2016考研数学考前需注意的几大知识点
- 格式:doc
- 大小:17.00 KB
- 文档页数:2
2016考研数学怎么复习_考研数学各知识点复习资料2016考研数学复习资料——向量与线性方程组部分复习建议向量与线性方程组是整个线性代数部分的核心内容。
相比之下,行列式和矩阵可视作是为了讨论向量和线性方程组部分的问题而做铺垫的基础性章节,而其后两章特征值和特征向量、二次型的内容则相对独立,可以看作是对核心内容的扩展。
向量与线性方程组的内容联系很密切,很多知识点相互之间都有或明或暗的相关性。
复习这两部分内容最有效的方法就是彻底理顺诸多知识点之间的内在联系,因为这样做首先能够保证做到真正意义上的理解,同时也是熟练掌握和灵活运用的前提。
这部分的重要考点一是线性方程组所具有的两种形式——矩阵形式和向量形式;二是线性方程组与向量以及其它章节的各种内在联系。
(1齐次线性方程组与向量线性相关、无关的联系齐次线性方程组可以直接看出一定有解,因为当变量都为零时等式一定成立——印证了向量部分的一条性质“零向量可由任何向量线性表示”。
齐次线性方程组一定有解又可以分为两种情况:①有唯一零解;②有非零解。
当齐次线性方程组有唯一零解时,是指等式中的变量只能全为零才能使等式成立,而当齐次线性方程组有非零解时,存在不全为零的变量使上式成立;但向量部分中判断向量组是否线性相关、无关的定义也正是由这个等式出发的。
故向量与线性方程组在此又产生了联系——齐次线性方程组是否有非零解对应于系数矩阵的列向量组是否线性相关。
可以设想线性相关、无关的概念就是为了更好地讨论线性方程组问题而提出的。
(2齐次线性方程组的解与秩和极大无关组的联系同样可以认为秩是为了更好地讨论线性相关和线性无关而引入的。
秩的定义是“极大线性无关组中的向量个数”。
经过“秩→线性相关、无关→线性方程组解的判定”的逻辑链条,就可以判定列向量组线性相关时,齐次线性方程组有非零解,且齐次线性方程组的解向量可以通过r个线性无关的解向量(基础解系线性表示。
(3非齐次线性方程组与线性表出的联系非齐次线性方程组是否有解对应于向量是否可由列向量组线性表示,使等式成立的一组数就是非齐次线性方程组的解。
2016考研数学高等数学复习重点考研数学如何取得高分?以下老师为各位同学整理了提高考研数学成绩的三个技巧,供大家参考,希望能对大家复习备考有帮助!考研数学复习是建立在对基本的东西很深刻的理解的基础上的,单纯多做题可能会多见识一些题型,但对于一些很灵活有新意的题目就可能无法应对,这和点石成金的故事是一样的道理。
而这种能力的培养却来自于老老实实地将基础打牢,这一点上要摒弃那种急功近利的想法,不论是考研还是成就一番事业,要想成功,首先要沉得住气,有一个长远的打算,而不是做一天算一天,同时要善于控制事情发展的节奏,不论太快抑或太慢都不好,你都得去考虑为什么会这样,怎样去解决。
一个人不论处于顺风还是逆风,都要学会不断的去跟自己出难题,不断地去反省自己,自己主动把握自己的命运,他才能最后成功。
在忙碌的考研复习中,或许你正在忙于大量的复习知识,或许你已投入无尽的题海,或许你还在为一道道题而苦恼,或许你还在因为复习不见成效而沮丧。
但是,不知忙于埋头复习的你有没有发现,不是你的能力不够强,而是你对如何复习还不熟练。
我们的最终目的是提高复习效果,提高复习效果的途径大致可以分为两种:一是调整数学整体的素质和能力,更好的驾驭考研;二是理解复习的每一个环节,掌握复习方法,将自己已有的潜能和水平发挥到极致。
第一章函数、极限与连续部分。
本部分的重点内容是极限,前后交叉的地方多,综合性强。
而求极限是考研数学的一个基本题型,也是对考生基本运算能力的考查,广大考生一定要对求极限的基本方法和运算思路有一个整体的把握。
第一章当中除了求极限之外,还有无穷小的比较、等价无穷小等也都是往年考查的重点,希望大家在复习当中予以关注。
另外,关于函数间断点类型的判断,也是考查比较频繁的知识点,大家在复习当中要引起重视。
第二章一元函数微分学。
这部分考生一定要注意导数的定义,理解导数的几何意义和物理意义,包括导数概念的一些充要条件要很清楚。
