都是1. (1)求曲线C的方程; (2)是否存在正数m,对于过点M(m,0)且与曲线C有两个交点A,B的任一直线,都有·0). (2)弦长|TS|为定值.理由如下:取曲线C上点M(x0,y0),M到y轴的距离为d=|x0|=x0, 圆的半径r=|MA|=, 则|TS|=2=2, 因为点M在曲线C上,所以x0=, 所以|TS|=2=2,是定值. 【难点突破】 13.[解答] (1)设P(x,y)是曲线C上任意一点,那么点P(x,y)满足-x=1(x>0). 化简得y2=4x(x>0). (2)设过点M(m,0)(m>0)的直线l与曲线C的交点为A(x1,y1),B(x2,y2). 设l的方程为x=ty+m,由得y2-4ty-4m=0,Δ=16(t2+m)>0, 于是 又=(x1-1,y1),=(x2-1,y2), ·<0(x1-1)(x2-1)+y1y2=x1x2-(x1+x2)+1+y1y2<0. 又x=,于是不等式等价于·+y1y2-+1<0, +y1y2-[(y1+y2)2-2y1y2]+1<0. 由式,不等式等价于m2-6m+1<4t2. 对任意实数t,4t2的最小值为0,所以不等式对于一切t成立等价于m2-6m+1<0,即3-2<m<3+2. 由此可知,存在正数m,对于过点M(m,0),且与曲线C有两个交点A,B的任一直线,都有·<0,且m的取值范围是(3-2,3+2).。
高考数学一轮复习:第六节 抛物线授课提示:对应学生用书第363页[A 组 基础保分练]1.(2020·高考全国卷Ⅰ)已知A 为抛物线C :y 2=2px (p >0)上一点,点A 到点C 的焦点的距离为12,到y 轴的距离为9,则p =( ) A .2 B .3 C .6 D .9解析:设A (x ,y ),由抛物线的定义知,点A 到准线的距离为12,即x +p2=12.又因为点A到y 轴的距离为9,即x =9,所以9+p2=12,解得p =6.答案:C2.已知抛物线y 2=2px (p >0)上横坐标为4的点到此抛物线焦点的距离为9,则该抛物线的焦点到准线的距离为( ) A .4 B .9 C .10 D .18解析:抛物线y 2=2px 的焦点为⎝⎛⎭⎫p 2,0,准线方程为x =-p 2.由题意可得4+p2=9,解得p =10,所以该抛物线的焦点到准线的距离为10. 答案:C 3.(2021·安阳模拟)已知抛物线C :y 2=2px (p >0)的焦点为F ,准线为l ,l 与x 轴的交点为P ,点A 在抛物线C 上,过点A 作AA ′⊥l ,垂足为A ′.若四边形AA ′PF 的面积为14,且cos ∠F AA ′=35,则抛物线C 的方程为( ) A .y 2=x B .y 2=2x C .y 2=4x D .y 2=8x解析:过点F 作FF ′⊥AA ′,垂足为F ′.设|AF ′|=3x ,因为cos ∠F AA ′=35,故|AF |=5x ,则|FF ′|=4x ,由抛物线定义可知,|AF |=|AA ′|=5x ,则|A ′F ′|=2x =p ,故x =p2.四边形AA ′PF 的面积S=(|PF |+|AA ′|)·|FF ′|2=⎝⎛⎭⎫p +52p ·2p2=14,解得p =2,故抛物线C 的方程为y 2=4x .答案:C4.过抛物线y 2=4x 的焦点F 的直线l 与抛物线交于A ,B 两点,若|AF |=2|BF |,则|AB |等于( )A .4B .92C .5D .6解析:易知直线l 的斜率存在,设为k ,则其方程为y =k (x -1).由⎩⎪⎨⎪⎧y =k (x -1),y 2=4x 得k 2x 2-(2k 2+4)x +k 2=0,得x A ·x B =1,① 因为|AF |=2|BF |,由抛物线的定义得x A +1=2(x B+1),即x A =2x B +1,② 由①②解得x A =2,x B =12,所以|AB |=|AF |+|BF |=x A +x B +p =92.答案:B5.(2021·合肥检测)已知双曲线y 24-x 2=1的两条渐近线分别与抛物线y 2=2px (p >0)的准线交于A ,B 两点.O 为坐标原点.若△OAB 的面积为1,则p 的值为( ) A .1 B . 2 C .2 2 D .4解析:双曲线的两条渐近线方程为y =±2x ,抛物线的准线方程为x =-p2,故A ,B 两点的坐标为⎝⎛⎭⎫-p 2,±p ,|AB |=2p ,所以S △OAB =12×2p ×p 2=p22=1,解得p =2. 答案:B 6.(2021·广东六校联考)抛物线y =2x 2上有一动弦AB ,中点为M ,且弦AB 的长为3,则点M 的纵坐标的最小值为( )A .118B .54C .32D .1解析:设A (x 1,y 1),B (x 2,y 2),M (x 0,y 0),直线AB 的方程为y =kx +b ,由题意知y 0≥b>0,联立得⎩⎪⎨⎪⎧y =kx +b ,y =2x 2,整理得2x 2-kx -b =0,Δ=k 2+8b >0,x 1+x 2=k 2,x 1x 2=-b 2,则|AB |=1+k 2·k 24+2b ,点M 的纵坐标y 0=y 1+y 22=x 21+x 22=k 24+b .因为弦AB 的长为3,所以1+k 2·k 24+2b =3,即(1+k 2)⎝⎛⎭⎫k 24+2b =9,故(1+4y 0-4b )(y 0+b )=9,即(1+4y 0-4b )(4y 0+4b )=36.