第18讲 投影与视图复习(中考总复习)
- 格式:pptx
- 大小:2.08 MB
- 文档页数:33
【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。
】中考总复习:投影与视图—知识讲解【考纲要求】1.通过实例了解平行投影和中心投影的含义及简单应用;2.会画基本几何体(直棱柱、圆柱、圆锥、球)的三视图(主视图,左视图、俯视图),能根据三视图描述基本几何体或实物的原型.【知识网络】【考点梳理】考点一、生活中的几何体1.常见的几何体的分类在丰富多彩的图形世界中,我们常见的几何体有长方体、正方体、棱柱体、棱锥体、圆柱体、圆锥体、球体、台体等.2.点、线、面、体的关系(1)点动成线,线动成面,面动成体;(2)面面相交成线,线线相交成点.要点诠释:体体相交可成点,不一定成线.3.基本几何体的展开图(1)正方体的展开图是六个正方形;(2)棱柱的展开图是两个多边形和一个长方形;(3)圆锥的展开图是一个圆和一个扇形;(4)圆柱的展开图是两个圆和一个长方形.考点二、投影1.投影用光线照射物体,在某个平面上得到的影子叫做物体的投影,照射光线叫做投影线,投影所在平面叫做投影面.2.平行投影和中心投影由平行光线形成的投影是平行投影;由同一点(点光源)发出的光线形成的投影叫做中心投影.3.正投影投影线垂直投影面产生的投影叫做正投影.要点诠释:正投影是平行投影的一种.考点三、物体的三视图1.物体的视图当我们从某一角度观察一个物体时,所看到的图象叫做物体的视图.我们用三个互相垂直的平面作为投影面,其中正对我们的叫做正面,正面下方的叫做水平面,右边的叫做侧面.一个物体在三个投影面内同时进行正投影,在正面内得到的由前向后观察物体的视图,叫做主视图;在水平面内得到的由上向下观察物体的视图,叫做俯视图;在侧面内得到的由左向右观察物体的视图,叫做左视图.要点诠释:三视图就是我们从三个方向看物体所得到的3个图象.2.画三视图的要求(1)位置的规定:主视图下方是俯视图,主视图右边是左视图.(2)长度的规定:长对正,高平齐,宽相等.要点诠释:主视图反映物体的长和高,俯视图反映物体的长和宽,左视图反映物体的高和宽.【典型例题】类型一、三视图及展开图1.用大小和形状完全相同的小正方体木块搭成一个几何体,使得它的主视图和俯视图如图所示,则搭成这样的一个几何体至少需要小正方体木块的个数为( )A.22 B.19 C.16 D.13【思路点拨】视图、俯视图是分别从物体正面、上面看,所得到的图形.【答案】D;【解析】综合主视图和俯视图,这个几何体的底层最少有3+3+1=7个小正方体,第二层最少有3个,第三层最少有2个,第四层最少有1个,因此搭成这样的一个几何体至少需要小正方体木块的个数为:7+3+2+1=13个.故答案为:13.【总结升华】由三视图判断组成原几何体的小正方体的个数与由相同的小正方体构成的几何体画三视图正好相反.举一反三:【变式1】(2014秋•莲湖区校级期末)用小正方体搭一个几何体,使它的主视图和俯视图如图所示,这样的几何体最少需要正方体个.【答案】7.【解析】∵俯视图中有5个正方形,∴最底层有5个正方体;∵主视图第二层有2个正方形,∴几何体第二层最少有2个正方体,∴最少有几何体5+2=7.【高清课堂:《空间与图形》专题:投影与视图例6】【变式2】下图是由几个相同的小正方体搭成的几何体从三个方向看到的图形,则搭成这个几何体的小正方体的个数是()个.A.5 B.6 C.7 D.8【答案】B.2.美术课上,老师要求同学们将如图所示的白纸只沿虚线剪开,用裁开的纸片和白纸上的阴影部份围成一个立体模型,然后放在桌面上,下面四个示意图中,只有一个符合上述要求,那么这个示意图是()A. B.C. D.【思路点拨】动手操作看得到小正方体的阴影部分的具体部位即可.【答案】B左面看正面看上面看【解析】动手操作折叠成正方体的形状放置到白纸的阴影部分上,所得正方体中的阴影部分应紧靠白纸,故选B.【总结升华】用到的知识与正方体展开图有关,考察学生空间想象能力.建议学生在平时的教学过程中应结合实际模型将展开图的若干种情况分析清楚.举一反三:【变式】如图所示的是以一个由一些相同的小正方体组成的简单几何体的主视图和俯视图.设组成这个几何体的小正方体的个数为n,请写出n的所有可能的值.【答案】n为8,9,10,11.3.下列图形中经过折叠能围成一个棱柱的是()A. B. C. D.【思路点拨】利用四棱柱及其表面展开图的特点解题.【答案】D;【解析】A、侧面少一个长方形,故不能;B、侧面多一个长方形,折叠后不能围成棱柱,故不能;C、折叠后少一个底面,不能围成棱柱;只有D能围成四棱柱.故选D.【总结升华】四棱柱的侧面展开图为四个长方形组成的大长方形.举一反三:【高清课堂:《空间与图形》专题:投影与视图课堂练习3】【变式】如图,在正方体ABCD-A1B1C1D1中,E、F、G分别是AB、BB1、BC的中点,沿EG、EF、FG将这个正方体切去一个角后,得到的几何体的俯视图是()A. B. C. D.【答案】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.从上面看易得1个正方形,但上面少了一个角,在俯视图中,右下角有一条线段.故选B.类型二、投影有关问题4.如图,在斜坡的顶部有一铁塔AB,B是CD的中点,CD是水平的,在阳光的照射下,塔影DE留在坡面上.已知铁塔底座宽CD=12 m,塔影长DE=18 m,小明和小华的身高都是1.6m,同一时刻,小明站在点E处,影子在坡面上,小华站在平地上,影子也在平地上,两人的影长分别为2m和1m,求塔高AB的长.【思路点拨】过点D构造矩形,把塔高的影长分解为平地上的BD,斜坡上的DE.然后根据影长的比分别求得AG,GB长,把它们相加即可.【答案与解析】【解析1】解:如图1,过D作DF⊥CD,交AE于点F,过F作FG⊥AB,垂足为G.可得矩形BDFG.由题意得:.∴DF=DE×1.6÷2=14.4(m).∴GF=BD=CD=6m.又∵.∴AG=1.6×6=9.6(m).∴AB=14.4+9.6=24(m).答:铁塔的高度为24m.图1 图2【解析2】如图2,作DG∥AE,交AB于点G,BG的影长为BD,AG 的影长为DE,由题意得:AG 1.6=DE2.∴AG=18×1.6÷2=14.4(m).又∵BG 1.6=BD1.∴B G=1.6×6=9.6(m).∴AB=14.4+9.6=24(m).答:铁塔的高度为24m.【总结升华】运用所学的解直角三角形的知识解决实际生活中的问题,要求我们要具备数学建模能力(即将实际问题转化为数学问题).类型三、投影视图综合问题5.用小立方体搭成一个几何体,使它的主视图和俯视图如图所示,搭建这样的几何体最多要小立方体.【思路点拨】从正视图和侧视图考查几何体的形状,从俯视图看出几何体的小立方块最多的数目.【答案】17.【解析】解:由主视图可知,它自下而上共有3列,第一列3块,第二列2块,第三列1块.由俯视图可知,它自左而右共有3列,第二列各3块,第三列1块,从空中俯视的块数只要最低层有一块即可.因此,综合两图可知这个几何体的形状不能确定;如图,最多时有3×5+2×1=17块小立方体.