2014年曲靖市越州一中中考数学模拟试卷
- 格式:doc
- 大小:175.50 KB
- 文档页数:7
曲靖市2014初中学业水平、高中阶段招生统一考试试题卷数学样卷(二)(满分120分,考试用时120分钟,命题板桥二中金保林)一、选择题(本大题共8个小题,每小题只有一个正确选项,每小题3分,满分24分) 1有意义的x 的取值范围是( )A .13x >B .13x >-C . 13x ≥D .13x ≥- 2.如图,1502110AB CD ∠=∠=∥,°,°,则3∠=( ). A .60°B .50°C . 70°D .80°3.下列计算中正确的一个是( )A .a 5+ a 5=2a 10B .a 3·a 5= a 15C .(a 2b )3=a 2b 3D .(2)(2)a a +-= 24a - 4.如图,以O 为圆心,任意长为半径画弧,与射线OM 交于点A ,再以A 为圆心,AO 长为半径画弧,两弧交于点B ,画射线OB ,则sin ∠AOB 的值等于A.125.不等式组的解集在数轴上表示为( ).C6.下列各点中,在函数y=x图象上的点是 ( )A .(2,4)B .(-1,2)C .(-2,-1) D .(-21,-1)7.已知m ,n 是关于x 的一元二次方程x 2﹣3x+a=0的两个解,若(m ﹣1)(n ﹣1)=﹣6,则a 的)二、填空题(本大题共8个小题,每小题3分,满分24分) 9.-2014的倒数的相反数是10. 一个几何体的三视图完全相同,该几何体可以是 .(写出一个即可).11. 据2014年1月24日某报报道,某县2013年财政收入突破18亿元。
将18亿用科学记数法表示为12.随着国家抑制房价政策的出台,某楼盘房价连续两次下跌,由原来的每平方米5000元降至 每平方米4050元,设每次降价的百分率相同,则降价百分率13.如图,在小山的东侧A 点有一个热气球,由于受西风的影响,以30米/分的速度沿与地面成75°角的方向飞行,25分钟后到达C 处,此时热气球上的人测得小山西侧B 点的俯角为30°,则小山东西两侧A 、B 两点间的距离为 米.14.如图,在ABC ∆中,065=∠CAB ,在同一平面内, 将ABC ∆绕点A 逆时针旋转到''C AB ∆的位置,使得C C '∥AB ,则AB B '∠等于15.如图,沿AE 折叠矩形纸片ABCD ,使点D 落在BC 边的点F 处.已知AB=8,BC=10,则S △AEF =16.如图4,在ABC ∆中,α=∠A ,ABC ∠的平分线与ACD ∠的平分线交于点1A ,得1A ∠,BC A 1∠的平分线与CD A 1∠的平分线交于点2A ,得2A ∠,……,2013A BC ∠的平分线与2013A CD ∠的平分线交于点2014A ,得2014A CD ∠,则2014A ∠= .AB C(第2题图)1 23C 'B 'CBA(第 19 题图)(图 2)(图 1)三、解答题(本大题共8个小题,满分72分)17.(本题满分6分)计算:11(1)52-⎛⎫π-+-+- ⎪⎝⎭18.(本题满分8分) 先化简,再求值:)1x 1x 21x (1x 2x 2+---÷--,其中x 是方程x 2+x -6=0的根.19.(本题满分8分)为了培养学生勤俭节约的意识,从小养成良好的生活习惯。
中考模拟考试数学试卷含答案一、选择题:(本大题12个小题,每小题4分,共48分)1.在﹣1,0,2,3这四个数中,比0小的数是()A. ﹣1B. 0C. 2D. 32.下列图形中,是轴对称图形的是()A. B. C. D.3.计算3a3•(﹣2a)2的结果是()A. 12a5B. ﹣12a5C. 12a6D. ﹣12a64.△ABC与△DEF的相似比为3:4,则△ABC与△DEF的周长的比为()A. 3:4B. 4:3C. 9:16D. 16:95.1x+中,字母x的取值范围是()A. x≥0B. x≤0C. x≥﹣1D. x≤﹣16.下列说法正确的是()A. 了解我国青年人喜欢的电视节目应采用全面调查B. 对飞机乘客的安检应采用抽样调查C. “掷一次硬币,出现正面向上”是随机事件D. “购买1张彩票就中奖”是不可能事件7.已知a=4,b=﹣1,则代数式2a﹣b﹣3的值为()A. 4B. 6C. 7D. 128.19273-)A. ﹣2和﹣1B. ﹣3和﹣2C. ﹣4和﹣3D. ﹣5和﹣49.如图,扇形AOB中,OA=2,C为弧AB上的一点,连接AC,BC,如果四边形AOBC为菱形,则图中阴影部分的面积为()A.233π- B.2233π- C.433π- D.4233π-10.如图,每个图形都由同样大小的“△”按照一定的规律组成,其中第1个图形有4个“△”,第2个图形有7个“△”,第3个图形有11个“△”,…,则第8个图形中“△”的个数为()A. 46B. 48C. 50D. 5211.防洪大堤的横截面如图所示,已知AE∥BC,背水坡AB的坡度41:3i=,且AB=20米.身高1.7米的小明竖直站立于A点,眼睛在M点处测得竖立的高压电线杆顶端D点的仰角为24°,已知地面CB宽30米,则高压电线杆CD的高度为()(结果精确到整数,参考数据:sin24°≈0.40,cos24°≈0.91,tan24°≈0.45)A. 30米B. 32米C. 34米D. 36米12.若关于x的不等式组12()321(53)6x xx a a⎧+≤+⎪⎪⎨⎪->-+⎪⎩有三个整数解,且关于x的分式方程1122x a x x++=---有正数解,则所有满足条件的整数a 的值之和是( ) A. ﹣3 B. ﹣1 C. 0 D. 2二、填空题:(本大题6个小题,每小题4分,共24分)13.我国因环境污染造成的巨大经济损失每年高达680000000元,这个数用科学记数法表示为 ▲ 元.14.211()2---- =_____.15.某市近8日每日最高气温折线统计图如图所示,这组每日最高气温数据的位数是_____度.16.如图,△ABC 是⊙O 的内接三角形,AD 是直径,∠ABC=48°,则∠CAD=_____.17.一列快车从甲地匀速驶往乙地,一列慢车从乙地匀速驶往甲地.设先发车辆行驶的时间为x 小时,两车之间的距离为y 千米,图中的折线表示y 与x 之间的函数关系.当两车之间的距离首次为300千米时,经过_____小时后,它们之间的距离再次为300千米.18.如图,已知在正方形ABCD 中,F 是CD 边上一点(不与C 、D 重合),过点D 作DG⊥BF 交BF 延长线于点G .连接AG ,交BD 于点E ,连接EF ,交CD 于点M .若DG =6,AG =2,则EF 长为__.三、解答题:(本大题2个小题,每小题8分,共16分)19.如图,AB∥CD,EF平分∠AEG,若∠FGE=40°,求∠EFC的度数.20.我校4月份举办了教职工羽毛球赛,本次比赛共分三个项目:男双、女双和混双.比赛规定参赛男教师只能在男双或混双中选报一项,参赛女教师只能在女双或混双中选报一项,现将参赛人数和各项的参赛队数(两人组成一队)绘制成了如下不完整的统计图:(1)本次比赛共有_____名参赛教师,并补全条形统计图;(2)已知男双冠军分别是音乐教师和体育教师,女双冠军都是数学教师,混双冠军分别是数学男教师和美术女教师.暑假期问市教委将举办全市中小学教师羽毛球比赛,比赛规定:每所学校的参赛人数为两人,且参赛教师不得属于同一学科.所以学校决定:从三支冠军队伍中的数学教师中随机选取一人,再从其他教师中选取一人参加比赛.请用列表法或画树状图的方法求出所选两位教师恰好搭档参加混双项目的概率.四、解答题:(本大题4个小题,每小题10分,共40分)21.计算:(1)a(a+2b)﹣(a﹣2b)(a+b)(2)232 (1)11x xxx x+--÷++.22.如图,一次函数y=kx ﹣2的图象与反比例函数的图象交于A 、B 两点,过A 作AC ⊥x 轴于点C .已知cos ∠AOC=255,OA=5. (1)求反比例函数及直线AB 的解析式;(2)求△AOB 的面积.23.南岸区正全力争创全国卫生城区和全国文明城区(简称“两城同创”).某街道积极响应“两城同创”活动,投入一定资金绿化一块闲置空地,购买了甲、乙两种树木共72棵,甲种树木单价是乙种树木单价的98,且乙种树木每棵80元,共用去资金6160元. (1)求甲、乙两种树木各购买了多少棵?(2)经过一段时间后,种植的这批树木成活率高,绿化效果好.该街道决定再购买一批这两种树木绿化另一块闲置空地,两种树木的购买数量均与第一批相同,购买时发现甲种树木单价上涨了a%,乙种树木单价下降了2005a ,且总费用为6804元,求a 的值. 24.如图1,在△ABC 中,∠BAC=90°,点D 在AC 上,点E 在BA 的延长线上,连接BD ,CE ,AD=AE ,BD=CE .(1)若BD=17,AD=1,求BC 的长度;(2)将图1中的BD 延长,过点A 作AF ∥BC 交BD 延长线于点F ,如图2,连接FC ,若BC=BF ,求证:CD=CF .五、解答题:(本大题共2个小题,25题10分,26题12分,共22分) 25.阅读下列材料,解决问题材料一:如果一个正整数的个位数字等于除个位数字之外的其他各位数字之和,则称这个数为“刀塔数”,比如:因1+2=3,所以123是“刀塔数”,同理,55,1315也是“刀塔数”. 材料二:形如(2)(2)x x x -+的三位数叫“王者数”,其中x ﹣2,x ,x +2分别是这个数的百位数字,十位数字,个位数字.例如:135,468均为“王者数”问题:(1)已知a 既是“刀塔数”又是“王者数”,若数b (b >0)使10a +b 为一个“刀塔数”,求b 的最小值;(2)已知一个五位“刀塔数”abcde 与一个“王者数”的和能被3整除,且c ﹣a +d ﹣b=4,证明10507abcde <.26.如图1,在平面直角坐标系中,抛物线212333y x x =--与x 轴交于A 、B 两点(点A 在点B 左侧),与y 轴交于C 点,点E 在第一象限且四边形ACBE 为矩形.(1)求∠BCE 的度数;(2)如图2,F 为线段BC 上一动点,P 为第四象限内抛物线上一点,连接CP 、FP 、BP 、EF ,M ,N 分别是线段CP ,FP 的中点,连接MN ,当△BCP 面积最大,且MN +EF 最小时,求PF 的长度;(3)如图3,将△AOC 绕点O 顺时针旋转一个角度α(0°<α<180°),点A ,C 的对应点分别为A',C',直线A'C'与x 轴交于点G ,G 在x 轴正半轴上且OG=52.线段KH 在直线A'C'上平移( K 在H 左边),且KH=5,△KHC 是否能成为等腰三角形?若能,请求出所有符合条件的点K 的坐标;若不能,请说明理由.本试卷的题干、答案和解析均由组卷网()专业教师团队编校出品。
