坐标反算正算计算公式-推荐下载
- 格式:pdf
- 大小:224.94 KB
- 文档页数:8
CASIO 4850 计算器程序(文件名:ZUO BIAO F-Z)1、坐标反算至正算:由两已知点坐标计算出此两点的距离和坐标方位角,然后根据未知的第三点至两已知点其中一点的距离和形成的转折角,求算出两已知点其中一点至第三点的坐标方位角和第三点的坐标。
C“X1”:D“Y1”:E“X2”:F“Y2”:G“ZHUAN JIAO 1-2-3”:H“BIAN CHANG 2-3”Fixm:Pol(E-C,F-D:“BIAN CHANG=”:A=I◢J≤0=>J=J+360⊿“JIAO 1-2=”:B=J→DMS◢G<0=>K=B+G+180⊿G>0=>K=B+G-180⊿K>0=>K<360=>“JIAO 2-3=”:L=K→DMS◢⊿⊿K<0=>“JIAO 2-3=”:L=K+360→DMS◢⊿K>360=>“JIAO 2-3=”:L=K-360→DMS◢⊿“X3=”:N=E+H COS L◢“Y3=”:O=F+H Sin L◢程序运行时:(1)X1?输入已知起点X坐标。
(2)Y1?输入已知起点Y坐标。
(3)X2?输入已知终点X坐标。
(4)Y2?输入已知终点Y坐标。
(5)ZHUAN JIAO 1-2-3?输入已知起点-已知终点-未知点三点连线间位于已知终点处的夹角(转折角),请注意:如为左角就直接输入,如为右角输入时带上负号。
(6)BIAN CHANG 2-3?输入已知终点-未知点的距离(边长)。
(7)BIAN CHANG 1-2= 输出已知起点-已知终点的距离(边长)。
(8)JIAO 1-2= 输出已知起点-已知终点的坐标方位角。
(9)JIAO 2-3= 输出已知终点-未知点的坐标方位角。
(10)X3= 输出未知点的坐标值X。
(11)Y3= 输出未知点的坐标值Y。
循环到第(1)步……2、坐标正算(文件名:ZBZS)C“X1”:D“Y1”:S“BIAN CHANG”:R“JIAO 1-2”:Fixm:“X2=”:X=C+Rec(S,R◢“Y2=”:Y=D+J输入:X1-已知点X坐标Y1-已知点Y坐标BIAN CHANG?已知点到未知点的距离JIAO 1-2?已知点到未知点的方位角显示:X2=求算出点的X坐标Y2=求算出点的Y坐标。
第六章→第三节→导线测量内业计算导线计算的目的是要计算出导线点的坐标,计算导线测量的精度是否满足要求。
首先要查实起算点的坐标、起始边的方位角,校核外业观测资料,确保外业资料的计算正确、合格无误。
一、坐标正算与坐标反算1、坐标正算已知点的坐标、边的方位角、两点间的水平距离,计算待定点的坐标,称为坐标正算。
如图6-6 所示,点的坐标可由下式计算:式中、为两导线点坐标之差,称为坐标增量,即:【例题6-1】已知点A坐标,=1000、=1000、方位角=35°17'36.5",两点水平距离=200.416,计算点的坐标?35o17'36.5"=1163.58035o17'36.5"=1115.7932、坐标反算已知两点的坐标,计算两点的水平距离与坐标方位角,称为坐标反算。
如图6-6可知,由下式计算水平距离与坐标方位角。
(6-3)(6-4)式中反正切函数的值域是-90°~+90°,而坐标方位角为0°~360°,因此坐标方位角的值,可根据、的正负号所在象限,将反正切角值换算为坐标方位角。
【例题6-2】=3712232.528、=523620.436、=3712227.860、=523611.598,计算坐标方位角计算坐标方位角、水平距离。
=62°09'29.4"+180°=242°09'29.4"注意:一直线有两个方向,存在两个方位角,式中:、的计算是过A点坐标纵轴至直线的坐标方位角,若所求坐标方位角为,则应是A点坐标减点坐标。
坐标正算与反算,可以利用普通科学电子计算器的极坐标和直角坐标相互转换功能计算,普通科学电子计算器的类型比较多,操作方法不相同,下面介绍一种方法。
【例题6-3】坐标反算,已知=2365.16、=1181.77、=1771.03、=1719.24,试计算坐标方位角、水平距离。