故答案为17.【总结升华】本题考查简单空间图形的三视图,考查空间想象能力,是基础题,但很容易出错.6.(2015•永春县校级自主招生)如图是某中学生公寓时的一个示意图(每栋公寓均朝正南方向,且楼高相等,相邻两栋公寓的距离也相等).已知该地区冬季正午的阳光与水平线的夹角为32°,在公寓的采光不受影响(冬季正午最底层受到阳光照射)的情况下,公寓的高为AB,相邻两公寓间的最小距离为BC.(1)若设计公寓高为20米,则相邻两公寓之间的距离至少需要多少米时,采光不受影响?(2)该中学现已建成的公寓为5层,每层高为3米,相邻两公寓的距离24米,问其采光是否符合要求?(参考数据:取sin32°=,cos32°=,tan32°=)【思路点拨】(1)在直角三角形ABC中,已知AB利用锐角三角函数求得BC的长即可;(2)利用楼高求得不受影响时候两楼之间的距离与24米比较即可得到结果;【答案与解析】解:(1)∵在直角三角形ABC中,AB=20米,∠ACB=32°,∴=tan32°∴BC===32米,∴相邻两公寓之间的距离至少需要32米时,采光不受影响;(2)∵楼高=3×5=15米,∴不受影响时两楼之间的距离为15÷tan32°=24米,∵相邻两公寓的距离恰为24米,∴符合采光要求;【总结升华】本题是将实际问题转化为直角三角形中的数学问题,做到学数学,用数学,才是学习数学的意义.7.如图,不透明圆锥体DEC放在直线BP所在的水平面上,且BP过底面圆的圆心,其高23m,底面半径为2m.某光源位于点A处,照射圆锥体在水平面上留下的影长BE=4m.(1)求∠B的度数;(2)若∠ACP=2∠B,求光源A距平面的高度.【思路点拨】(1)如下图所示,过点D作DF垂直BC于点F.由题意,得DF=23,EF=2,BE=4,在Rt△DFB中,tan∠B= DFBF,由此可以求出∠B;(2)过点A作AH垂直BP于点H.因为∠ACP=2∠B=60°所以∠BAC=30°,AC=BC=8.在Rt△ACH中,AH=AC•Sin∠ACP,所以可以求出AH了,即求出了光源A距平面的高度.【答案与解析】解:(1)过点D作DF垂直BC于点F.由题意,得DF=23,EF=2,BE=4.在Rt△DFB中,tan∠B=DF233==BF2+43,所以∠B=30°;(2)过点A作AH垂直BP于点H.∵∠ACP=2∠B=60°,∴∠BAC=30°,∴AC=BC=8,在Rt△ACH中,AH=AC•Sin∠ACP=38=432,即光源A距平面的高度为43m.【总结升华】本题考查了学生运用三角函数知识解决实际问题的能力,又让学生感受到生活处处有数学,数学在生产生活中有着广泛的作用.中考数学知识点代数式一、重要概念分类:1.代数式与有理式用运算符号把数或表示数的字母连结而成的式子,叫做代数式。
初三数学:投影与视图知识点归纳一、知识要点1、投影(1)投影:用光线照射物体,在某个平面(地面、墙壁等)上得到的影子叫做物体的投影(projection),照射光线叫做投影线,投影所在的平面叫做投影面。
(2)平行投影:有时光线是一组互相平行的射线,例如太阳光或探照灯光的一束光中的光线。
由平行光线形成的投影是平行投影(parallel projection).(3)中心投影:由同一点(点光源发出的光线)形成的投影叫做中心投影(center projection)。
(4)正投影:投影线垂直于投影面产生的投影叫做正投影。
注:物体正投影的形状、大小与它相对于投影面的位置有关。
2、三视图(1)三视图:是指观测者从三个不同位置观察同一个空间几何体而画出的图形。
将人的视线规定为平行投影线,然后正对着物体看过去,将所见物体的轮廓用正投影法绘制出来该图形称为视图。
一个物体有六个视图:从物体的前面向后面投射所得的视图称主视图--能反映物体的前面形状,从物体的上面向下面投射所得的视图称俯视图--能反映物体的上面形状,从物体的左面向右面投射所得的视图称左视图--能反映物体的左面形三视图就是主视图、俯视图、左视图的总称。
(2)特点:一个视图只能反映物体的一个方位的形状,不能完整反映物体的结构形状。
三视图是从三个不同方向对同一个物体进行投射的结果,另外还有如剖面图、半剖面图等做为辅助,基本能完整的表达物体的结构。
一个视图只能反映物体的一个方位的形状,不能完整反映物体的结构形状。
三视图是从加速度学习网我的学习也要加速三个不同方向对同一个物体进行投射的结果,另外还有如剖面图、半剖面图等做为辅助,基本能完整的表达物体的结构。
二、经验之谈:多读两遍吧!有兴趣的同学可以多画图观察。
精品基础教育教学资料,仅供参考,需要可下载使用!中考数学热点题型专练:热点18 投影与视图【命题趋势】投影与视图这部分内容是一个小的考点,必考内容之一,一般为一个选择题,分值3—4分,一般解答题很少考到。
可能很多同学会忽视这部分内容,感觉投影与视图又简单,考的又少,所以在复习时往往会忽略这部分内容,这是严重错误的想法,就因为它考的不多,又简单,所以我们才应该认真对待这部分内容,拿好拿稳这几分。
【满分技巧】一、整体把握知识结构二.重点知识1.两种投影的概念与性质2.三种视图:有关视图,一般有两种类型的问题:A.由物质到视图,这种类型的问题比较简单;B.由视图想象物体的样子,这个对空间想象能力要求很高,一般比较难;这两种类型的问题,一般考查方式都是以小正方体的堆积为载体,进行考查.【限时检测】(建议用时:30分钟)一、选择题1.下列几何体是由4个相同的小正方体搭成的,其中左视图和俯视图相同的是()A.B.C.D.【答案】B【解析】A、左视图第一层两个小正方形,俯视图第一层一个小正方形,故A不符合题意;B、左视图和俯视图相同,故B符合题意;C、左视图第一层两个小正方形,俯视图第一层一个小正方形,故C不符合题意;D、左视图是一列两个小正方形,俯视图一层三个小正方形,故D不符合题意;故选:B.2.如图所示是一个几何体的三视图,如果一只蚂蚁从这个几何体的点B出发,沿表面爬到AC的中点D处,则最短路线长为()A.3B.C.3D.3【答案】D【解析】如图将圆锥侧面展开,得到扇形ABB′,则线段BF为所求的最短路程.设∠BAB′=n°.∠=4π,∠n=120即∠BAB′=120°.∠E为弧BB′中点,∠∠AFB=90°,∠BAF=60°,∠BF=AB•sin∠BAF=6×=3,∠最短路线长为3.故选:D.3.一个几何体的三视图如图所示,则这个几何体的表面积是()A.5cm2B.8cm2C.9cm2D.10cm2【答案】D【解析】由题意推知几何体是长方体,长、宽、高分别1cm、1cm、2cm,所以其面积为:2×(1×1+1×2+1×2)=10(cm2).故选:D.4.如图是由10个同样大小的小正方体摆成的几何体.将小正方体∠移走后,则关于新几何体的三视图描述正确的是()A.俯视图不变,左视图不变B.主视图改变,左视图改变C.俯视图不变,主视图不变D.主视图改变,俯视图改变【答案】A【解析】将正方体∠移走后,新几何体的三视图与原几何体的三视图相比,俯视图和左视图没有发生改变;故选:A.5.如图所示的几何体是由9个大小相同的小正方体组成的,将小正方体①移走后,所得几何体的三视图没有发生变化的是A.