在一元函数微分学当中还有导数的计算和应用,导数的计算相对来说比较简单,大家对于导数的计算只要有足够的耐心和细心,就不会出问题;导数的应用是一个比较大的内容,函数的单调性、凹凸性、极值、拐点以及不等式的证明、方程根的应用都会在这块内容中出题,这是本章的重点和难点。
2016考研数学知识点大纲1、两个重要极限,未定式的极限、等价无穷小代换这些小的知识点在历年的考察中都比较高。
而透过我们分析,假如考极限的话,主要考的是洛必达法则加等价无穷小代换,特别针对数三的同学,这儿可能出大题。
2、处理连续性,可导性和可微性的关系要求掌握各种函数的求导方法。
比如隐函数求导,参数方程求导等等这一类的,还有注意一元函数的应用问题,这也是历年考试的一个重点。
数三的同学这儿结合经济类的一些试题进行考察。
3、微分方程:一是一元线性微分方程,第二是二阶常系数齐次/非齐次线性微分方程对第一部分,考生需要掌握九种小类型,针对每一种小类型有不同的解题方式,针对每个不同的方程,套用不同的公式就行了。
对于二阶常系数线性微分方程大家一定要理解解的结构。
另一块对于非齐次的方程来说,考生要注意它和特征方程的联系,有齐次为方程可以求它的通解,当然给出的通解大家也要写出它的特征方程,这个变化是咱们这几年的一个趋势。
这一类问题就是逆问题。
对于二阶常系数非齐次的线性方程大家要分类掌握。
当然,这一块对于数三的同学来说,还有一个差分方程的问题,差分方程不作为咱们的一个重点,而且提醒大家一下,学习的时候要注意,差分方程的解题方式和微方程是相似的,学习的时候要注意这一点。
4、级数问题,主要针对数一和数三这部分的重点是:一、常数项级数的性质,包括敛散性;二、牵扯到幂级数,大家要熟练掌握幂级数的收敛区间的计算,收敛半径与和函数,幂级数展开的问题,要掌握一个熟练的方法来进行计算。
对于幂级数求和函数它可能直接给咱们一个幂级数求它的和函数或者给出一个常数项级数让咱们求它的和,要转化成适当的幂级数来进行求和。
5、一维随机变量函数的分布这个要重点掌握连续性变量的这一块。
这里面有个难点,一维随机变量函数这是一个难点,求一元随机变量函数的分布有两种方式,一个是分布函数法,这是最基本要掌握的。
另外是公式法,公式法相对比较便捷,但是应用范围有一定的局限性。
2016考研数学:高数中的难点高等数学是考研数学的重中之重,所占的比重较大,在数学一、三中占56%,数学二中占78%,重点难点较多。
在这一阶段的主要目标是针对高数中的重点考点做强化复习,对一般难度和常见题型要做到熟练掌握。
为了帮助提高大家高效复习,本文为大家梳理了考研数学的难重点,希望大家不要盲目复习。
1.函数、极限与连续。
求分段函数的复合函数;求极限或已知极限确定原式中的常数;讨论函数的连续性,判断间断点的类型;无穷小阶的比较;讨论连续函数在给定区间上零点的个数,或确定方程在给定区间上有无实根。
这一部分更多的会以选择题,填空题,或者作为构成大题的一个部件来考核,复习的关键是要对这些概念有本质的理解,在此基础上找习题强化。
2.一元函数微分学。
求给定函数的导数与微分(包括高阶导数),隐函数和由参数方程所确定的函数求导,特别是分段函数和带有绝对值的函数可导性的讨论;利用洛比达法则求不定式极限;讨论函数极值,方程的根,证明函数不等式;利用罗尔定理、拉格朗日中值定理、柯西中值定理和泰勒中值定理证明有关命题,此类问题证明经常需要构造辅助函数;几何、物理、经济等方面的最大值、最小值应用问题,解这类问题,主要是确定目标函数和约束条件,判定所讨论区间;利用导数研究函数性态和描绘函数图形,求曲线渐近线。
3.一元函数积分学。
计算题:计算不定积分、定积分及广义积分;关于变上限积分的题:如求导、求极限等;有关积分中值定理和积分性质的证明题;定积分应用题:计算面积,旋转体体积,平面曲线弧长,旋转面面积,压力,引力,变力作功等;综合性试题。
这一部分主要以计算应用题出现,只需多加练习即可。
4.向量代数和空间解析几何。
计算题:求向量的数量积,向量积及混合积;求直线方程,平面方程;判定平面与直线间平行、垂直的关系,求夹角;建立旋转面的方程;与多元函数微分学在几何上的应用或与线性代数相关联的题目。