2014年中考数学模拟试卷(一)数 学(全卷满分120分,考试时间120分钟)注意事项:1. 本试卷分选择题和非选择题两部分. 在本试题卷上作答无效..........;2. 答题前,请认真阅读答题.......卷.上的注意事项......;3. 考试结束后,将本试卷和答题.......卷一并交回..... 一、选择题(本大题满分36分,每小题3分. 在下列各题的四个备选答案中,只有一个是正确的,请在答题卷上把你认为正确的答案的字母代号按要求用2B 铅笔涂黑) 1. 2 sin 60°的值等于 A. 1B.23C. 2D. 32. 下列的几何图形中,一定是轴对称图形的有A. 5个B. 4个C. 3个D. 2个3. 据2013年1月24日《桂林日报》报道,临桂县2012年财政收入突破18亿元,在广西各县中排名第二. 将18亿用科学记数法表示为A. 1.8×10B. 1.8×108C. 1.8×109D. 1.8×10104. 估计8-1的值在A. 0到1之间B. 1到2之间C. 2到3之间D. 3至4之间 5. 将下列图形绕其对角线的交点顺时针旋转90°,所得图形一定与原图形重合的是 A. 平行四边形 B. 矩形 C. 正方形 D. 菱形 6. 如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是7. 为调查某校1500名学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,随机抽取部分学生进行调查,并结 合调查数据作出如图所示的扇形统计图. 根据统计图提供的 信息,可估算出该校喜爱体育节目的学生共有 A. 1200名 B. 450名C. 400名D. 300名8. 用配方法解一元二次方程x 2+ 4x – 5 = 0,此方程可变形为 A. (x + 2)2= 9B. (x - 2)2 = 9C. (x + 2)2 = 1D. (x - 2)2=1圆弧 角 扇形菱形 等腰梯形A. B. C. D.(第7题图)9. 如图,在△ABC 中,AD ,BE 是两条中线,则S △EDC ∶S △ABC = A. 1∶2B. 1∶4C. 1∶3D. 2∶310. 下列各因式分解正确的是A. x 2 + 2x-1=(x - 1)2B. - x 2+(-2)2=(x - 2)(x + 2) C. x 3- 4x = x (x + 2)(x - 2)D. (x + 1)2= x 2 + 2x + 111. 如图,AB 是⊙O 的直径,点E 为BC 的中点,AB = 4, ∠BED = 120°,则图中阴影部分的面积之和为 A. 3 B. 23 C.23 D. 112. 如图,△ABC 中,∠C = 90°,M 是AB 的中点,动点P 从点A出发,沿AC 方向匀速运动到终点C ,动点Q 从点C 出发,沿 CB 方向匀速运动到终点B. 已知P ,Q 两点同时出发,并同时 到达终点,连接MP ,MQ ,PQ . 在整个运动过程中,△MPQ 的面积大小变化情况是 A. 一直增大B. 一直减小C. 先减小后增大D. 先增大后减小二、填空题(本大题满分18分,每小题3分,请将答案填在答题卷上,在试卷上答题无效) 13. 计算:│-31│= . 14. 已知一次函数y = kx + 3的图象经过第一、二、四象限,则k 的取值范围是 . 15. 在10个外观相同的产品中,有2个不合格产品,现从中任意抽取1个进行检测,抽到合格产品的概率是 .16. 在临桂新区建设中,需要修一段全长2400m 的道路,为了尽量减少施工对县城交通所造成的影响,实际工作效率比原计划提高了20%,结果提前8天完成任务,求原计划每天修路的长度. 若设原计划每天修路x m ,则根据题意可得方程 . 17. 在平面直角坐标系中,规定把一个三角形先沿着x 轴翻折,再向右平移2个单位称为1次变换. 如图,已知等边三角形 ABC 的顶点B ,C 的坐标分别是(-1,-1),(-3,-1),把 △ABC 经过连续9次这样的变换得到△A ′B ′C ′,则点A 的对 应点A ′ 的坐标是 .18. 如图,已知等腰Rt △ABC 的直角边长为1,以Rt △ABC 的斜边AC 为直角边,画第二个等腰Rt △ACD ,再以Rt △ACD 的 斜边AD 为直角边,画第三个等腰Rt △ADE ……依此类推直 到第五个等腰Rt △AFG ,则由这五个等腰直角三角形所构成 的图形的面积为 . 三、解答题(本大题8题,共66分,解答需写出必要的步骤和过程. 请将答案写在答题卷上,在试卷上答题无效)(第11题图)(第12题图)(第17题图)(第18题图)19. (本小题满分8分,每题4分)(1)计算:4 cos45°-8+(π-3) +(-1)3;(2)化简:(1 - n m n+)÷22n m m -.20. (本小题满分6分)21. (本小题满分6分)如图,在△ABC 中,AB = AC ,∠ABC = 72°. (1)用直尺和圆规作∠ABC 的平分线BD 交AC 于点D (保留作图痕迹,不要求写作法);(2)在(1)中作出∠ABC 的平分线BD 后,求∠BDC 的度数.22. (本小题满分8分)在开展“学雷锋社会实践”活动中,某校为了解全校1200名学生参加活动的情况,随机调查了50名学生每人参加活动的次数,并根据数据绘成条形统计图如下:(1)求这50个样本数据的平均数、众数和中位数;(2)根据样本数据,估算该校1200名学生共参加了多少次活动. 23. (本小题满分8分)如图,山坡上有一棵树AB ,树底部B 点到山脚C 点的距离BC 为63米,山坡的坡角 为30°. 小宁在山脚的平地F 处测量这棵树的高,点 C 到测角仪EF 的水平距离CF = 1米,从E 处测得树 顶部A 的仰角为45°,树底部B 的仰角为20°,求树 AB 的高度.(参考数值:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)24. (本小题满分8分)如图,PA ,PB 分别与⊙O 相切于点A ,B ,点M 在PB 上,且OM ∥AP ,MN ⊥AP ,垂足为N. (1)求证:OM = AN ;(2)若⊙O 的半径R = 3,PA = 9,求OM 的长.3121--+x x ≤1, ……① 解不等式组:3(x - 1)<2 x + 1.……②(第21题图)(第23题图)°25. (本小题满分10分)某中学计划购买A 型和B 型课桌凳共200套. 经招标,购买一套A 型课桌凳比购买一套B 型课桌凳少用40元,且购买4套A 型和5套B 型课桌凳共需1820元. (1)求购买一套A 型课桌凳和一套B 型课桌凳各需多少元?(2)学校根据实际情况,要求购买这两种课桌凳总费用不能超过40880元,并且购买A 型课桌凳的数量不能超过B 型课桌凳数量的32,求该校本次购买A 型和B 型课桌凳共有几种方案?哪种方案的总费用最低?26. (本小题满分12分)在平面直角坐标系中,现将一块等腰直角三角板ABC 放在第二象限,斜靠在两坐标轴上,点C 为(-1,0). 如图所示,B 点在抛物线y =21x 2 -21x – 2图象上,过点B 作BD ⊥x 轴,垂足为D ,且B 点横坐标为-3. (1)求证:△BDC ≌ △COA ;(2)求BC 所在直线的函数关系式;(3)抛物线的对称轴上是否存在点P ,使△ACP 是以AC 为直角边的直角三角形?若存在,求出 所有点P 的坐标;若不存在,请说明理由.2013年初三适应性检测参考答案与评分意见一、选择题题号 1 2 3 4 5 6 7 8 9 10 11 12 答案DACBCBDABCAC说明:第12题是一道几何开放题,学生可从几个特殊的点着手,计算几个特殊三角形面积从而降低难度,得出答案. 当点P ,Q 分别位于A 、C 两点时,S △MPQ =21S △ABC ;当点P 、Q 分别运动到AC ,BC的中点时,此时,S △MPQ =21×21AC. 21BC =41S △ABC ;当点P 、Q 继续运动到点C ,B 时,S △MPQ =21S△ABC,故在整个运动变化中,△MPQ 的面积是先减小后增大,应选C.二、填空题 13.31; 14. k <0; 15. 54(若为108扣1分); 16. x 2400-x%)201(2400= 8; 17. (16,1+3); 18. 15.5(或231). 三、解答题19. (1)解:原式 = 4×22-22+1-1……2分(每错1个扣1分,错2个以上不给分) = 0 …………………………………4分(第26题图)(2)解:原式 =(n m n m ++-n m n +)·m n m 22- …………2分= nm m +·m n m n m ))((-+ …………3分= m – n …………4分 20. 解:由①得3(1 + x )- 2(x -1)≤6, …………1分 化简得x ≤1. …………3分 由②得3x – 3 < 2x + 1, …………4分 化简得x <4. …………5分 ∴原不等式组的解是x ≤1. …………6分21. 解(1)如图所示(作图正确得3分)(2)∵BD 平分∠ABC ,∠ABC = 72°, ∴∠ABD =21∠ABC = 36°, …………4分 ∵AB = AC ,∴∠C =∠ABC = 72°, …………5分 ∴∠A= 36°,∴∠BDC =∠A+∠ABD = 36° + 36° = 72°. …………6分 22. 