主视图和左视图B.主视图和俯视图C.左视图和俯视图D.主视图、左视图、俯视图【答案】A【解析】本题考查了三视图的判断,三视图没有发生变化的是主视图和左视图,发生变化的是俯视图,故选A.6.如图,是由两个正方体组成的几何体,则该几何体的俯视图为【答案】D【解析】解析本题考查三视图,俯视图为从上往下看,所以小正方形应在大正方形的右上角,故选D7.如图所示的几何体是由6个大小相同的小立方块搭成,它的左视图是()A.B.C.D.【答案】B【解析】从左面看易得第一层有2个正方形,第二层左边有1个正方形,如图所示:故选:B.8.如图是由7个小立方块所搭成的几何体的俯视图,小正方形中的数字表示该位置小立方块的个数,这个几何体的左视图是()A.B.C.D.【答案】B【解析】从左面看可得到从左到右分别是3,1个正方形.故选:B.9.下列几何体中,主视图是三角形的是()A. B. C. D.【答案】C【解析】A、正方体的主视图是正方形,故此选项错误;B、圆柱的主视图是长方形,故此选项错误;C、圆锥的主视图是三角形,故此选项正确;D、六棱柱的主视图是长方形,中间还有两条竖线,故此选项错误;故选:C.10.已知一个组合体是由几个相同的正方体叠合在一起组成,该组合体的主视图与俯视图如图所示,则该组合体中正方体的个数最多是()A.10B.9C.8D.7【答案】B【解析】从俯视图可得最底层有5个小正方体,由主视图可得上面一层是2个,3个或4个小正方体,则组成这个几何体的小正方体的个数是7个或8个或9个,组成这个几何体的小正方体的个数最多是9个.故选:B.11.如图是一个水平放置的全封闭物体,则它的俯视图是()A.B.C.D.【答案】A【解析】从上面观察可得到:.故选:C.12.如图是由4个相同的小正方体组成的一个立体图形,其主视图是()A.B.C.D.【答案】A【解析】从正面看易得第一层有2个正方形,第二层左边有一个正方形,如图所示:故选:A.13.下列几何体中,俯视图不是圆的是()A.四面体B.圆锥C.球D.圆柱【答案】A【解析】A、俯视图是三角形,故此选项正确;B、俯视图是圆,故此选项错误;C、俯视图是圆,故此选项错误;D、俯视图是圆,故此选项错误;故选:A.14.我国古代数学家刘徽用“牟合方盖”找到了球体体积的计算方法.“牟合方盖”是由两个圆柱分别从纵横两个方向嵌入一个正方体时两圆柱公共部分形成的几何体.如图所示的几何体是可以形成“牟合方盖”的一种模型,它的俯视图是()A.B.C.D.【答案】A【解析】分析根据俯视图即从物体的上面观察得得到的视图,进而得出答案A故选:A.15.)如图为正方体的一种平面展开图,各面都标有数字,则数字为﹣2的面与其对面上的数字之积是()A.﹣12B.0C.﹣8D.﹣10【答案】A【解析】分析根据正方体的平面展开图的特征知,其相对面的两个正方形之间一定相隔一个正方形,所以数字为﹣2的面的对面上的数字是6,其积为﹣12.故选:A16.如图∠是由大小相同的小正方体搭成的几何体,将上层的小正方体平移后得到图∠.关于平移前后几何体的三视图,下列说法正确的是()A.主视图相同B.左视图相同C.俯视图相同D.三种视图都不相同【答案】A【解析】图∠的三视图为:图∠的三视图为:故选:A.17.如图所示的几何体是由几个大小相同的小正方体搭成的,其俯视图是()A.B.C.D.【答案】C【解析】从上面看,得到的视图是:,故选:C.18.如图,圆柱底面圆半径为2,高为2,则圆柱的左视图是()A.平行四边形B.正方形C.矩形D.圆【答案】C【解析】圆柱底面圆半径为2,高为2,∴底面直径为4,∴圆柱的左视图是一个长为4,宽为2的长方形,故选:C.19.某同学家买了一个外形非常接近球的西瓜,该同学将西瓜均匀切成了8块,并将其中一块(经抽象后)按如图所示的方式放在自已正前方的水果盘中,则这块西瓜的三视图是()A.B.C.D.【答案】B【解析】分析主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形;认真观察实物图,按照三视图的要求画图即可,注意看得到的棱长用实线表示,看不到的棱长用虚线的表示.观察图形可知,这块西瓜的三视图是.故选:B.20.如图是一个由4个相同的正方体组成的立体图形,它的主视图是()A.B.C.D.【答案】B【解析】左视图有3列,每列小正方形数目分别为2,1,1.故选:B.21.如图是一个几何体的三视图,则这个几何体是()A.三棱锥B.圆锥C.三棱柱D.圆柱【答案】B【解析】分析主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.由于主视图和左视图为三角形可得此几何体为锥体,由俯视图为圆形可得为圆锥.故选:B.二、填空题22.一个由16个完全相同的小立方块搭成的几何体,其最下面一层摆放了9个小立方块,它的主视图和左视图如图所示,那么这个几何体的搭法共有种.【答案】10【解析】设俯视图有9个位置分别为:由主视图和左视图知:∠第1个位置一定是4,第6个位置一定是3;∠一定有2个2,其余有5个1;∠最后一行至少有一个2,当中一列至少有一个2;根据2的排列不同,这个几何体的搭法共有10种:如下图所示:故答案为:10.23.在如图所示的几何体中,其三视图中有矩形的是______.(写出所有正确答案的序号)【答案】∠∠【解析】本题考查对三视图的认识.∠长方体的主视图,俯视图,左视图均为矩形;∠圆柱的主视图,左视图均为矩形,俯视图为圆;∠圆锥的主视图和左视图为三角形,俯视图为圆.故答案为∠∠24.已知某几何体的三视图如图所示,其中俯视图为等边三角形,则该几何体的左视图的面积为 . 【答案】(18+2)cm 2【解析】该几何体是一个三棱柱,底面等边三角形边长为2cm ,高为cm ,三棱柱的高为3,所以,其表面积为3×2×3+2×=18+2(cm 2).故答案为(18+2)cm 2第11题图③圆锥②圆柱①长方体25.如图是一个多面体的表面展开图,如果面F在前面,从左面看是面B,那么从上面看是面.(填字母)【答案】E【解析】由题意知,底面是C,左侧面是B,前面是F,后面是A,右侧面是D,上面是E,故答案为:E.。