由基本不等式得,(1+4y 0-4b )+(4y 0+4b )≥2(1+4y 0-4b )(4y 0+4b )=12,当且仅当⎩⎨⎧b =18,y 0=118时取等号,得1+8y 0≥12,y 0≥118,故点M 的纵坐标的最小值为118.答案:A 7.已知顶点在坐标原点的抛物线的焦点坐标为(0,-2),则此抛物线的标准方程为_________.解析:依题意可设抛物线的方程为x 2=-2py (p >0),因为焦点坐标为(0,-2),所以-p2=-2,解得p =4.故所求的抛物线的标准方程为x 2=-8y . 答案:x 2=-8y 8.直线l 过抛物线C :y 2=2px (p >0)的焦点F (1,0),且与C 交于A ,B 两点,则p = ,1|AF |+1|BF |=_________. 解析:由p2=1,得p =2.当直线l 的斜率不存在时,l :x =1,代入y 2=4x ,得y =±2,此时|AF |=|BF |=2,所以1|AF |+1|BF |=12+12=1;当直线l 的斜率存在时,设l :y =k (x -1)(k ≠0),代入抛物线方程,得k 2x 2-2(k 2+2)x +k 2=0,设A (x 1,y 1),B (x 2,y 2),则x 1x 2=1,1|AF |+1|BF |=|AF |+|BF ||AF |·|BF |=x 1+x 2+2(x 1+1)(x 2+1)=x 1+x 2+2x 1x 2+x 1+x 2+1=x 1+x 2+21+x 1+x 2+1=1.综上,1|AF |+1|BF |=1.答案:2 19.已知抛物线y 2=2px (p >0)的焦点为F ,A 是抛物线上横坐标为4,且位于x 轴上方的点,A 到抛物线准线的距离等于5,过A 作AB 垂直于y 轴,垂足为B ,OB 的中点为M . (1)求抛物线的方程;(2)若过M 作MN ⊥F A ,垂足为N ,求点N 的坐标.解析:(1)抛物线y 2=2px 的准线为x =-p 2,于是4+p2=5,∴p =2,∴抛物线方程为y 2=4x .(2)∵点A 的坐标是(4,4),由题意得B (0,4),M (0,2).又∵F (1,0),∴k F A =43.∵MN ⊥F A ,∴k MN =-34.又F A 的方程为y =43(x -1),故MN 的方程为y -2=-34x ,解方程组得x =85,y =45,∴N 的坐标为⎝⎛⎭⎫85,45. 10.(2021·襄阳联考)动点P 到定点F (0,1)的距离比它到直线y =-2的距离小1.设动点P 的轨迹为曲线C ,过点F 的直线交曲线C 于A ,B 两个不同的点,过点A ,B 分别作曲线C 的切线,且两切线相交于点M . (1)求曲线C 的方程;(2)求证:AB →·MF →=0. 解析:(1)由已知得动点P 在直线y =-2的上方,条件可转化为动点P 到定点F (0,1)的距离等于它到直线y =-1的距离,∴动点P 的轨迹是以F (0,1)为焦点,直线y =-1为准线的抛物线,故其方程为x 2=4y .(2)证明:设直线AB 的方程为y =kx +1. 则⎩⎪⎨⎪⎧x 2=4y ,y =kx +1,得x 2-4kx -4=0. 设A (x A ,y A ),B (x B ,y B ),则x A +x B =4k ,x A x B =-4.由x 2=4y 得y =14x 2,∴y ′=12x .∴直线AM 的方程为y -14x 2A =12x A (x -x A ),①直线BM 的方程为y -14x 2B =12x B (x -x B ).② ①-②,得14(x 2B -x 2A )=12(x A -x B )x +12(x 2B -x 2A ), ∴x =x A +x B 2=2k .将x =x A +x B2代入①,得y -14x 2A=12x A x B -x A 2=14x A x B -14x 2A, ∴y =14x A x B =-1,∴M (2k ,-1).∵MF →=(-2k ,2),AB →=(x B -x A ,k (x B -x A )), ∴AB →·MF →=-2k (x B -x A )+2k (x B -x A )=0.[B 组 能力提升练]1.若抛物线y 2=2px (p >0)上一点到焦点和到抛物线对称轴的距离分别为10和6,则抛物线的方程为( ) A .y 2=4x B .y 2=36x C .y 2=4x 或y 2=36x D .y 2=8x 或y 2=32x解析:因为抛物线y 2=2px (p >0)上一点到抛物线对称轴的距离为6,所以可设该点为P (x 0,±6).因为P 到抛物线焦点F ⎝⎛⎭⎫p 2,0的距离为10,所以根据抛物线的定义得x 0+p 2=10.① 因为P 在抛物线上,所以36=2px 0.② 由①②解得p =2,x 0=9或p =18,x 0=1,所以抛物线的方程为y 2=4x 或y 2=36x . 答案:C 2.(2021·武汉模拟)已知抛物线y 2=4x 的焦点为F ,点A (5,3),M 为抛物线上一点,且M 不在直线AF 上,则△MAF 周长的最小值为( ) A .10 B .11 C .12 D .13解析:由题意知,当|MA |+|MF |的值最小时,△MAF 的周长最小.