解:(1)观察条形统计图,可知这组样本数据的平均数是 _x =50551841737231⨯+⨯+⨯+⨯+⨯ =3.3, …………1分∴这组样本数据的平均数是3.3. …………2分∵在这组样本数据中,4出现了18次,出现的次数最多, ∴这组数据的众数是4. …………4分∵将这组样本数据按从小到大的顺序排列,其中处在中间的两个数都是3,有233+ = 3. ∴这组数据的中位数是3. ………………6分(2)∵这组数据的平均数是3.3,∴估计全校1200人参加活动次数的总体平均数是3.3,有3.3×1200 = 3900. ∴该校学生共参加活动约3960次. ………………8分 23. 解:在Rt △BDC 中,∠BDC = 90°,BC = 63米,∠BCD = 30°, ∴DC = BC ·cos30° ……………………1分 = 63×23= 9, ……………………2分 ∴DF = DC + CF = 9 + 1 = 10,…………………3分 ∴GE = DF = 10. …………………4分 在Rt △BGE 中,∠BEG = 20°, ∴BG = CG ·tan20° …………………5分 =10×0.36=3.6, …………………6分 在Rt △AGE 中,∠AEG = 45°,∴AG = GE = 10, ……………………7分 ∴AB = AG – BG = 10 - 3.6 = 6.4.答:树AB 的高度约为6.4米. ……………8分24. 解(1)如图,连接OA ,则OA ⊥AP. ………………1分∵MN ⊥AP ,∴MN ∥OA. ………………2分 ∵OM ∥AP ,∴四边形ANMO 是矩形.∴OM = AN. ………………3分(2)连接OB ,则OB ⊥AP ,∵OA = MN ,OA = OB ,OM ∥BP , ∴OB = MN ,∠OMB =∠NPM.∴Rt △OBM ≌Rt △MNP. ………………5分 ∴OM = MP.设OM = x ,则NP = 9- x . ………………6分在Rt △MNP 中,有x 2 = 32+(9- x )2.∴x = 5. 即OM = 5 …………… 8分25. 解:(1)设A 型每套x 元,则B 型每套(x + 40)元. …………… 1分 ∴4x + 5(x + 40)=1820. ……………………………………… 2分∴x = 180,x + 40 = 220.即购买一套A 型课桌凳和一套B 型课桌凳各需180元、220元. ……………3分(2)设购买A 型课桌凳a 套,则购买B 型课桌凳(200 - a )套.a ≤32(200 - a ), ∴ …………… 4分 180 a + 220(200- a )≤40880.解得78≤a ≤80. …………… 5分∵a 为整数,∴a = 78,79,80∴共有3种方案. ………………6分 设购买课桌凳总费用为y 元,则y = 180a + 220(200 - a )=-40a + 44000. …………… 7分 ∵-40<0,y 随a 的增大而减小,∴当a = 80时,总费用最低,此时200- a =120. …………9分 即总费用最低的方案是:购买A 型80套,购买B 型120套. ………………10分2014年中考数学模拟试题(二)一、选择题1、 数1,5,0,2-中最大的数是()A 、1-B 、5C 、0D 、2 2、9的立方根是()A 、3±B 、3C 、39±D 、393、已知一元二次方程2430x x -+=的两根1x 、2x ,则12x x +=()A 、4B 、3C 、-4D 、-3 4、如图是某几何题的三视图,下列判断正确的是() A 、几何体是圆柱体,高为2 B 、几何体是圆锥体,高为2 C 、几何体是圆柱体,半径为2 D 、几何体是圆柱体,半径为2 5、若a b >,则下列式子一定成立的是()A 、0a b +>B 、0a b ->C 、0ab >D 、0ab> 6、如图AB ∥DE ,∠ABC=20°,∠BCD=80°,则∠CDE=() A 、20° B 、80° C 、60° D 、100°7、已知AB 、CD 是⊙O 的直径,则四边形ACBD 是() A 、正方形 B 、矩形 C 、菱形 D 、等腰梯形 8、不等式组302x x +>⎧⎨-≥-⎩的整数解有()A 、0个B 、5个C 、6个D 、无数个 9、已知点1122(,),(,)A x y B x y 是反比例函数2y x=图像上的点,若120x x >>, 则一定成立的是()A 、120y y >>B 、120y y >>C 、120y y >>D 、210y y >>10、如图,⊙O 和⊙O ′相交于A 、B 两点,且OO ’=5,OA=3, O ’B =4,则AB=( ) A 、5 B 、2.4 C 、2.5 D 、4.8 二、填空题11、正五边形的外角和为 12、计算:3m m -÷= 13、分解因式:2233x y -=14、如图,某飞机于空中A 处探测到目标C ,此时飞行高度AC=1200米,从飞机上看地面控制点B的俯角20α=︒,则飞机A 到控制点B 的距离约为 。
本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除!== 本文为word格式,下载后可方便编辑和修改! == 201X年曲靖市越州一中中考数学模拟试卷一、选择题。
(每小题3分,共24分)1.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是( )A. B. C. D.2.下列各式运算正确的是( )A. B.C. D.3.如图,数轴上A、B两点分别对应实数a、b,则下列结论正确的是( )A、a+bB、abC、a-bD、|a|-|b|04.如图,下列四个几何体中,它们各自的三视图(主视图、左视图、俯视图)有两个相同,而另一个不同的几何体是A.①②B.②③C.②④D.③④5.如图,在数轴上表示-1,- 的对应点为A,B,若点A是线段BC的中点,则点C表示的数为( )A. B. C. D.6.一组数据的方差为9,将这组数据中的每个数据扩大3倍,得到一组新数据的方差是A.9B.27C.81D.2437.运动会上初二(1)班啦啦队,买了两种价格的雪糕,其中甲种雪糕共花费40元;乙种雪糕共30元,甲种雪糕比乙种雪糕多20根,乙种雪糕价格是甲种雪糕价格的1.5倍,若设甲种雪糕的价格为x元,根据题意可列方程为 ()A. B.C. D.8.一次函数y=kx+k(k0)和反比例函数在同一直角坐标系中的图象大致是()A B C D二、填空题。
(每小题3分,共24分)9.函数的自变量x的取值范围是。
10.震惊世界的MH370失联事件发生后第30天,中国海巡01轮在南印度洋海域搜索过程中首次侦听到疑是飞机黑匣子的脉冲信号,探测到的信号所在海域水深4500米左右,其中4500用科学记数法表示为。
11.如果点P 的坐标满足x+y=xy,那么称点P为和谐点.请写出一个和谐点的坐标:____________.12.边长为a的正六边形的边心距是 .13.某菱形的两条对角线长都是方程x2-6x+8=0的根,则该菱形的周长为14.如图,长方体的底面边长分别为1cm和3cm,高为6cm.如果用一根细线从点A开始经过4个侧面缠绕一圈到达点B,那么所用细线最短需要cm;15.若是关于的完全平方式,则m= 。
云南省曲靖市麒麟区越州一中2014年九年级12月月考数学试卷(满分:120分 考试时间:120分钟)一、选择题(每小题3分,共30分)一、选择题:本大题共10小题,每小题3分,共30 分,每小题给出的四个选项中,只有一项是符合题目要求的,将此选项的代号填入题后的括号内。
1、计算:2)3(= ( )A 、3B 、9C 、6D 、23 2、下列图形中既是轴对称又是中心对称图形的是 ( ) A 、三角形 B 、平行四边形 C 、圆 D 、正五边形3、方程x 2-4=0的解是 ( )A 、4B 、±2C 、2D 、-24、下图是一个五环图案,它由五个圆组成,下排的两个圆的位置关系是 ( )A 、相交B 、相切C 、内含D 、外离5、使代数式43--x x 有意义的x 的取值范围是( )。
A 、x>3 B 、x ≥3 C 、 x>4 D 、x ≥3且x ≠46、⊙o 1与⊙o 2的半径分别是3、4,圆心距为1,则 两圆的位置关系是 ( )A 、相交B 、外切C 、内切D 、外离7、时钟的时针在不停的旋转,时针从上午的6时到9时,时针旋转的旋转角是 ( )A 、30°B 、60°C 、90°D 、9°8、平面直角坐标系内一点p(-2,3)关于原点对称点的坐标是 ( )A 、(3,-2)B 、(2,3)C 、(-2,-3)D 、(2,-3)9、如图,圆的半径是6,空白部分的圆心角分别是60°与30°,则阴影部分的面积是 ( )A 、9πB 、27πC 、6πD 、3π10、⊙o 的半径是13,弦 AB ∥CD, AB=24, CD=10,则 AB与CD 的距离是 ( )A 、 7B 、 17C 、7或17D 、34二、填空题:本大题共8小题,每小题3分共24分,把答案写在题 中的横线上。
11、不等式-3x +1>4的解集是__________12、3-x +(y-4)2=0,则xy= _____________。