(2)第七单元 第 37 课时投影和视图知识点回顾 知识点一:三视图1. 三种视图的内在联系主视图反映物体的; 俯视图反映物体的 ; 左视图反映物体的.因此,在画三种视图时,主、俯视图要长对,主、左视图要高,俯、左视图要.2. 三种视图的位置关系一般地,首先确定主视图的位置,画出主视图,然后在主视图的 画出俯视图,在主视图的画出左视图.3. 三种视图的画法首先观察物体,画出视图的外轮廓线,然后将视图补充完整,其中看得见部分的轮廓线通常画成 线, 看不见部分的轮廓线通常画成线.例 1 画出右图 1 所示的两个几何体的三种视图.分析:这两个几何体,一个是被切去一角的三棱柱,另一个是由两个圆柱体组成的复合体,画它们的三种视图相对复杂,因此要更加仔细观察原几何体及其画三种视图的原则. 解:同步检测:1.小明从正面观察如图 1 所示的两个物体,看到的是()析解:本题是由正面观察两个物体,所以小明看到的图形应是物体的主视图.从正面看圆柱, 所得的图形是长方形;从正面看正方体,所得的图形为正方形,所以小明从正面看到的图形主视图(1)俯 视左 视 主 视左视图俯视图(1)图 1(2)应是两个,左边为长方形,右边为正方形,故选C. 2.(陕西省)如图2,水杯的俯视图是()析解:物体的俯视图就是从实物的上面看到的图形,从水杯正上面往下看,看到的一定是水杯圆形的上口和圆形的水杯底及右侧的杯柄,而不是长方形或带杯柄的长方形.观察四个选项符合题意的只有 D,故选 D.知识点二:平行投影和中心投影1.太阳光与影子太阳光线可以看成平行光线,像这样的光线所形成的投影称为.物体在太阳光照射的不同时刻,不仅影子的长短在,而且影子的方向也在改变.根据不同时刻影长的变换规律,以及太阳东西的自然规律,可以判断时间的先后顺序.分别过每个物体的顶端及其影子的顶端作一条直线,若两直线,则为平行投影;若两直线,则为中心投影,其交点就是光源的位置.灯光的光线可以看成是从发出的(即为点光源),像这样的光线所形成的投影称为中心投影.中心投影光源的确定:分别过每个物体的顶端及其影子的顶端作一条直线,这两条直线的即为光源的位置.例 2 ,与一盏路灯相对,有一玻璃幕墙,幕墙前面地面上有一盆花和一棵树,晚上,幕墙反射路灯灯光形成了那盆花的影子如图 2,树影是路灯灯光形成的,你能确定此时路灯光源的位置吗?分析:确定光源的问题,实际上是利用光线沿直线传播的性质进行作图.在这个问题中,应注意入射角等于反射角,如图 3,可以确定光源的位置为P 点.P图2图3例 3(1)如图 4 是同一时刻的两棵树及其影子,请你在图中画出形成树影的光线,并判断它是太阳光线还是灯光的光线?若是灯光的光线,请确定光源的位置.(2)请判断如图 5 所示的两棵树的影子是在太阳光下形成的,还是灯光下形成的?并画出同一时刻旗杆的影子(用线段表示).分析:本题是由树及其影子寻找光线,具体方法是过树的顶端及其影子的顶端作两条直线作为光线,若两条直线平行,则是太阳光线;若两条直线相交,则是灯光光线,其交点就是光源的位置.解:(1)如图 4 所示是灯光的光线.原因是过一棵树的顶端及其影子的顶端作一条直线, 再过另一棵树的顶端及其影子的顶端作一条直线,两直线相交,其交点就是光源的位置.(2)如图 5 所示,是太阳光的光线.原因是过一棵树的顶端及其影子的顶端作一条直线,再过另一棵树的顶端及其影子的顶端作一条直线,两直线平行.然后再过旗杆的顶端作一条与已知光线平行的直线,交地面于一点,连接这点与旗杆底端的线段就是旗杆的影子. 同步检测:在同一时刻的阳光下,小明的影子比小强的影子长,那么在同一路灯下 ( )A 、小明的影子比小强的影子长B 、小明的影子比小强的影子短C 、小明的影子和小强的影子一样长D 、无法判断谁的影子长解:因为在同一时刻的阳光下,小明的影子比小强的影子长,因此可知小明比小强高。
专题29.1 投影与视图(全章复习与巩固)(知识讲解)【知识点一】投影在画视图时,看得见的部分的轮廓线通常画成实线,看不见的部分轮廓线通常画成虚线。
物体在光线的照射下,会在地面或墙壁上留下它的影子,这就是投影。
太阳光线可以看成平行的光线,像这样的光线所形成的投影称为平行投影。
探照灯、手电筒、路灯的光线可以看成是从一点出发的,像这样的光线所形成的投影称为中心投影。
※区分平行投影和中心投影:①观察光源;②观察影子。
眼睛的位置称为视点;由视点发出的线称为视线;眼睛看不到的地方称为盲区。
※从正面、上面、侧面看到的图形就是常见的正投影,是当光线与投影垂直时的投影。
①点在一个平面上的投影仍是一个点;②线段在一个面上的投影可分为三种情况:线段垂直于投影面时,投影为一点;线段平行于投影面时,投影长度等于线段的实际长度;线段倾斜于投影面时,投影长度小于线段的实际长度。
③平面图形在某一平面上的投影可分为三种情况:平面图形和投影面平行的情况下,其投影为实际形状;平面图形和投影面垂直的情况下,其投影为一线段;平面图形和投影面倾斜的情况下,其投影小于实际的形状。
【知识点二】视图三视图包括:主视图、俯视图和左视图。
三视图之间要保持长对正,高平齐,宽相等。
一般地,俯视图要画在主视图的下方,左视图要画在正视图的右边。
主视图:基本可认为从物体正面视得的图象俯视图:基本可认为从物体上面视得的图象左视图:基本可认为从物体左面视得的图象视图中每一个闭合的线框都表示物体上一个表面(平面或曲面),而相连的两个闭合线框一定不在一个平面上。
在一个外形线框内所包括的各个小线框,一定是平面体(或曲面体)上凸出或凹的各个小的平面体(或曲面体)。
【典型例题】类型一、平行投影1.数学兴趣小组的小颖想测量教学楼前一棵小树的高度,课外活动时她测得一根长为1m的竹竿的影长是0.8m,同一时刻,她发现树的影子不全落在地面上,有一部分影子落在教学楼的墙上,她先测得留在墙壁上的影高为1.3m,又测得地面上的影长为2.4m,请你帮她计算一下树的高度是多少?【答案】4.3m【分析】利用同一时刻不同物体的物高与影长的比相等,求出影长为2.4m的树高,再加上墙上的影高即为所求.解:设影长为2.4m的树高为x m:由题意得:10.8 2.4x=,解得:=3x,∴树高为:3 1.3 4.3+=m.【点拨】本题考查利用物高和影长比求物高.熟练掌握同一时刻,不同物体的物高与影长的比值相等是解题的关键.举一反三:【变式】小明和小华利用阳光下的影子来测量一建筑物顶部旗杆的高.如图所示,在某一时刻,他们在阳光下,分别测得该建筑物OB的影长OC为16米,OA的影长OD为20米,小明的影长FG为2.4米,其中O、C、D、F、G五点在同一直线上,A、B、O三点在同一直线上,且AO∴OD,EF∴FG.已知小明的身高EF为1.8米,求旗杆的高AB.【答案】旗杆的高AB为3米.【分析】证明△AOD ∴△EFG ,利用相似比计算出AO 的长,再证明△BOC ∴△AOD ,然后利用相似比计算OB 的长,进一步计算即可求解.解:∴AD ∴EG ,∴∴ADO =∴EGF . 又∴∴AOD =∴EFG =90°, ∴△AOD ∴△EFG . ∴AO ODEF FG=. ∴ 1.820152.4EF OD AO FG ⋅⨯===. 同理,△BOC ∴△AOD . ∴BO OC AO OD=. ∴15161220AO OC BO OD ⋅⨯===. ∴AB =OA −OB =3(米). ∴旗杆的高AB 为3米.【点拨】本题考查了平行投影:由平行光线形成的投影是平行投影,如物体在太阳光的照射下形成的影子就是平行投影.平行投影中物体与投影面平行时的投影是全等的.类型二、中心投影2.小明在晚上由路灯A 走向路灯B ,当他走到P 处时,发现身后影子顶部正好触到路灯A 底部,当他向前再步行12m 到达Q 时,发现他的影子的顶点正好接触到路灯B 的底部.已知小明的身高是1.6m ,两个路灯的高度都是9.6m ,且m AP BQ x ==.(1)求:两个路灯之间的距离;(2)小明在两个路灯之间行走时,在两个路灯下的影长之和是否为定值?如果是定值,直接写出此定值,如果不是定值,求说明理由.【答案】(1)两路灯之间的距离为18米(2)两影长之和为定值,定值为3.6米【分析】(1)根据题意结合图形可知,图中AP BQ =,在点Q 处时,DQB △和EAB 相似,然后利用相似三角形对应边成比例列出比例式后即可求解;(2)设两影长之和为y ,利用相似比,可计算出在两个路灯之间行走时影长之和为定值.