设点M 在抛物线的准线上的射影为D ,根据抛物线的定义,可知|MD |=|MF |,因此|MA |+|MF |的最小值即|MA |+|MD |的最小值.根据平面几何的知识可得,当D ,M ,A 三点共线时,|MA |+|MD |最小,最小值为x A -(-1)=5+1=6.又|F A |=(5-1)2+(3-0)2=5,所以△MAF 周长的最小值为6+5=11. 答案:B 3.(2021·河北六校模拟)抛物线C :y 2=2px (p >0)的焦点为F ,点O 是坐标原点,过点O ,F 的圆与抛物线C 的准线相切,且该圆的面积为36π,则抛物线的方程为_________. 解析:设满足题意的圆的圆心为M . 根据题意可知圆心M 在抛物线上. 又∵圆的面积为36π,∴圆的半径为6,则|MF |=x M +p 2=6,则x M =6-p2.又由题意可知x M =p 4,∴p 4=6-p2,解得p =8.∴抛物线方程为y 2=16x . 答案:y 2=16x 4.(2021·成都摸底)已知抛物线C :y 2=2px (p >0)的焦点为F ,准线为l .若位于x 轴上方的动点A 在准线l 上,线段AF 与抛物线C 相交于点B ,且|AF ||BF |-|AF |=1,则抛物线C 的标准方程为_________.解析:如图,设直线l 与x 轴交于点D ,过点B 作BE ⊥l 于点E ,则|DF |=p .由抛物线的定义知|BE |=|BF |.设|BE |=|BF |=m ,因为△AEB ∽△ADF ,所以|AF ||AB |=|DF ||BE |,即|AF ||AF |-|BF |=|DF ||BF |,所以|AF ||AF |-m =p m ,所以|AF |=pm p -m.由|AF ||BF |-|AF |=1,得pmp -m m -pm p -m=1,解得p =1,所以抛物线C 的标准方程为y 2=2x .答案:y 2=2x5.在平面直角坐标系xOy 中,抛物线C :x 2=2py (p >0)的焦点为F ,点A 在抛物线C 上,若|AO |=|AF |=32.(1)求抛物线C 的方程;(2)设直线l 与抛物线C 交于P ,Q 两点,若线段PQ 的中点的纵坐标为1,求△OPQ 的面积的最大值.解析:(1)因为点A 在C 上,|AO |=|AF |=32,所以点A 的纵坐标为p 4,所以p 4+p 2=32,所以p=2,所以抛物线C 的方程为x 2=4y .(2)由题意知直线l 的斜率存在,设直线l 的方程为y =kx +b (b ≥0),代入抛物线方程,可得x 2-4kx -4b =0.设P (x 1,y 1),Q (x 2,y 2),则x 1+x 2=4k ,x 1x 2=-4b ,所以y 1+y 2=4k 2+2b ,因为线段PQ 的中点的纵坐标为1,所以2k 2+b =1,即2k 2=1-b ≥0,所以0<b ≤1,S △OPQ =12b |x 1-x 2|=12b (x 1+x 2)2-4x 1x 2=12b 16k 2+16b =b 2+2b =2b 3+b 2(0<b ≤1).设y =b 3+b 2,y ′=3b 2+2b >0,函数单调递增,所以当b =1时,△OPQ 的面积取最大值为2.6.已知抛物线C :x 2=2py (p >0)和定点M (0,1),设过点M 的动直线交抛物线C 于A ,B 两点,抛物线C 在A ,B 处的切线的交点为N . (1)若N 在以AB 为直径的圆上,求p 的值;(2)若△ABN 的面积的最小值为4,求抛物线C 的方程. 解析:设直线AB :y =kx +1,A (x 1,y 1),B (x 2,y 2),将直线AB 的方程代入抛物线C 的方程得x 2-2pkx -2p =0,则x 1+x 2=2pk ①,x 1x 2=-2p ②.(1)由x 2=2py 得y ′=x p ,则A ,B 处的切线斜率的乘积为x 1x 2p 2=-2p,因为点N 在以AB 为直径的圆上,所以AN ⊥BN ,所以-2p =-1,所以p =2.(2)易得直线AN :y -y 1=x 1p (x -x 1),直线BN :y -y 2=x 2p(x -x 2),联立,得⎩⎨⎧y -y 1=x 1p(x -x 1),y -y 2=x 2p (x -x 2),结合①②式,解得⎩⎪⎨⎪⎧x =pk ,y =-1,即N (pk ,-1).|AB |=1+k 2|x 2-x 1|=1+k 2(x 1+x 2)2-4x 1x 2=1+k 24p 2k 2+8p ,点N 到直线AB 的距离d =|kx N +1-y N |1+k 2=|pk 2+2|1+k 2,则△ABN 的面积S △ABN=12·|AB |·d =p (pk 2+2)3≥22p ,当k =0时,取等号.因为△ABN 的面积的最小值为4,所以22p =4,所以p =2,故抛物线C 的方程为x 2=4y .[C 组 创新应用练]1.(2021·兰州模拟)设抛物线y 2=8x 的焦点为F ,过点M (4,0)的直线与抛物线相交于A ,B 两点,与抛物线的准线相交于点C ,|BF |=4,则△BCF 与△ACF 的面积之比S △BCFS △ACF=( )A .34B .45C .56D .25解析:由抛物线方程y 2=8x ,得焦点F 的坐标为(2,0),准线方程为x =-2.如图,过点A ,B 分别作准线的垂线,垂足分别为E ,N .