2014年中考数学模拟试卷二(时间120分钟,满分120分)一、选择题(每小题3分,共36分)1.-12的绝对值是( )A .12B .-12C .2D .-2 2.今年体育学业考试增加了跳绳测试项目,下面是测试时记录员记录的一组(10名)同学的测试成绩(单位:个/分).176 180 184 180 170 176 172 164 186 180 该组数据的众数、中位数、平均数分别为( )A .180,180,178B .180,178,178C .180,178,176.8D .178,180,176.8 3.如图,在下列条件中,不能证明△ABD ≌△ACD 的是( )A .BD =DC ,AB =AC B .∠ADB =∠ADC ,BD =DC C .∠B =∠C ,∠BAD =∠CAD D .∠B =∠C ,BD =DC 4.不等式组⎩⎪⎨⎪⎧2x +12>12x -4,32x -12≤x的解集在数轴上表示正确的是( )5.顺次连接菱形各边中点所得的四边形一定是( )A .等腰梯形B .正方形C .平行四边形D .矩形6.计算:1÷1+m 1-m ·(m 2-1)的结果是( )A .-m 2-2m -1B .-m 2+2m -1C .m 2-2m -1D .m 2-17.抛物线y =(x +2)2-3可以由抛物线y =x 2平移得到,则下列平移过程正确的是( ) A .先向左平移2个单位,再向上平移3个单位 B .先向左平移2个单位,再向下平移3个单位 C .先向右平移2个单位,再向下平移3个单位 D .先向右平移2个单位,再向上平移3个单位8.如图,在平面直角坐标系中,正方形ABCO 的顶点A ,C 分别在y 轴、x 轴上,以AB 为弦的⊙M 与x 轴相切.若点A 的坐标为(0,8),则圆心M 的坐标为( )A .(-4,5)B .(-5,4)C .(5,-4)D .(4,-5)9.如图,所有正方形的中心均在坐标原点,且各边均与x 轴或y 轴平行.从内到外,它们的边长依次为2,4,6,8,…,顶点依次用A 1,A 2,A 3,A 4,…表示,则顶点A 55的坐标是( )A .(13,13)B .(-13,-13)C .(14,14)D .(-14,-14)10.已知一元二次方程x 2+bx -3=0的一根为-3,在二次函数y =x 2+bx -3的图象上有三点⎝ ⎛⎭⎪⎫-45,y 1,⎝ ⎛⎭⎪⎫-54,y 2,⎝ ⎛⎭⎪⎫16,y 3,y 1,y 2,y 3的大小关系是( ) A .y 1<y 2<y 3 B .y 2<y 1<y 3 C .y 3<y 1<y 2 D .y 1<y 3<y 211.有两个完全重合的矩形,将其中一个始终保持不动,另一个矩形绕其对称中心O 按逆时针方向进行旋转,每次均旋转45°,第1次旋转后得到图①,第2次旋转后得到图②,…,则第10次旋转后得到的图形与图①~④中相同的是( )A .图①B .图②C .图③D .图④ 12.如图,将一张正方形纸片剪成四个小正方形,得到4个小正方形,称为第一次操作;然后,将其中的一个正方形再剪成四个小正方形,共得到7个小正方形,称为第二次操作;再将其中的一个正方形剪成四个小正方形,共得到10个小正方形,称为第三次操作;……,根据以上操作,若要得到2 011个小正方形,则需要操作的次数是( )A .669B .670C .671D .672 二、填空题(每小题4分,共20分)13.若x =2是关于x 的方程x 2-x -a 2+5=0的一个根,则a 的值为__________. 14.如图,l ∥m ,矩形ABCD 的顶点B 在直线m 上,则∠α=__________度.15.对于任意不相等的两个实数a ,b ,定义运算*如下:a *b =a +ba -b,如32*==8*12=___________. 16.如图,在Rt △ABC 中,∠C =90°,AM 是BC 边上的中线,sin∠CAM =35,则tan B的值为__________.17.Rt△ABC 中,∠BAC =90°,AB =AC =2.以AC 为一边,在△ABC 外部作等腰直角△ACD ,则线段BD 的长为__________.三、解答题(共64分)18.(5分)已知:2x 2+6x -4=0,求代数式3-x 2x 2-4x ÷⎝ ⎛⎭⎪⎫5x -2-x -2的值. 19.(6分)我们约定,若一个三角形(记为△A 1)是由另一个三角形(记为△A )通过一次平移,或绕其任一边的中点旋转180°得到的,则称△A 1是由△A 复制的.以下的操作中每一个三角形只可以复制一次,复制过程可以一直进行下去.如图1,由△A 复制出△A 1,又由△A 1复制出△A 2,再由△A 2复制出△A 3,形成了一个大三角形,记作△B .以下各题中的复制均是由△A 开始的,通过复制形成的多边形中的任意相邻两个小三角形(指与△A 全等的三角形)之间既无缝隙也无重叠.(1)图1中标出的是一种可能的复制结果,小明发现△A ∽△B ,其相似比为__________.在图1的基础上继续复制下去得到△C ,若△C 的一条边上恰有11个小三角形(指有一条边在该边上的小三角形),则△C 中含有__________个小三角形;(2)若△A是正三角形,你认为通过复制能形成的正多边形是__________;(3)请你用两次旋转和一次平移复制形成一个四边形,在图2的方框内画出草图,并仿照图1作出标记.图1 图220.(7分)远洋电器城中,某品牌电视有A,B,C,D四种不同型号供顾客选择,它们每台的价格(单位:元)依次分别是2 500,4 000,6 000,10 000.为做好下阶段的销售工作,商场调查了一周内这四种不同型号电视的销售情况,并根据销售情况,将所得的数据制成统计图,现已知该品牌一周内四种型号电视共售出240台,每台的销售利润占其价格的百分比如下表:型号 A B C D利润10% 12% 15% 20%请根据以上信息,解答下列问题:(1)请补全统计图;(2)通过计算,说明商场这一周内该品牌哪种型号的电视总销售利润最大;(3)谈谈你的建议.21.(7分)七年级五班学生在课外活动时进行乒乓球练习,体育委员根据场地情况,将同学们分为三人一组,每组用一个球台.甲、乙、丙三位同学用“手心、手背”游戏(游戏时,“手心向上”简称手心;“手背向上”简称手背)来决定哪两个人先打球.游戏规则是:每人每次同时随机伸出一只手,出手心或手背.若出现“两同一异”(即两手心、一手背或两手背、一手心)的情况,则同出手心或手背的两个人先打球,另一人做裁判;否则继续进行,直到出现“两同一异”为止.(1)请你列出甲、乙、丙三位同学运用“手心、手背”游戏,出手一次出现的所有等可能情况(用A表示手心,用B表示手背);(2)求甲、乙、丙三位同学运用“手心、手背”游戏,出手一次出现“两同一异”的概率.22.(8分)某中学为落实市教育局提出的“全员育人,创办特色学校”的会议精神,决心打造“书香校园”,计划用不超过1 900本科技类书籍和1 620本人文类书籍,组建中、小型两类图书角共30个.已知组建一个中型图书角需科技类书籍80本,人文类书籍50本;组建一个小型图书角需科技类书籍30本,人文类书籍60本.(1)符合题意的组建方案有几种?请你帮学校设计出来.(2)若组建一个中型图书角的费用是860元,组建一个小型图书角的费用是570元,试说明(1)中哪种方案费用最低,最低费用是多少元?23.(9分)如图,在△ABC中,∠A=90°,∠B=60°,AB=3,点D从点A以每秒1个单位长度的速度向点B运动(点D不与B重合),过点D作DE∥BC交AC于点E.以DE为直径作⊙O,并在⊙O内作内接矩形ADFE,设点D的运动时间为t秒.(1)用含t的代数式表示△DEF的面积S;(2)当t为何值时,⊙O与直线BC相切?24.(10分)如图,在矩形纸片ABCD中,AB=6,BC=8.把△BCD沿对角线BD折叠,使点C落在C′处,BC′交AD于点G;E,F分别是C′D和BD上的点,线段EF交AD于点H,把△FDE沿EF折叠,使点D落在D′处,点D′恰好与点A重合.(1)求证:△ABG≌△C′DG;(2)求tan∠ABG的值;(3)求EF的长.25.(12分)在平面直角坐标系xOy中,二次函数y=mx2+(m-3)x-3(m>0)的图象与x 轴交于A,B两点(点A在点B左侧),与y轴交于点C.(1)求点A的坐标;(2)当∠ABC=45°时,求m的值;(3)已知一次函数y=kx+b,点P(n,0)是x轴上的一个动点.在(2)的条件下,过点P 作垂直于x轴的直线交这个一次函数的图象于点M,交二次函数y=mx2+(m-3)x-3(m>0)的图象于点N.若只有当-2<n<2时,点M位于点N的上方,求这个一次函数的解析式.参考答案一、1.A2.176,180,因此中位数是176+1802=178;平均数为164+170+172+176×2+180×3+184+18610=176.8.3.D4.A 解不等式2x +12>12x -4,得x >-3;解不等式32x -12≤x ,得x ≤1,∴不等式组的解集为-3<x ≤1.故选A.5.D6.B 1÷1+m 1-m ·(m 2-1)=1-m 1+m·(m +1)(m -1)=-m 2+2m -1.7.B y =(x +2)2-3的顶点为(-2,-3),抛物线y =x 2的顶点为(0,0),所以平移的过程是先向左平移2个单位,再向下平移3个单位.8.A 设⊙M 与x 轴的切点为F ,连接FM ,并延长交AB 于E ,连接AM .∵⊙M 与x 轴相切,∴MF ⊥x 轴,ME ⊥AB .∵A 的坐标为(0,8),∴OA =AB =OC =BC =EF =8.∴AE =BE =4.设MF =AM =x ,∴ME =8-x .在Rt △AME 中,AE 2+ME 2=AM 2,即42+(8-x )2=x 2,解得x =5.即MF =5,∴M 的坐标为(-4,5),故选A.9.C ∵55÷4=1334,∴点应在第一象限,且坐标为(14,14).10.A 把x =-3代入方程,得9-3b -3=0,b =2,二次函数y =x 2+2x -3的对称轴为x =-1, ∵⎪⎪⎪⎪⎪⎪-45--=15,⎪⎪⎪⎪⎪⎪-54--=14, ⎪⎪⎪⎪⎪⎪16--=76,15<14<76,∴y 1<y 2<y 3. 11.B 12.B二、13.±7 把x =2代入方程,得22-2-a 2+5=0,解得a =±7.14.25 15.-5216.23设MC 为3x ,则AM 为5x ,∴AC 为4x .∴tan B =AC BC =AC 2MC =4x 6x =23.17.4或25或10 首先要结合题意,画出相应的图形.因为以AC 为一边在△ABC 外部作等腰Rt △ACD ,则AC 可以是直角边,也可以是斜边,所以有三种情况.如图(1),BD =4;如图(2),BD =22+42=25;如图(3),∠ADC =90°,BC =22,CD =2,BD =22+22=10.图(1) 图(2) 图(3)三、18.解:原式=-x -32x 2-4x ÷⎝ ⎛⎭⎪⎫5x -2-x +21=-x -32x 2-4x ÷⎝ ⎛⎭⎪⎫-x 2+9x -2=12x 2+6x. 