(1)解:由题意得122AB x =+,∴DQ AE ∥, ∴DQB △∴EAB ,DQ BQEA BA= 则1.69.6122xx=+ 解得:3x =,12212618x +=+=,故两路灯之间的距离为18米;(2)解:两影长之和为定值,定值为3.6米.理由:如图,设PQ PK y +=米.∴AE CP BH ∥∥,∴∴CPK ∴∴EAK ,∴CPQ ∴∴HBQ , ∴PC PKAE KA=,PC QP BH QB =, 则1.69.6PKAK=,1.69.6QP QB =, ∴ 1.619.66PK QP AK QB === ∴16PK QP AK BQ +=+,1186y y ∴=+, 解得 3.6x =,∴两影长之和为定值,定值为3.6米.【点拨】本题考查了相似三角形的应用及中心投影的知识,解题的关键是正确的根据题意作出图形.举一反三:【变式】如图,在安装路灯AB 的路面CD 比种植树木的地面PQ 高 1.2m CP =,身高1.8m 的红英MN 站在距离C 点15米的路面上.在路灯的照射下,路基CP 留在地面上的影长EP 为0.4米,(1)画出红英MN 在地面的影子NF ;(2)若红英留在路面上的影长NF 为3m ,求路灯AB 的高度. 【答案】(1)见分析(2)9米【分析】(1)根据相似即可画出影子NF ;(2)如图,设AB =x m ,CB =y m .构建方程组解决问题即可. (1)解:如图所示:(2)解:设AB x =,CB y =∴AB PC BC EP=,AB BFMN NF = , ∴ 1.20.41.81533x y x y ⎧=⎪⎪⎨⎪=⎪-+⎩∴解得93x y =⎧⎨=⎩,经检验93x y =⎧⎨=⎩是分式方程的解,∴9AB =,答:灯AB 的高度为9米.【点拨】本题考查中心投影,相似三角形的判定和性质等知识,解题的关键是学会利用参数,构建方程组解决问题.类型三、正投影3.把下列物体与它们的投影用线连接起来.【答案】见分析【分析】根据正投影的定义解答即可.解:如图:【点拨】本题主要考查了正投影,理解投影的定义成为解答本题的关键.举一反三:【变式】画出下面物体(正三棱柱)的正投影:(1)投影线由物体前方射到后方;(2)投影线由物体左方射到右方;(3)投影线由物体上方射到下方.【分析】(1)投影线由物体前方射到后方是一个等腰三角形;(2)投影线由物体左方射到右方是一个长方形;(3)投影线由物体上方射到下方是一个中间有一条竖线的长方形.解:类型四、视点、视觉和盲区4.如图,点P的对面是一面东西走向的墙,某人在点P观察一辆自西向东行驶的汽车AB,汽车的长为6米,根据图中标示的数据解决下列问题:(1)画出此人在汽车与墙之间形成的盲区,并求出该盲区的面积;(2)当汽车行驶到CD位置时,盲区的面积是否会发生变化?为什么?【答案】(1)盲区的面积为75 m2;(2)盲区的面积不变.【分析】(1)根据已知画出形成的盲区为梯形AEFB,再利用梯形面积求法得出答案即可;(2)根据∴PCD与△PMN仍然相似,且它们的高不变,所以相似比不变,汽车长度不变,所以MN的长不变,所以梯形CMND的面积不变,即盲区的面积不变.解:(1)形成的盲区为梯形AEFB,∴AB∴EF,∴∴PAB∴∴PEF,∴ABEF=2030,∴EF=9,∴盲区的面积为(6+9)×10÷2=75 m2;(2)当汽车行驶到CD位置时,盲区的面积不会发生变化,∴∴PCD与△PMN仍然相似,且它们的高不变,所以相似比不变,汽车长度不变.所以MN的长不变,所以梯形CMND的面积不变,即盲区的面积不变.【点拨】此题主要考查了盲区的确定方法以及梯形面积求法,根据已知得出MN的长不变,进而得出梯形CMND的面积不变是解题关键.举一反三:【变式】如图,是一座商厦的俯视图,AB是正面,一位顾客由远及近走近商厦的过程中,他看到的商厦的侧面个数与区域的范围的情况是怎样的?请在图中画图说明.【分析】根据视点,视角和盲区的定义,画出图形可解决.解:由图可知,在1区域时看到3个侧面,在2区域时只能看到一个侧面,因此看到的侧面由三个面到一个面.【点拨】此题主要考查视点,视角和盲区.类型五、三视图的作图5.(1)如图是由10个同样大小且棱长为1的小正方体搭成的简单几何体,请分别画出它的主视图和左视图(请涂上阴影).(2)如果将(1)中几何体的表面(不含几何体之间叠合部分及与地面接触的底面)喷上油漆,则需喷漆部分的面积是.【答案】(1)见分析;(2)30【分析】(1)根据主视图、左视图的定义画出图形即可;(2)数一数有多少个正方形露在外面即可求得面积.解:(1)如图所示:(2)若将图中几何体的表面(不含几何体之间叠合部分及与地面接触的底面)喷上油漆,则需要喷6×2+6×2+6=30个小正方形,面积为30,故需喷漆部分的面积为30.故答案为:30.【点拨】本题考查简单组合体的三视图,理解视图的意义是正确解答的前提.举一反三:【变式】如图所示是由若干个相同的小正方体组成的几何体.(1)该几何体由______个小正方体组成;(2)在虚线网格中画出该几何体的三视图.【答案】(1)8(2)见分析【分析】(1)根据几何体的特征判断即可;(2)根据三视图的定义画出图形即可.解:(1)这个几何体有8个小正方形组成.故答案为:8;(2)三视图如图所示.【点拨】本题考查了简单组合体的三视图,解题的关键是理解三视图的定义,属于中考常考题型.类型六、与三视图的有关计算6.如图为一几何体从正面和从上面看到的形状图:(1)这个几何体的名称为;(2)画出它的一种表面展开图;(3)若从正面看到的是长为10cm,宽为6cm的长方形;从上面看到的是三条边长度均为6cm的三角形(如图示),求这个几何体的侧面积和所有棱长的和.【答案】(1)三棱柱(2)见分析(3)侧面积为180cm2,棱长之和为66cm【分析】(1)根据主视图和俯视图可得答案;(2)根据题意,画出三棱柱的表面展开图,即可求解;(3)根据主视图和俯视图的尺寸列出算式(6+6+6)×10,再进一步计算即可.(1)解:根据题意得:这个几何体的名称为三棱柱,故答案为:三棱柱;(2)解:如图,(3)解:这个几何体的侧面积为(6+6+6)×10=180cm2,所有棱长的和为6×3×2+10×3=66cm.【点拨】本题主要考查由三视图判断几何体,解题的关键是根据主视图和俯视图判断几何体的大概形状及相关棱长的长度.举一反三:【变式】棱长为2厘米的小正方体组成如图所示的几何体,该几何体共由11个小正方体组成.(1)画出该几何体的从三个方向看的形状图.(2)求该几何体的表面积.【答案】(1)见分析(2)该几何体的表面积为160平方厘米【分析】(1)从正面看有4列,每列小正方形数目分别为3,3,1,2;从左面看有2列,每列小正方形数目分别为3,1;从上面看有4列,每列小正方形数目分别为2,2,1,1;(2)前后两面小正方形的个数为:2×(3+3+1+2);上下两面小正方形的个数为:2×(2+2+1+1);左右两面正方形的个数为:2×(3+1)+2,然后算出表面积即可.