设直线AB 的方程为y =k (x -4)(k ≠0),则由⎩⎪⎨⎪⎧y =k (x -4),y 2=8x ,消去y 并整理得k 2x 2-(8k 2+8)x +16k 2=0.设A (x 1,y 1),B (x 2,y 2),则x 1x 2=16.由抛物线的定义知|BF |=|BN |=x 2+2=4,所以x 2=2,所以x 1=8,所以|AE |=x 1+2=10.因为BN ∥AE ,所以S △BCF S △ACF =|BC ||AC |=|BN ||AE |=410=25.答案:D2.已知抛物线x =18y 2的焦点为F ,过F 的直线l 与抛物线交于A ,B 两点(点A 在第一象限),抛物线的准线交x 轴于点K ,则|AF ||AK |最小时,直线AK 的斜率为( )A .1B . 2C . 3D .2 2解析:x =18y 2可化为y 2=8x .如图,过A 作准线的垂线,垂足为A 1.因为|AF |=|AA 1|,所以|AF ||AK |=|AA 1||AK |=sin ∠AKA 1.若|AF ||AK |最小,则sin ∠AKA 1最小,即∠AKA 1最小.数形结合可得,直线AK 与抛物线y 2=8x 相切时,∠AKA 1最小.设直线AK 的方程为y =k (x +2),且k >0,与y 2=8x 联立,得⎩⎪⎨⎪⎧y =k (x +2),y 2=8x ,消去x ,得ky 2-8y +16k =0,由Δ=64-64k 2=0,得k =1.答案:A。
学业分层测评(八)(建议用时:45分钟)[学业达标]一、选择题1.以抛物线y2=2px(p>0)的焦半径|PF|为直径的圆与y轴位置关系为()【导学号:63470034】A.相交B.相离C.相切D.不确定【解析】设P(x0,y0),则以|PF|为直径的圆半径r=|PF|2.又圆心到y轴的距离d=|PF|2,∴该圆与y轴相切.【答案】 C2.过点M(2,4)与抛物线y2=8x只有一个公共点的直线共有()A.1 B.2C.3 D.4【解析】由于M(2,4)在抛物线上,故满足条件的直线共有2条,一条是与x轴平行的线,另一条是过M的切线,如果点M不在抛物线上,则有3条直线.【答案】 B3.设抛物线的顶点在原点,焦点F在y轴上,抛物线上的点(k,-2)与F 的距离为4,则k的值为()A.4 B.-2C.4或-4 D.2或-2【解析】由题意知抛物线方程可设为x2=-2py(p>0),则p2+2=4,∴p=4,∴x2=-8y,将(k,-2)代入得k=±4.【答案】 C4.已知抛物线y2=2px(p>0),过其焦点且斜率为1的直线交抛物线于A、B 两点,若线段AB的中点的纵坐标为2,则该抛物线的准线方程为()A .x =1B .x =-1C .x =2D .x =-2【解析】 抛物线的焦点F ⎝ ⎛⎭⎪⎫p 2,0,所以过焦点且斜率为1的直线方程为y=x -p 2.即x =y +p 2,将其代入y 2=2px =2p ⎝ ⎛⎭⎪⎫y +p 2=2py +p 2,所以y 2-2py -p 2=0.所以y 1+y 22=p =2.所以抛物线的方程为y 2=4x ,准线方程为x =-1.【答案】 B5.已知直线l 过抛物线C 的焦点,且与C 的对称轴垂直,l 与C 交于A ,B 两点,|AB |=12,P 为C 的准线上一点,则△ABP 的面积为( )A .18B .24C .36D .48【解析】 不妨设抛物线的标准方程为y 2=2px (p >0),由于l 垂直于对称轴且过焦点,故直线l 的方程为x =p2.代入y 2=2px 得y =±p ,即|AB |=2p ,又|AB |=12,故p =6,所以抛物线的准线方程为x =-3,故S △ABP =12×6×12=36.【答案】 C 二、填空题6.抛物线顶点在坐标原点,以y 轴为对称轴,过焦点且与y 轴垂直的弦长为16,则抛物线方程为________.【解析】 过焦点且与对称轴垂直的弦是通径,即2p =16,所以抛物线的方程为x 2=±16y .【答案】 x 2=±16y7.设抛物线y 2=2px (p >0)的焦点为F ,点A (0,2),若线段F A 的中点B 在抛物线上,则点B 到该抛物线准线的距离为________.【导学号:63470035】【解析】 由已知得点B 的纵坐标为1,横坐标为p 4,即B ⎝ ⎛⎭⎪⎫p 4,1将其代入y 2=2px 得p =2,则点B 到准线的距离为p 2+p 4=34p =34 2.【答案】 34 28.对于顶点在原点的抛物线,给出下列条件: ①焦点在y 轴上; ②焦点在x 轴上;③抛物线上横坐标为1的点到焦点的距离等于6; ④抛物线的通径的长为5;⑤由原点向过焦点的某条直线作垂线,垂足坐标为(2,1).则使抛物线方程为y 2=10x 的必要条件是________(要求填写合适条件的序号).【解析】 由抛物线方程y 2=10x ,知它的焦点在x 轴上,所以②适合. 又∵它的焦点坐标为F ⎝ ⎛⎭⎪⎫52,0,原点O (0,0),设点P (2,1),可得k PO ·k PF =-1,∴⑤也合适.而①显然不合适,通过计算可知③④不合题意. ∴应填序号为②⑤. 【答案】 ②⑤ 三、解答题9.如图2-2-3所示,过抛物线y 2=2px (p >0)的焦点F 的直线l 交抛物线于点A ,B ,交其准线于点C ,若|BC |=2|BF |,且|AF |=3,求此抛物线的方程.