当2x 2+6x -4=0时,2x 2+6x =4,原式=14.19.解:(1)1:2 121 (2)正三角形或正六边形 (3)如图.20.解:(1)补全统计图如右.(2)10%×2 500×50=12 500,12%×4 000×100=48 000,15%×6 000×70=63 000,20%×10 000×20=40 000,∴商场在这一周内该品牌C 型号的电视总销售利润最大.(3)从进货角度、宣传角度等方面答对即可.21.解:(1)共有8种等可能情况:AAA ,AAB ,ABA ,ABB ,BAA ,BAB ,BBA ,BBB. (2)由(1)知共有8种等可能情况,其中出现“两同一异”的情况有6种.∴P (两同一异)=68=34. 22.解:(1)设组建中型图书角x 个,则组建小型图书角为(30-x )个.由题意,得⎩⎪⎨⎪⎧80x +-x ,50x +-x ,解这个不等式组,得18≤x ≤20.由于x 只能取整数,∴x 的取值是18,19,20.当x =18时,30-x =12;当x =19时,30-x =11;当x =20时,30-x =10.故有三种组建方案.方案一:中型图书角18个,小型图书角12个;方案二:中型图书角19个,小型图书角11个;方案三:中型图书角20个,小型图书角10个.(2)方案一的费用是860×18+570×12=22 320(元); 方案二的费用是860×19+570×11=22 610(元); 方案三的费用是860×20+570×10=22 900(元). 故方案一的费用最低,最低费用是22 320元. 23.解:(1)∵DE ∥BC ,∴∠ADE =∠B =60°.在△ADE 中,∵∠A =90°,∴tan ∠ADE =AE AD= 3.∵AD =1×t =t ,∴AE =3t .又∵四边形ADFE 是矩形,∴S △DEF =S △ADE =12AD ×AE =12×t ×3t =32t 2(0<t <3).∴S =32t 2(0<t <3).(2)如图,过点O 作OG ⊥BC 于点G ,过点D 作DH ⊥BC 于点H ,∵DE ∥BC ,∴OG =DH ,∠DHB =90°.在△DBH 中,sin B =DH BD.∵∠B =60°,BD =AB -AD ,AD =t ,AB =3,∴DH =32(3-t ),∴OG =32(3-t ). 当OG =12DE 时,⊙O 与BC 相切,在△ADE 中,∵∠A =90°,∠ADE =60°,∴cos ∠ADE =AD DE =12.∵AD =t ,∴DE =2AD =2t .∴2t =32(3-t )×2.∴t =63-9<3. ∴当t =63-9时,⊙O 与直线BC 相切. 24.(1)证明:∵四边形ABCD 为矩形, ∴∠C =∠BAD =90°,AB =CD ,由图形的折叠性质,得CD =C ′D ,∠C =∠C ′=90°, ∴∠BAD =∠C ′,AB =C ′D .又∵∠AGB =∠C ′GD ,∴△ABG ≌△C ′DG .(2)解:设AG 为x .∵△ABG ≌△C ′DG ,AD =8,AG =x , ∴BG =DG =AD -AG =8-x .在Rt △ABG 中,有BG 2=AG 2+AB 2,∵AB =6,∴(8-x )2=x 2+62,解得x =74.∴tan ∠ABG=AG AB =724. (3)由图形的折叠性质,得∠EHD =90°,DH =AH =4, ∴AB ∥EF ,∴△DHF ∽△DAB , ∴HF AB =DH AD ,即HF 6=12,∴HF =3. 又∵△ABG ≌△C ′DG ,∴∠ABG =∠HDE ,∴tan ∠ABG =tan ∠HDE =EH HD ,即724=EH4,∴EH =76,∴EF =EH +HF =76+3=256.25.解:(1)∵点A ,B 是二次函数y =mx 2+(m -3)x -3(m >0)的图象与x 轴的交点,∴令y =0,得mx 2+(m -3)x -3=0.图①解得x 1=-1,x 2=3m.又∵点A 在点B 左侧且m >0, ∴点A 的坐标为(-1,0).(2)由(1)可知点B 的坐标为⎝ ⎛⎭⎪⎫3m ,0,∵二次函数的图象与y 轴交于点C ,∴点C 的坐标为(0,-3).∵∠ABC =45°(如图①), ∴3m=3.∴m =1.(3)由(2)得,二次函数解析式为y =x 2-2x -3.依题意并结合图象可知,一次函数的图象与二次函数的图象交点的横坐标分别为-2和2,由此可得交点坐标为(-2,5)和(2,-3).将交点坐标分别代入一次函数解析式y =kx +b 中,得⎩⎪⎨⎪⎧-2k +b =5,2k +b =-3,解得⎩⎪⎨⎪⎧k =-2,b =1.故一次函数的解析式为y =-2x +1.。
云南省曲靖市数学中考模拟试卷(5月)姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共30分)1. (3分)若,则三者之间的大小关系满足()A .B .C .D .2. (3分)某几何体的三视图如图,则该几何体是()A . 长方体B . 圆柱C . 球D . 正三棱柱3. (3分)如图,数轴上A,B两点表示的数分别为﹣1和,点B关于点A的对称点为C,则点C所表示的数为()A . -2-B . -1-C . -2+D . 1+4. (3分)在平面直角坐标系中,点P(2,-3)关于原点对称的点的坐标是()A . (2,3)B . (-2,3)C . (-2,-3)D . (-3,2)5. (3分)设圆的面积为S,半径为R, 那么下列说法正确的是()A . S是R的一次函数B . S是R的正比例函数C . S是R2的正比例函数D . 以上说法都不正确6. (3分) (2020八下·福州期中) 数据2,9,4,5,4,3的平均数和众数分别是()A . 5和4B . 4和4C . 4.5和4D . 4和57. (3分)(2014·河南) 如图,▱ABCD的对角线AC与BD相交于点O,AB⊥AC,若AB=4,AC=6,则BD的长是()A . 8B . 9C . 10D . 118. (3分) (2016九上·萧山期中) 如图,点P为⊙O内一点,且OP=6,若⊙O的半径为10,则过点P的弦长不可能为()A . 12B . 16C . 17.5D . 209. (3分)下列函数中,当x>0时y随x的增大而减小的有()A .B .C .D .10. (3分)如图,抛物线y=a(x+3)(x﹣k)交x轴于点A、B,(A左B右),交y轴于点C,△AOC的周长为12,sin∠CBA=,则下列结论:①A点坐标(﹣3,0);②a=﹣;③点B坐标(8,0);④对称轴x=.其中正确的有()个.A . 4B . 3C . 2D . 1二、填空题:本题有6个小题,每小题4分,共24分. (共6题;共24分)11. (4分)若5x=8y,则x:y=________ .12. (4分) (2019九上·淮阴期末) 若二次函数的图象与x轴没有交点,则m的取值范围是________.13. (4分) (2017七下·江阴期中) 如图,若CD平分∠ACE,BD平分∠ABC,∠A=45°,则∠D=________°.14. (4分) (2017八下·卢龙期末) 对于函数y= ,当x0这部分图象在第________ 象限.15. (4分)(2019·无锡) 如图,在△ABC中,AB=AC=5,BC=4 ,D为边AB上一动点(B点除外),以CD 为一边作正方形CDEF,连接BE,则△BDE面积的最大值为________.16. (4分) (2020八下·沙坪坝月考) 如图,等腰直角△ABC中,∠ACB=90°,AC=BC=4,M为AB中点,D是射线BC上一动点,连接AD,将线段AD绕点A逆时针旋转90°得到线段AE,连接ED、ME,则点D在运动过程中ME的最小值为________.三、解答题:本题有7小题,共66分. (共7题;共28分)17. (4分)如果x2+y2﹣10x﹣16y+89=0,求的值.18. (4分)(2019·保定模拟) 如图12-1,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE=40°,连接BD,CE,将△ADE绕点A旋转,BD,CE也随之运动.(1)求证:BD=CE;(2)在△ADE绕点A旋转过程中,当AE∥BC时,求∠DAC的度数;(3)如图12-2,当点D恰好是△ABC的外心时,连接DC,判断四边形ADCE的形状,并说明理由.19. (4分) (2019九下·十堰月考) 如图,AB是⊙O的直径,C,D在⊙O上,且BC=CD,过C作CE⊥AD,交AD 延长线于E,交AB延长线于F点,(1)求证:EF是⊙O的切线;(2)若AB=4ED,求cos∠ABC的值.20. (4分)在平面直角坐标系xOy中,直线y=2x+l与双曲线y= 的一个交点为A(m,-3).(1)求双曲线的表达式;(2)过动点P(n,0)(n<0)且垂直于x轴的直线与直线y=2x+l和双曲线y= 的交点分别为B,C,当点B位于点C上方时,直接写出n的取值范围.21. (4分) (2017七下·荔湾期末) 某品牌的共享自行车企业为了解工作日期间地铁站附近的自行车使用情况,做到精确投放,于星期二当天对荔湾区A、B、C三个地铁站该品牌自行车后使用量进行了统计,绘制如图1和图2所示的统计图,根据图中信息解答下列问题:(1)该品牌自行车当天在该三个地铁站区域投放了自行车________辆.(2)请补全图1中的条形统计图;求出地铁A站在图2中所对应的圆心角的度数.(3)按统计情况,若该品牌车计划在这些区域再投放1200辆,估计在地铁B站应投入多少辆.22. (4分)如图,抛物线y= 与x轴交于A,B(点A在点B的左侧)与y轴交于点C,连接AC、BC.过点A作AD∥BC交抛物线于点D(8 ,10),点P为线段BC下方抛物线上的任意一点,过点P作PE∥y 轴交线段AD于点E.(1)如图1.