(1)解:该几何体的从三个方向看的形状图,如图所示:=(平方厘米),(2)解:棱长为2厘米的小正方体一个面的面积为224该几何体的表面积为:()()()=⨯++++⨯++++⨯++⨯233122*********S⎡⎤⎣⎦()=+++⨯1812824=(平方厘米)160答:该几何体的表面积为160平方厘米.【点拨】本题主要考查了从不同方向看几何体的画法,表面积的计算;注意表面积指组成几何体的外表面积.类型七、三视图中的最值和至少问题7.【问题情境】小圣所在的综合实践小组准备制作一些无盖纸盒收纳班级讲台上的粉笔.【操作探究】(1)图1中的哪些图形经过折叠能围成无盖正方体纸盒?______________(填序号).(2)小圣所在的综合实践小组把折叠成6个棱长都为2dm的无盖正方体纸盒摆成如图2所示的几何体.∴请计算出这个几何体的体积;∴如果在这个几何体上再添加一些相同的正方体纸盒,并保持从上面看到的形状和从左面看到的形状不变,最多可以再添加_______________个正方体纸盒.48dm;∴3【答案】(1)∴∴∴(2)∴3【分析】(1)根据正方体表面展开图的特征逐项进行判断即可;(2)∴先根据图象得出无盖正方体纸盒的个数,再用一个无盖正方体纸盒的体积乘以个数即可得到答案;∴先得出左视图和俯视图,再根据三视图的性质作答即可.(1)解:无盖正方体形纸盒应该由5个面,但图∴中经折叠后有两个面重复,因此图∴中的图形折叠不能围成无盖正方体形纸盒,图∴∴∴均可以经过折叠能围成无盖正方体形纸盒,故答案为:∴∴∴.(2)∴解:由图象可知共有6个无盖正方体纸盒,由题意得无盖正方体纸盒的棱长都为2dm,故这个几何体的体积为3⨯⨯⨯=;222648dm∴解:由图得左视图和俯视图分别为:故保持从上面看到的形状和从左面看到的形状不变,可放置的正方体纸盒为虚线所示的正方体纸盒:共3个,故答案为:3.【点拨】本题考查了正方体的折叠问题及简单图形的三视图,能够根据图形进行抽象概括是解题的关键.举一反三:【变式】用若干个大小相同的小立方体搭一个几何体,使它的主视图和俯视图如图所示,俯视图中小正方形中字母表示在该位置小立方体的个数,请解答下列问题:(1)a = ,b = ,c = ;(2)这个几何体最少由 个小立方体搭成,最多由 个小立方体搭成.(3)当d =2,e =1,f =2时,画出这个几何体的左视图. 【答案】(1) a =3,1b =,1c = (2) 9,11(3)作图见分析【分析】(1)根据主视图结合俯视图直接解答即可;(2)由主视图得b ,e ,f 中有一个等于2时,小立方体个数最少,当b =e =f =2时,小立方体个数最多;(3)根据三视图的要求画图即可.(1)解:根据主视图可知第三列的高度为3,故a =3,第二列的高度为1,故b =c =1, 故答案为:3,1,1;(2)由主视图得b ,e ,f 中有一个等于2时,小立方体个数最少,最少=1+1+2+1+1+3=9;当b =e =f =2时,小立方体个数最多,最多=2+2+2+1+1+3=11;故答案为:9,11;(3)左视图如图:【点拨】此题考查了小立方体组成的几何图形,掌握由三视图确定小立方体的个数,会画几何图形的三视图,正确掌握由三视图确定几何图形是解题的关键.。
2024中考数学一轮复习核心知识点精讲—投影与视图1.掌握平行投影和中心投影的区别和性质;2.根据简单几何体或简单组合几何体判断其三视图;3.掌握立体图形的展开与折叠。
考点1:投影1.投影:在光线的照射下,空间中的物体落在平面内的影子能够反映出该物体的形状和大小,这种现象叫做投影现象.影子所在的平面称为投影面.2.平行投影、中心投影、正投影(1)中心投影:在点光源下形成的物体的投影叫做中心投影,点光源叫做投影中心.【注意】灯光下的影子为中心投影,影子在物体背对光的一侧.等高的物体垂直于地面放置时,在灯光下,离点光源近的物体的影子短,离点光源远的物体的影子长.(2)平行投影:投射线相互平行的投影称为平行投影.【注意】阳光下的影子为平行投影,在平行投影下,同一时刻两物体的影子在同一方向上,并且物高与影长成正比.考点2:视图1.视图:由于可以用视线代替投影线,所以物体的正投影通常也称为物体的视图.2.三视图:1)主视图:从正面看得到的视图叫做主视图.2)左视图:从左面看得到的视图叫做左视图.3)俯视图:从上面看得到的视图叫做俯视图.【注意】在三种视图中,主视图反映物体的长和高,左视图反映了物体的宽和高,俯视图反映了物体的长和宽.3.三视图的画法1)画三视图要注意三要素:主视图与俯视图长度相等;主视图与左视图高度相等;左视图与俯视图宽度相等.简记为“主俯长对正,主左高平齐,左俯宽相等”.2)注意实线与虚线的区别:能看到的线用实线,看不到的线用虚线.【题型1:平行投影与中心投影】【典例1】(2021•绍兴)如图,树AB在路灯O的照射下形成投影AC,已知路灯高PO=5m,树影AC=3m,树AB与路灯O的水平距离AP=4.5m,则树的高度AB长是()A.2m B.3m C.m D.m【答案】A【解答】解:∵AB∥OP,∴△CAB∽△CPO,∴,∴,∴AB=2(m),故选:A.【变式1-1】(2021•南京)如图,正方形纸板的一条对角线垂直于地面,纸板上方的灯(看作一个点)与这条对角线所确定的平面垂直于纸板.在灯光照射下,正方形纸板在地面上形成的影子的形状可以是()A.B.C.D.【答案】D【解答】解:根据正方形纸板的一条对角线垂直于地面,纸板上方的灯(看作一个点)与这条对角线所确定的平面垂直于纸板,灯在纸板上方,∴上面两条边离点光源近,在同一投影面上的影子就长于下方离点光源远的两条边,∴上方投影比下方投影要长,故选:D.【变式1-2】(2020•贵阳)下列四幅图中,能表示两棵树在同一时刻太阳光下的影子的图是()A.B.C.D.【答案】C【解答】解:A、两棵小树的影子的方向相反,不可能为同一时刻阳光下影子,所以A选项错误;B、两棵小树的影子的方向相反,不可能为同一时刻阳光下影子,所以B选项错误;C、在同一时刻阳光下,树高与影子成正比,所以C选项正确.D、图中树高与影子成反比,而在同一时刻阳光下,树高与影子成正比,所以D选项错误;故选:C.【题型2:三视图】【典例2】(2023•德州)如图所示几何体的俯视图为()A.B.C.D.【答案】C【解答】解:从上面看,是一个矩形,矩形的两边与矩形内部的圆相切.故选:C.【变式2-1】(2023•沈阳)如图是由5个相同的小立方块搭成的几何体,这个几何体的主视图是()A.B.C.D.【答案】A【解答】解:此几何体的主视图从左往右分3列,小正方形的个数分别是1,2,1.故选:A.【变式2-2】(2023•枣庄)榫卯是古代中国建筑、家具及其他器械的主要结构方式,是我国工艺文化精神的传承,凸出部分叫榫,凹进部分叫卯.如图是某个部件“卯”的实物图,它的主视图是()A.B.C.D.【答案】C【解答】解:如图所示的几何体的主视图如下:.故选:C.【变式2-3】(2023•青岛)一个正方体截去四分之一,得到如图所示的几何体,其左视图是()A.B.C.D.【答案】D【解答】解:A、选项不符合三种视图,不符合题意;B、选项是主视图,不符合题意;C、选项是右视图,不符合题意;D、选项是左视图,符合题意;故选:D.