坐标反算正算计算公式一、坐标正算根据A点的坐标X A、Y A和直线AB的水平距离D AB与坐标方位角O AB,推算B点的坐标X B、Y B,为坐标正算,其计算公式为:X B = X A + AX ABY B = X A + AY AB(1-18 )二式中,AX AB与AY AB分别称为A〜B的纵、横坐标增量,其计算公式为:AXAB = X B—X A = D AB COS O ABAYAB = Y B—Y A = D AB sin O AB(1-19)注意,AX AB和AY AB均有正、负,其符号取决于直线AB的坐标方位角所在的象限。
二、坐标反算根据A、B两点的坐标X A、Y A和X B、Y B,推算直线AB的水平距离D AB与坐标方位角OCAB ,为坐标反算。
其计算公式为:(1-20 )注意,由(1-20 )式计算OCAB时往往得到的是象限角的数值,必须先根据AX AB、AY AB的正、负号,确定直线AB所在的象限,再将象限角换算为坐标方位角。
三角函数内容规律三角函数看似很多,很复杂,但只要掌握了三角函数的本质及内部规律就会发现三角函数各个公式之间有强大的联系。
而掌握三角函数的内部规律及本质也是学好三角函数的关键所在.1、三角函数本质:三角函数的本质来源于定义,如右图:根据右图,有sin 0 =y/ R; cos 0 =x/R; tan 0 =y/x; cot 0 =x/y。
深刻理解了这一点,下面所有的三角公式都可以从这里出发推导出来,比如以推导si n( A+B) = si nAcosB+cosAs inB 为例:推导:首先画单位圆交X轴于C,D,在单位圆上有任意A,B点。
角AOD为a,BOD为B,旋转AOB使0B与0D重合,形成新A'OD。
A(cos a ,sin a ),B(cos 3 ,sin 3 ),A'(cos( - BM,sin( 诩)) OA'=OA=OB=OD=1,D(1,0) [cos( a- 3 >1]A2+[sin( a- 3 )]A2=(cos a cos 3 )A2+(sin a-sin3 )A2和差化积及积化和差用还原法结合上面公式可推出(换(a+b)/2与(a-b)/2 )[1](1-21 )两角和公式sin( A+B) = sin AcosB+cosAs inB sin (A-B) = sin AcosB- COSAsinB cos(A+B) = cosAcosB-s inAsinB cos(A-B) = cosAcosB+si nAsi nB tan (A+B) = (ta nA+ta nB)/(1-ta nAta nB)ta n( A-B) = (ta nA-ta nB)/(1+ta nAta nB)cot(A+B) = (cotAcotB- 1 )/(COtB + COtA) cot(A-B) = (cotAcotB+1)/(cotB-cotA)[]倍角公式Si n2A=2Si nA?CosACos2A=CosA A2-Si nA^2=1-2Si nAA2=2CosAA2-1tan 2A=2ta nA/ (1-tanAA2 )是sinA的平方sin2 (A))(注:Si nAA2[]三倍角公式sin3 a =4sin a-sin( n /3+ a )sin( n/)cos3 a =4cos a-cos( n /3+ a )cos( n /3a )tan3a = tan a • tan( n /3+a) • tan( n /3-a)[]三倍角公式推导sin 3a=sin( 2a+a)=sin 2acosa+cos2as ina=2s in a(1-s in& sup2;a)+(1-2s in& sup2;a)s ina=3s in a-4s in³acos3a=cos(2a+a)=cos2acosa-s in 2as ina=(2cos²a-1)cosa-2(1-s in& sup2;a)cosa=4cos³a-3cosasin 3a=3s in a-4s in& sup3;a=4si na(3/4-si n& sup2;a)=4sina[( V3/2)² -sin²a]=4sina(sin²60 °-sin²a)=4sina(sin60 °+sina)(sin60 °-sina)°)/2]}=4sina*2sin[(60+a)/2]cos[(60 °-a)/2]*2sin[(60 °-a)/2]cos[(60 °-a)/2]=4sinasin(60 °+a)sin(60 °-a) cos3a=4cos³a-3cosa =4cosa(cos²a-3/4) =4cosa[cos²a-(V 3/2) ²]=4cosa(cos²a-cos²30 °)=4cosa(cosa+cos30° )(cosa-cos30 °) =4cosa*2cos[(a+30 ° )/2]cos[(a-30 °)/2]*{-2sin[(a+30°)/2]sin[(a-30=-4cosasin(a+30 ° )sin(a-30 °) =-4cosasin[90 °-(60 °-a)]sin[-90 °+(60°+a)]=-4cosacos(60 ° -a)[-cos(60 °+a)] =4cosacos(60° -a)cos(60 °+a) 上述两式相比可得tan3a=tanatan(60 ° -a)tan(60 °+a) []半角公式tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA); cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA. []和差化积sin 0 +sin $ = 2sin[( 0 + )/2]cos[( - © )/2]sin 0-sin © = 2cos[( 0 + © )/2]sin[( - © )/2] cos 0+cos © = 2cos[( 0+©)/2]cos[( -0©)/2] cos 0-cos © = -2sin[( 0+©)/2]sin[( -©0)/2] tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB) []积化和差sin a sin 3 = -1/2*[cos( a + 3-)cos( a - 3 )] cos a cos 3 = 1/2*[cos( a +3)+cos( a -3)] sin a cos 3 = 1/2*[sin( a +3)+sin( -a3)] cos a sin 3 = 1/2*[sin(a +3-s )in( a -3)][]诱导公式sin(- a ) = -sin acos(- a ) =cos aSin( n /2- a ) = -COS a cos( n /2 - a ) = sin a Sin( n /2+ a )= COS a cos( n /2+ a ) = -sin asin( n- a ) = sin a COs( n - a ) = -COs a sin( n + a ) = -sin a cos( n + a ) = -cos a tanA=sinA/COsA tan ( n /2 + a) =—cot a tan ( n /2 — a) = cot a tan ( n — a) =—tan a tan ( n+ a) = tan a[][](sin a )A2+(cos a )A2=11+(tan a )A2=(sec a )人21+(cot a)A2=(csc a)A2证明下面两式,只需将一式,左右同除(sin a )A2第二个除(COS a )A2即可对于任意非直角三角形,总有tanA+tanB+tanC=tanAtanBtanC证:A+B=^ -Ctan(A+B)=tan( n -C)(tanA+tanB)/(1- tanAtanB)=(tan n -tanC)/(1+tan n tanC)整理可得tanA+tanB+tanC=tanAtanBtanC得证同样可以得证,当x+y+z=n n (n € Z)时,该关系式也成立[]其他非重点三角函数csc(a) = 1/sin(a)sec(a) = 1/cos(a) []双曲函数sin h(a) = [e A a-e A(-a)]/2COSh(a) = [eAa+eA(-a)]/2tg h(a) = Sin