这一部分的难度在考研数学中应该是相对简单的,找辅导书上的习题练习,需要做到快速正确的求解。
2016考研数学:数学三知识点归纳大家在做近几年的考研数学真题的时候要注意,发现自己的薄弱环节,抓紧时间补上才是最后提分关键。
从考研数学题目来看,虽然千变万化,有各种延伸或变式,数学三的考查都是常规题型与常考知识点的再现。
接下来凯程考研小编就考研数学三常考知识点做了整理归纳,希望对大家有所帮助!1.曲线的渐近线;2.某点处的高阶导数;3.化极坐标系下的二次积分为直角坐标系下的二次积分;4.数项级数敛散性的判定;5.向量组的线性相关性;6.初等变换与初等矩阵;7.二维均匀分布;8.统计量的常见分布;9.未定式的极限;10.分段函数的复合函数的导数;11.二元函数全微分的定义;12.平面图形的面积;13.初等变换、伴随矩阵、抽象行列式的计算;14.随机事件的概率;15.未定式的极限;16.无界区域上的二重积分;17.多元函数微分学的经济应用,条件极值;18.函数不等式的证明;19.微分方程、变限积分函数、拐点;20.含参数的方程组;21.利用正交变换化二次型为标准形;22.二维离散型随机变量的概率、数字特征;23.二维常见分布的随机变量函数的分布、数字特征所谓思维定势,就是按照积累的思维活动经验教训和已有的思维规律,在反复使用中所形成的比较稳定的、定型化了的思维思维定势路线、方式、程序、模式。
第一部分《高数解题的四种思维定势》1.在题设条件中给出一个函数f(x)二阶和二阶以上可导,"不管三七二十一",把f(x)在指定点展成泰勒公式再说。
2.在题设条件或欲证结论中有定积分表达式时,则"不管三七二十一"先用积分中值定理对该积分式处理一下再说。
3.在题设条件中函数f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=0或f(b)=0或f(a)=f(b)=0,则"不管三七二十一"先用拉格朗日中值定理处理一下再说。
4.对定限或变限积分,若被积函数或其主要部分为复合函数,则"不管三七二十一"先做变量替换使之成为简单形式f(u)再说。
2016考研数学考试大纲分析及复习重点--函数、极限、连续9月18日这个在中国历史上成为转折点的一天,同样也为2016年参加考研的同学带来了重磅消息—2016年考研大纲正式发布,下面跨考教育数学教研室赵睿老师就按章节来分析大纲的要求以及复习该章节的重点:一、大纲要求:函数、极限、连续1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系.2.了解函数的有界性、单调性、周期性和奇偶性.3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.4.掌握基本初等函数的性质及其图形,了解初等函数的概念.5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左极限、右极限之间的关系.6.掌握极限的性质及四则运算法则.7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限.9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.二、复习重点本部分重点是极限,前后内容交叉多,综合性强,主要有两个出题点,一个是计算极限,一个是对极限的定义的考查。
主要求极限的方法有:利用极限的四则运算法则、幂指函数运算、连续函数代入法利用两个重要极限求极限利用洛必达法则利用等价无穷小极限存在准则:夹逼准则,单调有界准则利用左右极限求分段函数分段点利用导数定义利用定积分定义利用泰勒公式求极限通过与2015年的数学一大纲比较,今年没有做任何调整,同学们按照原计划复习,夯实基础,把握重点,重视总结、归纳解题思路、方法和技巧,提高解题计算能力必能在2016的考试中创造辉煌。
最后祝同学们,金榜题名。
2016考研数学易错的知识点!要小心!