【变式2-4】(2023•金华)某物体如图所示,其俯视图是()A.B.C.D.【答案】B【解答】解:该物体的俯视图是:B.故选:B.【题型3:由三视图还原几何体】【典例3】(2023•淮安)如图是一个几何体的三视图,则该几何体的侧面积是()A.12πB.15πC.18πD.24π【答案】B【解答】解:由三视图可知此几何体为圆锥,∵d=6,h=4,∴圆锥的母线长为=5,∴圆锥的侧面积为:×6π×5=15π,故选:B.【典例3-1】(2023•河北)如图1,一个2×2的平台上已经放了一个棱长为1的正方体,要得到一个几何体,其主视图和左视图如图2,平台上至少还需再放这样的正方体()A.1个B.2个C.3个D.4个【答案】B【解答】解:平台上至少还需再放这样的正方体2个,故选:B.【变式3-2】(2023•呼和浩特)如图是某几何体的三视图,则这个几何体是()A.B.C.D.【答案】C【解答】解:根据主视图可知,这个组合体是上、下两个部分组成且上下两个部分的高度相当,上面是长方形,可能是圆柱体或长方体,由左视图可知,上下两个部分的宽度相等,且高度相当,由俯视图可知,上面是圆柱体,下面是长方体,综上所述,这个组合体上面是圆柱体,下面是长方体,且宽度相等,高度相当,所以选项C中的组合体符合题意,故选:C.【变式3-3】(2023•湖北)如图是一个立体图形的三视图,该立体图形是()A.三棱柱B.圆柱C.三棱锥D.圆锥【答案】D【解答】解:根据三视图的知识,正视图和左视图都为一个三角形,而俯视图为一个圆,故可得出这个图形为一个圆锥.故选:D.一.选择题(共8小题)1.用3个同样的小正方体摆出的几何体,从正面看到的形状图如图所示,则这个几何体可能是()A.B.C.D.【答案】A【解答】解:A.从正面看到,底层是两个小正方形,上层的右边是一个小正方形,故本选项符合题意;B.从正面看到,是一行两个相邻的小正方形,故本选项不符合题意;C.从正面看到,底层是两个小正方形,上层的左边是一个小正方形,故本选项不符合题意;D.从正面看到,是一行两个相邻的小正方形,故本选项不符合题意.故选:A.2.下列四个几何体中,从正面看和从上面看都是圆的是()A.B.C.D.【答案】D【解答】解:A、圆柱的主视图是矩形、俯视图是圆,不符合题意;B、圆台主视图是等腰梯形,俯视图是圆环,不符合题意;C、圆锥主视图是等腰三角形,俯视图是圆和圆中间一点,不符合题意;D、球的主视图、俯视图都是圆,符合题意.故选:D.3.从正面、左面、上面观察某个立体图形,得到如图所示的平面图形,那么这个立体图形是()A.B.C.D.【答案】C【解答】解:∵主视图和左视图都是长方形,∴此几何体为柱体,∵俯视图是一个三角形,∴此几何体为三棱柱.故选:C.4.日晷是我国古代利用日影测定时刻的一种计时仪器,它由“晷面”和“晷针”组成.当太阳光照在日晷上时,晷针的影子就会投向晷面.随着时间的推移,晷针的影子在晷面上慢慢地移动,以此来显示时刻.则晷针在晷面上形成的投影是()A.中心投影B.平行投影C.既是平行投影又是中心投影D.不能确定【答案】B【解答】解:晷针在晷面上形成的投影是平行投影.故选:B.5.下列四幅图形中,表示两棵小树在同一时刻同一地点阳光下的影子的图形可能是()A.B.C.D.【答案】A【解答】解:两棵小树在同一时刻同一地点阳光下的影子的方向应该一致,树高与影长的比相等,所以A选项满足条件.故选:A.6.如图,在一间黑屋子的地面A处有一盏探照灯,当人从灯向墙运动时,他在墙上的影子的大小变化情况是()A.变大B.变小C.不变D.不能确定【答案】B【解答】解:如图所示:当人从灯向墙运动时,他在墙上的影子的大小变化情况是变小.故选:B.7.如图是小红在一天中四个时刻看到的一棵树的影子的图,请你将它们按时间先后顺序进行排列()A.①②③④B.①③④②C.②①④③D.④②①③【答案】D【解答】解:西为④,西北为②,东北为①,东为③,故其按时间的先后顺序为:④②①③.故选:D.8.如图,阳光从教室的窗户射入室内,窗户框AB在地面上的影长DE=1.8m,窗户下檐到地面的距离BC =1m,EC=1.2m,那么窗户的高AB为()A.1.5m B.1.6m C.1.86m D.2.16m【答案】A【解答】解:∵BE∥AD,∴△BCE∽△ACD,∴即=且BC=1,DE=1.8,EC=1.2∴=∴1.2AB=1.8,∴AB=1.5m.故选:A.二.填空题(共1小题)9.一天下午,小红先参加了校运动会女子200m比赛,然后又参加了女子400m比赛,摄影师在同位置拍摄了她参加这两场比赛的照片,如图所示,则小红参加200m比赛的照片是图2.(填“图1”或“图2”)【答案】图2.【解答】解:图1中的人的影子比较长,所以图1中反映的时间比图2中反映的时间要晚,所以小红参加200m比赛的照片为图2.故答案为图2.三.解答题(共1小题)10.如图,是由若干个完全相同的小正方体组成的一个几何体.从正面、左面、上面观察该几何体,在方格图中画出你所看到的几何体的形状图.(用阴影表示)【答案】见解答.【解答】解:如图所示.一.选择题(共7小题)1.如图是一个正六棱柱的主视图和左视图,则图中a的值为()A.B.4C.2D.【答案】D【解答】解:正六棱柱的底面如图所示,过点A作AH⊥BC于H.由题意得,2AH+BD=4,∵∠BAC=120°,AC=AB,∴∠CAH=∠BAH=60°,∴∠ABH=30°,∴AB=2AH,∴4AH=4,∴AH=1,∴BH=AH=,∴a的值为,故选:D.2.如图所示的是由两个长方体组成的几何体,这两个长方体的底面都是正方形,则该几何体的俯视图是()A.B.C.D.【答案】C【解答】解:该几何体的俯视图是.故选:C.3.如图所示是一个由若干个相同的正方体组成的几何体的主视图和左视图,则组成这个几何体的小正方体的个数最少是()A.5个B.6个C.11个D.13个【答案】A【解答】解:底层正方体最少的个数应是3个,第二层正方体最少的个数应该是2个,因此这个几何体最少有5个小正方体组成,故选:A.4.如图,是圆桌正上方的灯泡O发出的光线照射桌面后,在地面上形成阴影(圆形)的示意图.已知桌面的直径为1.6m,桌面距离地面1m,若灯泡O距离地面3m,则地面上阴影部分的面积为()A.0.64πm2B.2.56πm2C.1.44πm2D.5.76πm2【答案】C【解答】解:如图设C,D分别是桌面和其地面影子的圆心,CB∥AD,∴△OBC∽△OAD∴=,而OD=3,CD=1,∴OC=OD﹣CD=3﹣1=2,BC=×1.6=0.8,∴=,∴AD=1.2,=π×1.22=1.44πm2,∴S⊙D即地面上阴影部分的面积为1.44πm2.故选:C.5.如图,上下底面为全等的正六边形礼盒,其主视图与左视图均由矩形构成,主视图中大矩形边长如图所示,左视图中包含两全等的矩形,如果用彩色胶带如图包扎礼盒,所需胶带长度至少为()A.320cm B.395.2cm C.297.9cm D.480cm【答案】C【解答】解:根据题意,作出实际图形的上底,如图:AC,CD是上底面的两边.则AC=40÷2=20(cm),∠ACD=120°,作CB⊥AD于点B,那么AB=AC×sin60°=10(cm),所以AD=2AB=20(cm),胶带的长至少=20×6+15×6≈297.8(cm).