h(a)/COS h(a)公式一:设a为任意角,终边相同的角的同一二角函数的值相等:sin ( 2k n + a)=sin aCOS ( 2k n+ a) = COS atan ( k n + a)=tan acot ( k n+ a)=COt a公式二:设a为任意角,n + a的三角函数值与a的三角函数值之间的关系sin ( n+ a)= :-sin aCOS ( n+ a):=-COS atan ( n+ a)= tan aCOt ( n+ a)= COt a公式二:任意角a与- a的三角函数值之间的关系:sin (- a) = -sin aCOS ( -a) = COS atan (- a) = -tan aCOt (-a)= -COt a公式四:利用公式—和公式二可以得到n- a与a的三角函数值之间的关系sin ( n- a)= Sin aCOS ( n- a)= -COS atan ( n- a)= -tan aCOt ( n- a)= -COt a公式五:利用公式-和公式二可以得到 2 n - a与a的三角函数值之间的关系:Sin ( 2 n- a)= -Sin aCOS ( 2 n- a)= COS atan ( 2 n- a)= -tan aCOt ( 2 n- a)= -COt a公式六:n /2 土及3 n /2 ±a与a的二角函数值之间的关系:Sin ( n /2+ a) = COS aCOS ( n /2+ a) = -sin atan (n /2+ a = -COt a cot (n /2+ a = -ta n a sin((n /2- a)= COs a cos (n /2- a)= sin a tan (n /2- a)= COt a cot (n /2- a)= tan a sin((3 n /2+ a )=-COs a cos (3 n /2+ a)=sin a tan (3 n /2+ a )=-COt a cot (3 n /2+ a )=-tan a sin((3 n /2- a):=-COS a cos (3n /2- a)= -sin a tan (3n /2- a)= COt a cot (3n /2- a):= tan a (以上k € Z)这个物理常用公式我费了半天的劲才输进来A • sin( 31+ 0 )+B - sin( w t+ $ = v{(A A2+B A2 +2ABc os( 0- $ )} ? sin { +B A2; +2ABcos( 0 - $ )} }~表示根号,包括{ .... }中的内容,希望对大家有用w t + arcsin[ (A?sin 0 +B?sin $ ) / V{人人2。
坐标正反算定义及公式[精华]第六章?第三节?导线测量内业计算导线计算的目的是要计算出导线点的坐标,计算导线测量的精度是否满足要求。
首先要查实起算点的坐标、起始边的方位角,校核外业观测资料,确保外业资料的计算正确、合格无误。
一、坐标正算与坐标反算1、坐标正算已知点的坐标、边的方位角、两点间的水平距离,计算待定点的坐标,称为坐标正算。
如图6-6 所示,点的坐标可由下式计算:式中、为两导线点坐标之差,称为坐标增量,即:【例题6-1】已知点A坐标,=1000、=1000、方位角=35?17,36.5",两点水平距离=200.416,计算点的坐标,35o17,36.5"=1163.58035o17,36.5"=1115.7932、坐标反算已知两点的坐标,计算两点的水平距离与坐标方位角,称为坐标反算。
如图6-6 可知,由下式计算水平距离与坐标方位角。
(6-3)4) (6-式中反正切函数的值域是-90?,+90?,而坐标方位角为0?,360?,因此坐标方位角的值,可根据、的正负号所在象限,将反正切角值换算为坐标方位角。
【例题6-2】=3712232.528、=523620.436、=3712227.860、=523611.598,计算坐标方位角计算坐标方位角、水平距离。
=62?09,29.4"+180?=242?09,29.4"注意:一直线有两个方向,存在两个方位角,式中:、点坐标纵轴至直线的坐标方位角,若所求坐标方位角为的计算是过A,则应是A点坐标减点坐标。