考研数学中高频易错知识点不仅爱错还爱考,本文将针对数学中的高频知识点进行罗列,帮大家理清2016考研数学中的常考易错知识,获得高分。
考研数学复习中,能够把握好一些高频易错知识点的话,可以帮助我们更进一步深刻理解知识点,并且提高做题的效率和准确度。
小编大致总结了一些高等数学前两章内容当中容易出现的错误点,希望考研的同学复习数学有所帮助。
1.函数连续是函数极限存在的充分条件。
若函数在某点连续,则该函数在该点必有极限。
若函数在某点不连续,则该函数在该点不一定无极限。
2,若函数在某点可导,则函数在该点一定连续。
但是如果函数不可导,不能推出函数在该点一定不连续。
3.基本初等函数在其定义域内是连续的,而初等函数在其定义区间上是连续的。
4.在一元函数中,驻点可能是极值点,也可能不是极值点。
函数的极值点必是函数的驻点或导数不存在的点。
5.设函数y=f(x)在x=a处可导,则函数y=f(x)的绝对值在x=a处不可导的充分条件是:f(a)=0,f'(a)≠0
6.无穷小量与有界变量之积仍是无穷小量。
7.可导是对定义域内的点而言的,处处可导则存在导函数,只要一个函数在定义域内某一点不可导,那么就不存在导函数,即使该函数在其它各处均可导。
2016考研数学考前必看知识点汇总第一章函数、极限与连续1、函数的有界性2、极限的定义(数列、函数)3、极限的性质(有界性、保号性)4、极限的计算(重点)(四则运算、等价无穷小替换、洛必达法则、泰勒公式、重要极限、单侧极限、夹逼定理及定积分定义、单调有界必有极限定理)5、函数的连续性6、间断点的类型7、渐近线的计算第二章导数与微分1、导数与微分的定义(函数可导性、用定义求导数)2、导数的计算(“三个法则一个表”:四则运算、复合函数、反函数,基本初等函数导数表;“三种类型”:幂指型、隐函数、参数方程;高阶导数)3、导数的应用(切线与法线、单调性(重点)与极值点、利用单调性证明函数不等式、凹凸性与拐点、方程的根与函数的零点、曲率(数一、二))第三章中值定理1、闭区间上连续函数的性质(最值定理、介值定理、零点存在定理)2、三大微分中值定理(重点)(罗尔、拉格朗日、柯西)3、积分中值定理4、泰勒中值定理5、费马引理第四章一元函数积分学1、原函数与不定积分的定义2、不定积分的计算(变量代换、分部积分)3、定积分的定义(几何意义、微元法思想(数一、二))4、定积分性质(奇偶函数与周期函数的积分性质、比较定理)5、定积分的计算6、定积分的应用(几何应用:面积、体积、曲线弧长和旋转面的面积(数一、二),物理应用:变力做功、形心质心、液体静压力)7、变限积分(求导)8、广义积分(收敛性的判断、计算)第五章空间解析几何(数一)1、向量的运算(加减、数乘、数量积、向量积)2、直线与平面的方程及其关系3、各种曲面方程(旋转曲面、柱面、投影曲面、二次曲面)的求法第六章多元函数微分学1、二重极限和二元函数连续、偏导数、可微及全微分的定义2、二元函数偏导数存在、可微、偏导函数连续之间的关系3、多元函数偏导数的计算(重点)4、方向导数与梯度5、多元函数的极值(无条件极值和条件极值)6、空间曲线的切线与法平面、曲面的切平面与法线第七章多元函数积分学(除二重积分外,数一)1、二重积分的计算(对称性(奇偶、轮换)、极坐标、积分次序的选择)2、三重积分的计算(“先一后二”、“先二后一”、球坐标)3、第一、二类曲线积分、第一、二类曲面积分的计算及对称性(主要关注不带方向的积分)4、格林公式(重点)(直接用(不满足条件时的处理:“补线”、“挖洞”),积分与路径无关,二元函数的全微分)5、高斯公式(重点)(不满足条件时的处理(类似格林公式))6、斯托克斯公式(要