所以至少需要297.9cm的胶带故选:C.6.一个几何体的三视图如图所示,则这个几何体是()A.B.C.D.【答案】D【解答】解:根据主视图和左视图为矩形可判断出该几何体是柱体,根据俯视图是两个矩形可判断出该几何体为.故选:D.7.一个物体的三视图如图所示,其中主视图和左视图是全等的等边三角形,俯视图是圆,根据图中所示数据,可求这个物体的表面积为()A.9πB.6πC.3πD.(3+)π【答案】A【解答】解:由三视图可知:该几何体是一个圆锥,其轴截面是一个高为3的正三角形.∴正三角形的边长==2,∴圆锥的底面圆半径是,母线长是2,∴底面周长为2π∴侧面积为×2π×2=6π,∵底面积为πr2=3π,∴这个物体的表面积是9π.故选:A.二.填空题(共3小题)8.如图,在平面直角坐标系中,点光源位于P(4,4)处,木杆AB两端的坐标分别为(0,2),(6,2).则木杆AB在x轴上的影长CD为12.【答案】见试题解答内容【解答】解:过P作PE⊥x轴于E,交AB于M,如图,∵P(4,4),A(0,2),B(6,2).∴PM=2,PE=4,AB=6,∵AB∥CD,∴=.∴=,∴CD=12,故答案为:12.9.如图,在直角坐标系中,点P(3,2)是一个点光源.木杆AB两端的坐标分别为(2,1),(5,1).则木杆AB在x轴上的投影长为6.【答案】6.【解答】解:如图,延长PAPB交x轴分别于点A′、点B′,过点P作PN⊥x轴,交AB于点M,垂足为N,∵点A(2,1),点B(5,1),∴AB=|2﹣5|=3,AB∥x轴,∴PN⊥AB,又∵点P(3,2),∴PN=2,PM=MN=1,∵AB∥x轴,∴△PAB∽△PA′B′,∴==,∴A′B′=2AB=6,即AB在x轴上的影长为6,故答案为:6.10.航拍器拍出的照片会给我们视觉上带来震撼的体验,越来越受追捧.如图,航拍器在空中拍摄地面的区域是一个圆,且拍摄视角α固定:(1)现某型号航拍器飞行高度为36m,测得可拍摄区域半径为48m.若要使拍摄区域面积为现在的2倍,则该航拍器还要升高(36﹣36)m;(2)航拍器由遥控器控制,与(1)中同型号的航拍器最远飞行距离为距遥控器2000m,则该航拍器可拍摄区域的最大半径为m.(忽略遥控器所在高度)【答案】见试题解答内容【解答】解:(1)由题意:tan==,∵拍摄区域面积为现在的2倍,∴可拍摄区域半径为48m,设航拍器飞行高度为hm,则有tan==,∴h=36,该航拍器还要升高(36﹣36)m,故答案为(36﹣36).(2)如图,由题意航拍器在以O为圆心,2000m为半径的圆上运动.航拍器可拍摄区域的最大直径为EE′,此时PE⊥OP,PE′⊥OP′,则有=,∴OE=(m),故答案为.三.解答题(共1小题)11.李明在参观某工厂车床工作间时发现了一个工件,通过观察并画出了此工件的三视图,借助直尺测量了部分长度.如图所示,该工件的体积是多少?【答案】17πcm3.【解答】解:根据三视图可知该几何体是两个圆柱体叠加在一起,底面直径分别是2cm和4cm,高分别是4cm和1cm,∴体积为:4π×22+π×12×1=17π(cm3).答:该工件的体积是17πcm3.1.(2023•大庆)一个长方体被截去一部分后,得到的几何体如图水平放置,其俯视图是()A.B.C.D.【答案】A【解答】解:从上面看,是一个矩形.故选:A.2.(2023•广州)一个几何体的三视图如图所示,则它表示的几何体可能是()A.B.C.D.【答案】D【解答】解:由主视图和左视图可以得到该几何体是圆柱和小圆锥的复合体,由俯视图可以得到小圆锥的底面和圆柱的底面完全重合.故选:D.3.(2023•陕西)陕西饮食文化源远流长,“老碗面”是陕西地方特色美食之一.图②是从正面看到的一个“老碗”(图①)的形状示意图.是⊙O的一部分,D是的中点,连接OD,与弦AB交于点C,连接OA,OB.已知AB=24cm,碗深CD=8cm,则⊙O的半径OA为()A.13cm B.16cm C.17cm D.26cm【答案】A【解答】解:∵是⊙O的一部分,D是的中点,AB=24cm,∴OD⊥AB,AC=BC=AB=12cm.设⊙O的半径OA为R cm,则OC=OD﹣CD=(R﹣8)cm.在Rt△OAC中,∵∠OCA=90°,∴OA2=AC2+OC2,∴R2=122+(R﹣8)2,∴R=13,即⊙O的半径OA为13cm.故选:A.4.(2023•牡丹江)由若干个完全相同的小正方体搭成的几何体的主视图和左视图如图所示,则搭成该几何体所用的小正方体的个数最多是()A.6B.7C.8D.9【答案】B【解答】解:根据主视图和左视图可得:这个几何体有2层,3列,最底层最多有3×2=6个正方体,第二层有1个正方体,则搭成这个几何体的小正方体的个数最多是6+1=7个;5.(2023•贵州)如图所示的几何体,从正面看,得到的平面图形是()A.B.C.D.【答案】A【解答】解:从正面看到的平面图形为等腰梯形.故选:A.6.(2023•自贡)如图中六棱柱的左视图是()A.B.C.D.【答案】A【解答】解:由题可得,六棱柱的左视图是两个相邻的长相等的长方形,如图:.7.(2021•毕节市)学习投影后,小华利用灯光下自己的影子长度来测量一路灯的高度.如图,身高1.7m的小明从路灯灯泡A的正下方点B处,沿着平直的道路走8m到达点D处,测得影子DE长是2m,则路灯灯泡A离地面的高度AB为8.5m.【答案】见试题解答内容【解答】解:∵AB⊥BE,CD⊥BE,∴AB∥CD,∴△ECD∽△EAB,∴=,∴=,解得:AB=8.5,答:路灯灯泡A离地面的高度AB为8.5米,故答案为:8.5.8.(2022•杭州)某项目学习小组为了测量直立在水平地面上的旗杆AB的高度,把标杆DE直立在同一水平地面上(如图).同一时刻测得旗杆和标杆在太阳光下的影长分别是BC=8.72m,EF=2.18m.已知B,C,E,F在同一直线上,AB⊥BC,DE⊥EF,DE=2.47m,则AB=9.88m.【答案】9.88.【解答】解:∵同一时刻测得旗杆和标杆在太阳光下的影长分别是BC=8.72m,EF=2.18m.∴AC∥DF,∴∠ACB=∠DFE,∵AB⊥BC,DE⊥EF,∴∠ABC=∠DEF=90°,∴Rt△ABC∽Rt△DEF,∴,即,解得AB=9.88,∴旗杆的高度为9.88m.故答案为:9.88.9.(2022•徐州)如图,公园内有一个垂直于地面的立柱AB,其旁边有一个坡面CQ,坡角∠QCN=30°.在阳光下,小明观察到AB在地面上的影长为120cm,在坡面上的影长为180cm.同一时刻,小明测得直立于地面长60cm的木杆的影长为90cm(其影子完全落在地面上).求立柱AB的高度.【答案】(170+60)cm.【解答】解:延长AD交BN于点E,过点D作DF⊥BN于点F,在Rt△CDF中,∠CFD=90°,∠DCF=30°,则DF=CD=90(cm),CF=CD•cos∠DCF=180×=90(cm),由题意得:=,即=,解得:EF=135,∴BE=BC+CF+EF=(255+90)cm,则=,解得:AB=170+60,答:立柱AB的高度为(170+60)cm.。