当PE+AE最大时,分别取线段AE,AC上动点G,H,使GH=5,若点M为GH的中点,点N为线段CB上一动点,连接EN、MN,求EN+MN的最小值;(2)如图2,点F在线段AD上,且AF:DF=7:3,连接CF,点Q,R分别是PE与线段CF,BC的交点,以RQ 为边,在RQ的右侧作矩形RQTS,其中RS=2,作∠ACB的角平分线CK交AD于点K,将△ACK绕点C顺时针旋转75°得到△A′CK′,当矩形RQTS与△A′CK′重叠部分(面积不为0)为轴对称图形时,请直接写出点P横坐标的取值范围.23. (4.0分) (2020八下·茅箭期中)(1)如图①,D是等边△ABC的边BA上一动点(点D与点B不重合),连接DC,以DC为边,在BC上方作等边△DCF,连接AF,你能发现AF与BD之间的数量关系吗?并证明你发现的结论;(2)如图②,当动点D运动至等边△ABC边BA的延长线时,其他作法与(1)相同,猜想AF与BD在(1)中的结论是否仍然成立?若成立,请证明;(3)Ⅰ.如图③,当动点D在等边△ABC边BA上运动时(点D与B不重合),连接DC,以DC为边在BC上方和下方分别作等边△DCF和等边△DCF′,连接AF,BF′,探究AF,BF′与AB有何数量关系?并证明你的探究的结论;Ⅱ.如图④,当动点D在等边△ABC的边BA的延长线上运动时,其他作法与图③相同,Ⅰ中的结论是否成立?若不成立,是否有新的结论?并证明你得出的结论.参考答案一、选择题 (共10题;共30分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题:本题有6个小题,每小题4分,共24分. (共6题;共24分) 11-1、12-1、13-1、14-1、15-1、16-1、三、解答题:本题有7小题,共66分. (共7题;共28分)17-1、18-1、18-2、18-3、19-1、19-2、20-1、20-2、21-1、21-2、21-3、23-1、23-2、23-3、。
云南省曲靖市中考数学模拟试卷(2)一、填空题(本大题共6小题,每小题3分,共18分)1.(3分)的倒数是.2.(3分)一个多边形的内角和是720°,那么这个多边形是边形.3.(3分)云南省鲁甸县2014年8月3日发生6.5级地震,造成重大人员伤亡的经济损失,灾害牵动亿万同胞的心,在灾区人民最需要援助的时刻,全国同胞充分发扬“一方有难、八方支援”的中华民族优良传统,及时向灾区同胞伸出援助之手.截至9月19日17时,云南省级共接收昭通鲁甸“8.3”地震捐款80100万元.科学记数法表示为元.4.(3分)一元二次方程6x2﹣12x=0的解是.5.(3分)如图,在Rt△ABC中,∠ACB=90°,AC=2,以点C为圆心,CB的长为半径画弧,与AB边交于点D,将绕点D旋转180°后点B与点A恰好重合,则图中阴影部分的面积为.6.(3分)若x是不等于1的实数,我们把称为x的差倒数,如2的差倒数是=﹣1,﹣1的差倒数为=,现已知x1=﹣,x2是x1的差倒数,x3是x2的差倒数,x4是x3的差倒数,…,依此类推,则x2014=.二、选择题(本大题共8小题,每小题4分,共32分)7.(4分)在下列“绿色食品、回收、节能、节水”四个标志中,是轴对称图形的是()A.B.C.D.8.(4分)下列运算正确的是()A.a2+a2=a4B.a6÷a3=a2C.a3×a2=a5D.(a3b)2=a5b39.(4分)如图是一个几何体的三视图,则这个几何体是()A.正方体B.长方体C.三棱柱D.三棱锥10.(4分)下列函数的图象在每一个象限内,y值随x值的增大而增大的是()A.y=﹣x+1B.y=x2﹣1C.D.11.(4分)要组织一次篮球邀请赛,参赛的每个队之间都要比赛一场,计划安排15场比赛,设比赛组织者应邀请x个队参赛,则x满足的关系式为()A.x(x+1)=15B.x(x﹣1)=15C.x(x+1)=15D.x(x﹣1)=1512.(4分)不等式组的最小整数解是()A.﹣1B.0C.1D.213.(4分)在如图的四个转盘中,C,D转盘被分成8等份,若让转盘自由转动一次,停止后,指针落在阴影区域内的概率最大的转盘是()A.B.C.D.14.(4分)如图,矩形ABCD中,AB=8,AD=6,将矩形ABCD绕点B按顺时针方向旋转后得到矩形A′BC′D′.若边A′B交线段CD于H,且BH=DH,则DH的值是()A.B.C.D.三、解答题(本大题共9小题,共70分)15.(5分)计算:2﹣2﹣2cos60°+|﹣|+(π﹣3.14)0.16.(6分)化简求值:,其中x=3.17.(7分)为丰富校园文化生活,某校举办了成语大赛.学校准备购买一批成语词典奖励获奖学生.购买时,商家给每本词典打了九折,用2880元钱购买的成语词典,打折后购买的数量比打折前多10本.求打折前每本词典的售价是多少元?18.(7分)如图,在平面直角坐标系中,直线AC与x轴交于C点,与y轴交于A点,直线AB与x轴交于B点,与y轴交于A点,已知A(0,4),B(2,0).(1)求直线AB的解析式.(2)若S△ABC=7,求点C的坐标.19.(7分)如图,已知点E,F分别是▱ABCD的边BC,AD上的中点,且∠BAC=90°.(1)求证:四边形AECF是菱形;(2)若∠B=30°,BC=10,求菱形AECF面积.20.(8分)在2016CCTV英语风采大赛中,娄底市参赛选手表现突出,成绩均不低于60分.为了更好地了解娄底赛区的成绩分布情况,随机抽取了其中200名学生的成绩(成绩x取整数,总分100分)作为样本进行了整理,得到如图的两幅不完整的统计图表:根据所给信息,解答下列问题:(1)在频数分布表中,m=,n=.成绩频数频率60≤x<70600.3070≤x<80m0.4080≤x<9040n90≤x≤100200.10(2)请补全图中的频数分布直方图.(3)按规定,成绩在80分以上(包括80分)的选手进入决赛.若娄底市共有4000人参赛,请估计约有多少人进入决赛?21.(9分)甲、乙、丙三位歌手进入“我是歌手”的冠、亚、季军的决赛,他们通过抽签来决定演唱顺序.(1)求甲第一位出场的概率;(2)用树状图或列表格写出所有可能的出场顺序,并求出甲比乙先出场的概率.22.(9分)如图,AB是⊙O的直径,CD与⊙O相切于点C,与AB的延长线交于点D,DE⊥AD且与AC的延长线交于点E.(1)求证:DC=DE;(2)若tan∠CAB=,AB=3,求BD的长.23.(12分)在平面直角坐标系中,已知抛物线经过A(﹣4,0),B(0,﹣4),C(2,0)三点.(1)求抛物线的解析式;(2)若点M为第三象限内抛物线上一动点,点M的横坐标为m,△AMB的面积为S.求S关于m的函数关系式,并求出S的最大值.(3)若点P是抛物线上的动点,点Q是直线y=﹣x上的动点,判断有几个位置能够使得点P、Q、B、O为顶点的四边形为平行四边形,直接写出相应的点Q的坐标.云南省曲靖市中考数学模拟试卷(2)参考答案一、填空题(本大题共6小题,每小题3分,共18分)1.;2.六;3.8.01×108;4.x1=0,x2=2;5.;6.﹣;二、选择题(本大题共8小题,每小题4分,共32分)7.A;8.C;9.B;10.D;11.B;12.B;13.A;14.C;三、解答题(本大题共9小题,共70分)15.;16.;17.;18.;19.;20.80;0.2;21.;22.;23.;。
麒麟区越州一中2013-2014学年九年级中考模拟试卷数 学 试 卷 A 卷(满分:120分 考试时间:120分钟)一、选择题(每小题3分,共24分)1.下列图形是几家电信公司的标志,其中既是轴对称图形又是中心对称图形的是( )2. 下列计算正确的是 ( )A 、3232a a a a -÷=⋅ B aC 、22423a a a +=D 、(a -b )2=a 2-b 23. 如图,由几个相同的小正方体搭成的一个几何体,它的左视图为( )(第3题图) A B C D 4.为了考察某种小麦的长势,从中抽取了10株麦苗,测得苗高(单位:cm )为:16 9 14 11 12 10 16 8 17 19则这组数据的中位数和极差分别是( )A .13,16B .14,11C .12,11D .13,115.若反比例函数y =xk的图象过点(-2, 1)则一次函数k kx y -=的图象过( )A .第一、二、四象限B .第一、三、四象限C .第二、三、四象限D .第一、二、三象限6. 如图,将△ABC 沿直线DE 折叠后,使得点B 与点A AC =5cm ,△ADC 的周长为17cm ,则BC 的长为( A .7cm B .10cm C .12cm D .22cmAB CD第6题B第8题图7. 二次函数y=ax 2+bx+c (a ≠0)的图象如图所示,则函数y=与y=bx+c 在同一直角坐标系内的大致图象是( )C8. 如图,在△ABC 中,AB = AC ,AB = 8,分别以AB 、AC 为直径作半圆,则图中阴是( )A .64π-B .1632π-C .16π-D .16π-二、填空题(每小题3分,共24分)9.使函数y=xx --312有意义的x 的取值范围是________________ 10. 国家统计局发布第六次全国人口普查主要数据公报显示:云南省常住人口约为45960000人,这个数据用科学记数法可表示为 人.( 保留 两个有效数字为).11. 如图,水平放置的圆柱形排水管道的截面直径是1m ,其中水面的宽AB 为0.8m ,则排水管内水的深度为__________m 。