求低;何时用:计算第二类曲线积分,曲线不易参数化,常表示为两曲面的交线)7、场论初步(散度、旋度)第八章微分方程1、各类微分方程(可分离变量方程、齐次方程、一阶线性微分方程、伯努利方程(数一、二)、全微分方程(数一)、可降阶的高阶微分方程(数一、二)、高阶线性微分方程、欧拉方程(数一)、差分方程(数三))的求解2、线性微分方程解的性质(叠加原理、解的结构)3、应用(由几何及物理背景列方程)第九章级数(数一、数三)1、收敛级数的性质(必要条件、线性运算、“加括号”、“有限项”)2、正项级数的判别法(比较、比值、根值,p级数与推广的p级数)3、交错级数的莱布尼兹判别法4、绝对收敛与条件收敛5、幂级数的收敛半径与收敛域6、幂级数的求和与展开7、傅里叶级数(函数展开成傅里叶级数,狄利克雷定理)总之:相信大家只要能够深刻的理解基本概念,熟悉的掌握基本理论,综合的扩展基本方法,那么成功一定属于大家。
考研数学备考建议重点知识点整理与解题技巧考研数学备考对于大多数考研学子来说是一项极为重要的任务。
作为考研数学考试的一部分,数学一直被认为是难度较大的科目之一。
为了帮助广大考生更好地备考数学,本文将围绕重点知识点整理和解题技巧两个方面进行论述。
一、重点知识点整理1. 高等代数高等代数是考研数学中较为基础的部分,考生需要掌握线性方程组、矩阵、行列式等内容。
在备考过程中,考生应重点关注以下知识点:(1)行列式的性质与初等变换:掌握行列式的基本性质以及通过初等变换求解行列式的方法;(2)矩阵的运算:重点理解矩阵的加法、减法、乘法等运算规则;(3)特征值与特征向量:了解特征值与特征向量的定义及其求解方法。
2. 高等几何高等几何是考研数学中的重要组成部分,考生需要掌握平面解析几何、空间解析几何等内容。
在备考过程中,应重点关注以下知识点:(1)平面解析几何:熟悉平面上直线和曲线的方程表示及其性质;(2)空间解析几何:重点了解空间直线和平面的方程表示以及相关性质;(3)曲面方程:熟悉曲面的方程表示,如球面、柱面、锥面等。
3. 数学分析数学分析是考研数学中较为复杂的一部分,备考过程中需要加强对函数、极限、连续性等内容的理解。
重点知识点整理如下:(1)函数的极限:理解极限的定义及求解方法,包括左极限、右极限和无穷极限;(2)连续性:掌握函数连续性的定义及常见连续函数的性质;(3)导数与微分:熟悉导数的定义、导数的计算方法及微分的概念。
二、解题技巧1. 多做题做题是备考数学的关键环节,通过大量的练习能够更好地熟悉知识点并掌握解题技巧。
建议考生选择一些经典的考研数学习题集进行刷题,同时要注意做题的方法和步骤。
2. 分类总结题型考研数学中常见的题型包括选择题、填空题、计算题和证明题等。
考生在备考过程中应对这些题型进行分类总结,针对不同题型制定相应的解题策略。
3. 注意分析解题过程在解题过程中,考生需要注意分析问题,搞清题目的要求,并结合已知条件进行思考。
2016年研究生考试数学二数学是一门基础学科,对于研究生考试来说尤为重要。
在2016年的研究生考试中,数学二科目是需要考生认真复习和准备的一部分。
本文将对2016年数学二科目的考点和解题技巧进行详细介绍。
一、概览2016年数学二科目主要涵盖了高等代数、数学分析、概率论与数理统计三个方面的内容。
其中,高等代数和数学分析分别占据了45%的权重,概率论与数理统计则占据了10%的权重。
考生在备考过程中应该重点关注这些内容,并进行有针对性的复习和训练。
二、高等代数高等代数是数学中的一个重要分支,它包括了线性代数、向量空间、矩阵论等内容。
在2016年的数学二科目中,高等代数占据了一大部分的考试题目。