图2-2-3【解】 过A ,B 分别作准线的垂线AA ′,BD ,垂足为A ′,D ,则|BF |=|BD |,又2|BF |=|BC |.∴在Rt △BCD 中,∠BCD =30°,又|AF |=3, ∴|AA ′|=3,|AC |=6,|FC |=3. ∴F 到准线距离p =12|FC |=32,∴y 2=3x .10.已知过抛物线y 2=4x 的焦点F 的弦长为36,求弦所在的直线的方程. 【解】 ∵过焦点F ,垂直于x 轴的弦长为4<36, ∴弦所在直线斜率存在,设弦所在的直线的斜率为k ,且与抛物线交于A (x 1,y 1),B (x 2,y 2)两点. ∵抛物线y 2=4x 的焦点为F (1,0),∴设直线方程为y =k (x -1). 由⎩⎪⎨⎪⎧y =k (x -1),y 2=4x ,整理得k 2x 2-(2k 2+4)x +k 2=0,∴x 1+x 2=2k 2+4k 2.∴|AB |=|AF |+|BF |=x 1+x 2+2=2k 2+4k 2+2. 又|AB |=36,∴2k 2+4k 2+2=36.∴k =±24.故所求直线的方程为y =24(x -1)或y =-24(x -1).[能力提升]1.过抛物线y 2=2px 的焦点F 的直线与抛物线交于A 、B 两点,若A 、B 在准线上的射影为A 1、B 1,则∠A 1FB 1等于( )A .45°B .90°C .60°D .120°【解析】如图,由抛物线定义知|AA 1|=|AF |,|BB 1|=|BF |,所以∠AA 1F =∠AF A 1,又∠AA 1F =∠A 1FO ,所以∠AF A 1=∠A 1FO ,同理∠BFB 1=∠B 1FO ,于是∠AF A 1+∠BFB 1=∠A 1FO +∠B 1FO =∠A 1FB 1. 故∠A 1FB 1=90°. 【答案】 B2.若点P 在y 2=x 上,点Q 在(x -3)2+y 2=1上,则|PQ |的最小值为( ) A.3-1 B .102-1 C .2D .112-1【解析】 设圆(x -3)2+y 2=1的圆心为Q ′(3,0),要求|PQ |的最小值,只需求|PQ ′|的最小值.设P 点坐标为(y 20,y 0),则|PQ ′|=(y 20-3)2+y 2=(y 20)2-5y 20+9=⎝ ⎛⎭⎪⎫y 20-522+114.∴|PQ ′|的最小值为112, 从而|PQ |的最小值为112-1. 【答案】 D3.(2014·湖南高考)平面上一机器人在行进中始终保持与点F (1,0)的距离和直线x =-1的距离相等.若机器人接触不到过点P (-1,0)且斜率为k 的直线,则k 的取值范围是________.【导学号:63470036】【解析】 依题意可知,机器人运行的轨迹方程为y 2=4x .设直线l :y =k (x+1),联立⎩⎪⎨⎪⎧y =k (x +1),y 2=4x ,消去y ,得k 2x 2+(2k 2-4)x +k 2=0,由Δ=(2k 2-4)2-4k 4<0,得k 2>1,解得k <-1或k >1.【答案】 {k |k <-1或k >1}4.如图2-2-4,过抛物线y 2=x 上一点A (4,2)作倾斜角互补的两条直线AB ,AC 交抛物线于B ,C 两点,求证:直线BC 的斜率是定值.图2-2-4【证明】 设k AB =k (k ≠0), ∵直线AB ,AC 的倾斜角互补, ∴k AC =-k (k ≠0),∵AB 的方程是y =k (x -4)+2.由方程组⎩⎪⎨⎪⎧y =k (x -4)+2,y 2=x ,消去y 后,整理得k 2x 2+(-8k 2+4k -1)x +16k 2-16k +4=0. ∵A (4,2),B (x B ,y B )是上述方程组的解. ∴4·x B =16k 2-16k +4k 2,即x B =4k 2-4k +1k 2.以-k 代换x B 中的k ,得x C =4k 2+4k +1k 2,∴k BC =y B -y C x B -x C=k (x B -4)+2-[-k (x C -4)+2]x B -x C=k(x B+x C-8)x B-x C=k⎝⎛⎭⎪⎫8k2+2k2-8-8kk2=-14.∴直线BC的斜率为定值.。
课时分层训练(八) 指数与指数函数A 组 基础达标(建议用时:30分钟)一、选择题1.(2018·某某模拟)已知函数f (x )=(x -a )(x -b )(其中a >b )的图像如图253所示,则函数g (x )=a x+b 的图像是( )图253C [由函数f (x )的图像可知,-1<b <0,a >1,则g (x )=a x+b 为增函数,当x =0时,g (0)=1+b >0,故选C.]2.(2016·某某某某一模)已知a =⎝ ⎛⎭⎪⎫3525,b =⎝ ⎛⎭⎪⎫2535,c =⎝ ⎛⎭⎪⎫2525,则( ) A .a <b <cB .c <b <aC .c <a <bD .b <c <aD [∵y =⎝ ⎛⎭⎪⎫25x 为减函数,35>25,∴b <c . 又∵y =x 25在(0,+∞)上是增加的,35>25, ∴a >c ,∴b <c <a ,故选D.]3.(2016·某某某某模拟)已知函数f (x )=a x,其中a >0,且a ≠1,如果以P (x 1,f (x 1)),Q (x 2,f (x 2))为端点的线段的中点在y 轴上,那么f (x 1)·f (x 2)等于( )A .1B .aC .2D .a 2A [∵以P (x 1,f (x 1)),Q (x 2,f (x 2))为端点的线段的中点在y 轴上,∴x 1+x 2=0. 