云南曲靖中考模拟(样卷)数学考试卷(解析版)(初三)中考模拟姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx 题xx题xx题总分得分一、xx题评卷人得分(每空xx 分,共xx分)【题文】a的倒数是﹣1.5,则a是()A.﹣ B. C.﹣ D.【答案】C【解析】试题分析:∵﹣1.5=﹣,﹣的倒数为﹣,∴a=﹣;故选C.考点:倒数.【题文】自2016年1月21日开建的印尼雅万高铁是中国和印尼合作的重大标志性项目,这条高铁的总长为152公里.其中“152公里”用科学记数法可以表示为()A.0.152×106m B.1.52×105m C.1.52×106m D.152×105m【答案】B【解析】试题分析:根据1公里=1000米可得152公里=152×1000米,再用科学记数法表示152000,科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,整数位数减1即可.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.152公里=152×1000米=152000米=1.52×105m ,故选:B.考点:科学记数法—表示较大的数.【题文】下列运算正确的是()A.a+a=2a2 B.a2•a=2a2 C.(﹣ab)2=2ab2 D.(2a)2÷a=4a【答案】D【解析】试题分析:A、a+a=2a,故此选项错误;B、a2•a=a3,故此选项错误;C、(﹣ab)2=a2b2,故此选项错误;D、(2a)2÷a=4a,正确.考点:整式的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【题文】小明同学把一个含有45°角的直角三角板放在如图所示的两条平行线m、n上,测得∠α=120°,则∠β的度数l【答案】C【解析】试题分析:A、不是轴对称图形,是中心对称图形,故本选项错误;B、是轴对称图形,也是中心对称图形,故本选项错误;C、旋转角是°,只是每旋转与原图重合,而中心对称的定义是绕一定点旋转180度,新图形与原图形重合.因此不符合中心对称的定义,不是中心对称图形.D、是轴对称图形,不是中心对称图形,故本选项错误.故选C.考点:中心对称图形;轴对称图形.【题文】不等式组的解集在数轴上表示为()A. B.C. D.【答案】A【解析】试题分析:,∵解不等式2x<0得:x<0,解不等式2+x≥1得:x≥﹣1,∴不等式组的解集为:﹣1≤x<0,在数轴上表示不等式组的解集为:,故选A.考点:在数轴上表示不等式的解集;解一元一次不等式组.【题文】将一个长方体内部挖去一个圆柱(如图所示),它的主视图是()A. B. C. D.【解析】试题分析:找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.从正面看易得主视图为长方形,中间有两条垂直地面的虚线.故选A.考点:简单组合体的三视图.【题文】平面直角坐标系中,正六边形ABCDEF的起始位置如图1所示,边AB在x轴上,现将正六边形沿x 轴正方向无滑动滚动,第一次滚动后,边BC落在x轴上(如图2);第二次滚动后,边CD落在x轴上,如此继续下去.则第2016次滚动后,落在x轴上的是()A.边DE B.边EF C.边FA D.边AB【答案】D【解析】试题分析:∵正六边形ABCDEF一共有6条边,即6次一循环;∴2016÷6=336,∵第一次滚动后,边BC落在x轴上(如图2);第二次滚动后,边CD落在x轴上,如此继续下去,第六次滚动后,边AB落在x轴上,∴第2016次滚动后,落在x轴上的是:边AB.故选D.考点:正多边形和圆;坐标与图形性质;旋转的性质.【题文】使有意义的x的取值范围是__________.【答案】x≠2【解析】试题分析:分母为零,分式无意义;分母不为零,分式有意义.根据题意,得:x﹣2≠0,解得:x≠2.故答案是:x≠2.考点:分式有意义的条件.【题文】分式方程=3的解为.【答案】x=6.【解析】试题分析:方程两边乘以(x﹣2)得:4x﹣12=3(x﹣2),4x﹣12=3x﹣6,4x﹣3x=12﹣6,x=6,检验:把x=6代入(x﹣2)≠0.故x=6是原方程的根.故答案为:x=6.考点:分式方程的解.【题文】如图,在平行四边形ABCD中,AB>AD,按以下步骤作图:以A为圆心,小于AD的长为半径画弧,分别交AB、CD于E、F;再分别以E、F为圆心,大于EF的长为半径画弧,两弧交于点G;作射线AG 交CD于点H,则下列结论正确的有:.①AG平分∠DAB;②CH=DH;③△ADH是等腰三角形;④S△ADH=S四边形ABCH.【答案】①③.【解析】试题分析:根据作图的方法可得AG平分∠DAB,故①正确;∵AG平分∠DAB,∴∠DAH=∠BAH,∵CD∥AB,∴∠DHA=∠BAH,∴∠DAH=∠DHA,∴AD=DH,∴△ADH是等腰三角形,故③正确;故答案为:①③.考点:平行四边形的性质;等腰三角形的判定与性质;作图—基本作图.【题文】如图,小明在大楼30米高即(PH=30米)的窗口P处进行观测,测得山坡上A处的俯角为15°,山脚处的俯角为60°.巳知该山坡的坡度i(即tan∠ABC)为1:,点P,H,B,C,A在同一个平面上,点H、B、C在同一条直线上,且PH丄HC,则A到BC的距离为米.【答案】10.【解析】试题分析:如图作AM⊥BC于M,设AM=x.∵tan∠ABM=,∴∠ABM=30°,∴AB=2AM=2x,∵∠HPB=30°,∴∠PBH=90°﹣∠HPB=60°,∴∠ABP=180°﹣∠PBH﹣∠ABM=90°,∴∠BPA=∠BAP=45°,∴AB=BP=2x,在RT△PBH中,∵sin∠PBH=,∴,∴x=10.故答案为10.考点:解直角三角形的应用-仰角俯角问题;解直角三角形的应用-坡度坡角问题.【题文】如图,在平面直角坐标系中,将矩形AOCD沿直线AE折叠(点E在边DC上),折叠后顶点D恰好落在边OC上的点F处.若点D的坐标为(10,8),则点E的坐标为______________.【答案】(10,3).【解析】试题分析:∵四边形A0CD为矩形,D的坐标为(10,8),∴AD=BC=10,DC=AB=8,∵矩形沿AE折叠,使D落在BC上的点F处,∴AD=AF=10,DE=EF,在Rt△AOF中,OF==6,∴FC=10﹣6=4,设EC=x,则DE=EF=8﹣x,在Rt△CEF中,EF2=EC2+FC2,即(8﹣x)2=x2+42,解得x=3,即EC的长为3.∴点E的坐标为(10,3),故答案为:(10,3).考点:翻折变换(折叠问题);坐标与图形性质.【题文】已知下列命题:①正五边形的每个外角等于72°;②90°的圆周角所对的弦是直径;③方程ax2+bx+c=0,当b2﹣4ac>0时,方程一定有两个不等实根;④函数y=kx+b,当k>0时,图象有可能不经过第二象限;真命题是.【答案】①②.【解析】试题分析:①正五边形的每个外角等于72°是真命题;②90°的圆周角所对的弦是直径是真命题;③方程ax2+bx+c=0,当a=0时,b2﹣4ac>0时,方程一定有一个不等实根是假命题;④函数y=kx+b,当k>0,b>0时,图象经过第二象限,是假命题;故答案为:①②.考点:命题与定理.【题文】计算:﹣12016+×()﹣2+(π﹣3.14)0﹣|﹣|.【答案】24【解析】试题分析:原式利用乘方的意义,立方根定义,绝对值的代数意义,以及零指数幂、负整数指数幂法则计算即可得到结果.试题解析:原式=﹣1+3×9+1﹣3=﹣1+27+1﹣3=24.考点:实数的运算;零指数幂;负整数指数幂.【题文】已知M=(1﹣)÷(1)化简M;(2)当a满足方程a2﹣3a+2=0时,求M的值.【答案】(1)M=a+1;(2)当a=1时,原式=2;当a=2时,原式=3.【解析】试题分析:(1)根据分式混合运算的法则先算括号里面的,再算除法即可;(2)求出a的值,代入分式进行计算即可.试题解析:(1)M=•=a+1;(2)解方程a2﹣3a+2=0得,a1=1,a2=2,当a=1时,原式=2;当a=2时,原式=3.考点:分式的化简求值.【题文】“地球一小时(Earth Hour)”是世界自然基金会(WWF)应对全球气候变化所提出的一项倡议,希望个人、社区、企业和政府在每年3月最后一个星期六20:30﹣21:30熄灯一小时,来唤醒人们对节约资源保护环境的意识.2013年,因为西方复活节的缘故,活动提前到2013年3月23日,在今年的活动中,关于南京电量不降反升的现象,有人以“地球一小时﹣﹣你怎么看?”为主题对公众进行了调查,主要有4种态度A:了解、赞成并支持 B:了解,忘了关灯 C:不了解,无所谓 D:纯粹是作秀,不支持,请根据图中的信息回答下列问题:(1)这次抽样的公众有人;(2)请将条形统计图补充完整;(3)在扇形统计图中,“不了解,无所谓”部分所对应的圆心角是 162 度;(4)若城区人口有300万人,估计赞成并支持“地球一小时”的有 45万人.并根据统计信息,谈谈自己的感想.【答案】(1)1000;(2)100人;图见试题解析.(3)162°;(4)45万.1000;162;45万.【解析】试题分析:(1)根据题意可得:B类的有300人,占30%;即可求得总人数;(2)进而可求得D类的人数,据此可补全条形图;(3)根据扇形图中,每部分占总体的百分比等于该部分所对应的扇形圆心角的度数与360°的比,可求得“不了解,无所谓”部分所对应的圆心角度数;(4)用样本估计总体,可估计赞成的人数.试题解析:(1)300÷30%=1000人.故这次抽样的公众有1000人;(2)1000﹣150﹣300﹣450=100人,作图为:(3)×360°=162°.故“不了解,无所谓”部分所对应的圆心角是162度;(4)300×=45(万人).我们要节约资源保护环境.谈感想:言之有理给分,没有道理不给分.故答案为:1000;162;45万.考点:条形统计图;用样本估计总体;扇形统计图.【题文】小明有一个呈等腰直角三角形的积木盒,现在积木盒中只剩下如图1所示的九个空格,图2是可供选择的A、B、C、D四块积木.(1)小明选择把积木A和B放入图3,要求积木A和B的九个小圆恰好能分别与图3中的九个小圆重合,请在图3中画出他放入方式的示意图(温馨提醒:积木A和B的连接小圆的小线段还是要画上哦!);(2)现从A、B、C、D四块积木中任选两块,求恰好能全部不重叠放入的概率.【答案】(1)见解析;(2).【解析】试题分析:(1)按要求画出图形;(2)先利用画树状图展示所有12种等可能的结果数,再找出恰好能全部不重叠放入的结果数,然后根据概率公式求解.试题解析:(1)如图3,(2)画树状图:共有12种等可能的结果数,其中恰好能全部不重叠放入的结果数为4,所以恰好能全部不重叠放入的概率==.考点:列表法与树状图法.