考生在备考过程中应该掌握以下几个重要的考点。
1. 线性代数线性代数是高等代数的基础,也是考试中出现频率较高的一个考点。
考生需要熟练掌握线性方程组的解法、矩阵的行列式和逆矩阵、特征值和特征向量等概念和定理。
在解题过程中,可以通过高斯消元法、矩阵的初等变换等方法来简化计算和求解过程。
2. 向量空间向量空间是线性代数的另一个重要概念,考生需要了解向量空间的定义和性质,并能够判断一个给定的集合是否构成向量空间。
此外,对于线性相关性和基底的理解也是备考过程中需要关注的考点。
三、数学分析数学分析是数学的一门基础学科,主要涉及极限、连续性、微分和积分等内容。
在2016年数学二科目中,数学分析的考点也是比较重要的。
考生在备考过程中应该注意以下几个重要的考点。
1. 极限与连续性极限是数学分析中的重要概念之一,考生需要掌握极限的定义和性质,能够求解一些基本的极限问题。
在解题过程中,常用的方法包括夹逼定理、洛必达法则等。
对于连续性的理解和判断也是备考过程中需要关注的考点。
2. 微分与积分微分和积分是数学分析的核心内容,考生需要熟练掌握微分和积分的定义和性质,并能够运用它们来解决实际问题。
在备考过程中,可以通过大量的习题训练来提高解题的能力和速度。
2016考研数学考前需注意的几大知识点
导读:2016考研已进入最后的倒计时,可以说考生的水平已基本定型。
考生要做的是做模拟题保持热度,回顾以前的内容以对抗遗忘,不断总结以查漏补缺,下面,我们来看一看考前需注意的几大知识点。
此文仅求抛砖引玉,帮助考生查漏补缺,而不求大而全。
考生可以本文检查自己的复习效果如何,也可按照本文思路以真题串考点。
一、双扭线
我们看93年数学一这道真题。
题目给出双扭线的直角坐标方程,要求考生写出用极坐标表示的该曲线围成区域的面积。
考生要答对该题,需掌握以下几点:1. 能写出双扭线的极坐标方程2. 熟悉双扭线的图形及常用角度值(从原点出发做双扭线在第一象限图像的切线,其与x轴正半轴的夹角为4分之pi)3.能写出极坐标系下曲边三角形的面积公式。
这些你掌握好了吗?
二、旋转体体积
旋转轴为坐标轴的旋转体体积问题相对好处理,有公式,空心的形体还可用“大减小”的方法处理。
那么旋转轴不为坐标轴的情况如何处理?答案是微元法。
请看92年数二数三这道真题。
题目给出两个抽象函数g(x)< f(x)<m,求g(x),x="a与x=b围成的平面图形绕y=m的旋转体的体积。
这个题明显的特征是旋
转轴不为坐标轴,不能直接套公式,要用微元法处理。
若有此思路,这个题就不是难题。
若执意套公式或用“大减小”处理,那就较为被动。
</p">
三、定积分与变限积分
下面这道真题并不难,但处理它的思路有普遍意义。
下面隆重请出07年数一数三这道真题。
题目给出f(x)的图像,是四个直径在x轴上,且直径为1或2的半圆周轴连接而成的曲线。
而F(x)为f(x)的变上限积分函数,问F(3),F(2)和F(-2)的数量关系。
该题写出F(3),F(2)和F(-2)的表达式,结合定积分的几何意义,不难求解。
但这么做有个问题——易错。
考虑F(-2)时,不少考生只注意到f(x)在(-2,0)的图像位于x轴的下方以及定积分的几何意义是“曲边梯形面积的代数和”,而忽略了F(-2)的积分下限大于积分上限这个事实!进而出错就在所难免了。
较为简洁且不易错的解法是利用一个结论:函数的奇偶性和它的原函数奇偶性有联系,若函数为奇函数,则其原函数为偶函数。
利用这个结论先对F(-2)化简,再考虑几何意义就不易出错了。
通过该题提醒考生两点:1.若某题有不止一种解法,建议选不易出错的解法2.函数与其原函数的性质的关系是数一、二、三需掌握的。