又∵f (x )=a x,∴f (x 1)·f (x 2)=ax 1·ax 2=ax 1+x 2=a 0=1,故选A.]4.函数y =⎝ ⎛⎭⎪⎫122x -x 2的值域为( ) A.⎣⎢⎡⎭⎪⎫12,+∞B.⎝⎛⎦⎥⎤-∞,12 C.⎝ ⎛⎦⎥⎤0,12 D .(0,2]A [∵2x -x 2=-(x -1)2+1≤1,又y =⎝ ⎛⎭⎪⎫12t 在R 上为减函数, ∴y =⎝ ⎛⎭⎪⎫122x -x 2≥⎝ ⎛⎭⎪⎫121=12,即值域为⎣⎢⎡⎭⎪⎫12,+∞.] 5.设函数f (x )=⎩⎪⎨⎪⎧ ⎝ ⎛⎭⎪⎫12x -7,x <0,x ,x ≥0,若f (a )<1,则实数a 的取值X 围是( ) A .(-∞,-3)B .(1,+∞)C .(-3,1)D .(-∞,-3)∪(1,+∞)C [当a <0时,不等式f (a )<1可化为⎝ ⎛⎭⎪⎫12a -7<1,即⎝ ⎛⎭⎪⎫12a <8, 即⎝ ⎛⎭⎪⎫12a <⎝ ⎛⎭⎪⎫12-3, 因为0<12<1,所以a >-3,此时-3<a <0; 当a ≥0时,不等式f (a )<1可化为a <1,所以0≤a <1.故a 的取值X 围是(-3,1).]二、填空题6.计算:⎝ ⎛⎭⎪⎫32-13×⎝ ⎛⎭⎪⎫-760+814×42-⎝ ⎛⎭⎪⎫-2323=________. 2 [原式=⎝ ⎛⎭⎪⎫2313×1+234×214-⎝ ⎛⎭⎪⎫2313=2.] 7.已知函数f (x )=4+ax -1的图像恒过定点P ,则点P 的坐标是________. (1,5) [由f (1)=4+a 0=5知,点P 的坐标为(1,5).]8.若函数f (x )=2|x -a |(a ∈R )满足f (1+x )=f (1-x ),且f (x )在[m ,+∞)上是增加的,则实数m 的最小值等于________. 【导学号:00090031】1 [由f (1+x )=f (1-x )得a =1,从而函数f (x )的单调递增区间为[1,+∞),从而m 的最小值为1.]三、解答题9.(2018·某某模拟)已知函数f (x )=⎝ ⎛⎭⎪⎫12ax ,a 为常数,且函数的图像过点(-1,2). (1)求a 的值;(2)若g (x )=4-x-2,且g (x )=f (x ),求满足条件的x 的值. [解] (1)由已知得⎝ ⎛⎭⎪⎫12-a =2,解得a =1. (2)由(1)知f (x )=⎝ ⎛⎭⎪⎫12x , 又g (x )=f (x ),则4-x -2=⎝ ⎛⎭⎪⎫12x ,即⎝ ⎛⎭⎪⎫14x -⎝ ⎛⎭⎪⎫12x -2=0,即⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫12x 2-⎝ ⎛⎭⎪⎫12x -2=0,令⎝ ⎛⎭⎪⎫12x =t ,则t >0,t 2-t -2=0,即(t -2)(t +1)=0, 又t >0,故t =2,即⎝ ⎛⎭⎪⎫12x =2,解得x =-1, 故满足条件的x 的值为-1.10.已知函数f (x )=12x -1+a 是奇函数. (1)求a 的值和函数f (x )的定义域;(2)解不等式f (-m 2+2m -1)+f (m 2+3)<0.[解] (1)因为函数f (x )=12x -1+a 是奇函数,所以f (-x )=-f (x ),即12-x -1+a =11-2x -a ,即1-a 2x +a 1-2x =a ·2x +1-a 1-2x ,从而有1-a =a ,解得a =12.3分 又2x-1≠0,所以x ≠0,故函数f (x )的定义域为(-∞,0)∪(0,+∞).5分(2)由f (-m 2+2m -1)+f (m 2+3)<0,得f (-m 2+2m -1)<-f (m 2+3),因为函数f (x )为奇函数,所以f (-m 2+2m -1)<f (-m 2-3).8分由(1)可知函数f (x )在(0,+∞)上是减少的,从而在(-∞,0)上是减少的,又-m 2+2m -1<0,-m 2-3<0,所以-m 2+2m -1>-m 2-3,解得m >-1,所以不等式的解集为(-1,+∞).12分B 组 能力提升(建议用时:15分钟)1.已知实数a ,b 满足等式⎝ ⎛⎭⎪⎫12a =⎝ ⎛⎭⎪⎫13b ,下列五个关系式:①0<b <a ;②a <b <0;③0<a <b ;④b <a <0;⑤a =b =0.其中不可能成立的关系式有( )A .1个B .2个C .3个D .4个B [函数y 1=⎝ ⎛⎭⎪⎫12x 与y 2=⎝ ⎛⎭⎪⎫13x 的图像如图所示.由⎝ ⎛⎭⎪⎫12a =⎝ ⎛⎭⎪⎫13b 得a <b <0或0<b <a 或a =b =0.故①②⑤可能成立,③④不可能成立.]2.(2018·江淮十校联考)函数f (x )=x 2-bx +c 满足f (x +1)=f (1-x ),且f (0)=3,则f (b x )与f (c x )的大小关系是( ) 【导学号:00090032】A .f (b x )≤f (c x )B .f (b x )≥f (c x) C .f (b x )>f (c x ) D .与x 有关,不确定 A [由f (x +1)=f (1-x )知:函数f (x )的图像关于直线x =1对称,∴b =2.