坐标正算与反算,可以利用普通科学电子计算器的极坐标和直角坐标相互转换功能计算,普通科学电子计算器的类型比较多,操作方法不相同,下面介绍一种方法。
【例题6-3】坐标反算,已知=2365.16、=1181.77、=1771.03、=1719.24,试计算坐标方位角、水平距离。
键入1771.03-2365.16按等号键,=,等于纵坐标增量,按储存键,,,键入1719.24-1181.77按等号键,=,等于横坐标增量,按,,键输入,按,,显示横坐标增量,按,,键输入,按第二功能键,2ndF,,再按,,键,屏显为距离,再按,,键,屏显为方位角。
坐标正反算定义及公式第六章→第三节→导线测量内业计算导线计算的目的是要计算出导线点的坐标,计算导线测量的精度是否满足要求。
首先要查实起算点的坐标、起始边的方位角,校核外业观测资料,确保外业资料的计算正确、合格无误。
一、坐标正算与坐标反算1、坐标正算已知点的坐标、边的方位角、两点间的水平距离,计算待定点的坐标,称为坐标正算。
如图6-6 所示,点的坐标可由下式计算:式中、为两导线点坐标之差,称为坐标增量,即:【例题6-1】已知点A坐标,=1000、=1000、方位角=35°17'36.5",两点水平距离=200.416,计算点的坐标?35o17'36.5"=1163.58035o17'36.5"=1115.7932、坐标反算已知两点的坐标,计算两点的水平距离与坐标方位角,称为坐标反算。
如图6-6 可知,由下式计算水平距离与坐标方位角。
(6-3)(6-4)式中反正切函数的值域是-90°~+90°,而坐标方位角为0°~360°,因此坐标方位角的值,可根据、的正负号所在象限,将反正切角值换算为坐标方位角。
【例题6-2】=3712232.528、=523620.436、=3712227.860、=523611.598,计算坐标方位角计算坐标方位角、水平距离。
=62°09'29.4"+180°=242°09'29.4"注意:一直线有两个方向,存在两个方位角,式中:、的计算是过A点坐标纵轴至直线的坐标方位角,若所求坐标方位角为,则应是A点坐标减点坐标。
坐标正算与反算,可以利用普通科学电子计算器的极坐标和直角坐标相互转换功能计算,普通科学电子计算器的类型比较多,操作方法不相同,下面介绍一种方法。
【例题6-3】坐标反算,已知=2365.16、=1181.77、=1771.03、=1719.24,试计算坐标方位角、水平距离。
第六章T第二节T导线测量内业计算导线计算的目的是要计算出导线点的坐标,计算导线测量的精度是否满足要求。
首先要查实起算点的坐标、起始边的方位角,校核外业观测资料,确保外业资料的计算正确、合格无误。
一、坐标正算与坐标反算1、坐标正算已知点的坐标、边的方位角、两点间的水平距离,计算待定点的坐标,称为坐标正算。
如图6-6所示,点的坐标可由下式计算:巾=M +仏心式中:上、上山为两导线点坐标之差,称为坐标增量,即:为如=y 厂V A = 盘血【例题6-1】已知点A 坐标,I =1000、」\ =1000;!、方位角:上=35° 17/ 36.5", 两点水平距离 f =200.416 ,计算 点的坐标?\- […二* IIH+ : II - / 350177 36.5"=1163.580n:二匚I 2'jj.L j :,:35o17z 36.5"=1115.7932、坐标反算已知 两点的坐标,计算 两点的水平距离与坐标方位角, 称为坐标反算。
如图6-6可知,由下式计算水平距离与坐标方位角% = J 山此(6-3)(6-4)式中反正切函数的值域是-90°〜+90°,而坐标方位角为 0°〜360°,因此坐标方位角的值,可根据、 的正负号所在象限,将反 正切角值换算为坐标方位角。