【题文】某校准备去楠溪江某景点春游,旅行社面向学生推出的收费标准如下:人数m0<m≤100100<m≤200m>200收费标准(元/人)908070已知该校七年级参加春游学生人数多于100人,八年级参加春游学生人数少于100人.经核算,若两个年级分别组团共需花费17700元,若两个年级联合组团只需花费14700元.(1)两个年级参加春游学生人数之和超过200人吗?为什么?(2)两个年级参加春游学生各有多少人?【答案】(1)超过200人;(2)七年级参加春游学生人数有120人,八年级参加春游学生人数有90人.【解析】试题分析:(1)设两个年级参加春游学生人数之和为a人,分两种情况讨论,即a>200和100<a≤200,即可得出答案;(2)设七年级参加春游学生人数有x人,八年级参加春游学生人数有y人,根据两种情况的费用,即100<x≤200和x>200分别列方程组求解,即可得出答案.试题解析:(1)设两个年级参加春游学生人数之和为a人,若a>200,则a=14700÷70=210(人).若100<a≤200,则a=14700÷80=183(不合题意,舍去).则两个年级参加春游学生人数之和等于210人,超过200人.(2)设七年级参加春游学生人数有x人,八年级参加春游学生人数有y人,则①当100<x≤200时,得,解得.②当x>200时,得,解得(不合题意,舍去).则七年级参加春游学生人数有120人,八年级参加春游学生人数有90人.考点:二元一次方程组的应用.【题文】如图,在△ABC中,AB=AC,作AD⊥AB交BC的延长线于点D,作CE⊥AC,且使AE∥BD,连结DE .(1)求证:AD=CE.(2)若DE=3,CE=4,求tan∠DAE的值.【答案】(1)证明见解析;(2)tan∠DAE=.【解析】试题分析:(1)利用已知条件证明△BAD≌△ACE,根据全等三角形的对应边相等即可解答;(2)由△BAD≌△ACE,得到BD=AE,AD=CE,从而证明四边形ABDE为平行四边形,再证明∠EDA=∠BAD=90°,最后根据三角函数即可解答.试题解析:(1)∵AB=AC,∴∠B=∠BCA,∵AE∥BD,∴∠CAE=∠BCA,∴∠B=∠CAE,又∵AD⊥AB,CE⊥AC ,∴∠BAD=∠ACE=90°,在△BAD和△ACE中,,∴△BAD≌△ACE.∴AD=CE.(2)∵△BAD≌△ACE,∴BD=AE,AD=CE,∵AE∥BD,∴四边形ABDE为平行四边形.∴DE∥AB,∴∠EDA=∠BAD=90°,∴tan∠DAE=.又∵AD=CE=4,DE=3,∴tan∠DAE==.考点:全等三角形的判定与性质;平行四边形的判定与性质.【题文】如图,一次函数y=kx+3的图象分别交x轴、y轴于点B、点C,与反比例函数y=的图象在第四象限的相交于点P,并且PA⊥y轴于点A,已知A (0,﹣6),且S△CAP=18.(1)求上述一次函数与反比例函数的表达式;(2)设Q是一次函数y=kx+3图象上的一点,且满足△OCQ的面积是△BCO面积的2倍,求出点Q的坐标.【答案】(1)反比例函数的表达式为y=﹣;(2)点Q的坐标为(﹣,9)或(,﹣3).【解析】试题分析:(1)由一次函数表达式可得出点C的坐标,结合A点坐标以及三角形的面积公式可得出AP的长度,从而得出点P的坐标,由点P的坐标结合待定系数法即可求出一次函数及反比例函数的表达式;(2)设点Q的坐标为(m,﹣m+3).由一次函数的表达式可找出点B的坐标,结合等底三角形面积的性质可得出关于m的一元一次方程,解方程即可得出m的值,将其代入点Q的坐标中即可.试题解析:(1)令一次函数y=kx+3中的x=0,则y=3,即点C的坐标为(0,3),∴AC=3﹣(﹣6)=9.∵S△CAP=AC•AP=18,∴AP=4,∵点A的坐标为(0,﹣6),∴点P的坐标为(4,﹣6).∵点P在一次函数y=kx+3的图象上,∴﹣6=4k+3,解得:k=﹣;∵点P在反比例函数y=的图象上,∴﹣6=,解得:n=﹣24.∴一次函数的表达式为y=﹣x+3,反比例函数的表达式为y=﹣.(2)令一次函数y=﹣x+3中的y=0,则0=﹣x+3,解得:x=,即点B的坐标为(,0).设点Q的坐标为(m,﹣m+3).∵△OCQ的面积是△BCO面积的2倍,∴|m|=2×,解得:m=±,∴点Q的坐标为(﹣,9)或(,﹣3).考点:反比例函数与一次函数的交点问题.【题文】如图,AB、AC分别是⊙O的直径和弦,点D为劣弧AC上一点,弦DE⊥AB分别交⊙O于E,交AB 于H,交AC于F.P是ED延长线上一点且PC=PF.(1)求证:PC是⊙O的切线;(2)若点D是劣弧AC的中点,OH=1,AH=2,求弦AC的长.【答案】(1)证明见解析;(2)AC=4.【解析】试题分析:(1)根据等腰三角形的性质和直角三角形两锐角互余的性质,证得∠PCF+∠AC0=90°,即OC⊥PC ,即可证得结论;(2)先根据勾股定理求出DH,再通过证明△OGA≌△OHD,得出AC=2AG=2DH,求出弦AC的长.试题解析:(1)连接OC,∵OA=OC,∴∠ACO=∠OAC,∵PC=PF,∴∠PCF=∠PFC,∵DE⊥AB,∴∠OAC+∠AFH=90°,∵∠PDF=∠AFH,∴∠PFC+∠OAC=90°,∴∠PCF+∠AC0=90°,即OC⊥PC,∴PC是⊙O的切线;(2)连接OD交AC于G.∵OH=1,AH=2,∴OA=3,即可得OD=3,∴DH===2.∵点D在劣弧AC中点位置,∴AC⊥DO,∴∠OGA=∠OHD=90°,在△OGA和△OHD中,,∴△OGA≌△OHD(AAS),∴AG=DH,∴AC=4.考点:切线的判定.【题文】如图,抛物线y=ax2+bx+c经过点A(﹣3,0)、B(1,0)、C(0,3).(1)求抛物线的解析式;(2)若点P为抛物线在第二象限上的一点,设△PAC的面积为S,求S的最大值并求出此时点P的坐标;(3)设抛物线的顶点为D,DE⊥x轴于点E,在y轴上是否存在点M,使得△ADM是等腰三角形?若存在,请直接写出点M的坐标;若不存在,请说明理由.【答案】(1)抛物线y=﹣x2﹣2x+3;点P的坐标为(﹣,);(3)M(0,1).【解析】试题分析:(1)用l=OA×|yP|+OA×|xP|﹣OA×OC=×3×(﹣x2﹣2x+3)+×3×(﹣x)﹣×3×3=﹣x2﹣x=﹣(x+)2+,∴当x=﹣时,S最大=,∴﹣(﹣)2﹣2×(﹣)+3=,∴点P的坐标为(﹣,),(3)如图所示,当△ADM是等腰直角三角形,只能∠AMD=90°,设M(0,m),过D作DF⊥x轴,∴F(0,4),∴OM=m,PM=4﹣m,DF=1,∴△AOM≌△MFD,∴OM=DF=1,PM=OA=3,∴,∴m=1,∴M(0,1)考点:二次函数综合题.。
1.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()
..
..
-的对应点为
....
6.一组数据的方差为9,将这组数据中的每个数据扩大3倍,得到一组新数据的方
差是
A.9 B.27 C.81 D.243 7.运动会上初二(1)班啦啦队,买了两种价格的雪糕,其中甲种雪糕共花费40
元;乙种雪糕共30元,甲种雪糕比乙种雪糕多20根,乙种雪糕价格是甲种雪糕价格的1.5倍,若设甲种雪糕的价格为x元,根据题意可列方程为()
A.
4030
20
1.5x x
-=B.
4030
20
1.5
x x
-=
C.3040
20
1.5
x x
-=D.304020
1.5x x
-=
A B C D P的坐标满足
14.如图,长方体的底面边长分别为1cm 和3cm ,
高为6cm .如果用一根细线从点A 开始经过4个侧面缠绕一圈到达点B ,那么所用细线最短需要 cm ;
15.若2
2(3)16m x x +-+是关于的完全平方式, 则m = 。
16.观察下列按顺序排列的等式:,,,,…,
试猜想第n 个等式(n 为正整数):a n = .
三、计算题, 解答题
17.(6分) 计算:6cos45°-|4-
|++(-
)-1
18.(7分) 先化简,再求值:
, 其中m 是方程
2
310x x
++=的根.
19.在平行四边形ABCD中,E ,F分别为边AB, CD的中点,连接DE ,BF ,BD.
(1)求证:.(4分)
(2)若,则四边形是什么特殊四边形?请证明你的结论.20.小敏为了解本市的空气质量情况,从环境监测网随机抽取了若干天的空气
质量情况作为样本进行统计,绘制了如图所示的条形统计图和扇形统计图(部分信息未给出).请你根据图中提供的信息,解答下列问题:
(1)计算被抽取的天数;
(2)请补全条形统计图,并求扇形统计图中表示优的扇形的圆心角度数;(3)请估计该市这一年(365天)达到优和良的总天数.
如图,已知反比例函数(
=(
23.如图在Rt△ABC中,∠C=90°,点D是AC的中点,且∠A+∠CDB =90°,过点A、D作⊙O,使圆心O在AB上,⊙O与AB交于点E.
(1)求证:直线BD与⊙O相切;
(2)若AD:AE=4:5,BC=6,求⊙O的直径.
24.广东省某市政府为了做到“居者有其屋”,加快了廉租房的建设力度,2010年市政府共投资2亿元人民币建设了廉租房8万平方米,预计到2012年底三年共累计投资9.5亿元人民币建设廉租房,若在这两年内每年投资的增长率相同.
①求每年市政府投资的增长率.
②若这两年内的建设成本不变,求到2012年底共建设了多少平方米廉租房.
25.如图,在平面直角坐标系中,已知点A、B、C在x轴上,点D、E在y轴上,OA=OD=2,OC=OE=4,B为线段OA的中点,直线AD与经过B、E、C三点的抛物线交于F、G两点,与其对称轴交于M,点P为线段FG上一个动点(点P与F、G不重合),作PQ∥y轴与抛物线交于点Q.
(1)若经过B、E、C三点的抛物线的解析式为y=-x2+(2b-1)x+c-5,则b=,c=(直接填空)
(2)①以P、D、E为顶点的三角形是直角三角形,则点P的坐标为(直接填空)
②若抛物线顶点为N,又PE+PN的值最小时,求相应点P的坐标.
(3)连结QN,探究四边形PMNQ的形状:
①能否成为平行四边形
②能否成为等腰梯形?若能,请直接写出点P的坐标;若不能,请说明理由.。