由f (0)=3知c =3,∴f (b x )=f (2x ),f (c x )=f (3x ).当x >0时,3x >2x >1,又函数f (x )在[1,+∞)上是增加的,∴f (3x )>f (2x ),即f (b x )<f (c x );当x =0时,3x =2x =1,∴f (3x )=f (2x ),即f (b x )=f (c x );当x <0时,0<3x <2x <1,又函数f (x )在(-∞,1)上是减少的,∴f (3x )>f (2x ),即f (b x )<f (c x ).综上知:f (b x )≤f (c x ).故选A.]3.已知f (x )=⎝ ⎛⎭⎪⎫1a x -1+12x 3(a >0,且a ≠1). (1)讨论f (x )的奇偶性;(2)求a 的取值X 围,使f (x )>0在定义域上恒成立.[解] (1)由于a x -1≠0,则a x≠1,得x ≠0,∴函数f (x )的定义域为{x |x ≠0}.2分 对于定义域内任意x ,有 f (-x )=⎝⎛⎭⎪⎫1a -x -1+12(-x )3 =⎝ ⎛⎭⎪⎫ax 1-a x +12(-x )3 =⎝ ⎛⎭⎪⎫-1-1a x -1+12(-x )3 =⎝ ⎛⎭⎪⎫1a x -1+12x 3=f (x ). ∴f (x )是偶函数.5分(2)由(1)知f (x )为偶函数,∴只需讨论x >0时的情况.当x >0时,要使f (x )>0,即⎝ ⎛⎭⎪⎫1a x -1+12x 3>0, 即1a x -1+12>0,即a x +12a x -1>0,9分 即a x -1>0,a x >1,a x >a 0.又∵x >0,∴a >1. 因此a >1时,f (x )>0.12分。
课时分层训练(五十) 抛物线A 组 基础达标(建议用时:30分钟)一、选择题1.(2016·四川高考)抛物线y 2=4x 的焦点坐标是( )A .(0,2)B .(0,1)C .(2,0)D .(1,0)D [由y 2=4x 知p =2,故抛物线的焦点坐标为(1,0).]2.(2017·广东茂名二模)若动圆的圆心在抛物线y =112x 2上,且与直线y +3=0相切,则此圆恒过定点( )A .(0,2)B .(0,-3)C .(0,3)D .(0,6)C [直线y +3=0是抛物线x 2=12y 的准线,由抛物线的定义知抛物线上的点到直线y =-3的距离与到焦点(0,3)的距离相等,所以此圆恒过定点(0,3).]3.抛物线y 2=4x 的焦点到双曲线x 2-y 23=1的渐近线的距离是( ) 【导学号:57962402】A.12B .32C .1D . 3 B [由双曲线x 2-y 23=1知其渐近线方程为y =±3x ,即3x ±y =0,又y 2=4x 的焦点F (1,0),∴焦点F 到直线的距离d =3(3)2+(-1)2=32.] 4.设抛物线C :y 2=2px (p >0)的焦点为F ,点M 在C 上,|MF |=5.若以MF 为直径的圆过点(0,2),则C 的方程为( )A .y 2=4x 或y 2=8xB .y 2=2x 或y 2=8xC .y 2=4x 或y 2=16xD .y 2=2x 或y 2=16xC [由已知得抛物线的焦点F ⎝ ⎛⎭⎪⎫p 2,0,设点A (0,2),点M (x 0,y 0). 则AF →=⎝ ⎛⎭⎪⎫p 2,-2,AM →=⎝ ⎛⎭⎪⎫y 202p ,y 0-2. 由已知得,AF →·AM →=0,即y 20-8y 0+16=0,因而y 0=4,M ⎝ ⎛⎭⎪⎫8p ,4. 由|MF |=5,得⎝ ⎛⎭⎪⎫8p -p 22+16=5, 又p >0,解得p =2或p =8.故C 的方程为y 2=4x 或y 2=16x .] 5.O 为坐标原点,F 为抛物线C :y 2=42x 的焦点,P 为C 上一点,若|PF |=42,则△POF 的面积为( ) A .2B .2 2C .2 3D .4C [如图,设点P 的坐标为(x 0,y 0),由|PF |=x 0+2=42,得x 0=32,代入抛物线方程得,y 20=42×32=24,所以|y 0|=26,所以S △POF =12|OF ||y 0|=12×2×26=2 3.]二、填空题6.(2017·山西四校三联)过抛物线y 2=4x 的焦点F 作倾斜角为45°的直线交抛物线于A ,B 两点,则弦长|AB |为__________.【导学号:57962403】8 [设A (x 1,y 1),B (x 2,y 2).易得抛物线的焦点是F (1,0),所以直线AB 的方程是y =x -1.联立⎩⎪⎨⎪⎧y 2=4x ,y =x -1,消去y 得x 2-6x +1=0. 所以x 1+x 2=6,所以|AB |=x 1+x 2+p =6+2=8.]7.如图8-6-1,正方形ABCD 和正方形DEFG 的边长分别为a ,b (a <b ),原点O 为AD 的中点,抛物线y 2=2px (p >0)经过C ,F 两点,则b a =__________.图8-6-12+1 [由题意可得C ⎝ ⎛⎭⎪⎫a 2,-a ,F ⎝ ⎛⎭⎪⎫a 2+b ,b , 则⎩⎨⎧ a 2=pa ,b 2=2p ⎝ ⎛⎭⎪⎫a 2+b ,b a =2+1(舍去1-2).]8.