【例题 6-2 】 =3712232.528、 =523620.436 、 =3712227.860、应=523611.598 ,计算坐标方位角计算坐标方位角 二工、水平距离% - J 竝 + 今:=27.8150 - 32.528)2 + f 611.598 - 620.436 )2= 799.900468 =9.995^=arclan 今塑y.-y.611.598 - 620.436 - 8.838a Jfl arctan —_—= arctan ------------- > arclan ----亦-心27,860 - 32.528 - 4.668=62° 09/ 29.4"+180 ° =242° 09/29.4"注意:一直线有两个方向,存在两个方位角,式中:二】」、的计算是过A点坐标纵轴至直线」的坐标方位角,若所求坐标方位角为,二,则应是A点坐标减点坐标。
第六章→第三节→导线测量业计算导线计算的目的是要计算出导线点的坐标,计算导线测量的精度是否满足要求。
首先要查实起算点的坐标、起始边的方位角,校核外业观测资料,确保外业资料的计算正确、合格无误。
一、坐标正算与坐标反算1、坐标正算已知点的坐标、边的方位角、两点间的水平距离,计算待定点的坐标,称为坐标正算。
如图6-6 所示,点的坐标可由下式计算:式中、为两导线点坐标之差,称为坐标增量,即:[例题6-1]已知点A坐标,=1000、=1000、方位角=35°17'36.5",两点水平距离=200.416,计算点的坐标?35o17'36.5"=1163.58035o17'36.5"=1115.7932、坐标反算已知两点的坐标,计算两点的水平距离与坐标方位角,称为坐标反算。
如图6-6可知,由下式计算水平距离与坐标方位角。
(6-3)(6-4)式中反正切函数的值域是-90°~+90°,而坐标方位角为0°~360°,因此坐标方位角的值,可根据、的正负号所在象限,将反正切角值换算为坐标方位角。
[例题6-2]=3712232.528、=523620.436、=3712227.860、=523611.598,计算坐标方位角计算坐标方位角、水平距离。
=62°09'29.4"+180°=242°09'29.4"注意:一直线有两个方向,存在两个方位角,式中:、的计算是过A点坐标纵轴至直线的坐标方位角,若所求坐标方位角为,则应是A点坐标减点坐标。
坐标正算与反算,可以利用普通科学电子计算器的极坐标和直角坐标相互转换功能计算,普通科学电子计算器的类型比较多,操作方法不相同,下面介绍一种方法。
[例题6-3]坐标反算,已知=2365.16、=1181.77、=1771.03、=1719.24,试计算坐标方位角、水平距离。
第六章→第三节→导线测量内业计算导线计算的目的是要计算出导线点的坐标,计算导线测量的精度是否满足要求。
首先要查实起算点的坐标、起始边的方位角,校核外业观测资料,确保外业资料的计算正确、合格无误。
一、坐标正算与坐标反算1、坐标正算已知点的坐标、边的方位角、两点间的水平距离,计算待定点的坐标,称为坐标正算。
如图6-6 所示,点的坐标可由下式计算:式中、为两导线点坐标之差,称为坐标增量,即:【例题6-1】已知点A坐标,=1000、=1000、方位角=35°17'36.5",两点水平距离=200.416,计算点的坐标?35o17'36.5"=1163.58035o17'36.5"=1115.7932、坐标反算已知两点的坐标,计算两点的水平距离与坐标方位角,称为坐标反算。
如图6-6可知,由下式计算水平距离与坐标方位角。
(6-3)(6-4)式中反正切函数的值域是-90°~+90°,而坐标方位角为0°~360°,因此坐标方位角的值,可根据、的正负号所在象限,将反正切角值换算为坐标方位角。
【例题6-2】=3712232.528、=523620.436、=3712227.860、=523611.598,计算坐标方位角计算坐标方位角、水平距离。
=62°09'29.4"+180°=242°09'29.4"注意:一条直线有两个方向,存在两个方位角,式中:、的计算是过A点坐标纵轴至直线的坐标方位角,若所求坐标方位角为,则应是A点坐标减点坐标。
坐标正算与反算,可以利用普通科学电子计算器的极坐标和直角坐标相互转换功能计算,普通科学电子计算器的类型比较多,操作方法不相同,下面介绍一种方法。
【例题6-3】坐标反算,已知=2365.16、=1181.77、=1771.03、=1719.24,试计算坐标方位角、水平距离。