(2017·江西九校联考)抛物线y 2=2px (p >0)的焦点为F ,其准线与双曲线y 2-x 2=1相交于A ,B 两点,若△ABF 为等边三角形,则p =__________. 23 [y 2=2px 的准线为x =-p 2.由于△ABF 为等边三角形.因此不妨设A ⎝ ⎛⎭⎪⎫-p 2,p 3,B ⎝⎛⎭⎪⎫-p 2,-p 3. 又点A ,B 在双曲线y 2-x 2=1,从而p 23-p 24=1,所以p =2 3.]三、解答题9.已知抛物线y 2=2px (p >0),过点C (-2,0)的直线l 交抛物线于A ,B 两点,坐标原点为O ,OA →·OB →=12.(1)求抛物线的方程;(2)当以|AB |为直径的圆与y 轴相切时,求直线l 的方程.[解] (1)设l :x =my -2,代入y 2=2px 中,得y 2-2pmy +4p =0. 2分设A (x 1,y 1),B (x 2,y 2),则y 1+y 2=2pm ,y 1y 2=4p ,则x 1x 2=y 21y 224p 2=4,因为OA →·OB →=x 1x 2+y 1y 2=4+4p =12,可得p =2,则抛物线的方程为y 2=4x . 5分(2)由(1)知y 2=4x ,p =2,可知y 1+y 2=4m ,y 1y 2=8.7分设AB 的中点为M ,则|AB |=2x M =x 1+x 2=m (y 1+y 2)-4=4m 2-4.①又|AB |=1+m 2|y 1-y 2|=(1+m 2)(16m 2-32).②由①②得(1+m 2)(16m 2-32)=(4m 2-4)2,10分解得m 2=3,m =±3,所以直线l 的方程为x +3y +2=0或x -3y +2=0. 12分10.已知过抛物线y 2=2px (p >0)的焦点,斜率为22的直线交抛物线于A (x 1,y 1),B (x 2,y 2)(x 1<x 2)两点,且|AB |=9.(1)求该抛物线的方程;(2)O 为坐标原点,C 为抛物线上一点,若OC →=OA →+λOB →,求λ的值.【导学号:57962404】[解] (1)由题意得直线AB 的方程为y =22⎝ ⎛⎭⎪⎫x -p 2, 与y 2=2px 联立,从而有4x 2-5px +p 2=0,所以x 1+x 2=5p 4.3分由抛物线定义得|AB |=x 1+x 2+p =5p 4+p =9,所以p =4,从而该抛物线的方程为y 2=8x . 5分(2)由(1)得4x 2-5px +p 2=0,即x 2-5x +4=0,则x 1=1,x 2=4,于是y 1=-22,y 2=42,从而A (1,-22),B (4,42). 8分设C (x 3,y 3),则OC →=(x 3,y 3)=(1,-22)+λ(4,42)=(4λ+1,42λ-22).10分又y 23=8x 3,所以[22(2λ-1)]2=8(4λ+1),整理得(2λ-1)2=4λ+1,解得λ=0或λ=2. 12分B 组 能力提升(建议用时:15分钟)1.(2014·全国卷Ⅱ)设F 为抛物线C :y 2=3x 的焦点,过F 且倾斜角为30°的直线交C 于A ,B 两点,则|AB |=( ) A.303B .6C .12D .7 3C [∵F 为抛物线C :y 2=3x 的焦点,∴F ⎝ ⎛⎭⎪⎫34,0,∴AB 的方程为y -0=tan 30°⎝ ⎛⎭⎪⎫x -34,即y =33x -34. 联立⎩⎨⎧ y 2=3x ,y =33x -34,得13x 2-72x +316=0,∴x 1+x 2=--7213=212,即x A +x B =212.由于|AB |=x A +x B +p ,∴|AB |=212+32=12.]2.(2017·衡水中学月考)已知直线l :y =kx +t 与圆:x 2+(y +1)2=1相切,且与抛物线C :x 2=4y 交于不同的两点M ,N ,则实数t 的取值范围是________________.t >0或t <-3 [因为直线l 与圆相切,所以|t +1|1+k 2=1⇒k 2=t 2+2t .再把直线l 的方程代入抛物线方程并整理得x 2-4kx -4t =0,于是Δ=16k 2+16t =16(t 2+2t )+16t >0,解得t >0或t <-3.]3.抛物线y 2=4x 的焦点为F ,过点F 的直线交抛物线于A ,B 两点.(1)若AF →=2 FB →,求直线AB 的斜率;(2)设点M 在线段AB 上运动,原点O 关于点M 的对称点为C ,求四边形OACB 面积的最小值.【导学号:57962405】[解] (1)依题意知F (1,0),设直线AB 的方程为x =my +1.将直线AB 的方程与抛物线的方程联立,消去x 得y 2-4my -4=0.2分设A (x 1,y 1),B (x 2,y 2),所以y 1+y 2=4m ,y 1y 2=-4.因为AF →=2 FB →,所以y 1=-2y 2.联立上述三式,消去y 1,y 2得m =±24.所以直线AB 的斜率是±2 2. 5分(2)由点C 与原点O 关于点M 对称,得M 是线段OC 的中点,从而点O 与点C 到直线AB 的距离相等,所以四边形OACB 的面积等于2S △AOB . 8分因为2S △AOB =2×12·|OF |·|y 1-y 2|=(y 1+y 2)2-4y 1y 2=41+m 2,所以当m =0时,四边形OACB 的面积最小,最小值是4. 12分。